mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135040 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3614 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3614 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This library converts LLVM code to C code, compilable by GCC and other C
 | 
						|
// compilers.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CTargetMachine.h"
 | 
						|
#include "llvm/CallingConv.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/PassManager.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/InlineAsm.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Analysis/ConstantsScanner.h"
 | 
						|
#include "llvm/Analysis/FindUsedTypes.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/IntrinsicLowering.h"
 | 
						|
#include "llvm/Target/Mangler.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/MC/MCAsmInfo.h"
 | 
						|
#include "llvm/MC/MCContext.h"
 | 
						|
#include "llvm/MC/MCInstrInfo.h"
 | 
						|
#include "llvm/MC/MCSubtargetInfo.h"
 | 
						|
#include "llvm/MC/MCSymbol.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetRegistry.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/FormattedStream.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/InstVisitor.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/Host.h"
 | 
						|
#include "llvm/Config/config.h"
 | 
						|
#include <algorithm>
 | 
						|
// Some ms header decided to define setjmp as _setjmp, undo this for this file.
 | 
						|
#ifdef _MSC_VER
 | 
						|
#undef setjmp
 | 
						|
#endif
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
extern "C" void LLVMInitializeCBackendTarget() {
 | 
						|
  // Register the target.
 | 
						|
  RegisterTargetMachine<CTargetMachine> X(TheCBackendTarget);
 | 
						|
}
 | 
						|
 | 
						|
extern "C" void LLVMInitializeCBackendMCInstrInfo() {
 | 
						|
  RegisterMCInstrInfo<MCInstrInfo> X(TheCBackendTarget);
 | 
						|
}
 | 
						|
 | 
						|
extern "C" void LLVMInitializeCBackendMCSubtargetInfo() {
 | 
						|
  RegisterMCSubtargetInfo<MCSubtargetInfo> X(TheCBackendTarget);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  class CBEMCAsmInfo : public MCAsmInfo {
 | 
						|
  public:
 | 
						|
    CBEMCAsmInfo() {
 | 
						|
      GlobalPrefix = "";
 | 
						|
      PrivateGlobalPrefix = "";
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// CWriter - This class is the main chunk of code that converts an LLVM
 | 
						|
  /// module to a C translation unit.
 | 
						|
  class CWriter : public FunctionPass, public InstVisitor<CWriter> {
 | 
						|
    formatted_raw_ostream &Out;
 | 
						|
    IntrinsicLowering *IL;
 | 
						|
    Mangler *Mang;
 | 
						|
    LoopInfo *LI;
 | 
						|
    const Module *TheModule;
 | 
						|
    const MCAsmInfo* TAsm;
 | 
						|
    MCContext *TCtx;
 | 
						|
    const TargetData* TD;
 | 
						|
    
 | 
						|
    std::map<const ConstantFP *, unsigned> FPConstantMap;
 | 
						|
    std::set<Function*> intrinsicPrototypesAlreadyGenerated;
 | 
						|
    std::set<const Argument*> ByValParams;
 | 
						|
    unsigned FPCounter;
 | 
						|
    unsigned OpaqueCounter;
 | 
						|
    DenseMap<const Value*, unsigned> AnonValueNumbers;
 | 
						|
    unsigned NextAnonValueNumber;
 | 
						|
 | 
						|
    /// UnnamedStructIDs - This contains a unique ID for each struct that is
 | 
						|
    /// either anonymous or has no name.
 | 
						|
    DenseMap<const StructType*, unsigned> UnnamedStructIDs;
 | 
						|
    
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    explicit CWriter(formatted_raw_ostream &o)
 | 
						|
      : FunctionPass(ID), Out(o), IL(0), Mang(0), LI(0),
 | 
						|
        TheModule(0), TAsm(0), TCtx(0), TD(0), OpaqueCounter(0),
 | 
						|
        NextAnonValueNumber(0) {
 | 
						|
      initializeLoopInfoPass(*PassRegistry::getPassRegistry());
 | 
						|
      FPCounter = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual const char *getPassName() const { return "C backend"; }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<LoopInfo>();
 | 
						|
      AU.setPreservesAll();
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool doInitialization(Module &M);
 | 
						|
 | 
						|
    bool runOnFunction(Function &F) {
 | 
						|
     // Do not codegen any 'available_externally' functions at all, they have
 | 
						|
     // definitions outside the translation unit.
 | 
						|
     if (F.hasAvailableExternallyLinkage())
 | 
						|
       return false;
 | 
						|
 | 
						|
      LI = &getAnalysis<LoopInfo>();
 | 
						|
 | 
						|
      // Get rid of intrinsics we can't handle.
 | 
						|
      lowerIntrinsics(F);
 | 
						|
 | 
						|
      // Output all floating point constants that cannot be printed accurately.
 | 
						|
      printFloatingPointConstants(F);
 | 
						|
 | 
						|
      printFunction(F);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool doFinalization(Module &M) {
 | 
						|
      // Free memory...
 | 
						|
      delete IL;
 | 
						|
      delete TD;
 | 
						|
      delete Mang;
 | 
						|
      delete TCtx;
 | 
						|
      delete TAsm;
 | 
						|
      FPConstantMap.clear();
 | 
						|
      ByValParams.clear();
 | 
						|
      intrinsicPrototypesAlreadyGenerated.clear();
 | 
						|
      UnnamedStructIDs.clear();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    raw_ostream &printType(raw_ostream &Out, const Type *Ty,
 | 
						|
                           bool isSigned = false,
 | 
						|
                           const std::string &VariableName = "",
 | 
						|
                           bool IgnoreName = false,
 | 
						|
                           const AttrListPtr &PAL = AttrListPtr());
 | 
						|
    raw_ostream &printSimpleType(raw_ostream &Out, const Type *Ty,
 | 
						|
                                 bool isSigned,
 | 
						|
                                 const std::string &NameSoFar = "");
 | 
						|
 | 
						|
    void printStructReturnPointerFunctionType(raw_ostream &Out,
 | 
						|
                                              const AttrListPtr &PAL,
 | 
						|
                                              const PointerType *Ty);
 | 
						|
 | 
						|
    std::string getStructName(const StructType *ST);
 | 
						|
    
 | 
						|
    /// writeOperandDeref - Print the result of dereferencing the specified
 | 
						|
    /// operand with '*'.  This is equivalent to printing '*' then using
 | 
						|
    /// writeOperand, but avoids excess syntax in some cases.
 | 
						|
    void writeOperandDeref(Value *Operand) {
 | 
						|
      if (isAddressExposed(Operand)) {
 | 
						|
        // Already something with an address exposed.
 | 
						|
        writeOperandInternal(Operand);
 | 
						|
      } else {
 | 
						|
        Out << "*(";
 | 
						|
        writeOperand(Operand);
 | 
						|
        Out << ")";
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    void writeOperand(Value *Operand, bool Static = false);
 | 
						|
    void writeInstComputationInline(Instruction &I);
 | 
						|
    void writeOperandInternal(Value *Operand, bool Static = false);
 | 
						|
    void writeOperandWithCast(Value* Operand, unsigned Opcode);
 | 
						|
    void writeOperandWithCast(Value* Operand, const ICmpInst &I);
 | 
						|
    bool writeInstructionCast(const Instruction &I);
 | 
						|
 | 
						|
    void writeMemoryAccess(Value *Operand, const Type *OperandType,
 | 
						|
                           bool IsVolatile, unsigned Alignment);
 | 
						|
 | 
						|
  private :
 | 
						|
    std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
 | 
						|
 | 
						|
    void lowerIntrinsics(Function &F);
 | 
						|
    /// Prints the definition of the intrinsic function F. Supports the 
 | 
						|
    /// intrinsics which need to be explicitly defined in the CBackend.
 | 
						|
    void printIntrinsicDefinition(const Function &F, raw_ostream &Out);
 | 
						|
 | 
						|
    void printModuleTypes();
 | 
						|
    void printContainedStructs(const Type *Ty, SmallPtrSet<const Type *, 16> &);
 | 
						|
    void printFloatingPointConstants(Function &F);
 | 
						|
    void printFloatingPointConstants(const Constant *C);
 | 
						|
    void printFunctionSignature(const Function *F, bool Prototype);
 | 
						|
 | 
						|
    void printFunction(Function &);
 | 
						|
    void printBasicBlock(BasicBlock *BB);
 | 
						|
    void printLoop(Loop *L);
 | 
						|
 | 
						|
    void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
 | 
						|
    void printConstant(Constant *CPV, bool Static);
 | 
						|
    void printConstantWithCast(Constant *CPV, unsigned Opcode);
 | 
						|
    bool printConstExprCast(const ConstantExpr *CE, bool Static);
 | 
						|
    void printConstantArray(ConstantArray *CPA, bool Static);
 | 
						|
    void printConstantVector(ConstantVector *CV, bool Static);
 | 
						|
 | 
						|
    /// isAddressExposed - Return true if the specified value's name needs to
 | 
						|
    /// have its address taken in order to get a C value of the correct type.
 | 
						|
    /// This happens for global variables, byval parameters, and direct allocas.
 | 
						|
    bool isAddressExposed(const Value *V) const {
 | 
						|
      if (const Argument *A = dyn_cast<Argument>(V))
 | 
						|
        return ByValParams.count(A);
 | 
						|
      return isa<GlobalVariable>(V) || isDirectAlloca(V);
 | 
						|
    }
 | 
						|
 | 
						|
    // isInlinableInst - Attempt to inline instructions into their uses to build
 | 
						|
    // trees as much as possible.  To do this, we have to consistently decide
 | 
						|
    // what is acceptable to inline, so that variable declarations don't get
 | 
						|
    // printed and an extra copy of the expr is not emitted.
 | 
						|
    //
 | 
						|
    static bool isInlinableInst(const Instruction &I) {
 | 
						|
      // Always inline cmp instructions, even if they are shared by multiple
 | 
						|
      // expressions.  GCC generates horrible code if we don't.
 | 
						|
      if (isa<CmpInst>(I))
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Must be an expression, must be used exactly once.  If it is dead, we
 | 
						|
      // emit it inline where it would go.
 | 
						|
      if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() ||
 | 
						|
          isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
 | 
						|
          isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
 | 
						|
          isa<InsertValueInst>(I))
 | 
						|
        // Don't inline a load across a store or other bad things!
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Must not be used in inline asm, extractelement, or shufflevector.
 | 
						|
      if (I.hasOneUse()) {
 | 
						|
        const Instruction &User = cast<Instruction>(*I.use_back());
 | 
						|
        if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
 | 
						|
            isa<ShuffleVectorInst>(User))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // Only inline instruction it if it's use is in the same BB as the inst.
 | 
						|
      return I.getParent() == cast<Instruction>(I.use_back())->getParent();
 | 
						|
    }
 | 
						|
 | 
						|
    // isDirectAlloca - Define fixed sized allocas in the entry block as direct
 | 
						|
    // variables which are accessed with the & operator.  This causes GCC to
 | 
						|
    // generate significantly better code than to emit alloca calls directly.
 | 
						|
    //
 | 
						|
    static const AllocaInst *isDirectAlloca(const Value *V) {
 | 
						|
      const AllocaInst *AI = dyn_cast<AllocaInst>(V);
 | 
						|
      if (!AI) return 0;
 | 
						|
      if (AI->isArrayAllocation())
 | 
						|
        return 0;   // FIXME: we can also inline fixed size array allocas!
 | 
						|
      if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
 | 
						|
        return 0;
 | 
						|
      return AI;
 | 
						|
    }
 | 
						|
 | 
						|
    // isInlineAsm - Check if the instruction is a call to an inline asm chunk.
 | 
						|
    static bool isInlineAsm(const Instruction& I) {
 | 
						|
      if (const CallInst *CI = dyn_cast<CallInst>(&I))
 | 
						|
        return isa<InlineAsm>(CI->getCalledValue());
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Instruction visitation functions
 | 
						|
    friend class InstVisitor<CWriter>;
 | 
						|
 | 
						|
    void visitReturnInst(ReturnInst &I);
 | 
						|
    void visitBranchInst(BranchInst &I);
 | 
						|
    void visitSwitchInst(SwitchInst &I);
 | 
						|
    void visitIndirectBrInst(IndirectBrInst &I);
 | 
						|
    void visitInvokeInst(InvokeInst &I) {
 | 
						|
      llvm_unreachable("Lowerinvoke pass didn't work!");
 | 
						|
    }
 | 
						|
 | 
						|
    void visitUnwindInst(UnwindInst &I) {
 | 
						|
      llvm_unreachable("Lowerinvoke pass didn't work!");
 | 
						|
    }
 | 
						|
    void visitUnreachableInst(UnreachableInst &I);
 | 
						|
 | 
						|
    void visitPHINode(PHINode &I);
 | 
						|
    void visitBinaryOperator(Instruction &I);
 | 
						|
    void visitICmpInst(ICmpInst &I);
 | 
						|
    void visitFCmpInst(FCmpInst &I);
 | 
						|
 | 
						|
    void visitCastInst (CastInst &I);
 | 
						|
    void visitSelectInst(SelectInst &I);
 | 
						|
    void visitCallInst (CallInst &I);
 | 
						|
    void visitInlineAsm(CallInst &I);
 | 
						|
    bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
 | 
						|
 | 
						|
    void visitAllocaInst(AllocaInst &I);
 | 
						|
    void visitLoadInst  (LoadInst   &I);
 | 
						|
    void visitStoreInst (StoreInst  &I);
 | 
						|
    void visitGetElementPtrInst(GetElementPtrInst &I);
 | 
						|
    void visitVAArgInst (VAArgInst &I);
 | 
						|
 | 
						|
    void visitInsertElementInst(InsertElementInst &I);
 | 
						|
    void visitExtractElementInst(ExtractElementInst &I);
 | 
						|
    void visitShuffleVectorInst(ShuffleVectorInst &SVI);
 | 
						|
 | 
						|
    void visitInsertValueInst(InsertValueInst &I);
 | 
						|
    void visitExtractValueInst(ExtractValueInst &I);
 | 
						|
 | 
						|
    void visitInstruction(Instruction &I) {
 | 
						|
#ifndef NDEBUG
 | 
						|
      errs() << "C Writer does not know about " << I;
 | 
						|
#endif
 | 
						|
      llvm_unreachable(0);
 | 
						|
    }
 | 
						|
 | 
						|
    void outputLValue(Instruction *I) {
 | 
						|
      Out << "  " << GetValueName(I) << " = ";
 | 
						|
    }
 | 
						|
 | 
						|
    bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
 | 
						|
    void printPHICopiesForSuccessor(BasicBlock *CurBlock,
 | 
						|
                                    BasicBlock *Successor, unsigned Indent);
 | 
						|
    void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
 | 
						|
                            unsigned Indent);
 | 
						|
    void printGEPExpression(Value *Ptr, gep_type_iterator I,
 | 
						|
                            gep_type_iterator E, bool Static);
 | 
						|
 | 
						|
    std::string GetValueName(const Value *Operand);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char CWriter::ID = 0;
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static std::string CBEMangle(const std::string &S) {
 | 
						|
  std::string Result;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = S.size(); i != e; ++i)
 | 
						|
    if (isalnum(S[i]) || S[i] == '_') {
 | 
						|
      Result += S[i];
 | 
						|
    } else {
 | 
						|
      Result += '_';
 | 
						|
      Result += 'A'+(S[i]&15);
 | 
						|
      Result += 'A'+((S[i]>>4)&15);
 | 
						|
      Result += '_';
 | 
						|
    }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
std::string CWriter::getStructName(const StructType *ST) {
 | 
						|
  if (!ST->isAnonymous() && !ST->getName().empty())
 | 
						|
    return CBEMangle("l_"+ST->getName().str());
 | 
						|
  
 | 
						|
  return "l_unnamed_" + utostr(UnnamedStructIDs[ST]);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// printStructReturnPointerFunctionType - This is like printType for a struct
 | 
						|
/// return type, except, instead of printing the type as void (*)(Struct*, ...)
 | 
						|
/// print it as "Struct (*)(...)", for struct return functions.
 | 
						|
void CWriter::printStructReturnPointerFunctionType(raw_ostream &Out,
 | 
						|
                                                   const AttrListPtr &PAL,
 | 
						|
                                                   const PointerType *TheTy) {
 | 
						|
  const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
 | 
						|
  std::string tstr;
 | 
						|
  raw_string_ostream FunctionInnards(tstr);
 | 
						|
  FunctionInnards << " (*) (";
 | 
						|
  bool PrintedType = false;
 | 
						|
 | 
						|
  FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
 | 
						|
  const Type *RetTy = cast<PointerType>(*I)->getElementType();
 | 
						|
  unsigned Idx = 1;
 | 
						|
  for (++I, ++Idx; I != E; ++I, ++Idx) {
 | 
						|
    if (PrintedType)
 | 
						|
      FunctionInnards << ", ";
 | 
						|
    const Type *ArgTy = *I;
 | 
						|
    if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
 | 
						|
      assert(ArgTy->isPointerTy());
 | 
						|
      ArgTy = cast<PointerType>(ArgTy)->getElementType();
 | 
						|
    }
 | 
						|
    printType(FunctionInnards, ArgTy,
 | 
						|
        /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
 | 
						|
    PrintedType = true;
 | 
						|
  }
 | 
						|
  if (FTy->isVarArg()) {
 | 
						|
    if (!PrintedType)
 | 
						|
      FunctionInnards << " int"; //dummy argument for empty vararg functs
 | 
						|
    FunctionInnards << ", ...";
 | 
						|
  } else if (!PrintedType) {
 | 
						|
    FunctionInnards << "void";
 | 
						|
  }
 | 
						|
  FunctionInnards << ')';
 | 
						|
  printType(Out, RetTy,
 | 
						|
      /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &
 | 
						|
CWriter::printSimpleType(raw_ostream &Out, const Type *Ty, bool isSigned,
 | 
						|
                         const std::string &NameSoFar) {
 | 
						|
  assert((Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) &&
 | 
						|
         "Invalid type for printSimpleType");
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::VoidTyID:   return Out << "void " << NameSoFar;
 | 
						|
  case Type::IntegerTyID: {
 | 
						|
    unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
 | 
						|
    if (NumBits == 1)
 | 
						|
      return Out << "bool " << NameSoFar;
 | 
						|
    else if (NumBits <= 8)
 | 
						|
      return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
 | 
						|
    else if (NumBits <= 16)
 | 
						|
      return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
 | 
						|
    else if (NumBits <= 32)
 | 
						|
      return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
 | 
						|
    else if (NumBits <= 64)
 | 
						|
      return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
 | 
						|
    else {
 | 
						|
      assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
 | 
						|
      return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case Type::FloatTyID:  return Out << "float "   << NameSoFar;
 | 
						|
  case Type::DoubleTyID: return Out << "double "  << NameSoFar;
 | 
						|
  // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
 | 
						|
  // present matches host 'long double'.
