mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-01 00:33:09 +00:00
ef99356dfe
This patch builds on some existing code to do CFG reconstruction from a disassembled binary: - MCModule represents the binary, and has a list of MCAtoms. - MCAtom represents either disassembled instructions (MCTextAtom), or contiguous data (MCDataAtom), and covers a specific range of addresses. - MCBasicBlock and MCFunction form the reconstructed CFG. An MCBB is backed by an MCTextAtom, and has the usual successors/predecessors. - MCObjectDisassembler creates a module from an ObjectFile using a disassembler. It first builds an atom for each section. It can also construct the CFG, and this splits the text atoms into basic blocks. MCModule and MCAtom were only sketched out; MCFunction and MCBB were implemented under the experimental "-cfg" llvm-objdump -macho option. This cleans them up for further use; llvm-objdump -d -cfg now generates graphviz files for each function found in the binary. In the future, MCObjectDisassembler may be the right place to do "intelligent" disassembly: for example, handling constant islands is just a matter of splitting the atom, using information that may be available in the ObjectFile. Also, better initial atom formation than just using sections is possible using symbols (and things like Mach-O's function_starts load command). This brings two minor regressions in llvm-objdump -macho -cfg: - The printing of a relocation's referenced symbol. - An annotation on loop BBs, i.e., which are their own successor. Relocation printing is replaced by the MCSymbolizer; the basic CFG annotation will be superseded by more related functionality. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182628 91177308-0d34-0410-b5e6-96231b3b80d8 |
||
---|---|---|
.. | ||
Unix | ||
Windows | ||
Allocator.cpp | ||
APFloat.cpp | ||
APInt.cpp | ||
APSInt.cpp | ||
Atomic.cpp | ||
BlockFrequency.cpp | ||
BranchProbability.cpp | ||
circular_raw_ostream.cpp | ||
CMakeLists.txt | ||
CommandLine.cpp | ||
Compression.cpp | ||
ConstantRange.cpp | ||
ConvertUTF.c | ||
ConvertUTFWrapper.cpp | ||
COPYRIGHT.regex | ||
CrashRecoveryContext.cpp | ||
DAGDeltaAlgorithm.cpp | ||
DataExtractor.cpp | ||
DataStream.cpp | ||
Debug.cpp | ||
DeltaAlgorithm.cpp | ||
Disassembler.cpp | ||
Dwarf.cpp | ||
DynamicLibrary.cpp | ||
Errno.cpp | ||
ErrorHandling.cpp | ||
FileOutputBuffer.cpp | ||
FileUtilities.cpp | ||
FoldingSet.cpp | ||
FormattedStream.cpp | ||
GraphWriter.cpp | ||
Hashing.cpp | ||
Host.cpp | ||
IncludeFile.cpp | ||
IntEqClasses.cpp | ||
IntervalMap.cpp | ||
IntrusiveRefCntPtr.cpp | ||
IsInf.cpp | ||
IsNAN.cpp | ||
LLVMBuild.txt | ||
Locale.cpp | ||
LocaleGeneric.inc | ||
LocaleWindows.inc | ||
LocaleXlocale.inc | ||
LockFileManager.cpp | ||
Makefile | ||
ManagedStatic.cpp | ||
MD5.cpp | ||
Memory.cpp | ||
MemoryBuffer.cpp | ||
MemoryObject.cpp | ||
Mutex.cpp | ||
Path.cpp | ||
PathV2.cpp | ||
PluginLoader.cpp | ||
PrettyStackTrace.cpp | ||
Process.cpp | ||
Program.cpp | ||
raw_os_ostream.cpp | ||
raw_ostream.cpp | ||
README.txt.system | ||
regcclass.h | ||
regcname.h | ||
regcomp.c | ||
regengine.inc | ||
regerror.c | ||
regex2.h | ||
regex_impl.h | ||
Regex.cpp | ||
regexec.c | ||
regfree.c | ||
regstrlcpy.c | ||
regutils.h | ||
RWMutex.cpp | ||
SearchForAddressOfSpecialSymbol.cpp | ||
Signals.cpp | ||
SmallPtrSet.cpp | ||
SmallVector.cpp | ||
SourceMgr.cpp | ||
Statistic.cpp | ||
StreamableMemoryObject.cpp | ||
StringExtras.cpp | ||
StringMap.cpp | ||
StringPool.cpp | ||
StringRef.cpp | ||
StringRefMemoryObject.cpp | ||
system_error.cpp | ||
SystemUtils.cpp | ||
TargetRegistry.cpp | ||
Threading.cpp | ||
ThreadLocal.cpp | ||
Timer.cpp | ||
TimeValue.cpp | ||
ToolOutputFile.cpp | ||
Triple.cpp | ||
Twine.cpp | ||
Valgrind.cpp | ||
Watchdog.cpp | ||
YAMLParser.cpp | ||
YAMLTraits.cpp |
Design Of lib/System ==================== The software in this directory is designed to completely shield LLVM from any and all operating system specific functionality. It is not intended to be a complete operating system wrapper (such as ACE), but only to provide the functionality necessary to support LLVM. The software located here, of necessity, has very specific and stringent design rules. Violation of these rules means that cracks in the shield could form and the primary goal of the library is defeated. By consistently using this library, LLVM becomes more easily ported to new platforms since the only thing requiring porting is this library. Complete documentation for the library can be found in the file: llvm/docs/SystemLibrary.html or at this URL: http://llvm.org/docs/SystemLibrary.html While we recommend that you read the more detailed documentation, for the impatient, here's a high level summary of the library's requirements. 1. No system header files are to be exposed through the interface. 2. Std C++ and Std C header files are okay to be exposed through the interface. 3. No exposed system-specific functions. 4. No exposed system-specific data. 5. Data in lib/System classes must use only simple C++ intrinsic types. 6. Errors are handled by returning "true" and setting an optional std::string 7. Library must not throw any exceptions, period. 8. Interface functions must not have throw() specifications. 9. No duplicate function impementations are permitted within an operating system class. To accomplish these requirements, the library has numerous design criteria that must be satisfied. Here's a high level summary of the library's design criteria: 1. No unused functionality (only what LLVM needs) 2. High-Level Interfaces 3. Use Opaque Classes 4. Common Implementations 5. Multiple Implementations 6. Minimize Memory Allocation 7. No Virtual Methods