mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 18:34:09 +00:00
efd4a5144b
Silenced some VC warnings. I'm getting linker errors, though: unresolved externals: llvm::Split<class llvm::BasicBlock *,struct llvm::GraphTraits<class llvm::BasicBlock *> >(class llvm::DominatorTreeBase<class llvm::BasicBlock> &,class llvm::BasicBlock *) and llvm::Split<struct llvm::Inverse<class llvm::BasicBlock *>,struct llvm::GraphTraits<struct llvm::Inverse<class llvm::BasicBlock *> > >(class llvm::DominatorTreeBase<class llvm::BasicBlock> &,class llvm::BasicBlock *) Where are these defined? git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43073 91177308-0d34-0410-b5e6-96231b3b80d8
720 lines
24 KiB
C++
720 lines
24 KiB
C++
//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the following classes:
|
|
// 1. DominatorTree: Represent dominators as an explicit tree structure.
|
|
// 2. DominanceFrontier: Calculate and hold the dominance frontier for a
|
|
// function.
|
|
//
|
|
// These data structures are listed in increasing order of complexity. It
|
|
// takes longer to calculate the dominator frontier, for example, than the
|
|
// DominatorTree mapping.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_DOMINATORS_H
|
|
#define LLVM_ANALYSIS_DOMINATORS_H
|
|
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Instruction.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include <algorithm>
|
|
#include <set>
|
|
|
|
namespace llvm {
|
|
|
|
template <typename GraphType> struct GraphTraits;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// DominatorBase - Base class that other, more interesting dominator analyses
|
|
/// inherit from.
|
|
///
|
|
template <class NodeT>
|
|
class DominatorBase : public FunctionPass {
|
|
protected:
|
|
std::vector<NodeT*> Roots;
|
|
const bool IsPostDominators;
|
|
inline DominatorBase(intptr_t ID, bool isPostDom) :
|
|
FunctionPass(ID), Roots(), IsPostDominators(isPostDom) {}
|
|
public:
|
|
|
|
/// getRoots - Return the root blocks of the current CFG. This may include
|
|
/// multiple blocks if we are computing post dominators. For forward
|
|
/// dominators, this will always be a single block (the entry node).
|
|
///
|
|
inline const std::vector<NodeT*> &getRoots() const { return Roots; }
|
|
|
|
/// isPostDominator - Returns true if analysis based of postdoms
|
|
///
|
|
bool isPostDominator() const { return IsPostDominators; }
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DomTreeNode - Dominator Tree Node
|
|
template<class NodeT> class DominatorTreeBase;
|
|
struct PostDominatorTree;
|
|
class MachineBasicBlock;
|
|
|
|
template <class NodeT>
|
|
class DomTreeNodeBase {
|
|
NodeT *TheBB;
|
|
DomTreeNodeBase<NodeT> *IDom;
|
|
std::vector<DomTreeNodeBase<NodeT> *> Children;
|
|
int DFSNumIn, DFSNumOut;
|
|
|
|
template<class N> friend class DominatorTreeBase;
|
|
friend struct PostDominatorTree;
|
|
public:
|
|
typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
|
|
typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
|
|
const_iterator;
|
|
|
|
iterator begin() { return Children.begin(); }
|
|
iterator end() { return Children.end(); }
|
|
const_iterator begin() const { return Children.begin(); }
|
|
const_iterator end() const { return Children.end(); }
|
|
|
|
NodeT *getBlock() const { return TheBB; }
|
|
DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
|
|
const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
|
|
return Children;
|
|
}
|
|
|
|
DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
|
|
: TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
|
|
|
|
DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
|
|
Children.push_back(C);
|
|
return C;
|
|
}
|
|
|
|
void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
|
|
assert(IDom && "No immediate dominator?");
|
|
if (IDom != NewIDom) {
|
|
std::vector<DomTreeNodeBase<BasicBlock>*>::iterator I =
|
|
std::find(IDom->Children.begin(), IDom->Children.end(), this);
|
|
assert(I != IDom->Children.end() &&
|
|
"Not in immediate dominator children set!");
|
|
// I am no longer your child...
|
|
IDom->Children.erase(I);
|
|
|
|
// Switch to new dominator
|
|
IDom = NewIDom;
|
|
IDom->Children.push_back(this);
|
|
}
|
|
}
|
|
|
|
/// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
|
|
/// not call them.