 | 
						|
  case Type::X86_FP80TyID:
 | 
						|
  case Type::PPC_FP128TyID:
 | 
						|
  case Type::FP128TyID:  return Out << "long double " << NameSoFar;
 | 
						|
 | 
						|
  case Type::X86_MMXTyID:
 | 
						|
    return printSimpleType(Out, Type::getInt32Ty(Ty->getContext()), isSigned,
 | 
						|
                     " __attribute__((vector_size(64))) " + NameSoFar);
 | 
						|
 | 
						|
  case Type::VectorTyID: {
 | 
						|
    const VectorType *VTy = cast<VectorType>(Ty);
 | 
						|
    return printSimpleType(Out, VTy->getElementType(), isSigned,
 | 
						|
                     " __attribute__((vector_size(" +
 | 
						|
                     utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
#ifndef NDEBUG
 | 
						|
    errs() << "Unknown primitive type: " << *Ty << "\n";
 | 
						|
#endif
 | 
						|
    llvm_unreachable(0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Pass the Type* and the variable name and this prints out the variable
 | 
						|
// declaration.
 | 
						|
//
 | 
						|
raw_ostream &CWriter::printType(raw_ostream &Out, const Type *Ty,
 | 
						|
                                bool isSigned, const std::string &NameSoFar,
 | 
						|
                                bool IgnoreName, const AttrListPtr &PAL) {
 | 
						|
  if (Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) {
 | 
						|
    printSimpleType(Out, Ty, isSigned, NameSoFar);
 | 
						|
    return Out;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::FunctionTyID: {
 | 
						|
    const FunctionType *FTy = cast<FunctionType>(Ty);
 | 
						|
    std::string tstr;
 | 
						|
    raw_string_ostream FunctionInnards(tstr);
 | 
						|
    FunctionInnards << " (" << NameSoFar << ") (";
 | 
						|
    unsigned Idx = 1;
 | 
						|
    for (FunctionType::param_iterator I = FTy->param_begin(),
 | 
						|
           E = FTy->param_end(); I != E; ++I) {
 | 
						|
      const Type *ArgTy = *I;
 | 
						|
      if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
 | 
						|
        assert(ArgTy->isPointerTy());
 | 
						|
        ArgTy = cast<PointerType>(ArgTy)->getElementType();
 | 
						|
      }
 | 
						|
      if (I != FTy->param_begin())
 | 
						|
        FunctionInnards << ", ";
 | 
						|
      printType(FunctionInnards, ArgTy,
 | 
						|
        /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
 | 
						|
      ++Idx;
 | 
						|
    }
 | 
						|
    if (FTy->isVarArg()) {
 | 
						|
      if (!FTy->getNumParams())
 | 
						|
        FunctionInnards << " int"; //dummy argument for empty vaarg functs
 | 
						|
      FunctionInnards << ", ...";
 | 
						|
    } else if (!FTy->getNumParams()) {
 | 
						|
      FunctionInnards << "void";
 | 
						|
    }
 | 
						|
    FunctionInnards << ')';
 | 
						|
    printType(Out, FTy->getReturnType(),
 | 
						|
      /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
 | 
						|
    return Out;
 | 
						|
  }
 | 
						|
  case Type::StructTyID: {
 | 
						|
    const StructType *STy = cast<StructType>(Ty);
 | 
						|
    
 | 
						|
    // Check to see if the type is named.
 | 
						|
    if (!IgnoreName)
 | 
						|
      return Out << getStructName(STy) << ' ' << NameSoFar;
 | 
						|
    
 | 
						|
    Out << NameSoFar + " {\n";
 | 
						|
    unsigned Idx = 0;
 | 
						|
    for (StructType::element_iterator I = STy->element_begin(),
 | 
						|
           E = STy->element_end(); I != E; ++I) {
 | 
						|
      Out << "  ";
 | 
						|
      printType(Out, *I, false, "field" + utostr(Idx++));
 | 
						|
      Out << ";\n";
 | 
						|
    }
 | 
						|
    Out << '}';
 | 
						|
    if (STy->isPacked())
 | 
						|
      Out << " __attribute__ ((packed))";
 | 
						|
    return Out;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::PointerTyID: {
 | 
						|
    const PointerType *PTy = cast<PointerType>(Ty);
 | 
						|
    std::string ptrName = "*" + NameSoFar;
 | 
						|
 | 
						|
    if (PTy->getElementType()->isArrayTy() ||
 | 
						|
        PTy->getElementType()->isVectorTy())
 | 
						|
      ptrName = "(" + ptrName + ")";
 | 
						|
 | 
						|
    if (!PAL.isEmpty())
 | 
						|
      // Must be a function ptr cast!
 | 
						|
      return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
 | 
						|
    return printType(Out, PTy->getElementType(), false, ptrName);
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    const ArrayType *ATy = cast<ArrayType>(Ty);
 | 
						|
    unsigned NumElements = ATy->getNumElements();
 | 
						|
    if (NumElements == 0) NumElements = 1;
 | 
						|
    // Arrays are wrapped in structs to allow them to have normal
 | 
						|
    // value semantics (avoiding the array "decay").
 | 
						|
    Out << NameSoFar << " { ";
 | 
						|
    printType(Out, ATy->getElementType(), false,
 | 
						|
              "array[" + utostr(NumElements) + "]");
 | 
						|
    return Out << "; }";
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unhandled case in getTypeProps!");
 | 
						|
  }
 | 
						|
 | 
						|
  return Out;
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printConstantArray(ConstantArray *CPA, bool Static) {
 | 
						|
 | 
						|
  // As a special case, print the array as a string if it is an array of
 | 
						|
  // ubytes or an array of sbytes with positive values.
 | 
						|
  //
 | 
						|
  const Type *ETy = CPA->getType()->getElementType();
 | 
						|
  bool isString = (ETy == Type::getInt8Ty(CPA->getContext()) ||
 | 
						|
                   ETy == Type::getInt8Ty(CPA->getContext()));
 | 
						|
 | 
						|
  // Make sure the last character is a null char, as automatically added by C
 | 
						|
  if (isString && (CPA->getNumOperands() == 0 ||
 | 
						|
                   !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
 | 
						|
    isString = false;
 | 
						|
 | 
						|
  if (isString) {
 | 
						|
    Out << '\"';
 | 
						|
    // Keep track of whether the last number was a hexadecimal escape.
 | 
						|
    bool LastWasHex = false;
 | 
						|
 | 
						|
    // Do not include the last character, which we know is null
 | 
						|
    for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
 | 
						|
      unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
 | 
						|
 | 
						|
      // Print it out literally if it is a printable character.  The only thing
 | 
						|
      // to be careful about is when the last letter output was a hex escape
 | 
						|
      // code, in which case we have to be careful not to print out hex digits
 | 
						|
      // explicitly (the C compiler thinks it is a continuation of the previous
 | 
						|
      // character, sheesh...)
 | 
						|
      //
 | 
						|
      if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
 | 
						|
        LastWasHex = false;
 | 
						|
        if (C == '"' || C == '\\')
 | 
						|
          Out << "\\" << (char)C;
 | 
						|
        else
 | 
						|
          Out << (char)C;
 | 
						|
      } else {
 | 
						|
        LastWasHex = false;
 | 
						|
        switch (C) {
 | 
						|
        case '\n': Out << "\\n"; break;
 | 
						|
        case '\t': Out << "\\t"; break;
 | 
						|
        case '\r': Out << "\\r"; break;
 | 
						|
        case '\v': Out << "\\v"; break;
 | 
						|
        case '\a': Out << "\\a"; break;
 | 
						|
        case '\"': Out << "\\\""; break;
 | 
						|
        case '\'': Out << "\\\'"; break;
 | 
						|
        default:
 | 
						|
          Out << "\\x";
 | 
						|
          Out << (char)(( C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
 | 
						|
          Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
 | 
						|
          LastWasHex = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Out << '\"';
 | 
						|
  } else {
 | 
						|
    Out << '{';
 | 
						|
    if (CPA->getNumOperands()) {
 | 
						|
      Out << ' ';
 | 
						|
      printConstant(cast<Constant>(CPA->getOperand(0)), Static);
 | 
						|
      for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
 | 
						|
        Out << ", ";
 | 
						|
        printConstant(cast<Constant>(CPA->getOperand(i)), Static);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Out << " }";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printConstantVector(ConstantVector *CP, bool Static) {
 | 
						|
  Out << '{';
 | 
						|
  if (CP->getNumOperands()) {
 | 
						|
    Out << ' ';
 | 
						|
    printConstant(cast<Constant>(CP->getOperand(0)), Static);
 | 
						|
    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
 | 
						|
      Out << ", ";
 | 
						|
      printConstant(cast<Constant>(CP->getOperand(i)), Static);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Out << " }";
 | 
						|
}
 | 
						|
 | 
						|
// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
 | 
						|
// textually as a double (rather than as a reference to a stack-allocated
 | 
						|
// variable). We decide this by converting CFP to a string and back into a
 | 
						|
// double, and then checking whether the conversion results in a bit-equal
 | 
						|
// double to the original value of CFP. This depends on us and the target C
 | 
						|
// compiler agreeing on the conversion process (which is pretty likely since we
 | 
						|
// only deal in IEEE FP).
 | 
						|
//
 | 
						|
static bool isFPCSafeToPrint(const ConstantFP *CFP) {
 | 
						|
  bool ignored;
 | 
						|
  // Do long doubles in hex for now.
 | 
						|
  if (CFP->getType() != Type::getFloatTy(CFP->getContext()) &&
 | 
						|
      CFP->getType() != Type::getDoubleTy(CFP->getContext()))
 | 
						|
    return false;
 | 
						|
  APFloat APF = APFloat(CFP->getValueAPF());  // copy
 | 
						|
  if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
 | 
						|
    APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
 | 
						|
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
 | 
						|
  char Buffer[100];
 | 
						|
  sprintf(Buffer, "%a", APF.convertToDouble());
 | 
						|
  if (!strncmp(Buffer, "0x", 2) ||
 | 
						|
      !strncmp(Buffer, "-0x", 3) ||
 | 
						|
      !strncmp(Buffer, "+0x", 3))
 | 
						|
    return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
 | 
						|
  return false;
 | 
						|
#else
 | 
						|
  std::string StrVal = ftostr(APF);
 | 
						|
 | 
						|
  while (StrVal[0] == ' ')
 | 
						|
    StrVal.erase(StrVal.begin());
 | 
						|
 | 
						|
  // Check to make sure that the stringized number is not some string like "Inf"
 | 
						|
  // or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
 | 
						|
  if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
 | 
						|
      ((StrVal[0] == '-' || StrVal[0] == '+') &&
 | 
						|
       (StrVal[1] >= '0' && StrVal[1] <= '9')))
 | 
						|
    // Reparse stringized version!
 | 
						|
    return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
 | 
						|
  return false;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// Print out the casting for a cast operation. This does the double casting
 | 
						|
/// necessary for conversion to the destination type, if necessary.
 | 
						|
/// @brief Print a cast
 | 
						|
void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
 | 
						|
  // Print the destination type cast
 | 
						|
  switch (opc) {
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::BitCast:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
 | 
						|
      Out << '(';
 | 
						|
      printType(Out, DstTy);
 | 
						|
      Out << ')';
 | 
						|
      break;
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
    case Instruction::FPToUI: // For these, make sure we get an unsigned dest
 | 
						|
      Out << '(';
 | 
						|
      printSimpleType(Out, DstTy, false);
 | 
						|
      Out << ')';
 | 
						|
      break;
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToSI: // For these, make sure we get a signed dest
 | 
						|
      Out << '(';
 | 
						|
      printSimpleType(Out, DstTy, true);
 | 
						|
      Out << ')';
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Invalid cast opcode");
 | 
						|
  }
 | 
						|
 | 
						|
  // Print the source type cast
 | 
						|
  switch (opc) {
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::ZExt:
 | 
						|
      Out << '(';
 | 
						|
      printSimpleType(Out, SrcTy, false);
 | 
						|
      Out << ')';
 | 
						|
      break;
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::SExt:
 | 
						|
      Out << '(';
 | 
						|
      printSimpleType(Out, SrcTy, true);
 | 
						|
      Out << ')';
 | 
						|
      break;
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
      // Avoid "cast to pointer from integer of different size" warnings
 | 
						|
      Out << "(unsigned long)";
 | 
						|
      break;
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::BitCast:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
      break; // These don't need a source cast.
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Invalid cast opcode");
 | 
						|
      break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// printConstant - The LLVM Constant to C Constant converter.
 | 
						|
void CWriter::printConstant(Constant *CPV, bool Static) {
 | 
						|
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
 | 
						|
    switch (CE->getOpcode()) {
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
    case Instruction::BitCast:
 | 
						|
      Out << "(";
 | 
						|
      printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
 | 
						|
      if (CE->getOpcode() == Instruction::SExt &&
 | 
						|
          CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) {
 | 
						|
        // Make sure we really sext from bool here by subtracting from 0
 | 
						|
        Out << "0-";
 | 
						|
      }
 | 
						|
      printConstant(CE->getOperand(0), Static);
 | 
						|
      if (CE->getType() == Type::getInt1Ty(CPV->getContext()) &&
 | 
						|
          (CE->getOpcode() == Instruction::Trunc ||
 | 
						|
           CE->getOpcode() == Instruction::FPToUI ||
 | 
						|
           CE->getOpcode() == Instruction::FPToSI ||
 | 
						|
           CE->getOpcode() == Instruction::PtrToInt)) {
 | 
						|
        // Make sure we really truncate to bool here by anding with 1
 | 
						|
        Out << "&1u";
 | 
						|
      }
 | 
						|
      Out << ')';
 | 
						|
      return;
 | 
						|
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
      Out << "(";
 | 
						|
      printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
 | 
						|
                         gep_type_end(CPV), Static);
 | 
						|
      Out << ")";
 | 
						|
      return;
 | 
						|
    case Instruction::Select:
 | 
						|
      Out << '(';
 | 
						|
      printConstant(CE->getOperand(0), Static);
 | 
						|
      Out << '?';
 | 
						|
      printConstant(CE->getOperand(1), Static);
 | 
						|
      Out << ':';
 | 
						|
      printConstant(CE->getOperand(2), Static);
 | 
						|
      Out << ')';
 | 
						|
      return;
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor:
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    {
 | 
						|
      Out << '(';
 | 
						|
      bool NeedsClosingParens = printConstExprCast(CE, Static);
 | 
						|
      printConstantWithCast(CE->getOperand(0), CE->getOpcode());
 | 
						|
      switch (CE->getOpcode()) {
 | 
						|
      case Instruction::Add:
 | 
						|
      case Instruction::FAdd: Out << " + "; break;
 | 
						|
      case Instruction::Sub:
 | 
						|
      case Instruction::FSub: Out << " - "; break;
 | 
						|
      case Instruction::Mul:
 | 
						|
      case Instruction::FMul: Out << " * "; break;
 | 
						|
      case Instruction::URem:
 | 
						|
      case Instruction::SRem:
 | 
						|
      case Instruction::FRem: Out << " % "; break;
 | 
						|
      case Instruction::UDiv:
 | 
						|
      case Instruction::SDiv:
 | 
						|
      case Instruction::FDiv: Out << " / "; break;
 | 
						|
      case Instruction::And: Out << " & "; break;
 | 
						|
      case Instruction::Or:  Out << " | "; break;
 | 
						|
      case Instruction::Xor: Out << " ^ "; break;
 | 
						|
      case Instruction::Shl: Out << " << "; break;
 | 
						|
      case Instruction::LShr:
 | 
						|
      case Instruction::AShr: Out << " >> "; break;
 | 
						|
      case Instruction::ICmp:
 | 
						|
        switch (CE->getPredicate()) {
 | 
						|
          case ICmpInst::ICMP_EQ: Out << " == "; break;
 | 
						|
          case ICmpInst::ICMP_NE: Out << " != "; break;
 | 
						|
          case ICmpInst::ICMP_SLT:
 | 
						|
          case ICmpInst::ICMP_ULT: Out << " < "; break;
 | 
						|
          case ICmpInst::ICMP_SLE:
 | 
						|
          case ICmpInst::ICMP_ULE: Out << " <= "; break;
 | 
						|
          case ICmpInst::ICMP_SGT:
 | 
						|
          case ICmpInst::ICMP_UGT: Out << " > "; break;
 | 
						|
          case ICmpInst::ICMP_SGE:
 | 
						|
          case ICmpInst::ICMP_UGE: Out << " >= "; break;
 | 
						|
          default: llvm_unreachable("Illegal ICmp predicate");
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      default: llvm_unreachable("Illegal opcode here!");
 | 
						|
      }
 | 
						|
      printConstantWithCast(CE->getOperand(1), CE->getOpcode());
 | 
						|
      if (NeedsClosingParens)
 | 
						|
        Out << "))";
 | 
						|
      Out << ')';
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::FCmp: {
 | 
						|
      Out << '(';
 | 
						|
      bool NeedsClosingParens = printConstExprCast(CE, Static);
 | 
						|
      if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
 | 
						|
        Out << "0";
 | 
						|
      else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
 | 
						|
        Out << "1";
 | 
						|
      else {
 | 
						|
        const char* op = 0;
 | 
						|
        switch (CE->getPredicate()) {
 | 
						|
        default: llvm_unreachable("Illegal FCmp predicate");
 | 
						|
        case FCmpInst::FCMP_ORD: op = "ord"; break;
 | 
						|
        case FCmpInst::FCMP_UNO: op = "uno"; break;
 | 
						|
        case FCmpInst::FCMP_UEQ: op = "ueq"; break;
 | 
						|
        case FCmpInst::FCMP_UNE: op = "une"; break;
 | 
						|
        case FCmpInst::FCMP_ULT: op = "ult"; break;
 | 
						|
        case FCmpInst::FCMP_ULE: op = "ule"; break;
 | 
						|
        case FCmpInst::FCMP_UGT: op = "ugt"; break;
 | 
						|
        case FCmpInst::FCMP_UGE: op = "uge"; break;
 | 
						|
        case FCmpInst::FCMP_OEQ: op = "oeq"; break;
 | 
						|
        case FCmpInst::FCMP_ONE: op = "one"; break;
 | 
						|
        case FCmpInst::FCMP_OLT: op = "olt"; break;
 | 
						|
        case FCmpInst::FCMP_OLE: op = "ole"; break;
 | 
						|
        case FCmpInst::FCMP_OGT: op = "ogt"; break;
 | 
						|
        case FCmpInst::FCMP_OGE: op = "oge"; break;
 | 
						|
        }
 | 
						|
        Out << "llvm_fcmp_" << op << "(";
 | 
						|
        printConstantWithCast(CE->getOperand(0), CE->getOpcode());
 | 
						|
        Out << ", ";
 | 
						|
        printConstantWithCast(CE->getOperand(1), CE->getOpcode());
 | 
						|
        Out << ")";
 | 
						|
      }
 | 
						|
      if (NeedsClosingParens)
 | 
						|
        Out << "))";
 | 
						|
      Out << ')';
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
#ifndef NDEBUG
 | 
						|
      errs() << "CWriter Error: Unhandled constant expression: "
 | 
						|
           << *CE << "\n";
 | 
						|
#endif
 | 
						|
      llvm_unreachable(0);
 | 
						|
    }
 | 
						|
  } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
 | 
						|
    Out << "((";
 | 
						|
    printType(Out, CPV->getType()); // sign doesn't matter
 | 
						|
    Out << ")/*UNDEF*/";
 | 
						|
    if (!CPV->getType()->isVectorTy()) {
 | 
						|
      Out << "0)";
 | 
						|
    } else {
 | 
						|
      Out << "{})";
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
 | 
						|
    const Type* Ty = CI->getType();
 | 
						|
    if (Ty == Type::getInt1Ty(CPV->getContext()))
 | 
						|
      Out << (CI->getZExtValue() ? '1' : '0');
 | 
						|
    else if (Ty == Type::getInt32Ty(CPV->getContext()))
 | 
						|
      Out << CI->getZExtValue() << 'u';
 | 
						|
    else if (Ty->getPrimitiveSizeInBits() > 32)
 | 
						|
      Out << CI->getZExtValue() << "ull";
 | 
						|
    else {
 | 
						|
      Out << "((";
 | 
						|
      printSimpleType(Out, Ty, false) << ')';
 | 
						|
      if (CI->isMinValue(true))
 | 
						|
        Out << CI->getZExtValue() << 'u';
 | 
						|
      else
 | 
						|
        Out << CI->getSExtValue();
 | 
						|
      Out << ')';
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (CPV->getType()->getTypeID()) {
 | 
						|
  case Type::FloatTyID:
 | 
						|
  case Type::DoubleTyID:
 | 
						|
  case Type::X86_FP80TyID:
 | 
						|
  case Type::PPC_FP128TyID:
 | 
						|
  case Type::FP128TyID: {
 | 
						|
    ConstantFP *FPC = cast<ConstantFP>(CPV);
 | 
						|
    std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
 | 
						|
    if (I != FPConstantMap.end()) {
 | 
						|
      // Because of FP precision problems we must load from a stack allocated
 | 
						|
      // value that holds the value in hex.