|
|
unsigned getDFSNumIn() const { return DFSNumIn; }
|
|
unsigned getDFSNumOut() const { return DFSNumOut; }
|
|
private:
|
|
// Return true if this node is dominated by other. Use this only if DFS info
|
|
// is valid.
|
|
bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
|
|
return this->DFSNumIn >= other->DFSNumIn &&
|
|
this->DFSNumOut <= other->DFSNumOut;
|
|
}
|
|
};
|
|
|
|
EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
|
|
|
|
template<class NodeT>
|
|
static std::ostream &operator<<(std::ostream &o,
|
|
const DomTreeNodeBase<NodeT> *Node) {
|
|
if (Node->getBlock())
|
|
WriteAsOperand(o, Node->getBlock(), false);
|
|
else
|
|
o << " <<exit node>>";
|
|
|
|
o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
|
|
|
|
return o << "\n";
|
|
}
|
|
|
|
template<class NodeT>
|
|
static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, std::ostream &o,
|
|
unsigned Lev) {
|
|
o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
|
|
for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
|
|
E = N->end(); I != E; ++I)
|
|
PrintDomTree<NodeT>(*I, o, Lev+1);
|
|
}
|
|
|
|
typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
|
|
typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// DominatorTree - Calculate the immediate dominator tree for a function.
|
|
///
|
|
|
|
template<class N, class GraphT>
|
|
void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
|
typename GraphT::NodeType* NewBB);
|
|
|
|
template<class NodeT>
|
|
class DominatorTreeBase : public DominatorBase<NodeT> {
|
|
protected:
|
|
typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
|
|
DomTreeNodeMapType DomTreeNodes;
|
|
DomTreeNodeBase<NodeT> *RootNode;
|
|
|
|
bool DFSInfoValid;
|
|
unsigned int SlowQueries;
|
|
// Information record used during immediate dominators computation.
|
|
struct InfoRec {
|
|
unsigned Semi;
|
|
unsigned Size;
|
|
NodeT *Label, *Parent, *Child, *Ancestor;
|
|
|
|
std::vector<NodeT*> Bucket;
|
|
|
|
InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0) {}
|
|
};
|
|
|
|
DenseMap<NodeT*, NodeT*> IDoms;
|
|
|
|
// Vertex - Map the DFS number to the BasicBlock*
|
|
std::vector<NodeT*> Vertex;
|
|
|
|
// Info - Collection of information used during the computation of idoms.
|
|
DenseMap<NodeT*, InfoRec> Info;
|
|
|
|
void reset() {
|
|
for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
|
|
E = DomTreeNodes.end(); I != E; ++I)
|
|
delete I->second;
|
|
DomTreeNodes.clear();
|
|
IDoms.clear();
|
|
this->Roots.clear();
|
|
Vertex.clear();
|
|
RootNode = 0;
|
|
}
|
|
|
|
public:
|
|
DominatorTreeBase(intptr_t ID, bool isPostDom)
|
|
: DominatorBase<NodeT>(ID, isPostDom), DFSInfoValid(false), SlowQueries(0) {}
|
|
~DominatorTreeBase() { reset(); }
|
|
|
|
virtual void releaseMemory() { reset(); }
|
|
|
|
/// getNode - return the (Post)DominatorTree node for the specified basic
|
|
/// block. This is the same as using operator[] on this class.
|
|
///
|
|
inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
|
|
typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
|
|
return I != DomTreeNodes.end() ? I->second : 0;
|
|
}
|
|
|
|
inline DomTreeNodeBase<NodeT> *operator[](NodeT *BB) const {
|
|
return getNode(BB);
|
|
}
|
|
|
|
/// getRootNode - This returns the entry node for the CFG of the function. If
|
|
/// this tree represents the post-dominance relations for a function, however,
|
|
/// this root may be a node with the block == NULL. This is the case when
|
|
/// there are multiple exit nodes from a particular function. Consumers of
|
|
/// post-dominance information must be capable of dealing with this
|
|
/// possibility.
|
|
///
|
|
DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
|
|
const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
|
|
|
|
/// properlyDominates - Returns true iff this dominates N and this != N.
|
|
/// Note that this is not a constant time operation!