 | 
						|
      Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ?
 | 
						|
                       "float" :
 | 
						|
                       FPC->getType() == Type::getDoubleTy(CPV->getContext()) ?
 | 
						|
                       "double" :
 | 
						|
                       "long double")
 | 
						|
          << "*)&FPConstant" << I->second << ')';
 | 
						|
    } else {
 | 
						|
      double V;
 | 
						|
      if (FPC->getType() == Type::getFloatTy(CPV->getContext()))
 | 
						|
        V = FPC->getValueAPF().convertToFloat();
 | 
						|
      else if (FPC->getType() == Type::getDoubleTy(CPV->getContext()))
 | 
						|
        V = FPC->getValueAPF().convertToDouble();
 | 
						|
      else {
 | 
						|
        // Long double.  Convert the number to double, discarding precision.
 | 
						|
        // This is not awesome, but it at least makes the CBE output somewhat
 | 
						|
        // useful.
 | 
						|
        APFloat Tmp = FPC->getValueAPF();
 | 
						|
        bool LosesInfo;
 | 
						|
        Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo);
 | 
						|
        V = Tmp.convertToDouble();
 | 
						|
      }
 | 
						|
 | 
						|
      if (IsNAN(V)) {
 | 
						|
        // The value is NaN
 | 
						|
 | 
						|
        // FIXME the actual NaN bits should be emitted.
 | 
						|
        // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
 | 
						|
        // it's 0x7ff4.
 | 
						|
        const unsigned long QuietNaN = 0x7ff8UL;
 | 
						|
        //const unsigned long SignalNaN = 0x7ff4UL;
 | 
						|
 | 
						|
        // We need to grab the first part of the FP #
 | 
						|
        char Buffer[100];
 | 
						|
 | 
						|
        uint64_t ll = DoubleToBits(V);
 | 
						|
        sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
 | 
						|
 | 
						|
        std::string Num(&Buffer[0], &Buffer[6]);
 | 
						|
        unsigned long Val = strtoul(Num.c_str(), 0, 16);
 | 
						|
 | 
						|
        if (FPC->getType() == Type::getFloatTy(FPC->getContext()))
 | 
						|
          Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
 | 
						|
              << Buffer << "\") /*nan*/ ";
 | 
						|
        else
 | 
						|
          Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
 | 
						|
              << Buffer << "\") /*nan*/ ";
 | 
						|
      } else if (IsInf(V)) {
 | 
						|
        // The value is Inf
 | 
						|
        if (V < 0) Out << '-';
 | 
						|
        Out << "LLVM_INF" <<
 | 
						|
            (FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "")
 | 
						|
            << " /*inf*/ ";
 | 
						|
      } else {
 | 
						|
        std::string Num;
 | 
						|
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
 | 
						|
        // Print out the constant as a floating point number.
 | 
						|
        char Buffer[100];
 | 
						|
        sprintf(Buffer, "%a", V);
 | 
						|
        Num = Buffer;
 | 
						|
#else
 | 
						|
        Num = ftostr(FPC->getValueAPF());
 | 
						|
#endif
 | 
						|
       Out << Num;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::ArrayTyID:
 | 
						|
    // Use C99 compound expression literal initializer syntax.
 | 
						|
    if (!Static) {
 | 
						|
      Out << "(";
 | 
						|
      printType(Out, CPV->getType());
 | 
						|
      Out << ")";
 | 
						|
    }
 | 
						|
    Out << "{ "; // Arrays are wrapped in struct types.
 | 
						|
    if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
 | 
						|
      printConstantArray(CA, Static);
 | 
						|
    } else {
 | 
						|
      assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
 | 
						|
      const ArrayType *AT = cast<ArrayType>(CPV->getType());
 | 
						|
      Out << '{';
 | 
						|
      if (AT->getNumElements()) {
 | 
						|
        Out << ' ';
 | 
						|
        Constant *CZ = Constant::getNullValue(AT->getElementType());
 | 
						|
        printConstant(CZ, Static);
 | 
						|
        for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
 | 
						|
          Out << ", ";
 | 
						|
          printConstant(CZ, Static);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Out << " }";
 | 
						|
    }
 | 
						|
    Out << " }"; // Arrays are wrapped in struct types.
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::VectorTyID:
 | 
						|
    // Use C99 compound expression literal initializer syntax.
 | 
						|
    if (!Static) {
 | 
						|
      Out << "(";
 | 
						|
      printType(Out, CPV->getType());
 | 
						|
      Out << ")";
 | 
						|
    }
 | 
						|
    if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
 | 
						|
      printConstantVector(CV, Static);
 | 
						|
    } else {
 | 
						|
      assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
 | 
						|
      const VectorType *VT = cast<VectorType>(CPV->getType());
 | 
						|
      Out << "{ ";
 | 
						|
      Constant *CZ = Constant::getNullValue(VT->getElementType());
 | 
						|
      printConstant(CZ, Static);
 | 
						|
      for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
 | 
						|
        Out << ", ";
 | 
						|
        printConstant(CZ, Static);
 | 
						|
      }
 | 
						|
      Out << " }";
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::StructTyID:
 | 
						|
    // Use C99 compound expression literal initializer syntax.
 | 
						|
    if (!Static) {
 | 
						|
      Out << "(";
 | 
						|
      printType(Out, CPV->getType());
 | 
						|
      Out << ")";
 | 
						|
    }
 | 
						|
    if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
 | 
						|
      const StructType *ST = cast<StructType>(CPV->getType());
 | 
						|
      Out << '{';
 | 
						|
      if (ST->getNumElements()) {
 | 
						|
        Out << ' ';
 | 
						|
        printConstant(Constant::getNullValue(ST->getElementType(0)), Static);
 | 
						|
        for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
 | 
						|
          Out << ", ";
 | 
						|
          printConstant(Constant::getNullValue(ST->getElementType(i)), Static);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Out << " }";
 | 
						|
    } else {
 | 
						|
      Out << '{';
 | 
						|
      if (CPV->getNumOperands()) {
 | 
						|
        Out << ' ';
 | 
						|
        printConstant(cast<Constant>(CPV->getOperand(0)), Static);
 | 
						|
        for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
 | 
						|
          Out << ", ";
 | 
						|
          printConstant(cast<Constant>(CPV->getOperand(i)), Static);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Out << " }";
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::PointerTyID:
 | 
						|
    if (isa<ConstantPointerNull>(CPV)) {
 | 
						|
      Out << "((";
 | 
						|
      printType(Out, CPV->getType()); // sign doesn't matter
 | 
						|
      Out << ")/*NULL*/0)";
 | 
						|
      break;
 | 
						|
    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
 | 
						|
      writeOperand(GV, Static);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    // FALL THROUGH
 | 
						|
  default:
 | 
						|
#ifndef NDEBUG
 | 
						|
    errs() << "Unknown constant type: " << *CPV << "\n";
 | 
						|
#endif
 | 
						|
    llvm_unreachable(0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Some constant expressions need to be casted back to the original types
 | 
						|
// because their operands were casted to the expected type. This function takes
 | 
						|
// care of detecting that case and printing the cast for the ConstantExpr.
 | 
						|
bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) {
 | 
						|
  bool NeedsExplicitCast = false;
 | 
						|
  const Type *Ty = CE->getOperand(0)->getType();
 | 
						|
  bool TypeIsSigned = false;
 | 
						|
  switch (CE->getOpcode()) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
    // We need to cast integer arithmetic so that it is always performed
 | 
						|
    // as unsigned, to avoid undefined behavior on overflow.
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::URem:
 | 
						|
  case Instruction::UDiv: NeedsExplicitCast = true; break;
 | 
						|
  case Instruction::AShr:
 | 
						|
  case Instruction::SRem:
 | 
						|
  case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
 | 
						|
  case Instruction::SExt:
 | 
						|
    Ty = CE->getType();
 | 
						|
    NeedsExplicitCast = true;
 | 
						|
    TypeIsSigned = true;
 | 
						|
    break;
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::FPExt:
 | 
						|
  case Instruction::UIToFP:
 | 
						|
  case Instruction::SIToFP:
 | 
						|
  case Instruction::FPToUI:
 | 
						|
  case Instruction::FPToSI:
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
  case Instruction::BitCast:
 | 
						|
    Ty = CE->getType();
 | 
						|
    NeedsExplicitCast = true;
 | 
						|
    break;
 | 
						|
  default: break;
 | 
						|
  }
 | 
						|
  if (NeedsExplicitCast) {
 | 
						|
    Out << "((";
 | 
						|
    if (Ty->isIntegerTy() && Ty != Type::getInt1Ty(Ty->getContext()))
 | 
						|
      printSimpleType(Out, Ty, TypeIsSigned);
 | 
						|
    else
 | 
						|
      printType(Out, Ty); // not integer, sign doesn't matter
 | 
						|
    Out << ")(";
 | 
						|
  }
 | 
						|
  return NeedsExplicitCast;
 | 
						|
}
 | 
						|
 | 
						|
//  Print a constant assuming that it is the operand for a given Opcode. The
 | 
						|
//  opcodes that care about sign need to cast their operands to the expected
 | 
						|
//  type before the operation proceeds. This function does the casting.
 | 
						|
void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
 | 
						|
 | 
						|
  // Extract the operand's type, we'll need it.
 | 
						|
  const Type* OpTy = CPV->getType();
 | 
						|
 | 
						|
  // Indicate whether to do the cast or not.
 | 
						|
  bool shouldCast = false;
 | 
						|
  bool typeIsSigned = false;
 | 
						|
 | 
						|
  // Based on the Opcode for which this Constant is being written, determine
 | 
						|
  // the new type to which the operand should be casted by setting the value
 | 
						|
  // of OpTy. If we change OpTy, also set shouldCast to true so it gets
 | 
						|
  // casted below.
 | 
						|
  switch (Opcode) {
 | 
						|
    default:
 | 
						|
      // for most instructions, it doesn't matter
 | 
						|
      break;
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::Mul:
 | 
						|
      // We need to cast integer arithmetic so that it is always performed
 | 
						|
      // as unsigned, to avoid undefined behavior on overflow.
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
      shouldCast = true;
 | 
						|
      break;
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::SRem:
 | 
						|
      shouldCast = true;
 | 
						|
      typeIsSigned = true;
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Write out the casted constant if we should, otherwise just write the
 | 
						|
  // operand.
 | 
						|
  if (shouldCast) {
 | 
						|
    Out << "((";
 | 
						|
    printSimpleType(Out, OpTy, typeIsSigned);
 | 
						|
    Out << ")";
 | 
						|
    printConstant(CPV, false);
 | 
						|
    Out << ")";
 | 
						|
  } else
 | 
						|
    printConstant(CPV, false);
 | 
						|
}
 | 
						|
 | 
						|
std::string CWriter::GetValueName(const Value *Operand) {
 | 
						|
 | 
						|
  // Resolve potential alias.
 | 
						|
  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Operand)) {
 | 
						|
    if (const Value *V = GA->resolveAliasedGlobal(false))
 | 
						|
      Operand = V;
 | 
						|
  }
 | 
						|
 | 
						|
  // Mangle globals with the standard mangler interface for LLC compatibility.
 | 
						|
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand)) {
 | 
						|
    SmallString<128> Str;
 | 
						|
    Mang->getNameWithPrefix(Str, GV, false);
 | 
						|
    return CBEMangle(Str.str().str());
 | 
						|
  }
 | 
						|
 | 
						|
  std::string Name = Operand->getName();
 | 
						|
 | 
						|
  if (Name.empty()) { // Assign unique names to local temporaries.
 | 
						|
    unsigned &No = AnonValueNumbers[Operand];
 | 
						|
    if (No == 0)
 | 
						|
      No = ++NextAnonValueNumber;
 | 
						|
    Name = "tmp__" + utostr(No);
 | 
						|
  }
 | 
						|
 | 
						|
  std::string VarName;
 | 
						|
  VarName.reserve(Name.capacity());
 | 
						|
 | 
						|
  for (std::string::iterator I = Name.begin(), E = Name.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    char ch = *I;
 | 
						|
 | 
						|
    if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
 | 
						|
          (ch >= '0' && ch <= '9') || ch == '_')) {
 | 
						|
      char buffer[5];
 | 
						|
      sprintf(buffer, "_%x_", ch);
 | 
						|
      VarName += buffer;
 | 
						|
    } else
 | 
						|
      VarName += ch;
 | 
						|
  }
 | 
						|
 | 
						|
  return "llvm_cbe_" + VarName;
 | 
						|
}
 | 
						|
 | 
						|
/// writeInstComputationInline - Emit the computation for the specified
 | 
						|
/// instruction inline, with no destination provided.
 | 
						|
void CWriter::writeInstComputationInline(Instruction &I) {
 | 
						|
  // We can't currently support integer types other than 1, 8, 16, 32, 64.
 | 
						|
  // Validate this.
 | 
						|
  const Type *Ty = I.getType();
 | 
						|
  if (Ty->isIntegerTy() && (Ty!=Type::getInt1Ty(I.getContext()) &&
 | 
						|
        Ty!=Type::getInt8Ty(I.getContext()) &&
 | 
						|
        Ty!=Type::getInt16Ty(I.getContext()) &&
 | 
						|
        Ty!=Type::getInt32Ty(I.getContext()) &&
 | 
						|
        Ty!=Type::getInt64Ty(I.getContext()))) {
 | 
						|
      report_fatal_error("The C backend does not currently support integer "
 | 
						|
                        "types of widths other than 1, 8, 16, 32, 64.\n"
 | 
						|
                        "This is being tracked as PR 4158.");
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a non-trivial bool computation, make sure to truncate down to
 | 
						|
  // a 1 bit value.  This is important because we want "add i1 x, y" to return
 | 
						|
  // "0" when x and y are true, not "2" for example.
 | 
						|
  bool NeedBoolTrunc = false;
 | 
						|
  if (I.getType() == Type::getInt1Ty(I.getContext()) &&
 | 
						|
      !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
 | 
						|
    NeedBoolTrunc = true;
 | 
						|
 | 
						|
  if (NeedBoolTrunc)
 | 
						|
    Out << "((";
 | 
						|
 | 
						|
  visit(I);
 | 
						|
 | 
						|
  if (NeedBoolTrunc)
 | 
						|
    Out << ")&1)";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CWriter::writeOperandInternal(Value *Operand, bool Static) {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(Operand))
 | 
						|
    // Should we inline this instruction to build a tree?
 | 
						|
    if (isInlinableInst(*I) && !isDirectAlloca(I)) {
 | 
						|
      Out << '(';
 | 
						|
      writeInstComputationInline(*I);
 | 
						|
      Out << ')';
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  Constant* CPV = dyn_cast<Constant>(Operand);
 | 
						|
 | 
						|
  if (CPV && !isa<GlobalValue>(CPV))
 | 
						|
    printConstant(CPV, Static);
 | 
						|
  else
 | 
						|
    Out << GetValueName(Operand);
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::writeOperand(Value *Operand, bool Static) {
 | 
						|
  bool isAddressImplicit = isAddressExposed(Operand);
 | 
						|
  if (isAddressImplicit)
 | 
						|
    Out << "(&";  // Global variables are referenced as their addresses by llvm
 | 
						|
 | 
						|
  writeOperandInternal(Operand, Static);
 | 
						|
 | 
						|
  if (isAddressImplicit)
 | 
						|
    Out << ')';
 | 
						|
}
 | 
						|
 | 
						|
// Some instructions need to have their result value casted back to the
 | 
						|
// original types because their operands were casted to the expected type.
 | 
						|
// This function takes care of detecting that case and printing the cast
 | 
						|
// for the Instruction.
 | 
						|
bool CWriter::writeInstructionCast(const Instruction &I) {
 | 
						|
  const Type *Ty = I.getOperand(0)->getType();
 | 
						|
  switch (I.getOpcode()) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
    // We need to cast integer arithmetic so that it is always performed
 | 
						|
    // as unsigned, to avoid undefined behavior on overflow.
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::URem:
 | 
						|
  case Instruction::UDiv:
 | 
						|
    Out << "((";
 | 
						|
    printSimpleType(Out, Ty, false);
 | 
						|
    Out << ")(";
 | 
						|
    return true;
 | 
						|
  case Instruction::AShr:
 | 
						|
  case Instruction::SRem:
 | 
						|
  case Instruction::SDiv:
 | 
						|
    Out << "((";
 | 
						|
    printSimpleType(Out, Ty, true);
 | 
						|
    Out << ")(";
 | 
						|
    return true;
 | 
						|
  default: break;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Write the operand with a cast to another type based on the Opcode being used.
 | 
						|
// This will be used in cases where an instruction has specific type
 | 
						|
// requirements (usually signedness) for its operands.
 | 
						|
void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
 | 
						|
 | 
						|
  // Extract the operand's type, we'll need it.
 | 
						|
  const Type* OpTy = Operand->getType();
 | 
						|
 | 
						|
  // Indicate whether to do the cast or not.
 | 
						|
  bool shouldCast = false;
 | 
						|
 | 
						|
  // Indicate whether the cast should be to a signed type or not.
 | 
						|
  bool castIsSigned = false;
 | 
						|
 | 
						|
  // Based on the Opcode for which this Operand is being written, determine
 | 
						|
  // the new type to which the operand should be casted by setting the value
 | 
						|
  // of OpTy. If we change OpTy, also set shouldCast to true.
 | 
						|
  switch (Opcode) {
 | 
						|
    default:
 | 
						|
      // for most instructions, it doesn't matter
 | 
						|
      break;
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::Mul:
 | 
						|
      // We need to cast integer arithmetic so that it is always performed
 | 
						|
      // as unsigned, to avoid undefined behavior on overflow.
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::URem: // Cast to unsigned first
 | 
						|
      shouldCast = true;
 | 
						|
      castIsSigned = false;
 | 
						|
      break;
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::SRem: // Cast to signed first
 | 
						|
      shouldCast = true;
 | 
						|
      castIsSigned = true;
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Write out the casted operand if we should, otherwise just write the
 | 
						|
  // operand.
 | 
						|
  if (shouldCast) {
 | 
						|
    Out << "((";
 | 
						|
    printSimpleType(Out, OpTy, castIsSigned);
 | 
						|
    Out << ")";
 | 
						|
    writeOperand(Operand);
 | 
						|
    Out << ")";
 | 
						|
  } else
 | 
						|
    writeOperand(Operand);
 | 
						|
}
 | 
						|
 | 
						|
// Write the operand with a cast to another type based on the icmp predicate
 | 
						|
// being used.
 | 
						|
void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
 | 
						|
  // This has to do a cast to ensure the operand has the right signedness.
 | 
						|
  // Also, if the operand is a pointer, we make sure to cast to an integer when
 | 
						|
  // doing the comparison both for signedness and so that the C compiler doesn't
 | 
						|
  // optimize things like "p < NULL" to false (p may contain an integer value
 | 
						|
  // f.e.).
 | 
						|
  bool shouldCast = Cmp.isRelational();
 | 
						|
 | 
						|
  // Write out the casted operand if we should, otherwise just write the
 | 
						|
  // operand.
 | 
						|
  if (!shouldCast) {
 | 
						|
    writeOperand(Operand);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Should this be a signed comparison?  If so, convert to signed.
 | 
						|
  bool castIsSigned = Cmp.isSigned();
 | 
						|
 | 
						|
  // If the operand was a pointer, convert to a large integer type.
 | 
						|
  const Type* OpTy = Operand->getType();
 | 
						|
  if (OpTy->isPointerTy())
 | 
						|
    OpTy = TD->getIntPtrType(Operand->getContext());
 | 
						|
 | 
						|
  Out << "((";
 | 
						|
  printSimpleType(Out, OpTy, castIsSigned);
 | 
						|
  Out << ")";
 | 
						|
  writeOperand(Operand);
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
// generateCompilerSpecificCode - This is where we add conditional compilation
 | 
						|
// directives to cater to specific compilers as need be.
 | 
						|
//
 | 
						|
static void generateCompilerSpecificCode(formatted_raw_ostream& Out,
 | 
						|
                                         const TargetData *TD) {
 | 
						|
  // Alloca is hard to get, and we don't want to include stdlib.h here.
 | 
						|
  Out << "/* get a declaration for alloca */\n"
 | 
						|
      << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
 | 
						|
      << "#define  alloca(x) __builtin_alloca((x))\n"
 | 
						|
      << "#define _alloca(x) __builtin_alloca((x))\n"
 | 
						|
      << "#elif defined(__APPLE__)\n"
 | 
						|
      << "extern void *__builtin_alloca(unsigned long);\n"
 | 
						|
      << "#define alloca(x) __builtin_alloca(x)\n"
 | 
						|
      << "#define longjmp _longjmp\n"
 | 
						|
      << "#define setjmp _setjmp\n"
 | 
						|
      << "#elif defined(__sun__)\n"
 | 
						|
      << "#if defined(__sparcv9)\n"
 | 
						|
      << "extern void *__builtin_alloca(unsigned long);\n"
 | 
						|
      << "#else\n"
 | 
						|
      << "extern void *__builtin_alloca(unsigned int);\n"
 | 
						|
      << "#endif\n"
 | 
						|
      << "#define alloca(x) __builtin_alloca(x)\n"
 | 
						|
      << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__arm__)\n"
 | 
						|
      << "#define alloca(x) __builtin_alloca(x)\n"
 | 
						|
      << "#elif defined(_MSC_VER)\n"
 | 
						|
      << "#define inline _inline\n"
 | 
						|
      << "#define alloca(x) _alloca(x)\n"
 | 
						|
      << "#else\n"
 | 
						|
      << "#include <alloca.h>\n"
 | 
						|
      << "#endif\n\n";
 | 
						|
 | 
						|
  // We output GCC specific attributes to preserve 'linkonce'ness on globals.
 | 
						|
  // If we aren't being compiled with GCC, just drop these attributes.
 | 
						|
  Out << "#ifndef __GNUC__  /* Can only support \"linkonce\" vars with GCC */\n"
 | 
						|
      << "#define __attribute__(X)\n"
 | 
						|
      << "#endif\n\n";
 | 
						|
 | 
						|
  // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
 | 
						|
  Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
 | 
						|
      << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
 | 
						|
      << "#elif defined(__GNUC__)\n"
 | 
						|
      << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
 | 
						|
      << "#else\n"
 | 
						|
      << "#define __EXTERNAL_WEAK__\n"
 | 
						|
      << "#endif\n\n";
 | 
						|
 | 
						|
  // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
 | 
						|
  Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
 | 
						|
      << "#define __ATTRIBUTE_WEAK__\n"
 | 
						|
      << "#elif defined(__GNUC__)\n"
 | 
						|
      << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
 | 
						|
      << "#else\n"
 | 
						|
      << "#define __ATTRIBUTE_WEAK__\n"
 | 
						|
      << "#endif\n\n";
 | 
						|
 | 
						|
  // Add hidden visibility support. FIXME: APPLE_CC?
 | 
						|
  Out << "#if defined(__GNUC__)\n"
 | 
						|
      << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
 | 
						|
      << "#endif\n\n";
 | 
						|
 | 
						|
  // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
 | 
						|
  // From the GCC documentation:
 | 
						|
  //
 | 
						|
  //   double __builtin_nan (const char *str)
 | 
						|
  //
 | 
						|
  // This is an implementation of the ISO C99 function nan.
 | 
						|
  //
 | 
						|
  // Since ISO C99 defines this function in terms of strtod, which we do
 | 
						|
  // not implement, a description of the parsing is in order. The string is
 | 
						|
  // parsed as by strtol; that is, the base is recognized by leading 0 or
 | 
						|
  // 0x prefixes. The number parsed is placed in the significand such that
 | 
						|
  // the least significant bit of the number is at the least significant
 | 
						|
  // bit of the significand. The number is truncated to fit the significand
 | 
						|
  // field provided. The significand is forced to be a quiet NaN.
 | 
						|
  //
 | 
						|
  // This function, if given a string literal, is evaluated early enough
 | 
						|
  // that it is considered a compile-time constant.
 | 
						|
  //
 | 
						|
  //   float __builtin_nanf (const char *str)
 | 
						|
  //
 | 
						|
  // Similar to __builtin_nan, except the return type is float.
 | 
						|
  //
 | 
						|
  //   double __builtin_inf (void)
 | 
						|
  //
 | 
						|
  // Similar to __builtin_huge_val, except a warning is generated if the
 | 
						|
  // target floating-point format does not support infinities. This
 | 
						|
  // function is suitable for implementing the ISO C99 macro INFINITY.
 | 
						|
  //
 | 
						|
  //   float __builtin_inff (void)
 | 
						|
  //
 | 
						|
  // Similar to __builtin_inf, except the return type is float.
 | 
						|
  Out << "#ifdef __GNUC__\n"
 | 
						|
      << "#define LLVM_NAN(NanStr)   __builtin_nan(NanStr)   /* Double */\n"
 | 
						|
      << "#define LLVM_NANF(NanStr)  __builtin_nanf(NanStr)  /* Float */\n"
 | 
						|
      << "#define LLVM_NANS(NanStr)  __builtin_nans(NanStr)  /* Double */\n"
 | 
						|
      << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
 | 
						|
      << "#define LLVM_INF           __builtin_inf()         /* Double */\n"
 | 
						|
      << "#define LLVM_INFF          __builtin_inff()        /* Float */\n"
 | 
						|
      << "#define LLVM_PREFETCH(addr,rw,locality) "
 | 
						|
                              "__builtin_prefetch(addr,rw,locality)\n"
 | 
						|
      << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
 | 
						|
      << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
 | 
						|
      << "#define LLVM_ASM           __asm__\n"
 | 
						|
      << "#else\n"
 | 
						|
      << "#define LLVM_NAN(NanStr)   ((double)0.0)           /* Double */\n"
 | 
						|
      << "#define LLVM_NANF(NanStr)  0.0F                    /* Float */\n"
 | 
						|
      << "#define LLVM_NANS(NanStr)  ((double)0.0)           /* Double */\n"
 | 
						|
      << "#define LLVM_NANSF(NanStr) 0.0F                    /* Float */\n"
 | 
						|
      << "#define LLVM_INF           ((double)0.0)           /* Double */\n"
 | 
						|
      << "#define LLVM_INFF          0.0F                    /* Float */\n"
 | 
						|
      << "#define LLVM_PREFETCH(addr,rw,locality)            /* PREFETCH */\n"
 | 
						|
      << "#define __ATTRIBUTE_CTOR__\n"
 | 
						|
      << "#define __ATTRIBUTE_DTOR__\n"
 | 
						|
      << "#define LLVM_ASM(X)\n"
 | 
						|
      << "#endif\n\n";
 | 
						|
 | 
						|
  Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
 | 
						|
      << "#define __builtin_stack_save() 0   /* not implemented */\n"
 | 
						|
      << "#define __builtin_stack_restore(X) /* noop */\n"
 | 
						|
      << "#endif\n\n";
 | 
						|
 | 
						|
  // Output typedefs for 128-bit integers. If these are needed with a
 | 
						|
  // 32-bit target or with a C compiler that doesn't support mode(TI),
 | 
						|
  // more drastic measures will be needed.
 | 
						|
  Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
 | 
						|
      << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
 | 
						|
      << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
 | 
						|
      << "#endif\n\n";
 | 
						|
 | 
						|
  // Output target-specific code that should be inserted into main.
 | 
						|
  Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
 | 
						|
}
 | 
						|
 | 
						|
/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
 | 
						|
/// the StaticTors set.
 | 
						|
static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
 | 
						|
  ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
 | 
						|
  if (!InitList) return;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
 | 
						|
    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
 | 
						|
      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
 | 
						|
 | 
						|
      if (CS->getOperand(1)->isNullValue())
 | 
						|
        return;  // Found a null terminator, exit printing.
 | 
						|
      Constant *FP = CS->getOperand(1);
 | 
						|
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
 | 
						|
        if (CE->isCast())
 | 
						|
          FP = CE->getOperand(0);
 | 
						|
      if (Function *F = dyn_cast<Function>(FP))
 | 
						|
        StaticTors.insert(F);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
enum SpecialGlobalClass {
 | 
						|
  NotSpecial = 0,
 | 
						|
  GlobalCtors, GlobalDtors,
 | 
						|
  NotPrinted
 | 
						|
};
 | 
						|
 | 
						|
/// getGlobalVariableClass - If this is a global that is specially recognized
 | 
						|
/// by LLVM, return a code that indicates how we should handle it.
 | 
						|
static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
 | 
						|
  // If this is a global ctors/dtors list, handle it now.
 | 
						|
  if (GV->hasAppendingLinkage() && GV->use_empty()) {
 | 
						|
    if (GV->getName() == "llvm.global_ctors")
 | 
						|
      return GlobalCtors;
 | 
						|
    else if (GV->getName() == "llvm.global_dtors")
 | 
						|
      return GlobalDtors;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if it is other metadata, don't print it.  This catches things
 | 
						|
  // like debug information.
 | 
						|
  if (GV->getSection() == "llvm.metadata")
 | 
						|
    return NotPrinted;
 | 
						|
 | 
						|
  return NotSpecial;
 | 
						|
}
 | 
						|
 | 
						|
// PrintEscapedString - Print each character of the specified string, escaping
 | 
						|
// it if it is not printable or if it is an escape char.
 | 
						|
static void PrintEscapedString(const char *Str, unsigned Length,
 | 
						|
                               raw_ostream &Out) {
 | 
						|
  for (unsigned i = 0; i != Length; ++i) {
 | 
						|
    unsigned char C = Str[i];
 | 
						|
    if (isprint(C) && C != '\\' && C != '"')
 | 
						|
      Out << C;
 | 
						|
    else if (C == '\\')
 | 
						|
      Out << "\\\\";
 | 
						|
    else if (C == '\"')
 | 
						|
      Out << "\\\"";
 | 
						|
    else if (C == '\t')
 | 
						|
      Out << "\\t";
 | 
						|
    else
 | 
						|
      Out << "\\x" << hexdigit(C >> 4) << hexdigit(C & 0x0F);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// PrintEscapedString - Print each character of the specified string, escaping
 | 
						|
// it if it is not printable or if it is an escape char.
 | 
						|
static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
 | 
						|
  PrintEscapedString(Str.c_str(), Str.size(), Out);
 | 
						|
}
 | 
						|
 | 
						|
bool CWriter::doInitialization(Module &M) {
 | 
						|
  FunctionPass::doInitialization(M);
 | 
						|
 | 
						|
  // Initialize
 | 
						|
  TheModule = &M;
 | 
						|
 | 
						|
  TD = new TargetData(&M);
 | 
						|
  IL = new IntrinsicLowering(*TD);
 | 
						|
  IL->AddPrototypes(M);
 | 
						|
 | 
						|
#if 0
 | 
						|
  std::string Triple = TheModule->getTargetTriple();
 | 
						|
  if (Triple.empty())
 | 
						|
    Triple = llvm::sys::getHostTriple();
 | 
						|
 | 
						|
  std::string E;
 | 
						|
  if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
 | 
						|
    TAsm = Match->createAsmInfo(Triple);
 | 
						|
#endif
 | 
						|
  TAsm = new CBEMCAsmInfo();
 | 
						|
  TCtx = new MCContext(*TAsm, NULL);
 | 
						|
  Mang = new Mangler(*TCtx, *TD);
 | 
						|
 | 
						|
  // Keep track of which functions are static ctors/dtors so they can have
 | 
						|
  // an attribute added to their prototypes.
 | 
						|
  std::set<Function*> StaticCtors, StaticDtors;
 | 
						|
  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    switch (getGlobalVariableClass(I)) {
 | 
						|
    default: break;
 | 
						|
    case GlobalCtors:
 | 
						|
      FindStaticTors(I, StaticCtors);
 | 
						|
      break;
 | 
						|
    case GlobalDtors:
 | 
						|
      FindStaticTors(I, StaticDtors);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // get declaration for alloca
 | 
						|
  Out << "/* Provide Declarations */\n";
 | 
						|
  Out << "#include <stdarg.h>\n";      // Varargs support
 | 
						|
  Out << "#include <setjmp.h>\n";      // Unwind support
 | 
						|
  Out << "#include <limits.h>\n";      // With overflow intrinsics support.
 | 
						|
  generateCompilerSpecificCode(Out, TD);
 | 
						|
 | 
						|
  // Provide a definition for `bool' if not compiling with a C++ compiler.
 | 
						|
  Out << "\n"
 | 
						|
      << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
 | 
						|
 | 
						|
      << "\n\n/* Support for floating point constants */\n"
 | 
						|
      << "typedef unsigned long long ConstantDoubleTy;\n"
 | 
						|
      << "typedef unsigned int        ConstantFloatTy;\n"
 | 
						|
      << "typedef struct { unsigned long long f1; unsigned short f2; "
 | 
						|
         "unsigned short pad[3]; } ConstantFP80Ty;\n"
 | 
						|
      // This is used for both kinds of 128-bit long double; meaning differs.
 | 
						|
      << "typedef struct { unsigned long long f1; unsigned long long f2; }"
 | 
						|
         " ConstantFP128Ty;\n"
 | 
						|
      << "\n\n/* Global Declarations */\n";
 | 
						|
 | 
						|
  // First output all the declarations for the program, because C requires
 | 
						|
  // Functions & globals to be declared before they are used.
 | 
						|
  //
 | 
						|
  if (!M.getModuleInlineAsm().empty()) {
 | 
						|
    Out << "/* Module asm statements */\n"
 | 
						|
        << "asm(";
 | 
						|
 | 
						|
    // Split the string into lines, to make it easier to read the .ll file.
 | 
						|
    std::string Asm = M.getModuleInlineAsm();
 | 
						|
    size_t CurPos = 0;
 | 
						|
    size_t NewLine = Asm.find_first_of('\n', CurPos);
 | 
						|
    while (NewLine != std::string::npos) {
 | 
						|
      // We found a newline, print the portion of the asm string from the
 | 
						|
      // last newline up to this newline.
 | 
						|
      Out << "\"";
 | 
						|
      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
 | 
						|
                         Out);
 | 
						|
      Out << "\\n\"\n";
 | 
						|
      CurPos = NewLine+1;
 | 
						|
      NewLine = Asm.find_first_of('\n', CurPos);
 | 
						|
    }
 | 
						|
    Out << "\"";
 | 
						|
    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
 | 
						|
    Out << "\");\n"
 | 
						|
        << "/* End Module asm statements */\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over the symbol table, emitting all named constants.
 | 
						|
  printModuleTypes();
 | 
						|
 | 
						|
  // Global variable declarations...
 | 
						|
  if (!M.global_empty()) {
 | 
						|
    Out << "\n/* External Global Variable Declarations */\n";
 | 
						|
    for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
         I != E; ++I) {
 | 
						|
 | 
						|
      if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
 | 
						|
          I->hasCommonLinkage())
 | 
						|
        Out << "extern ";
 | 
						|
      else if (I->hasDLLImportLinkage())
 | 
						|
        Out << "__declspec(dllimport) ";
 | 
						|
      else
 | 
						|
        continue; // Internal Global
 | 
						|
 | 
						|
      // Thread Local Storage
 | 
						|
      if (I->isThreadLocal())
 | 
						|
        Out << "__thread ";
 | 
						|
 | 
						|
      printType(Out, I->getType()->getElementType(), false, GetValueName(I));
 | 
						|
 | 
						|
      if (I->hasExternalWeakLinkage())
 | 
						|
         Out << " __EXTERNAL_WEAK__";
 | 
						|
      Out << ";\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Function declarations
 | 
						|
  Out << "\n/* Function Declarations */\n";
 | 
						|
  Out << "double fmod(double, double);\n";   // Support for FP rem
 | 
						|
  Out << "float fmodf(float, float);\n";
 | 
						|
  Out << "long double fmodl(long double, long double);\n";
 | 
						|
 | 
						|
  // Store the intrinsics which will be declared/defined below.
 | 
						|
  SmallVector<const Function*, 8> intrinsicsToDefine;
 | 
						|
 | 
						|
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
 | 
						|
    // Don't print declarations for intrinsic functions.
 | 
						|
    // Store the used intrinsics, which need to be explicitly defined.
 | 
						|
    if (I->isIntrinsic()) {
 | 
						|
      switch (I->getIntrinsicID()) {
 | 
						|
        default:
 | 
						|
          break;
 | 
						|
        case Intrinsic::uadd_with_overflow:
 | 
						|
        case Intrinsic::sadd_with_overflow:
 | 
						|
          intrinsicsToDefine.push_back(I);
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (I->getName() == "setjmp" ||
 | 
						|
        I->getName() == "longjmp" || I->getName() == "_setjmp")
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (I->hasExternalWeakLinkage())
 | 
						|
      Out << "extern ";
 | 
						|
    printFunctionSignature(I, true);
 | 
						|
    if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
 | 
						|
      Out << " __ATTRIBUTE_WEAK__";
 | 
						|
    if (I->hasExternalWeakLinkage())
 | 
						|
      Out << " __EXTERNAL_WEAK__";
 | 
						|
    if (StaticCtors.count(I))
 | 
						|
      Out << " __ATTRIBUTE_CTOR__";
 | 
						|
    if (StaticDtors.count(I))
 | 
						|
      Out << " __ATTRIBUTE_DTOR__";
 | 
						|
    if (I->hasHiddenVisibility())
 | 
						|
      Out << " __HIDDEN__";
 | 
						|
 | 
						|
    if (I->hasName() && I->getName()[0] == 1)
 | 
						|
      Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")";
 | 
						|
 | 
						|
    Out << ";\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // Output the global variable declarations
 | 
						|
  if (!M.global_empty()) {
 | 
						|
    Out << "\n\n/* Global Variable Declarations */\n";
 | 
						|
    for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
         I != E; ++I)
 | 
						|
      if (!I->isDeclaration()) {
 | 
						|
        // Ignore special globals, such as debug info.