|
|
///
|
|
bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
|
|
DomTreeNodeBase<NodeT> *B) const {
|
|
if (A == 0 || B == 0) return false;
|
|
return dominatedBySlowTreeWalk(A, B);
|
|
}
|
|
|
|
inline bool properlyDominates(NodeT *A, NodeT *B) {
|
|
return properlyDominates(getNode(A), getNode(B));
|
|
}
|
|
|
|
bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
|
|
const DomTreeNodeBase<NodeT> *B) const {
|
|
const DomTreeNodeBase<NodeT> *IDom;
|
|
if (A == 0 || B == 0) return false;
|
|
while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
|
|
B = IDom; // Walk up the tree
|
|
return IDom != 0;
|
|
}
|
|
|
|
|
|
/// isReachableFromEntry - Return true if A is dominated by the entry
|
|
/// block of the function containing it.
|
|
const bool isReachableFromEntry(NodeT* A) {
|
|
assert (!this->isPostDominator()
|
|
&& "This is not implemented for post dominators");
|
|
return dominates(&A->getParent()->getEntryBlock(), A);
|
|
}
|
|
|
|
/// dominates - Returns true iff A dominates B. Note that this is not a
|
|
/// constant time operation!
|
|
///
|
|
inline bool dominates(const DomTreeNodeBase<NodeT> *A,
|
|
DomTreeNodeBase<NodeT> *B) {
|
|
if (B == A)
|
|
return true; // A node trivially dominates itself.
|
|
|
|
if (A == 0 || B == 0)
|
|
return false;
|
|
|
|
if (DFSInfoValid)
|
|
return B->DominatedBy(A);
|
|
|
|
// If we end up with too many slow queries, just update the
|
|
// DFS numbers on the theory that we are going to keep querying.
|
|
SlowQueries++;
|
|
if (SlowQueries > 32) {
|
|
updateDFSNumbers();
|
|
return B->DominatedBy(A);
|
|
}
|
|
|
|
return dominatedBySlowTreeWalk(A, B);
|
|
}
|
|
|
|
inline bool dominates(NodeT *A, NodeT *B) {
|
|
if (A == B)
|
|
return true;
|
|
|
|
return dominates(getNode(A), getNode(B));
|
|
}
|
|
|
|
/// findNearestCommonDominator - Find nearest common dominator basic block
|
|
/// for basic block A and B. If there is no such block then return NULL.
|
|
NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
|
|
|
|
assert (!this->isPostDominator()
|
|
&& "This is not implemented for post dominators");
|
|
assert (A->getParent() == B->getParent()
|
|
&& "Two blocks are not in same function");
|
|
|
|
// If either A or B is a entry block then it is nearest common dominator.
|
|
NodeT &Entry = A->getParent()->getEntryBlock();
|
|
if (A == &Entry || B == &Entry)
|
|
return &Entry;
|
|
|
|
// If B dominates A then B is nearest common dominator.
|
|
if (dominates(B, A))
|
|
return B;
|
|
|
|
// If A dominates B then A is nearest common dominator.
|
|
if (dominates(A, B))
|
|
return A;
|
|
|
|
DomTreeNodeBase<NodeT> *NodeA = getNode(A);
|
|
DomTreeNodeBase<NodeT> *NodeB = getNode(B);
|
|
|
|
// Collect NodeA dominators set.
|
|
SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
|
|
NodeADoms.insert(NodeA);
|
|
DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
|
|
while (IDomA) {
|
|
NodeADoms.insert(IDomA);
|
|
IDomA = IDomA->getIDom();
|
|
}
|
|
|
|
// Walk NodeB immediate dominators chain and find common dominator node.
|
|
DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
|
|
while(IDomB) {
|
|
if (NodeADoms.count(IDomB) != 0)
|
|
return IDomB->getBlock();
|
|
|
|
IDomB = IDomB->getIDom();
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
// dominates - Return true if A dominates B. This performs the
|
|
// special checks necessary if A and B are in the same basic block.
|
|
bool dominates(Instruction *A, Instruction *B) {
|
|
NodeT *BBA = A->getParent(), *BBB = B->getParent();
|
|
if (BBA != BBB) return this->dominates(BBA, BBB);
|
|
|
|
// It is not possible to determine dominance between two PHI nodes
|
|
// based on their ordering.
|
|
if (isa<PHINode>(A) && isa<PHINode>(B))
|
|
return false;
|
|
|
|
// Loop through the basic block until we find A or B.
|
|
typename NodeT::iterator I = BBA->begin();
|
|
for (; &*I != A && &*I != B; ++I) /*empty*/;
|
|
|
|
if(!this->IsPostDominators) {
|
|
// A dominates B if it is found first in the basic block.