 | 
						|
        if (getGlobalVariableClass(I))
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (I->hasLocalLinkage())
 | 
						|
          Out << "static ";
 | 
						|
        else
 | 
						|
          Out << "extern ";
 | 
						|
 | 
						|
        // Thread Local Storage
 | 
						|
        if (I->isThreadLocal())
 | 
						|
          Out << "__thread ";
 | 
						|
 | 
						|
        printType(Out, I->getType()->getElementType(), false,
 | 
						|
                  GetValueName(I));
 | 
						|
 | 
						|
        if (I->hasLinkOnceLinkage())
 | 
						|
          Out << " __attribute__((common))";
 | 
						|
        else if (I->hasCommonLinkage())     // FIXME is this right?
 | 
						|
          Out << " __ATTRIBUTE_WEAK__";
 | 
						|
        else if (I->hasWeakLinkage())
 | 
						|
          Out << " __ATTRIBUTE_WEAK__";
 | 
						|
        else if (I->hasExternalWeakLinkage())
 | 
						|
          Out << " __EXTERNAL_WEAK__";
 | 
						|
        if (I->hasHiddenVisibility())
 | 
						|
          Out << " __HIDDEN__";
 | 
						|
        Out << ";\n";
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Output the global variable definitions and contents...
 | 
						|
  if (!M.global_empty()) {
 | 
						|
    Out << "\n\n/* Global Variable Definitions and Initialization */\n";
 | 
						|
    for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
         I != E; ++I)
 | 
						|
      if (!I->isDeclaration()) {
 | 
						|
        // Ignore special globals, such as debug info.
 | 
						|
        if (getGlobalVariableClass(I))
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (I->hasLocalLinkage())
 | 
						|
          Out << "static ";
 | 
						|
        else if (I->hasDLLImportLinkage())
 | 
						|
          Out << "__declspec(dllimport) ";
 | 
						|
        else if (I->hasDLLExportLinkage())
 | 
						|
          Out << "__declspec(dllexport) ";
 | 
						|
 | 
						|
        // Thread Local Storage
 | 
						|
        if (I->isThreadLocal())
 | 
						|
          Out << "__thread ";
 | 
						|
 | 
						|
        printType(Out, I->getType()->getElementType(), false,
 | 
						|
                  GetValueName(I));
 | 
						|
        if (I->hasLinkOnceLinkage())
 | 
						|
          Out << " __attribute__((common))";
 | 
						|
        else if (I->hasWeakLinkage())
 | 
						|
          Out << " __ATTRIBUTE_WEAK__";
 | 
						|
        else if (I->hasCommonLinkage())
 | 
						|
          Out << " __ATTRIBUTE_WEAK__";
 | 
						|
 | 
						|
        if (I->hasHiddenVisibility())
 | 
						|
          Out << " __HIDDEN__";
 | 
						|
 | 
						|
        // If the initializer is not null, emit the initializer.  If it is null,
 | 
						|
        // we try to avoid emitting large amounts of zeros.  The problem with
 | 
						|
        // this, however, occurs when the variable has weak linkage.  In this
 | 
						|
        // case, the assembler will complain about the variable being both weak
 | 
						|
        // and common, so we disable this optimization.
 | 
						|
        // FIXME common linkage should avoid this problem.
 | 
						|
        if (!I->getInitializer()->isNullValue()) {
 | 
						|
          Out << " = " ;
 | 
						|
          writeOperand(I->getInitializer(), true);
 | 
						|
        } else if (I->hasWeakLinkage()) {
 | 
						|
          // We have to specify an initializer, but it doesn't have to be
 | 
						|
          // complete.  If the value is an aggregate, print out { 0 }, and let
 | 
						|
          // the compiler figure out the rest of the zeros.
 | 
						|
          Out << " = " ;
 | 
						|
          if (I->getInitializer()->getType()->isStructTy() ||
 | 
						|
              I->getInitializer()->getType()->isVectorTy()) {
 | 
						|
            Out << "{ 0 }";
 | 
						|
          } else if (I->getInitializer()->getType()->isArrayTy()) {
 | 
						|
            // As with structs and vectors, but with an extra set of braces
 | 
						|
            // because arrays are wrapped in structs.
 | 
						|
            Out << "{ { 0 } }";
 | 
						|
          } else {
 | 
						|
            // Just print it out normally.
 | 
						|
            writeOperand(I->getInitializer(), true);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        Out << ";\n";
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!M.empty())
 | 
						|
    Out << "\n\n/* Function Bodies */\n";
 | 
						|
 | 
						|
  // Emit some helper functions for dealing with FCMP instruction's
 | 
						|
  // predicates
 | 
						|
  Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
 | 
						|
  Out << "return X == X && Y == Y; }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
 | 
						|
  Out << "return X != X || Y != Y; }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
 | 
						|
  Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
 | 
						|
  Out << "return X != Y; }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
 | 
						|
  Out << "return X <  Y || llvm_fcmp_uno(X, Y); }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
 | 
						|
  Out << "return X >  Y || llvm_fcmp_uno(X, Y); }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
 | 
						|
  Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
 | 
						|
  Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
 | 
						|
  Out << "return X == Y ; }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
 | 
						|
  Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
 | 
						|
  Out << "return X <  Y ; }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
 | 
						|
  Out << "return X >  Y ; }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
 | 
						|
  Out << "return X <= Y ; }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
 | 
						|
  Out << "return X >= Y ; }\n";
 | 
						|
 | 
						|
  // Emit definitions of the intrinsics.
 | 
						|
  for (SmallVector<const Function*, 8>::const_iterator
 | 
						|
       I = intrinsicsToDefine.begin(),
 | 
						|
       E = intrinsicsToDefine.end(); I != E; ++I) {
 | 
						|
    printIntrinsicDefinition(**I, Out);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Output all floating point constants that cannot be printed accurately...
 | 
						|
void CWriter::printFloatingPointConstants(Function &F) {
 | 
						|
  // Scan the module for floating point constants.  If any FP constant is used
 | 
						|
  // in the function, we want to redirect it here so that we do not depend on
 | 
						|
  // the precision of the printed form, unless the printed form preserves
 | 
						|
  // precision.
 | 
						|
  //
 | 
						|
  for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
 | 
						|
       I != E; ++I)
 | 
						|
    printFloatingPointConstants(*I);
 | 
						|
 | 
						|
  Out << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printFloatingPointConstants(const Constant *C) {
 | 
						|
  // If this is a constant expression, recursively check for constant fp values.
 | 
						|
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
    for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
 | 
						|
      printFloatingPointConstants(CE->getOperand(i));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, check for a FP constant that we need to print.
 | 
						|
  const ConstantFP *FPC = dyn_cast<ConstantFP>(C);
 | 
						|
  if (FPC == 0 ||
 | 
						|
      // Do not put in FPConstantMap if safe.
 | 
						|
      isFPCSafeToPrint(FPC) ||
 | 
						|
      // Already printed this constant?
 | 
						|
      FPConstantMap.count(FPC))
 | 
						|
    return;
 | 
						|
 | 
						|
  FPConstantMap[FPC] = FPCounter;  // Number the FP constants
 | 
						|
 | 
						|
  if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) {
 | 
						|
    double Val = FPC->getValueAPF().convertToDouble();
 | 
						|
    uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
 | 
						|
    Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
 | 
						|
    << " = 0x" << utohexstr(i)
 | 
						|
    << "ULL;    /* " << Val << " */\n";
 | 
						|
  } else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) {
 | 
						|
    float Val = FPC->getValueAPF().convertToFloat();
 | 
						|
    uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt().
 | 
						|
    getZExtValue();
 | 
						|
    Out << "static const ConstantFloatTy FPConstant" << FPCounter++
 | 
						|
    << " = 0x" << utohexstr(i)
 | 
						|
    << "U;    /* " << Val << " */\n";
 | 
						|
  } else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) {
 | 
						|
    // api needed to prevent premature destruction
 | 
						|
    APInt api = FPC->getValueAPF().bitcastToAPInt();
 | 
						|
    const uint64_t *p = api.getRawData();
 | 
						|
    Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
 | 
						|
    << " = { 0x" << utohexstr(p[0])
 | 
						|
    << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}"
 | 
						|
    << "}; /* Long double constant */\n";
 | 
						|
  } else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext()) ||
 | 
						|
             FPC->getType() == Type::getFP128Ty(FPC->getContext())) {
 | 
						|
    APInt api = FPC->getValueAPF().bitcastToAPInt();
 | 
						|
    const uint64_t *p = api.getRawData();
 | 
						|
    Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
 | 
						|
    << " = { 0x"
 | 
						|
    << utohexstr(p[0]) << ", 0x" << utohexstr(p[1])
 | 
						|
    << "}; /* Long double constant */\n";
 | 
						|
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Unknown float type!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// printSymbolTable - Run through symbol table looking for type names.  If a
 | 
						|
/// type name is found, emit its declaration...
 | 
						|
///
 | 
						|
void CWriter::printModuleTypes() {
 | 
						|
  Out << "/* Helper union for bitcasts */\n";
 | 
						|
  Out << "typedef union {\n";
 | 
						|
  Out << "  unsigned int Int32;\n";
 | 
						|
  Out << "  unsigned long long Int64;\n";
 | 
						|
  Out << "  float Float;\n";
 | 
						|
  Out << "  double Double;\n";
 | 
						|
  Out << "} llvmBitCastUnion;\n";
 | 
						|
 | 
						|
  // Get all of the struct types used in the module.
 | 
						|
  std::vector<StructType*> StructTypes;
 | 
						|
  TheModule->findUsedStructTypes(StructTypes);
 | 
						|
 | 
						|
  if (StructTypes.empty()) return;
 | 
						|
 | 
						|
  Out << "/* Structure forward decls */\n";
 | 
						|
 | 
						|
  unsigned NextTypeID = 0;
 | 
						|
  
 | 
						|
  // If any of them are missing names, add a unique ID to UnnamedStructIDs.
 | 
						|
  // Print out forward declarations for structure types.
 | 
						|
  for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) {
 | 
						|
    StructType *ST = StructTypes[i];
 | 
						|
 | 
						|
    if (ST->isAnonymous() || ST->getName().empty())
 | 
						|
      UnnamedStructIDs[ST] = NextTypeID++;
 | 
						|
 | 
						|
    std::string Name = getStructName(ST);
 | 
						|
 | 
						|
    Out << "typedef struct " << Name << ' ' << Name << ";\n";
 | 
						|
  }
 | 
						|
 | 
						|
  Out << '\n';
 | 
						|
 | 
						|
  // Keep track of which structures have been printed so far.
 | 
						|
  SmallPtrSet<const Type *, 16> StructPrinted;
 | 
						|
 | 
						|
  // Loop over all structures then push them into the stack so they are
 | 
						|
  // printed in the correct order.
 | 
						|
  //
 | 
						|
  Out << "/* Structure contents */\n";
 | 
						|
  for (unsigned i = 0, e = StructTypes.size(); i != e; ++i)
 | 
						|
    if (StructTypes[i]->isStructTy())
 | 
						|
      // Only print out used types!
 | 
						|
      printContainedStructs(StructTypes[i], StructPrinted);
 | 
						|
}
 | 
						|
 | 
						|
// Push the struct onto the stack and recursively push all structs
 | 
						|
// this one depends on.
 | 
						|
//
 | 
						|
// TODO:  Make this work properly with vector types
 | 
						|
//
 | 
						|
void CWriter::printContainedStructs(const Type *Ty,
 | 
						|
                                SmallPtrSet<const Type *, 16> &StructPrinted) {
 | 
						|
  // Don't walk through pointers.
 | 
						|
  if (Ty->isPointerTy() || Ty->isPrimitiveType() || Ty->isIntegerTy())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Print all contained types first.
 | 
						|
  for (Type::subtype_iterator I = Ty->subtype_begin(),
 | 
						|
       E = Ty->subtype_end(); I != E; ++I)
 | 
						|
    printContainedStructs(*I, StructPrinted);
 | 
						|
 | 
						|
  if (const StructType *ST = dyn_cast<StructType>(Ty)) {
 | 
						|
    // Check to see if we have already printed this struct.
 | 
						|
    if (!StructPrinted.insert(Ty)) return;
 | 
						|
    
 | 
						|
    // Print structure type out.
 | 
						|
    printType(Out, ST, false, getStructName(ST), true);
 | 
						|
    Out << ";\n\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
 | 
						|
  /// isStructReturn - Should this function actually return a struct by-value?
 | 
						|
  bool isStructReturn = F->hasStructRetAttr();
 | 
						|
 | 
						|
  if (F->hasLocalLinkage()) Out << "static ";
 | 
						|
  if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
 | 
						|
  if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
 | 
						|
  switch (F->getCallingConv()) {
 | 
						|
   case CallingConv::X86_StdCall:
 | 
						|
    Out << "__attribute__((stdcall)) ";
 | 
						|
    break;
 | 
						|
   case CallingConv::X86_FastCall:
 | 
						|
    Out << "__attribute__((fastcall)) ";
 | 
						|
    break;
 | 
						|
   case CallingConv::X86_ThisCall:
 | 
						|
    Out << "__attribute__((thiscall)) ";
 | 
						|
    break;
 | 
						|
   default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over the arguments, printing them...
 | 
						|
  const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
 | 
						|
  const AttrListPtr &PAL = F->getAttributes();
 | 
						|
 | 
						|
  std::string tstr;
 | 
						|
  raw_string_ostream FunctionInnards(tstr);
 | 
						|
 | 
						|
  // Print out the name...
 | 
						|
  FunctionInnards << GetValueName(F) << '(';
 | 
						|
 | 
						|
  bool PrintedArg = false;
 | 
						|
  if (!F->isDeclaration()) {
 | 
						|
    if (!F->arg_empty()) {
 | 
						|
      Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
      unsigned Idx = 1;
 | 
						|
 | 
						|
      // If this is a struct-return function, don't print the hidden
 | 
						|
      // struct-return argument.
 | 
						|
      if (isStructReturn) {
 | 
						|
        assert(I != E && "Invalid struct return function!");
 | 
						|
        ++I;
 | 
						|
        ++Idx;
 | 
						|
      }
 | 
						|
 | 
						|
      std::string ArgName;
 | 
						|
      for (; I != E; ++I) {
 | 
						|
        if (PrintedArg) FunctionInnards << ", ";
 | 
						|
        if (I->hasName() || !Prototype)
 | 
						|
          ArgName = GetValueName(I);
 | 
						|
        else
 | 
						|
          ArgName = "";
 | 
						|
        const Type *ArgTy = I->getType();
 | 
						|
        if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
 | 
						|
          ArgTy = cast<PointerType>(ArgTy)->getElementType();
 | 
						|
          ByValParams.insert(I);
 | 
						|
        }
 | 
						|
        printType(FunctionInnards, ArgTy,
 | 
						|
            /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt),
 | 
						|
            ArgName);
 | 
						|
        PrintedArg = true;
 | 
						|
        ++Idx;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Loop over the arguments, printing them.
 | 
						|
    FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
 | 
						|
    unsigned Idx = 1;
 | 
						|
 | 
						|
    // If this is a struct-return function, don't print the hidden
 | 
						|
    // struct-return argument.
 | 
						|
    if (isStructReturn) {
 | 
						|
      assert(I != E && "Invalid struct return function!");
 | 
						|
      ++I;
 | 
						|
      ++Idx;
 | 
						|
    }
 | 
						|
 | 
						|
    for (; I != E; ++I) {
 | 
						|
      if (PrintedArg) FunctionInnards << ", ";
 | 
						|
      const Type *ArgTy = *I;
 | 
						|
      if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
 | 
						|
        assert(ArgTy->isPointerTy());
 | 
						|
        ArgTy = cast<PointerType>(ArgTy)->getElementType();
 | 
						|
      }
 | 
						|
      printType(FunctionInnards, ArgTy,
 | 
						|
             /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt));
 | 
						|
      PrintedArg = true;
 | 
						|
      ++Idx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!PrintedArg && FT->isVarArg()) {
 | 
						|
    FunctionInnards << "int vararg_dummy_arg";
 | 
						|
    PrintedArg = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Finish printing arguments... if this is a vararg function, print the ...,
 | 
						|
  // unless there are no known types, in which case, we just emit ().
 | 
						|
  //
 | 
						|
  if (FT->isVarArg() && PrintedArg) {
 | 
						|
    FunctionInnards << ",...";  // Output varargs portion of signature!
 | 
						|
  } else if (!FT->isVarArg() && !PrintedArg) {
 | 
						|
    FunctionInnards << "void"; // ret() -> ret(void) in C.
 | 
						|
  }
 | 
						|
  FunctionInnards << ')';
 | 
						|
 | 
						|
  // Get the return tpe for the function.
 | 
						|
  const Type *RetTy;
 | 
						|
  if (!isStructReturn)
 | 
						|
    RetTy = F->getReturnType();
 | 
						|
  else {
 | 
						|
    // If this is a struct-return function, print the struct-return type.
 | 
						|
    RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Print out the return type and the signature built above.
 | 
						|
  printType(Out, RetTy,
 | 
						|
            /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt),
 | 
						|
            FunctionInnards.str());
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isFPIntBitCast(const Instruction &I) {
 | 
						|
  if (!isa<BitCastInst>(I))
 | 
						|
    return false;
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  const Type *DstTy = I.getType();
 | 
						|
  return (SrcTy->isFloatingPointTy() && DstTy->isIntegerTy()) ||
 | 
						|
         (DstTy->isFloatingPointTy() && SrcTy->isIntegerTy());
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printFunction(Function &F) {
 | 
						|
  /// isStructReturn - Should this function actually return a struct by-value?
 | 
						|
  bool isStructReturn = F.hasStructRetAttr();
 | 
						|
 | 
						|
  printFunctionSignature(&F, false);
 | 
						|
  Out << " {\n";
 | 
						|
 | 
						|
  // If this is a struct return function, handle the result with magic.
 | 
						|
  if (isStructReturn) {
 | 
						|
    const Type *StructTy =
 | 
						|
      cast<PointerType>(F.arg_begin()->getType())->getElementType();
 | 
						|
    Out << "  ";
 | 
						|
    printType(Out, StructTy, false, "StructReturn");
 | 
						|
    Out << ";  /* Struct return temporary */\n";
 | 
						|
 | 
						|
    Out << "  ";
 | 
						|
    printType(Out, F.arg_begin()->getType(), false,
 | 
						|
              GetValueName(F.arg_begin()));
 | 
						|
    Out << " = &StructReturn;\n";
 | 
						|
  }
 | 
						|
 | 
						|
  bool PrintedVar = false;
 | 
						|
 | 
						|
  // print local variable information for the function
 | 
						|
  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
 | 
						|
    if (const AllocaInst *AI = isDirectAlloca(&*I)) {
 | 
						|
      Out << "  ";
 | 
						|
      printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
 | 
						|
      Out << ";    /* Address-exposed local */\n";
 | 
						|
      PrintedVar = true;
 | 
						|
    } else if (I->getType() != Type::getVoidTy(F.getContext()) &&
 | 
						|
               !isInlinableInst(*I)) {
 | 
						|
      Out << "  ";
 | 
						|
      printType(Out, I->getType(), false, GetValueName(&*I));
 | 
						|
      Out << ";\n";
 | 
						|
 | 
						|
      if (isa<PHINode>(*I)) {  // Print out PHI node temporaries as well...