|
|
return &*I == A;
|
|
} else {
|
|
// A post-dominates B if B is found first in the basic block.
|
|
return &*I == B;
|
|
}
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// API to update (Post)DominatorTree information based on modifications to
|
|
// the CFG...
|
|
|
|
/// addNewBlock - Add a new node to the dominator tree information. This
|
|
/// creates a new node as a child of DomBB dominator node,linking it into
|
|
/// the children list of the immediate dominator.
|
|
DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
|
|
assert(getNode(BB) == 0 && "Block already in dominator tree!");
|
|
DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
|
|
assert(IDomNode && "Not immediate dominator specified for block!");
|
|
DFSInfoValid = false;
|
|
return DomTreeNodes[BB] =
|
|
IDomNode->addChild(new DomTreeNode(BB, IDomNode));
|
|
}
|
|
|
|
/// changeImmediateDominator - This method is used to update the dominator
|
|
/// tree information when a node's immediate dominator changes.
|
|
///
|
|
void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
|
|
DomTreeNodeBase<NodeT> *NewIDom) {
|
|
assert(N && NewIDom && "Cannot change null node pointers!");
|
|
DFSInfoValid = false;
|
|
N->setIDom(NewIDom);
|
|
}
|
|
|
|
void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
|
|
changeImmediateDominator(getNode(BB), getNode(NewBB));
|
|
}
|
|
|
|
/// eraseNode - Removes a node from the dominator tree. Block must not
|
|
/// domiante any other blocks. Removes node from its immediate dominator's
|
|
/// children list. Deletes dominator node associated with basic block BB.
|
|
void eraseNode(NodeT *BB) {
|
|
DomTreeNodeBase<NodeT> *Node = getNode(BB);
|
|
assert (Node && "Removing node that isn't in dominator tree.");
|
|
assert (Node->getChildren().empty() && "Node is not a leaf node.");
|
|
|
|
// Remove node from immediate dominator's children list.
|
|
DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
|
|
if (IDom) {
|
|
typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
|
|
std::find(IDom->Children.begin(), IDom->Children.end(), Node);
|
|
assert(I != IDom->Children.end() &&
|
|
"Not in immediate dominator children set!");
|
|
// I am no longer your child...
|
|
IDom->Children.erase(I);
|
|
}
|
|
|
|
DomTreeNodes.erase(BB);
|
|
delete Node;
|
|
}
|
|
|
|
/// removeNode - Removes a node from the dominator tree. Block must not
|
|
/// dominate any other blocks. Invalidates any node pointing to removed
|
|
/// block.
|
|
void removeNode(NodeT *BB) {
|
|
assert(getNode(BB) && "Removing node that isn't in dominator tree.");
|
|
DomTreeNodes.erase(BB);
|
|
}
|
|
|
|
/// print - Convert to human readable form
|
|
///
|
|
virtual void print(std::ostream &o, const Module* ) const {
|
|
o << "=============================--------------------------------\n";
|
|
o << "Inorder Dominator Tree: ";
|
|
if (this->DFSInfoValid)
|
|
o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
|
|
o << "\n";
|
|
|
|
PrintDomTree<NodeT>(getRootNode(), o, 1);
|
|
}
|
|
|
|
void print(std::ostream *OS, const Module* M = 0) const {
|
|
if (OS) print(*OS, M);
|
|
}
|
|
|
|
virtual void dump() {
|
|
print(llvm::cerr);
|
|
}
|
|
|
|
protected:
|
|
template<class GraphT>
|
|
friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
|
typename GraphT::NodeType* VIn);
|
|
|
|
template<class GraphT>
|
|
friend typename GraphT::NodeType* Eval(
|
|
DominatorTreeBase<typename GraphT::NodeType>& DT,
|
|
typename GraphT::NodeType* V);
|
|
|
|
template<class GraphT>
|
|
friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
|
typename GraphT::NodeType* V,
|
|
typename GraphT::NodeType* W,
|
|
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
|
|
|
|
template<class GraphT>
|
|
friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
|
typename GraphT::NodeType* V,
|
|
unsigned N);
|
|
|
|
template<class N, class GraphT>
|
|
friend void Calculate(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
|
Function& F);
|
|
|
|
template<class N, class GraphT>
|
|
friend void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
|
typename GraphT::NodeType* NewBB);
|
|
|
|
public:
|
|
/// splitBlock - BB is split and now it has one successor. Update dominator
|
|
/// tree to reflect this change.