 | 
						|
        Out << "  ";
 | 
						|
        printType(Out, I->getType(), false,
 | 
						|
                  GetValueName(&*I)+"__PHI_TEMPORARY");
 | 
						|
        Out << ";\n";
 | 
						|
      }
 | 
						|
      PrintedVar = true;
 | 
						|
    }
 | 
						|
    // We need a temporary for the BitCast to use so it can pluck a value out
 | 
						|
    // of a union to do the BitCast. This is separate from the need for a
 | 
						|
    // variable to hold the result of the BitCast.
 | 
						|
    if (isFPIntBitCast(*I)) {
 | 
						|
      Out << "  llvmBitCastUnion " << GetValueName(&*I)
 | 
						|
          << "__BITCAST_TEMPORARY;\n";
 | 
						|
      PrintedVar = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (PrintedVar)
 | 
						|
    Out << '\n';
 | 
						|
 | 
						|
  if (F.hasExternalLinkage() && F.getName() == "main")
 | 
						|
    Out << "  CODE_FOR_MAIN();\n";
 | 
						|
 | 
						|
  // print the basic blocks
 | 
						|
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | 
						|
    if (Loop *L = LI->getLoopFor(BB)) {
 | 
						|
      if (L->getHeader() == BB && L->getParentLoop() == 0)
 | 
						|
        printLoop(L);
 | 
						|
    } else {
 | 
						|
      printBasicBlock(BB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printLoop(Loop *L) {
 | 
						|
  Out << "  do {     /* Syntactic loop '" << L->getHeader()->getName()
 | 
						|
      << "' to make GCC happy */\n";
 | 
						|
  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
 | 
						|
    BasicBlock *BB = L->getBlocks()[i];
 | 
						|
    Loop *BBLoop = LI->getLoopFor(BB);
 | 
						|
    if (BBLoop == L)
 | 
						|
      printBasicBlock(BB);
 | 
						|
    else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
 | 
						|
      printLoop(BBLoop);
 | 
						|
  }
 | 
						|
  Out << "  } while (1); /* end of syntactic loop '"
 | 
						|
      << L->getHeader()->getName() << "' */\n";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printBasicBlock(BasicBlock *BB) {
 | 
						|
 | 
						|
  // Don't print the label for the basic block if there are no uses, or if
 | 
						|
  // the only terminator use is the predecessor basic block's terminator.
 | 
						|
  // We have to scan the use list because PHI nodes use basic blocks too but
 | 
						|
  // do not require a label to be generated.
 | 
						|
  //
 | 
						|
  bool NeedsLabel = false;
 | 
						|
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | 
						|
    if (isGotoCodeNecessary(*PI, BB)) {
 | 
						|
      NeedsLabel = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  if (NeedsLabel) Out << GetValueName(BB) << ":\n";
 | 
						|
 | 
						|
  // Output all of the instructions in the basic block...
 | 
						|
  for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
 | 
						|
       ++II) {
 | 
						|
    if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
 | 
						|
      if (II->getType() != Type::getVoidTy(BB->getContext()) &&
 | 
						|
          !isInlineAsm(*II))
 | 
						|
        outputLValue(II);
 | 
						|
      else
 | 
						|
        Out << "  ";
 | 
						|
      writeInstComputationInline(*II);
 | 
						|
      Out << ";\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't emit prefix or suffix for the terminator.
 | 
						|
  visit(*BB->getTerminator());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Specific Instruction type classes... note that all of the casts are
 | 
						|
// necessary because we use the instruction classes as opaque types...
 | 
						|
//
 | 
						|
void CWriter::visitReturnInst(ReturnInst &I) {
 | 
						|
  // If this is a struct return function, return the temporary struct.
 | 
						|
  bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
 | 
						|
 | 
						|
  if (isStructReturn) {
 | 
						|
    Out << "  return StructReturn;\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't output a void return if this is the last basic block in the function
 | 
						|
  if (I.getNumOperands() == 0 &&
 | 
						|
      &*--I.getParent()->getParent()->end() == I.getParent() &&
 | 
						|
      !I.getParent()->size() == 1) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "  return";
 | 
						|
  if (I.getNumOperands()) {
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(I.getOperand(0));
 | 
						|
  }
 | 
						|
  Out << ";\n";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitSwitchInst(SwitchInst &SI) {
 | 
						|
 | 
						|
  Out << "  switch (";
 | 
						|
  writeOperand(SI.getOperand(0));
 | 
						|
  Out << ") {\n  default:\n";
 | 
						|
  printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
 | 
						|
  printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
 | 
						|
  Out << ";\n";
 | 
						|
  for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
 | 
						|
    Out << "  case ";
 | 
						|
    writeOperand(SI.getOperand(i));
 | 
						|
    Out << ":\n";
 | 
						|
    BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
 | 
						|
    printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
 | 
						|
    printBranchToBlock(SI.getParent(), Succ, 2);
 | 
						|
    if (Function::iterator(Succ) == llvm::next(Function::iterator(SI.getParent())))
 | 
						|
      Out << "    break;\n";
 | 
						|
  }
 | 
						|
  Out << "  }\n";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitIndirectBrInst(IndirectBrInst &IBI) {
 | 
						|
  Out << "  goto *(void*)(";
 | 
						|
  writeOperand(IBI.getOperand(0));
 | 
						|
  Out << ");\n";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitUnreachableInst(UnreachableInst &I) {
 | 
						|
  Out << "  /*UNREACHABLE*/;\n";
 | 
						|
}
 | 
						|
 | 
						|
bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
 | 
						|
  /// FIXME: This should be reenabled, but loop reordering safe!!
 | 
						|
  return true;
 | 
						|
 | 
						|
  if (llvm::next(Function::iterator(From)) != Function::iterator(To))
 | 
						|
    return true;  // Not the direct successor, we need a goto.
 | 
						|
 | 
						|
  //isa<SwitchInst>(From->getTerminator())
 | 
						|
 | 
						|
  if (LI->getLoopFor(From) != LI->getLoopFor(To))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
 | 
						|
                                          BasicBlock *Successor,
 | 
						|
                                          unsigned Indent) {
 | 
						|
  for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    // Now we have to do the printing.
 | 
						|
    Value *IV = PN->getIncomingValueForBlock(CurBlock);
 | 
						|
    if (!isa<UndefValue>(IV)) {
 | 
						|
      Out << std::string(Indent, ' ');
 | 
						|
      Out << "  " << GetValueName(I) << "__PHI_TEMPORARY = ";
 | 
						|
      writeOperand(IV);
 | 
						|
      Out << ";   /* for PHI node */\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
 | 
						|
                                 unsigned Indent) {
 | 
						|
  if (isGotoCodeNecessary(CurBB, Succ)) {
 | 
						|
    Out << std::string(Indent, ' ') << "  goto ";
 | 
						|
    writeOperand(Succ);
 | 
						|
    Out << ";\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Branch instruction printing - Avoid printing out a branch to a basic block
 | 
						|
// that immediately succeeds the current one.
 | 
						|
//
 | 
						|
void CWriter::visitBranchInst(BranchInst &I) {
 | 
						|
 | 
						|
  if (I.isConditional()) {
 | 
						|
    if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
 | 
						|
      Out << "  if (";
 | 
						|
      writeOperand(I.getCondition());
 | 
						|
      Out << ") {\n";
 | 
						|
 | 
						|
      printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
 | 
						|
      printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
 | 
						|
 | 
						|
      if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
 | 
						|
        Out << "  } else {\n";
 | 
						|
        printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
 | 
						|
        printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // First goto not necessary, assume second one is...
 | 
						|
      Out << "  if (!";
 | 
						|
      writeOperand(I.getCondition());
 | 
						|
      Out << ") {\n";
 | 
						|
 | 
						|
      printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
 | 
						|
      printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
 | 
						|
    }
 | 
						|
 | 
						|
    Out << "  }\n";
 | 
						|
  } else {
 | 
						|
    printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
 | 
						|
    printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
 | 
						|
  }
 | 
						|
  Out << "\n";
 | 
						|
}
 | 
						|
 | 
						|
// PHI nodes get copied into temporary values at the end of predecessor basic
 | 
						|
// blocks.  We now need to copy these temporary values into the REAL value for
 | 
						|
// the PHI.
 | 
						|
void CWriter::visitPHINode(PHINode &I) {
 | 
						|
  writeOperand(&I);
 | 
						|
  Out << "__PHI_TEMPORARY";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CWriter::visitBinaryOperator(Instruction &I) {
 | 
						|
  // binary instructions, shift instructions, setCond instructions.
 | 
						|
  assert(!I.getType()->isPointerTy());
 | 
						|
 | 
						|
  // We must cast the results of binary operations which might be promoted.
 | 
						|
  bool needsCast = false;
 | 
						|
  if ((I.getType() == Type::getInt8Ty(I.getContext())) ||
 | 
						|
      (I.getType() == Type::getInt16Ty(I.getContext()))
 | 
						|
      || (I.getType() == Type::getFloatTy(I.getContext()))) {
 | 
						|
    needsCast = true;
 | 
						|
    Out << "((";
 | 
						|
    printType(Out, I.getType(), false);
 | 
						|
    Out << ")(";
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a negation operation, print it out as such.  For FP, we don't
 | 
						|
  // want to print "-0.0 - X".
 | 
						|
  if (BinaryOperator::isNeg(&I)) {
 | 
						|
    Out << "-(";
 | 
						|
    writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
 | 
						|
    Out << ")";
 | 
						|
  } else if (BinaryOperator::isFNeg(&I)) {
 | 
						|
    Out << "-(";
 | 
						|
    writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I)));
 | 
						|
    Out << ")";
 | 
						|
  } else if (I.getOpcode() == Instruction::FRem) {
 | 
						|
    // Output a call to fmod/fmodf instead of emitting a%b
 | 
						|
    if (I.getType() == Type::getFloatTy(I.getContext()))
 | 
						|
      Out << "fmodf(";
 | 
						|
    else if (I.getType() == Type::getDoubleTy(I.getContext()))
 | 
						|
      Out << "fmod(";
 | 
						|
    else  // all 3 flavors of long double
 | 
						|
      Out << "fmodl(";
 | 
						|
    writeOperand(I.getOperand(0));
 | 
						|
    Out << ", ";
 | 
						|
    writeOperand(I.getOperand(1));
 | 
						|
    Out << ")";
 | 
						|
  } else {
 | 
						|
 | 
						|
    // Write out the cast of the instruction's value back to the proper type
 | 
						|
    // if necessary.
 | 
						|
    bool NeedsClosingParens = writeInstructionCast(I);
 | 
						|
 | 
						|
    // Certain instructions require the operand to be forced to a specific type
 | 
						|
    // so we use writeOperandWithCast here instead of writeOperand. Similarly
 | 
						|
    // below for operand 1
 | 
						|
    writeOperandWithCast(I.getOperand(0), I.getOpcode());
 | 
						|
 | 
						|
    switch (I.getOpcode()) {
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd: Out << " + "; break;
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub: Out << " - "; break;
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul: Out << " * "; break;
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem: Out << " % "; break;
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv: Out << " / "; break;
 | 
						|
    case Instruction::And:  Out << " & "; break;
 | 
						|
    case Instruction::Or:   Out << " | "; break;
 | 
						|
    case Instruction::Xor:  Out << " ^ "; break;
 | 
						|
    case Instruction::Shl : Out << " << "; break;
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr: Out << " >> "; break;
 | 
						|
    default:
 | 
						|
#ifndef NDEBUG
 | 
						|
       errs() << "Invalid operator type!" << I;
 | 
						|
#endif
 | 
						|
       llvm_unreachable(0);
 | 
						|
    }
 | 
						|
 | 
						|
    writeOperandWithCast(I.getOperand(1), I.getOpcode());
 | 
						|
    if (NeedsClosingParens)
 | 
						|
      Out << "))";
 | 
						|
  }
 | 
						|
 | 
						|
  if (needsCast) {
 | 
						|
    Out << "))";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitICmpInst(ICmpInst &I) {
 | 
						|
  // We must cast the results of icmp which might be promoted.
 | 
						|
  bool needsCast = false;
 | 
						|
 | 
						|
  // Write out the cast of the instruction's value back to the proper type
 | 
						|
  // if necessary.
 | 
						|
  bool NeedsClosingParens = writeInstructionCast(I);
 | 
						|
 | 
						|
  // Certain icmp predicate require the operand to be forced to a specific type
 | 
						|
  // so we use writeOperandWithCast here instead of writeOperand. Similarly
 | 
						|
  // below for operand 1
 | 
						|
  writeOperandWithCast(I.getOperand(0), I);
 | 
						|
 | 
						|
  switch (I.getPredicate()) {
 | 
						|
  case ICmpInst::ICMP_EQ:  Out << " == "; break;
 | 
						|
  case ICmpInst::ICMP_NE:  Out << " != "; break;
 | 
						|
  case ICmpInst::ICMP_ULE:
 | 
						|
  case ICmpInst::ICMP_SLE: Out << " <= "; break;
 | 
						|
  case ICmpInst::ICMP_UGE:
 | 
						|
  case ICmpInst::ICMP_SGE: Out << " >= "; break;
 | 
						|
  case ICmpInst::ICMP_ULT:
 | 
						|
  case ICmpInst::ICMP_SLT: Out << " < "; break;
 | 
						|
  case ICmpInst::ICMP_UGT:
 | 
						|
  case ICmpInst::ICMP_SGT: Out << " > "; break;
 | 
						|
  default:
 | 
						|
#ifndef NDEBUG
 | 
						|
    errs() << "Invalid icmp predicate!" << I;
 | 
						|
#endif
 | 
						|
    llvm_unreachable(0);
 | 
						|
  }
 | 
						|
 | 
						|
  writeOperandWithCast(I.getOperand(1), I);
 | 
						|
  if (NeedsClosingParens)
 | 
						|
    Out << "))";
 | 
						|
 | 
						|
  if (needsCast) {
 | 
						|
    Out << "))";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitFCmpInst(FCmpInst &I) {
 | 
						|
  if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
 | 
						|
    Out << "0";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
 | 
						|
    Out << "1";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const char* op = 0;
 | 
						|
  switch (I.getPredicate()) {
 | 
						|
  default: llvm_unreachable("Illegal FCmp predicate");
 | 
						|
  case FCmpInst::FCMP_ORD: op = "ord"; break;
 | 
						|
  case FCmpInst::FCMP_UNO: op = "uno"; break;
 | 
						|
  case FCmpInst::FCMP_UEQ: op = "ueq"; break;
 | 
						|
  case FCmpInst::FCMP_UNE: op = "une"; break;
 | 
						|
  case FCmpInst::FCMP_ULT: op = "ult"; break;
 | 
						|
  case FCmpInst::FCMP_ULE: op = "ule"; break;
 | 
						|
  case FCmpInst::FCMP_UGT: op = "ugt"; break;
 | 
						|
  case FCmpInst::FCMP_UGE: op = "uge"; break;
 | 
						|
  case FCmpInst::FCMP_OEQ: op = "oeq"; break;
 | 
						|
  case FCmpInst::FCMP_ONE: op = "one"; break;
 | 
						|
  case FCmpInst::FCMP_OLT: op = "olt"; break;
 | 
						|
  case FCmpInst::FCMP_OLE: op = "ole"; break;
 | 
						|
  case FCmpInst::FCMP_OGT: op = "ogt"; break;
 | 
						|
  case FCmpInst::FCMP_OGE: op = "oge"; break;
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "llvm_fcmp_" << op << "(";
 | 
						|
  // Write the first operand
 | 
						|
  writeOperand(I.getOperand(0));
 | 
						|
  Out << ", ";
 | 
						|
  // Write the second operand
 | 
						|
  writeOperand(I.getOperand(1));
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static const char * getFloatBitCastField(const Type *Ty) {
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
    default: llvm_unreachable("Invalid Type");
 | 
						|
    case Type::FloatTyID:  return "Float";
 | 
						|
    case Type::DoubleTyID: return "Double";
 | 
						|
    case Type::IntegerTyID: {
 | 
						|
      unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
 | 
						|
      if (NumBits <= 32)
 | 
						|
        return "Int32";
 | 
						|
      else
 | 
						|
        return "Int64";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitCastInst(CastInst &I) {
 | 
						|
  const Type *DstTy = I.getType();
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  if (isFPIntBitCast(I)) {
 | 
						|
    Out << '(';
 | 
						|
    // These int<->float and long<->double casts need to be handled specially
 | 
						|
    Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
 | 
						|
        << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
 | 
						|
    writeOperand(I.getOperand(0));
 | 
						|
    Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
 | 
						|
        << getFloatBitCastField(I.getType());
 | 
						|
    Out << ')';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Out << '(';
 | 
						|
  printCast(I.getOpcode(), SrcTy, DstTy);
 | 
						|
 | 
						|
  // Make a sext from i1 work by subtracting the i1 from 0 (an int).
 | 
						|
  if (SrcTy == Type::getInt1Ty(I.getContext()) &&
 | 
						|
      I.getOpcode() == Instruction::SExt)
 | 
						|
    Out << "0-";
 | 
						|
 | 
						|
  writeOperand(I.getOperand(0));
 | 
						|
 | 
						|
  if (DstTy == Type::getInt1Ty(I.getContext()) &&
 | 
						|
      (I.getOpcode() == Instruction::Trunc ||
 | 
						|
       I.getOpcode() == Instruction::FPToUI ||
 | 
						|
       I.getOpcode() == Instruction::FPToSI ||
 | 
						|
       I.getOpcode() == Instruction::PtrToInt)) {
 | 
						|
    // Make sure we really get a trunc to bool by anding the operand with 1
 | 
						|
    Out << "&1u";
 | 
						|
  }
 | 
						|
  Out << ')';
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitSelectInst(SelectInst &I) {
 | 
						|
  Out << "((";
 | 
						|
  writeOperand(I.getCondition());
 | 
						|
  Out << ") ? (";
 | 
						|
  writeOperand(I.getTrueValue());
 | 
						|
  Out << ") : (";
 | 
						|
  writeOperand(I.getFalseValue());
 | 
						|
  Out << "))";
 | 
						|
}
 | 
						|
 | 
						|
// Returns the macro name or value of the max or min of an integer type
 | 
						|
// (as defined in limits.h).