|
|
void splitBlock(NodeT* NewBB) {
|
|
if (this->IsPostDominators)
|
|
Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
|
|
else
|
|
Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
|
|
}
|
|
|
|
protected:
|
|
/// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
|
|
/// dominator tree in dfs order.
|
|
void updateDFSNumbers() {
|
|
unsigned DFSNum = 0;
|
|
|
|
SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
|
|
typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
|
|
|
|
for (unsigned i = 0, e = this->Roots.size(); i != e; ++i) {
|
|
DomTreeNodeBase<NodeT> *ThisRoot = getNode(this->Roots[i]);
|
|
WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
|
|
ThisRoot->DFSNumIn = DFSNum++;
|
|
|
|
while (!WorkStack.empty()) {
|
|
DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
|
|
typename DomTreeNodeBase<NodeT>::iterator ChildIt =
|
|
WorkStack.back().second;
|
|
|
|
// If we visited all of the children of this node, "recurse" back up the
|
|
// stack setting the DFOutNum.
|
|
if (ChildIt == Node->end()) {
|
|
Node->DFSNumOut = DFSNum++;
|
|
WorkStack.pop_back();
|
|
} else {
|
|
// Otherwise, recursively visit this child.
|
|
DomTreeNodeBase<NodeT> *Child = *ChildIt;
|
|
++WorkStack.back().second;
|
|
|
|
WorkStack.push_back(std::make_pair(Child, Child->begin()));
|
|
Child->DFSNumIn = DFSNum++;
|
|
}
|
|
}
|
|
}
|
|
|
|
SlowQueries = 0;
|
|
DFSInfoValid = true;
|
|
}
|
|
|
|
DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
|
|
if (DomTreeNodeBase<NodeT> *BBNode = this->DomTreeNodes[BB])
|
|
return BBNode;
|
|
|
|
// Haven't calculated this node yet? Get or calculate the node for the
|
|
// immediate dominator.
|
|
NodeT *IDom = getIDom(BB);
|
|
DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode
|
|
DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
|
|
return this->DomTreeNodes[BB] = IDomNode->addChild(C);
|
|
}
|
|
|
|
inline NodeT *getIDom(NodeT *BB) const {
|
|
typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
|
|
return I != IDoms.end() ? I->second : 0;
|
|
}
|
|
};
|
|
|
|
EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
|
|
|
|
//===-------------------------------------
|
|
/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
|
|
/// compute a normal dominator tree.
|
|
///
|
|
class DominatorTree : public DominatorTreeBase<BasicBlock> {
|
|
public:
|
|
static char ID; // Pass ID, replacement for typeid
|
|
DominatorTree() : DominatorTreeBase<BasicBlock>(intptr_t(&ID), false) {}
|
|
|
|
BasicBlock *getRoot() const {
|
|
assert(Roots.size() == 1 && "Should always have entry node!");
|
|
return Roots[0];
|
|
}
|
|
|
|
virtual bool runOnFunction(Function &F);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
}
|
|
};
|
|
|
|
//===-------------------------------------
|
|
/// DominatorTree GraphTraits specialization so the DominatorTree can be
|
|
/// iterable by generic graph iterators.
|
|
///
|
|
template <> struct GraphTraits<DomTreeNode *> {
|
|
typedef DomTreeNode NodeType;
|
|
typedef NodeType::iterator ChildIteratorType;
|
|
|
|
static NodeType *getEntryNode(NodeType *N) {
|
|
return N;
|
|
}
|
|
static inline ChildIteratorType child_begin(NodeType* N) {
|
|
return N->begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType* N) {
|
|
return N->end();
|
|
}
|
|
};
|
|
|
|
template <> struct GraphTraits<DominatorTree*>
|
|
: public GraphTraits<DomTreeNode *> {
|
|
static NodeType *getEntryNode(DominatorTree *DT) {
|
|
return DT->getRootNode();
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// DominanceFrontierBase - Common base class for computing forward and inverse
|
|
/// dominance frontiers for a function.