 | 
						|
static void printLimitValue(const IntegerType &Ty, bool isSigned, bool isMax,
 | 
						|
                            raw_ostream &Out) {
 | 
						|
  const char* type;
 | 
						|
  const char* sprefix = "";
 | 
						|
 | 
						|
  unsigned NumBits = Ty.getBitWidth();
 | 
						|
  if (NumBits <= 8) {
 | 
						|
    type = "CHAR";
 | 
						|
    sprefix = "S";
 | 
						|
  } else if (NumBits <= 16) {
 | 
						|
    type = "SHRT";
 | 
						|
  } else if (NumBits <= 32) {
 | 
						|
    type = "INT";
 | 
						|
  } else if (NumBits <= 64) {
 | 
						|
    type = "LLONG";
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Bit widths > 64 not implemented yet");
 | 
						|
  }
 | 
						|
 | 
						|
  if (isSigned)
 | 
						|
    Out << sprefix << type << (isMax ? "_MAX" : "_MIN");
 | 
						|
  else
 | 
						|
    Out << "U" << type << (isMax ? "_MAX" : "0");
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static bool isSupportedIntegerSize(const IntegerType &T) {
 | 
						|
  return T.getBitWidth() == 8 || T.getBitWidth() == 16 ||
 | 
						|
         T.getBitWidth() == 32 || T.getBitWidth() == 64;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void CWriter::printIntrinsicDefinition(const Function &F, raw_ostream &Out) {
 | 
						|
  const FunctionType *funT = F.getFunctionType();
 | 
						|
  const Type *retT = F.getReturnType();
 | 
						|
  const IntegerType *elemT = cast<IntegerType>(funT->getParamType(1));
 | 
						|
 | 
						|
  assert(isSupportedIntegerSize(*elemT) &&
 | 
						|
         "CBackend does not support arbitrary size integers.");
 | 
						|
  assert(cast<StructType>(retT)->getElementType(0) == elemT &&
 | 
						|
         elemT == funT->getParamType(0) && funT->getNumParams() == 2);
 | 
						|
 | 
						|
  switch (F.getIntrinsicID()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unsupported Intrinsic.");
 | 
						|
  case Intrinsic::uadd_with_overflow:
 | 
						|
    // static inline Rty uadd_ixx(unsigned ixx a, unsigned ixx b) {
 | 
						|
    //   Rty r;
 | 
						|
    //   r.field0 = a + b;
 | 
						|
    //   r.field1 = (r.field0 < a);
 | 
						|
    //   return r;
 | 
						|
    // }
 | 
						|
    Out << "static inline ";
 | 
						|
    printType(Out, retT);
 | 
						|
    Out << GetValueName(&F);
 | 
						|
    Out << "(";
 | 
						|
    printSimpleType(Out, elemT, false);
 | 
						|
    Out << "a,";
 | 
						|
    printSimpleType(Out, elemT, false);
 | 
						|
    Out << "b) {\n  ";
 | 
						|
    printType(Out, retT);
 | 
						|
    Out << "r;\n";
 | 
						|
    Out << "  r.field0 = a + b;\n";
 | 
						|
    Out << "  r.field1 = (r.field0 < a);\n";
 | 
						|
    Out << "  return r;\n}\n";
 | 
						|
    break;
 | 
						|
    
 | 
						|
  case Intrinsic::sadd_with_overflow:            
 | 
						|
    // static inline Rty sadd_ixx(ixx a, ixx b) {
 | 
						|
    //   Rty r;
 | 
						|
    //   r.field1 = (b > 0 && a > XX_MAX - b) ||
 | 
						|
    //              (b < 0 && a < XX_MIN - b);
 | 
						|
    //   r.field0 = r.field1 ? 0 : a + b;
 | 
						|
    //   return r;
 | 
						|
    // }
 | 
						|
    Out << "static ";
 | 
						|
    printType(Out, retT);
 | 
						|
    Out << GetValueName(&F);
 | 
						|
    Out << "(";
 | 
						|
    printSimpleType(Out, elemT, true);
 | 
						|
    Out << "a,";
 | 
						|
    printSimpleType(Out, elemT, true);
 | 
						|
    Out << "b) {\n  ";
 | 
						|
    printType(Out, retT);
 | 
						|
    Out << "r;\n";
 | 
						|
    Out << "  r.field1 = (b > 0 && a > ";
 | 
						|
    printLimitValue(*elemT, true, true, Out);
 | 
						|
    Out << " - b) || (b < 0 && a < ";
 | 
						|
    printLimitValue(*elemT, true, false, Out);
 | 
						|
    Out << " - b);\n";
 | 
						|
    Out << "  r.field0 = r.field1 ? 0 : a + b;\n";
 | 
						|
    Out << "  return r;\n}\n";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::lowerIntrinsics(Function &F) {
 | 
						|
  // This is used to keep track of intrinsics that get generated to a lowered
 | 
						|
  // function. We must generate the prototypes before the function body which
 | 
						|
  // will only be expanded on first use (by the loop below).
 | 
						|
  std::vector<Function*> prototypesToGen;
 | 
						|
 | 
						|
  // Examine all the instructions in this function to find the intrinsics that
 | 
						|
  // need to be lowered.
 | 
						|
  for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
 | 
						|
      if (CallInst *CI = dyn_cast<CallInst>(I++))
 | 
						|
        if (Function *F = CI->getCalledFunction())
 | 
						|
          switch (F->getIntrinsicID()) {
 | 
						|
          case Intrinsic::not_intrinsic:
 | 
						|
          case Intrinsic::memory_barrier:
 | 
						|
          case Intrinsic::vastart:
 | 
						|
          case Intrinsic::vacopy:
 | 
						|
          case Intrinsic::vaend:
 | 
						|
          case Intrinsic::returnaddress:
 | 
						|
          case Intrinsic::frameaddress:
 | 
						|
          case Intrinsic::setjmp:
 | 
						|
          case Intrinsic::longjmp:
 | 
						|
          case Intrinsic::prefetch:
 | 
						|
          case Intrinsic::powi:
 | 
						|
          case Intrinsic::x86_sse_cmp_ss:
 | 
						|
          case Intrinsic::x86_sse_cmp_ps:
 | 
						|
          case Intrinsic::x86_sse2_cmp_sd:
 | 
						|
          case Intrinsic::x86_sse2_cmp_pd:
 | 
						|
          case Intrinsic::ppc_altivec_lvsl:
 | 
						|
          case Intrinsic::uadd_with_overflow:
 | 
						|
          case Intrinsic::sadd_with_overflow:
 | 
						|
              // We directly implement these intrinsics
 | 
						|
            break;
 | 
						|
          default:
 | 
						|
            // If this is an intrinsic that directly corresponds to a GCC
 | 
						|
            // builtin, we handle it.
 | 
						|
            const char *BuiltinName = "";
 | 
						|
#define GET_GCC_BUILTIN_NAME
 | 
						|
#include "llvm/Intrinsics.gen"
 | 
						|
#undef GET_GCC_BUILTIN_NAME
 | 
						|
            // If we handle it, don't lower it.
 | 
						|
            if (BuiltinName[0]) break;
 | 
						|
 | 
						|
            // All other intrinsic calls we must lower.
 | 
						|
            Instruction *Before = 0;
 | 
						|
            if (CI != &BB->front())
 | 
						|
              Before = prior(BasicBlock::iterator(CI));
 | 
						|
 | 
						|
            IL->LowerIntrinsicCall(CI);
 | 
						|
            if (Before) {        // Move iterator to instruction after call
 | 
						|
              I = Before; ++I;
 | 
						|
            } else {
 | 
						|
              I = BB->begin();
 | 
						|
            }
 | 
						|
            // If the intrinsic got lowered to another call, and that call has
 | 
						|
            // a definition then we need to make sure its prototype is emitted
 | 
						|
            // before any calls to it.
 | 
						|
            if (CallInst *Call = dyn_cast<CallInst>(I))
 | 
						|
              if (Function *NewF = Call->getCalledFunction())
 | 
						|
                if (!NewF->isDeclaration())
 | 
						|
                  prototypesToGen.push_back(NewF);
 | 
						|
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
  // We may have collected some prototypes to emit in the loop above.
 | 
						|
  // Emit them now, before the function that uses them is emitted. But,
 | 
						|
  // be careful not to emit them twice.
 | 
						|
  std::vector<Function*>::iterator I = prototypesToGen.begin();
 | 
						|
  std::vector<Function*>::iterator E = prototypesToGen.end();
 | 
						|
  for ( ; I != E; ++I) {
 | 
						|
    if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
 | 
						|
      Out << '\n';
 | 
						|
      printFunctionSignature(*I, true);
 | 
						|
      Out << ";\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitCallInst(CallInst &I) {
 | 
						|
  if (isa<InlineAsm>(I.getCalledValue()))
 | 
						|
    return visitInlineAsm(I);
 | 
						|
 | 
						|
  bool WroteCallee = false;
 | 
						|
 | 
						|
  // Handle intrinsic function calls first...
 | 
						|
  if (Function *F = I.getCalledFunction())
 | 
						|
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
 | 
						|
      if (visitBuiltinCall(I, ID, WroteCallee))
 | 
						|
        return;
 | 
						|
 | 
						|
  Value *Callee = I.getCalledValue();
 | 
						|
 | 
						|
  const PointerType  *PTy   = cast<PointerType>(Callee->getType());
 | 
						|
  const FunctionType *FTy   = cast<FunctionType>(PTy->getElementType());
 | 
						|
 | 
						|
  // If this is a call to a struct-return function, assign to the first
 | 
						|
  // parameter instead of passing it to the call.
 | 
						|
  const AttrListPtr &PAL = I.getAttributes();
 | 
						|
  bool hasByVal = I.hasByValArgument();
 | 
						|
  bool isStructRet = I.hasStructRetAttr();
 | 
						|
  if (isStructRet) {
 | 
						|
    writeOperandDeref(I.getArgOperand(0));
 | 
						|
    Out << " = ";
 | 
						|
  }
 | 
						|
 | 
						|
  if (I.isTailCall()) Out << " /*tail*/ ";
 | 
						|
 | 
						|
  if (!WroteCallee) {
 | 
						|
    // If this is an indirect call to a struct return function, we need to cast
 | 
						|
    // the pointer. Ditto for indirect calls with byval arguments.
 | 
						|
    bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
 | 
						|
 | 
						|
    // GCC is a real PITA.  It does not permit codegening casts of functions to
 | 
						|
    // function pointers if they are in a call (it generates a trap instruction
 | 
						|
    // instead!).  We work around this by inserting a cast to void* in between
 | 
						|
    // the function and the function pointer cast.  Unfortunately, we can't just
 | 
						|
    // form the constant expression here, because the folder will immediately
 | 
						|
    // nuke it.
 | 
						|
    //
 | 
						|
    // Note finally, that this is completely unsafe.  ANSI C does not guarantee
 | 
						|
    // that void* and function pointers have the same size. :( To deal with this
 | 
						|
    // in the common case, we handle casts where the number of arguments passed
 | 
						|
    // match exactly.
 | 
						|
    //
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
 | 
						|
      if (CE->isCast())
 | 
						|
        if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
 | 
						|
          NeedsCast = true;
 | 
						|
          Callee = RF;
 | 
						|
        }
 | 
						|
 | 
						|
    if (NeedsCast) {
 | 
						|
      // Ok, just cast the pointer type.
 | 
						|
      Out << "((";
 | 
						|
      if (isStructRet)
 | 
						|
        printStructReturnPointerFunctionType(Out, PAL,
 | 
						|
                             cast<PointerType>(I.getCalledValue()->getType()));
 | 
						|
      else if (hasByVal)
 | 
						|
        printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
 | 
						|
      else
 | 
						|
        printType(Out, I.getCalledValue()->getType());
 | 
						|
      Out << ")(void*)";
 | 
						|
    }
 | 
						|
    writeOperand(Callee);
 | 
						|
    if (NeedsCast) Out << ')';
 | 
						|
  }
 | 
						|
 | 
						|
  Out << '(';
 | 
						|
 | 
						|
  bool PrintedArg = false;
 | 
						|
  if(FTy->isVarArg() && !FTy->getNumParams()) {
 | 
						|
    Out << "0 /*dummy arg*/";
 | 
						|
    PrintedArg = true;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumDeclaredParams = FTy->getNumParams();
 | 
						|
  CallSite CS(&I);
 | 
						|
  CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
  if (isStructRet) {   // Skip struct return argument.
 | 
						|
    ++AI;
 | 
						|
    ++ArgNo;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  for (; AI != AE; ++AI, ++ArgNo) {
 | 
						|
    if (PrintedArg) Out << ", ";
 | 
						|
    if (ArgNo < NumDeclaredParams &&
 | 
						|
        (*AI)->getType() != FTy->getParamType(ArgNo)) {
 | 
						|
      Out << '(';
 | 
						|
      printType(Out, FTy->getParamType(ArgNo),
 | 
						|
            /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt));
 | 
						|
      Out << ')';
 | 
						|
    }
 | 
						|
    // Check if the argument is expected to be passed by value.
 | 
						|
    if (I.paramHasAttr(ArgNo+1, Attribute::ByVal))
 | 
						|
      writeOperandDeref(*AI);
 | 
						|
    else
 | 
						|
      writeOperand(*AI);
 | 
						|
    PrintedArg = true;
 | 
						|
  }
 | 
						|
  Out << ')';
 | 
						|
}
 | 
						|
 | 
						|
/// visitBuiltinCall - Handle the call to the specified builtin.  Returns true
 | 
						|
/// if the entire call is handled, return false if it wasn't handled, and
 | 
						|
/// optionally set 'WroteCallee' if the callee has already been printed out.
 | 
						|
bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
 | 
						|
                               bool &WroteCallee) {
 | 
						|
  switch (ID) {
 | 
						|
  default: {
 | 
						|
    // If this is an intrinsic that directly corresponds to a GCC
 | 
						|
    // builtin, we emit it here.
 | 
						|
    const char *BuiltinName = "";
 | 
						|
    Function *F = I.getCalledFunction();
 | 
						|
#define GET_GCC_BUILTIN_NAME
 | 
						|
#include "llvm/Intrinsics.gen"
 | 
						|
#undef GET_GCC_BUILTIN_NAME
 | 
						|
    assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
 | 
						|
 | 
						|
    Out << BuiltinName;
 | 
						|
    WroteCallee = true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case Intrinsic::memory_barrier:
 | 
						|
    Out << "__sync_synchronize()";
 | 
						|
    return true;
 | 
						|
  case Intrinsic::vastart:
 | 
						|
    Out << "0; ";
 | 
						|
 | 
						|
    Out << "va_start(*(va_list*)";
 | 
						|
    writeOperand(I.getArgOperand(0));
 | 
						|
    Out << ", ";
 | 
						|
    // Output the last argument to the enclosing function.
 | 
						|
    if (I.getParent()->getParent()->arg_empty())
 | 
						|
      Out << "vararg_dummy_arg";
 | 
						|
    else
 | 
						|
      writeOperand(--I.getParent()->getParent()->arg_end());
 | 
						|
    Out << ')';
 | 
						|
    return true;
 | 
						|
  case Intrinsic::vaend:
 | 
						|
    if (!isa<ConstantPointerNull>(I.getArgOperand(0))) {
 | 
						|
      Out << "0; va_end(*(va_list*)";
 | 
						|
      writeOperand(I.getArgOperand(0));
 | 
						|
      Out << ')';
 | 
						|
    } else {
 | 
						|
      Out << "va_end(*(va_list*)0)";
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  case Intrinsic::vacopy:
 | 
						|
    Out << "0; ";
 | 
						|
    Out << "va_copy(*(va_list*)";
 | 
						|
    writeOperand(I.getArgOperand(0));
 | 
						|
    Out << ", *(va_list*)";
 | 
						|
    writeOperand(I.getArgOperand(1));
 | 
						|
    Out << ')';
 | 
						|
    return true;
 | 
						|
  case Intrinsic::returnaddress:
 | 
						|
    Out << "__builtin_return_address(";
 | 
						|
    writeOperand(I.getArgOperand(0));
 | 
						|
    Out << ')';
 | 
						|
    return true;
 | 
						|
  case Intrinsic::frameaddress:
 | 
						|
    Out << "__builtin_frame_address(";
 | 
						|
    writeOperand(I.getArgOperand(0));
 | 
						|
    Out << ')';
 | 
						|
    return true;
 | 
						|
  case Intrinsic::powi:
 | 
						|
    Out << "__builtin_powi(";
 | 
						|
    writeOperand(I.getArgOperand(0));
 | 
						|
    Out << ", ";
 | 
						|
    writeOperand(I.getArgOperand(1));
 | 
						|
    Out << ')';
 | 
						|
    return true;
 | 
						|
  case Intrinsic::setjmp:
 | 
						|
    Out << "setjmp(*(jmp_buf*)";
 | 
						|
    writeOperand(I.getArgOperand(0));
 | 
						|
    Out << ')';
 | 
						|
    return true;
 | 
						|
  case Intrinsic::longjmp:
 | 
						|
    Out << "longjmp(*(jmp_buf*)";
 | 
						|
    writeOperand(I.getArgOperand(0));
 | 
						|
    Out << ", ";
 | 
						|
    writeOperand(I.getArgOperand(1));
 | 
						|
    Out << ')';
 | 
						|
    return true;
 | 
						|
  case Intrinsic::prefetch:
 | 
						|
    Out << "LLVM_PREFETCH((const void *)";
 | 
						|
    writeOperand(I.getArgOperand(0));
 | 
						|
    Out << ", ";
 | 
						|
    writeOperand(I.getArgOperand(1));
 | 
						|
    Out << ", ";
 | 
						|
    writeOperand(I.getArgOperand(2));
 | 
						|
    Out << ")";
 | 
						|
    return true;
 | 
						|
  case Intrinsic::stacksave:
 | 
						|
    // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
 | 
						|
    // to work around GCC bugs (see PR1809).
 | 
						|
    Out << "0; *((void**)&" << GetValueName(&I)
 | 
						|
        << ") = __builtin_stack_save()";
 | 
						|
    return true;
 | 
						|
  case Intrinsic::x86_sse_cmp_ss:
 | 
						|
  case Intrinsic::x86_sse_cmp_ps:
 | 
						|
  case Intrinsic::x86_sse2_cmp_sd:
 | 
						|
  case Intrinsic::x86_sse2_cmp_pd:
 | 
						|
    Out << '(';
 | 
						|
    printType(Out, I.getType());
 | 
						|
    Out << ')';
 | 
						|
    // Multiple GCC builtins multiplex onto this intrinsic.
 | 
						|
    switch (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()) {
 | 
						|
    default: llvm_unreachable("Invalid llvm.x86.sse.cmp!");
 | 
						|
    case 0: Out << "__builtin_ia32_cmpeq"; break;
 | 
						|
    case 1: Out << "__builtin_ia32_cmplt"; break;
 | 
						|
    case 2: Out << "__builtin_ia32_cmple"; break;
 | 
						|
    case 3: Out << "__builtin_ia32_cmpunord"; break;
 | 
						|
    case 4: Out << "__builtin_ia32_cmpneq"; break;
 | 
						|
    case 5: Out << "__builtin_ia32_cmpnlt"; break;
 | 
						|
    case 6: Out << "__builtin_ia32_cmpnle"; break;
 | 
						|
    case 7: Out << "__builtin_ia32_cmpord"; break;
 | 
						|
    }
 | 
						|
    if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
 | 
						|
      Out << 'p';
 | 
						|
    else
 | 
						|
      Out << 's';
 | 
						|
    if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
 | 
						|
      Out << 's';
 | 
						|
    else
 | 
						|
      Out << 'd';
 | 
						|
 | 
						|
    Out << "(";
 | 
						|
    writeOperand(I.getArgOperand(0));
 | 
						|
    Out << ", ";
 | 
						|
    writeOperand(I.getArgOperand(1));
 | 
						|
    Out << ")";
 | 
						|
    return true;
 | 
						|
  case Intrinsic::ppc_altivec_lvsl:
 | 
						|
    Out << '(';
 | 
						|
    printType(Out, I.getType());
 | 
						|
    Out << ')';
 | 
						|
    Out << "__builtin_altivec_lvsl(0, (void*)";
 | 
						|
    writeOperand(I.getArgOperand(0));
 | 
						|
    Out << ")";
 | 
						|
    return true;
 | 
						|
  case Intrinsic::uadd_with_overflow:
 | 
						|
  case Intrinsic::sadd_with_overflow:
 | 
						|
    Out << GetValueName(I.getCalledFunction()) << "(";
 | 
						|
    writeOperand(I.getArgOperand(0));
 | 
						|
    Out << ", ";
 | 
						|
    writeOperand(I.getArgOperand(1));
 | 
						|
    Out << ")";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//This converts the llvm constraint string to something gcc is expecting.