|
|
///
|
|
class DominanceFrontierBase : public DominatorBase<BasicBlock> {
|
|
public:
|
|
typedef std::set<BasicBlock*> DomSetType; // Dom set for a bb
|
|
typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
|
|
protected:
|
|
DomSetMapType Frontiers;
|
|
public:
|
|
DominanceFrontierBase(intptr_t ID, bool isPostDom)
|
|
: DominatorBase<BasicBlock>(ID, isPostDom) {}
|
|
|
|
virtual void releaseMemory() { Frontiers.clear(); }
|
|
|
|
// Accessor interface:
|
|
typedef DomSetMapType::iterator iterator;
|
|
typedef DomSetMapType::const_iterator const_iterator;
|
|
iterator begin() { return Frontiers.begin(); }
|
|
const_iterator begin() const { return Frontiers.begin(); }
|
|
iterator end() { return Frontiers.end(); }
|
|
const_iterator end() const { return Frontiers.end(); }
|
|
iterator find(BasicBlock *B) { return Frontiers.find(B); }
|
|
const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
|
|
|
|
void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
|
|
assert(find(BB) == end() && "Block already in DominanceFrontier!");
|
|
Frontiers.insert(std::make_pair(BB, frontier));
|
|
}
|
|
|
|
/// removeBlock - Remove basic block BB's frontier.
|
|
void removeBlock(BasicBlock *BB) {
|
|
assert(find(BB) != end() && "Block is not in DominanceFrontier!");
|
|
for (iterator I = begin(), E = end(); I != E; ++I)
|
|
I->second.erase(BB);
|
|
Frontiers.erase(BB);
|
|
}
|
|
|
|
void addToFrontier(iterator I, BasicBlock *Node) {
|
|
assert(I != end() && "BB is not in DominanceFrontier!");
|
|
I->second.insert(Node);
|
|
}
|
|
|
|
void removeFromFrontier(iterator I, BasicBlock *Node) {
|
|
assert(I != end() && "BB is not in DominanceFrontier!");
|
|
assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
|
|
I->second.erase(Node);
|
|
}
|
|
|
|
/// print - Convert to human readable form
|
|
///
|
|
virtual void print(std::ostream &OS, const Module* = 0) const;
|
|
void print(std::ostream *OS, const Module* M = 0) const {
|
|
if (OS) print(*OS, M);
|
|
}
|
|
virtual void dump();
|
|
};
|
|
|
|
|
|
//===-------------------------------------
|
|
/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
|
|
/// used to compute a forward dominator frontiers.
|
|
///
|
|
class DominanceFrontier : public DominanceFrontierBase {
|
|
public:
|
|
static char ID; // Pass ID, replacement for typeid
|
|
DominanceFrontier() :
|
|
DominanceFrontierBase(intptr_t(&ID), false) {}
|
|
|
|
BasicBlock *getRoot() const {
|
|
assert(Roots.size() == 1 && "Should always have entry node!");
|
|
return Roots[0];
|
|
}
|
|
|
|
virtual bool runOnFunction(Function &) {
|
|
Frontiers.clear();
|
|
DominatorTree &DT = getAnalysis<DominatorTree>();
|
|
Roots = DT.getRoots();
|
|
assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
|
|
calculate(DT, DT[Roots[0]]);
|
|
return false;
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<DominatorTree>();
|
|
}
|
|
|
|
/// splitBlock - BB is split and now it has one successor. Update dominance
|
|
/// frontier to reflect this change.
|
|
void splitBlock(BasicBlock *BB);
|
|
|
|
/// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
|
|
/// to reflect this change.
|
|
void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
|
|
DominatorTree *DT) {
|
|
// NewBB is now dominating BB. Which means BB's dominance
|
|
// frontier is now part of NewBB's dominance frontier. However, BB
|
|
// itself is not member of NewBB's dominance frontier.
|
|
DominanceFrontier::iterator NewDFI = find(NewBB);
|
|
DominanceFrontier::iterator DFI = find(BB);
|
|
DominanceFrontier::DomSetType BBSet = DFI->second;
|
|
for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
|
|
BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
|
|
BasicBlock *DFMember = *BBSetI;
|
|
// Insert only if NewBB dominates DFMember.
|
|
if (!DT->dominates(NewBB, DFMember))
|
|
NewDFI->second.insert(DFMember);
|
|
}
|
|
NewDFI->second.erase(BB);
|
|
}
|
|
|
|
private:
|
|
const DomSetType &calculate(const DominatorTree &DT,
|
|
const DomTreeNode *Node);
|
|
};
|
|
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|