 | 
						|
//TODO: work out platform independent constraints and factor those out
 | 
						|
//      of the per target tables
 | 
						|
//      handle multiple constraint codes
 | 
						|
std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
 | 
						|
  assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
 | 
						|
 | 
						|
  // Grab the translation table from MCAsmInfo if it exists.
 | 
						|
  const MCAsmInfo *TargetAsm;
 | 
						|
  std::string Triple = TheModule->getTargetTriple();
 | 
						|
  if (Triple.empty())
 | 
						|
    Triple = llvm::sys::getHostTriple();
 | 
						|
 | 
						|
  std::string E;
 | 
						|
  if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
 | 
						|
    TargetAsm = Match->createAsmInfo(Triple);
 | 
						|
  else
 | 
						|
    return c.Codes[0];
 | 
						|
 | 
						|
  const char *const *table = TargetAsm->getAsmCBE();
 | 
						|
 | 
						|
  // Search the translation table if it exists.
 | 
						|
  for (int i = 0; table && table[i]; i += 2)
 | 
						|
    if (c.Codes[0] == table[i]) {
 | 
						|
      delete TargetAsm;
 | 
						|
      return table[i+1];
 | 
						|
    }
 | 
						|
 | 
						|
  // Default is identity.
 | 
						|
  delete TargetAsm;
 | 
						|
  return c.Codes[0];
 | 
						|
}
 | 
						|
 | 
						|
//TODO: import logic from AsmPrinter.cpp
 | 
						|
static std::string gccifyAsm(std::string asmstr) {
 | 
						|
  for (std::string::size_type i = 0; i != asmstr.size(); ++i)
 | 
						|
    if (asmstr[i] == '\n')
 | 
						|
      asmstr.replace(i, 1, "\\n");
 | 
						|
    else if (asmstr[i] == '\t')
 | 
						|
      asmstr.replace(i, 1, "\\t");
 | 
						|
    else if (asmstr[i] == '$') {
 | 
						|
      if (asmstr[i + 1] == '{') {
 | 
						|
        std::string::size_type a = asmstr.find_first_of(':', i + 1);
 | 
						|
        std::string::size_type b = asmstr.find_first_of('}', i + 1);
 | 
						|
        std::string n = "%" +
 | 
						|
          asmstr.substr(a + 1, b - a - 1) +
 | 
						|
          asmstr.substr(i + 2, a - i - 2);
 | 
						|
        asmstr.replace(i, b - i + 1, n);
 | 
						|
        i += n.size() - 1;
 | 
						|
      } else
 | 
						|
        asmstr.replace(i, 1, "%");
 | 
						|
    }
 | 
						|
    else if (asmstr[i] == '%')//grr
 | 
						|
      { asmstr.replace(i, 1, "%%"); ++i;}
 | 
						|
 | 
						|
  return asmstr;
 | 
						|
}
 | 
						|
 | 
						|
//TODO: assumptions about what consume arguments from the call are likely wrong
 | 
						|
//      handle communitivity
 | 
						|
void CWriter::visitInlineAsm(CallInst &CI) {
 | 
						|
  InlineAsm* as = cast<InlineAsm>(CI.getCalledValue());
 | 
						|
  InlineAsm::ConstraintInfoVector Constraints = as->ParseConstraints();
 | 
						|
 | 
						|
  std::vector<std::pair<Value*, int> > ResultVals;
 | 
						|
  if (CI.getType() == Type::getVoidTy(CI.getContext()))
 | 
						|
    ;
 | 
						|
  else if (const StructType *ST = dyn_cast<StructType>(CI.getType())) {
 | 
						|
    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
 | 
						|
      ResultVals.push_back(std::make_pair(&CI, (int)i));
 | 
						|
  } else {
 | 
						|
    ResultVals.push_back(std::make_pair(&CI, -1));
 | 
						|
  }
 | 
						|
 | 
						|
  // Fix up the asm string for gcc and emit it.
 | 
						|
  Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
 | 
						|
  Out << "        :";
 | 
						|
 | 
						|
  unsigned ValueCount = 0;
 | 
						|
  bool IsFirst = true;
 | 
						|
 | 
						|
  // Convert over all the output constraints.
 | 
						|
  for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
 | 
						|
       E = Constraints.end(); I != E; ++I) {
 | 
						|
 | 
						|
    if (I->Type != InlineAsm::isOutput) {
 | 
						|
      ++ValueCount;
 | 
						|
      continue;  // Ignore non-output constraints.
 | 
						|
    }
 | 
						|
 | 
						|
    assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
 | 
						|
    std::string C = InterpretASMConstraint(*I);
 | 
						|
    if (C.empty()) continue;
 | 
						|
 | 
						|
    if (!IsFirst) {
 | 
						|
      Out << ", ";
 | 
						|
      IsFirst = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Unpack the dest.
 | 
						|
    Value *DestVal;
 | 
						|
    int DestValNo = -1;
 | 
						|
 | 
						|
    if (ValueCount < ResultVals.size()) {
 | 
						|
      DestVal = ResultVals[ValueCount].first;
 | 
						|
      DestValNo = ResultVals[ValueCount].second;
 | 
						|
    } else
 | 
						|
      DestVal = CI.getArgOperand(ValueCount-ResultVals.size());
 | 
						|
 | 
						|
    if (I->isEarlyClobber)
 | 
						|
      C = "&"+C;
 | 
						|
 | 
						|
    Out << "\"=" << C << "\"(" << GetValueName(DestVal);
 | 
						|
    if (DestValNo != -1)
 | 
						|
      Out << ".field" << DestValNo; // Multiple retvals.
 | 
						|
    Out << ")";
 | 
						|
    ++ValueCount;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Convert over all the input constraints.
 | 
						|
  Out << "\n        :";
 | 
						|
  IsFirst = true;
 | 
						|
  ValueCount = 0;
 | 
						|
  for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
 | 
						|
       E = Constraints.end(); I != E; ++I) {
 | 
						|
    if (I->Type != InlineAsm::isInput) {
 | 
						|
      ++ValueCount;
 | 
						|
      continue;  // Ignore non-input constraints.
 | 
						|
    }
 | 
						|
 | 
						|
    assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
 | 
						|
    std::string C = InterpretASMConstraint(*I);
 | 
						|
    if (C.empty()) continue;
 | 
						|
 | 
						|
    if (!IsFirst) {
 | 
						|
      Out << ", ";
 | 
						|
      IsFirst = false;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
 | 
						|
    Value *SrcVal = CI.getArgOperand(ValueCount-ResultVals.size());
 | 
						|
 | 
						|
    Out << "\"" << C << "\"(";
 | 
						|
    if (!I->isIndirect)
 | 
						|
      writeOperand(SrcVal);
 | 
						|
    else
 | 
						|
      writeOperandDeref(SrcVal);
 | 
						|
    Out << ")";
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert over the clobber constraints.
 | 
						|
  IsFirst = true;
 | 
						|
  for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
 | 
						|
       E = Constraints.end(); I != E; ++I) {
 | 
						|
    if (I->Type != InlineAsm::isClobber)
 | 
						|
      continue;  // Ignore non-input constraints.
 | 
						|
 | 
						|
    assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
 | 
						|
    std::string C = InterpretASMConstraint(*I);
 | 
						|
    if (C.empty()) continue;
 | 
						|
 | 
						|
    if (!IsFirst) {
 | 
						|
      Out << ", ";
 | 
						|
      IsFirst = false;
 | 
						|
    }
 | 
						|
 | 
						|
    Out << '\"' << C << '"';
 | 
						|
  }
 | 
						|
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitAllocaInst(AllocaInst &I) {
 | 
						|
  Out << '(';
 | 
						|
  printType(Out, I.getType());
 | 
						|
  Out << ") alloca(sizeof(";
 | 
						|
  printType(Out, I.getType()->getElementType());
 | 
						|
  Out << ')';
 | 
						|
  if (I.isArrayAllocation()) {
 | 
						|
    Out << " * " ;
 | 
						|
    writeOperand(I.getOperand(0));
 | 
						|
  }
 | 
						|
  Out << ')';
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
 | 
						|
                                 gep_type_iterator E, bool Static) {
 | 
						|
 | 
						|
  // If there are no indices, just print out the pointer.
 | 
						|
  if (I == E) {
 | 
						|
    writeOperand(Ptr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Find out if the last index is into a vector.  If so, we have to print this
 | 
						|
  // specially.  Since vectors can't have elements of indexable type, only the
 | 
						|
  // last index could possibly be of a vector element.
 | 
						|
  const VectorType *LastIndexIsVector = 0;
 | 
						|
  {
 | 
						|
    for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
 | 
						|
      LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "(";
 | 
						|
 | 
						|
  // If the last index is into a vector, we can't print it as &a[i][j] because
 | 
						|
  // we can't index into a vector with j in GCC.  Instead, emit this as
 | 
						|
  // (((float*)&a[i])+j)
 | 
						|
  if (LastIndexIsVector) {
 | 
						|
    Out << "((";
 | 
						|
    printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
 | 
						|
    Out << ")(";
 | 
						|
  }
 | 
						|
 | 
						|
  Out << '&';
 | 
						|
 | 
						|
  // If the first index is 0 (very typical) we can do a number of
 | 
						|
  // simplifications to clean up the code.
 | 
						|
  Value *FirstOp = I.getOperand();
 | 
						|
  if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
 | 
						|
    // First index isn't simple, print it the hard way.
 | 
						|
    writeOperand(Ptr);
 | 
						|
  } else {
 | 
						|
    ++I;  // Skip the zero index.
 | 
						|
 | 
						|
    // Okay, emit the first operand. If Ptr is something that is already address
 | 
						|
    // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
 | 
						|
    if (isAddressExposed(Ptr)) {
 | 
						|
      writeOperandInternal(Ptr, Static);
 | 
						|
    } else if (I != E && (*I)->isStructTy()) {
 | 
						|
      // If we didn't already emit the first operand, see if we can print it as
 | 
						|
      // P->f instead of "P[0].f"
 | 
						|
      writeOperand(Ptr);
 | 
						|
      Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
 | 
						|
      ++I;  // eat the struct index as well.
 | 
						|
    } else {
 | 
						|
      // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
 | 
						|
      Out << "(*";
 | 
						|
      writeOperand(Ptr);
 | 
						|
      Out << ")";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (; I != E; ++I) {
 | 
						|
    if ((*I)->isStructTy()) {
 | 
						|
      Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
 | 
						|
    } else if ((*I)->isArrayTy()) {
 | 
						|
      Out << ".array[";
 | 
						|
      writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
 | 
						|
      Out << ']';
 | 
						|
    } else if (!(*I)->isVectorTy()) {
 | 
						|
      Out << '[';
 | 
						|
      writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
 | 
						|
      Out << ']';
 | 
						|
    } else {
 | 
						|
      // If the last index is into a vector, then print it out as "+j)".  This
 | 
						|
      // works with the 'LastIndexIsVector' code above.
 | 
						|
      if (isa<Constant>(I.getOperand()) &&
 | 
						|
          cast<Constant>(I.getOperand())->isNullValue()) {
 | 
						|
        Out << "))";  // avoid "+0".
 | 
						|
      } else {
 | 
						|
        Out << ")+(";
 | 
						|
        writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
 | 
						|
        Out << "))";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
 | 
						|
                                bool IsVolatile, unsigned Alignment) {
 | 
						|
 | 
						|
  bool IsUnaligned = Alignment &&
 | 
						|
    Alignment < TD->getABITypeAlignment(OperandType);
 | 
						|
 | 
						|
  if (!IsUnaligned)
 | 
						|
    Out << '*';
 | 
						|
  if (IsVolatile || IsUnaligned) {
 | 
						|
    Out << "((";
 | 
						|
    if (IsUnaligned)
 | 
						|
      Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
 | 
						|
    printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
 | 
						|
    if (IsUnaligned) {
 | 
						|
      Out << "; } ";
 | 
						|
      if (IsVolatile) Out << "volatile ";
 | 
						|
      Out << "*";
 | 
						|
    }
 | 
						|
    Out << ")";
 | 
						|
  }
 | 
						|
 | 
						|
  writeOperand(Operand);
 | 
						|
 | 
						|
  if (IsVolatile || IsUnaligned) {
 | 
						|
    Out << ')';
 | 
						|
    if (IsUnaligned)
 | 
						|
      Out << "->data";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitLoadInst(LoadInst &I) {
 | 
						|
  writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
 | 
						|
                    I.getAlignment());
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitStoreInst(StoreInst &I) {
 | 
						|
  writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
 | 
						|
                    I.isVolatile(), I.getAlignment());
 | 
						|
  Out << " = ";
 | 
						|
  Value *Operand = I.getOperand(0);
 | 
						|
  Constant *BitMask = 0;
 | 
						|
  if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
 | 
						|
    if (!ITy->isPowerOf2ByteWidth())
 | 
						|
      // We have a bit width that doesn't match an even power-of-2 byte
 | 
						|
      // size. Consequently we must & the value with the type's bit mask
 | 
						|
      BitMask = ConstantInt::get(ITy, ITy->getBitMask());
 | 
						|
  if (BitMask)
 | 
						|
    Out << "((";
 | 
						|
  writeOperand(Operand);
 | 
						|
  if (BitMask) {
 | 
						|
    Out << ") & ";
 | 
						|
    printConstant(BitMask, false);
 | 
						|
    Out << ")";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
 | 
						|
  printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
 | 
						|
                     gep_type_end(I), false);
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitVAArgInst(VAArgInst &I) {
 | 
						|
  Out << "va_arg(*(va_list*)";
 | 
						|
  writeOperand(I.getOperand(0));
 | 
						|
  Out << ", ";
 | 
						|
  printType(Out, I.getType());
 | 
						|
  Out << ");\n ";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitInsertElementInst(InsertElementInst &I) {
 | 
						|
  const Type *EltTy = I.getType()->getElementType();
 | 
						|
  writeOperand(I.getOperand(0));
 | 
						|
  Out << ";\n  ";
 | 
						|
  Out << "((";
 | 
						|
  printType(Out, PointerType::getUnqual(EltTy));
 | 
						|
  Out << ")(&" << GetValueName(&I) << "))[";
 | 
						|
  writeOperand(I.getOperand(2));
 | 
						|
  Out << "] = (";
 | 
						|
  writeOperand(I.getOperand(1));
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitExtractElementInst(ExtractElementInst &I) {
 | 
						|
  // We know that our operand is not inlined.
 | 
						|
  Out << "((";
 | 
						|
  const Type *EltTy =
 | 
						|
    cast<VectorType>(I.getOperand(0)->getType())->getElementType();
 | 
						|
  printType(Out, PointerType::getUnqual(EltTy));
 | 
						|
  Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
 | 
						|
  writeOperand(I.getOperand(1));
 | 
						|
  Out << "]";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
 | 
						|
  Out << "(";
 | 
						|
  printType(Out, SVI.getType());
 | 
						|
  Out << "){ ";
 | 
						|
  const VectorType *VT = SVI.getType();
 | 
						|
  unsigned NumElts = VT->getNumElements();
 | 
						|
  const Type *EltTy = VT->getElementType();
 | 
						|
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
    if (i) Out << ", ";
 | 
						|
    int SrcVal = SVI.getMaskValue(i);
 | 
						|
    if ((unsigned)SrcVal >= NumElts*2) {
 | 
						|
      Out << " 0/*undef*/ ";
 | 
						|
    } else {
 | 
						|
      Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
 | 
						|
      if (isa<Instruction>(Op)) {
 | 
						|
        // Do an extractelement of this value from the appropriate input.
 | 
						|
        Out << "((";
 | 
						|
        printType(Out, PointerType::getUnqual(EltTy));
 | 
						|
        Out << ")(&" << GetValueName(Op)
 | 
						|
            << "))[" << (SrcVal & (NumElts-1)) << "]";
 | 
						|
      } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
 | 
						|
        Out << "0";
 | 
						|
      } else {
 | 
						|
        printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
 | 
						|
                                                           (NumElts-1)),
 | 
						|
                      false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Out << "}";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitInsertValueInst(InsertValueInst &IVI) {
 | 
						|
  // Start by copying the entire aggregate value into the result variable.
 | 
						|
  writeOperand(IVI.getOperand(0));
 | 
						|
  Out << ";\n  ";
 | 
						|
 | 
						|
  // Then do the insert to update the field.
 | 
						|
  Out << GetValueName(&IVI);
 | 
						|
  for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
 | 
						|
       i != e; ++i) {
 | 
						|
    const Type *IndexedTy =
 | 
						|
      ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(),
 | 
						|
                                       ArrayRef<unsigned>(b, i+1));
 | 
						|
    if (IndexedTy->isArrayTy())
 | 
						|
      Out << ".array[" << *i << "]";
 | 
						|
    else
 | 
						|
      Out << ".field" << *i;
 | 
						|
  }
 | 
						|
  Out << " = ";
 | 
						|
  writeOperand(IVI.getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
 | 
						|
  Out << "(";
 | 
						|
  if (isa<UndefValue>(EVI.getOperand(0))) {
 | 
						|
    Out << "(";
 | 
						|
    printType(Out, EVI.getType());
 | 
						|
    Out << ") 0/*UNDEF*/";
 | 
						|
  } else {
 | 
						|
    Out << GetValueName(EVI.getOperand(0));
 | 
						|
    for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
 | 
						|
         i != e; ++i) {
 | 
						|
      const Type *IndexedTy =
 | 
						|
        ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(),
 | 
						|
                                         ArrayRef<unsigned>(b, i+1));
 | 
						|
      if (IndexedTy->isArrayTy())
 | 
						|
        Out << ".array[" << *i << "]";
 | 
						|
      else
 | 
						|
        Out << ".field" << *i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                       External Interface declaration
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool CTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
 | 
						|
                                         formatted_raw_ostream &o,
 | 
						|
                                         CodeGenFileType FileType,
 | 
						|
                                         CodeGenOpt::Level OptLevel,
 | 
						|
                                         bool DisableVerify) {
 | 
						|
  if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
 | 
						|
 | 
						|
  PM.add(createGCLoweringPass());
 | 
						|
  PM.add(createLowerInvokePass());
 | 
						|
  PM.add(createCFGSimplificationPass());   // clean up after lower invoke.
 | 
						|
  PM.add(new CWriter(o));
 | 
						|
  PM.add(createGCInfoDeleter());
 | 
						|
  return false;
 | 
						|
}
 |