mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	We'll no longer crash in the `verifyTypeRefs()` (used to be called `verifyDebugInfo()`), so there's no reason to return early here. Remove the `EverBroken` member since this was the only use! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233665 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3500 lines
		
	
	
		
			132 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3500 lines
		
	
	
		
			132 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the function verifier interface, that can be used for some
 | |
| // sanity checking of input to the system.
 | |
| //
 | |
| // Note that this does not provide full `Java style' security and verifications,
 | |
| // instead it just tries to ensure that code is well-formed.
 | |
| //
 | |
| //  * Both of a binary operator's parameters are of the same type
 | |
| //  * Verify that the indices of mem access instructions match other operands
 | |
| //  * Verify that arithmetic and other things are only performed on first-class
 | |
| //    types.  Verify that shifts & logicals only happen on integrals f.e.
 | |
| //  * All of the constants in a switch statement are of the correct type
 | |
| //  * The code is in valid SSA form
 | |
| //  * It should be illegal to put a label into any other type (like a structure)
 | |
| //    or to return one. [except constant arrays!]
 | |
| //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
 | |
| //  * PHI nodes must have an entry for each predecessor, with no extras.
 | |
| //  * PHI nodes must be the first thing in a basic block, all grouped together
 | |
| //  * PHI nodes must have at least one entry
 | |
| //  * All basic blocks should only end with terminator insts, not contain them
 | |
| //  * The entry node to a function must not have predecessors
 | |
| //  * All Instructions must be embedded into a basic block
 | |
| //  * Functions cannot take a void-typed parameter
 | |
| //  * Verify that a function's argument list agrees with it's declared type.
 | |
| //  * It is illegal to specify a name for a void value.
 | |
| //  * It is illegal to have a internal global value with no initializer
 | |
| //  * It is illegal to have a ret instruction that returns a value that does not
 | |
| //    agree with the function return value type.
 | |
| //  * Function call argument types match the function prototype
 | |
| //  * A landing pad is defined by a landingpad instruction, and can be jumped to
 | |
| //    only by the unwind edge of an invoke instruction.
 | |
| //  * A landingpad instruction must be the first non-PHI instruction in the
 | |
| //    block.
 | |
| //  * All landingpad instructions must use the same personality function with
 | |
| //    the same function.
 | |
| //  * All other things that are tested by asserts spread about the code...
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/IR/Verifier.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cstdarg>
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
 | |
| 
 | |
| namespace {
 | |
| struct VerifierSupport {
 | |
|   raw_ostream &OS;
 | |
|   const Module *M;
 | |
| 
 | |
|   /// \brief Track the brokenness of the module while recursively visiting.
 | |
|   bool Broken;
 | |
| 
 | |
|   explicit VerifierSupport(raw_ostream &OS)
 | |
|       : OS(OS), M(nullptr), Broken(false) {}
 | |
| 
 | |
| private:
 | |
|   void Write(const Value *V) {
 | |
|     if (!V)
 | |
|       return;
 | |
|     if (isa<Instruction>(V)) {
 | |
|       OS << *V << '\n';
 | |
|     } else {
 | |
|       V->printAsOperand(OS, true, M);
 | |
|       OS << '\n';
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Write(const Metadata *MD) {
 | |
|     if (!MD)
 | |
|       return;
 | |
|     MD->print(OS, M);
 | |
|     OS << '\n';
 | |
|   }
 | |
| 
 | |
|   void Write(const NamedMDNode *NMD) {
 | |
|     if (!NMD)
 | |
|       return;
 | |
|     NMD->print(OS);
 | |
|     OS << '\n';
 | |
|   }
 | |
| 
 | |
|   void Write(Type *T) {
 | |
|     if (!T)
 | |
|       return;
 | |
|     OS << ' ' << *T;
 | |
|   }
 | |
| 
 | |
|   void Write(const Comdat *C) {
 | |
|     if (!C)
 | |
|       return;
 | |
|     OS << *C;
 | |
|   }
 | |
| 
 | |
|   template <typename T1, typename... Ts>
 | |
|   void WriteTs(const T1 &V1, const Ts &... Vs) {
 | |
|     Write(V1);
 | |
|     WriteTs(Vs...);
 | |
|   }
 | |
| 
 | |
|   template <typename... Ts> void WriteTs() {}
 | |
| 
 | |
| public:
 | |
|   /// \brief A check failed, so printout out the condition and the message.
 | |
|   ///
 | |
|   /// This provides a nice place to put a breakpoint if you want to see why
 | |
|   /// something is not correct.
 | |
|   void CheckFailed(const Twine &Message) {
 | |
|     OS << Message << '\n';
 | |
|     Broken = true;
 | |
|   }
 | |
| 
 | |
|   /// \brief A check failed (with values to print).
 | |
|   ///
 | |
|   /// This calls the Message-only version so that the above is easier to set a
 | |
|   /// breakpoint on.
 | |
|   template <typename T1, typename... Ts>
 | |
|   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
 | |
|     CheckFailed(Message);
 | |
|     WriteTs(V1, Vs...);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class Verifier : public InstVisitor<Verifier>, VerifierSupport {
 | |
|   friend class InstVisitor<Verifier>;
 | |
| 
 | |
|   LLVMContext *Context;
 | |
|   DominatorTree DT;
 | |
| 
 | |
|   /// \brief When verifying a basic block, keep track of all of the
 | |
|   /// instructions we have seen so far.
 | |
|   ///
 | |
|   /// This allows us to do efficient dominance checks for the case when an
 | |
|   /// instruction has an operand that is an instruction in the same block.
 | |
|   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
 | |
| 
 | |
|   /// \brief Keep track of the metadata nodes that have been checked already.
 | |
|   SmallPtrSet<const Metadata *, 32> MDNodes;
 | |
| 
 | |
|   /// \brief Track string-based type references.
 | |
|   SmallDenseMap<const MDString *, const MDNode *, 32> TypeRefs;
 | |
| 
 | |
|   /// \brief The personality function referenced by the LandingPadInsts.
 | |
|   /// All LandingPadInsts within the same function must use the same
 | |
|   /// personality function.
 | |
|   const Value *PersonalityFn;
 | |
| 
 | |
|   /// \brief Whether we've seen a call to @llvm.frameescape in this function
 | |
|   /// already.
 | |
|   bool SawFrameEscape;
 | |
| 
 | |
|   /// Stores the count of how many objects were passed to llvm.frameescape for a
 | |
|   /// given function and the largest index passed to llvm.framerecover.
 | |
|   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
 | |
| 
 | |
| public:
 | |
|   explicit Verifier(raw_ostream &OS)
 | |
|       : VerifierSupport(OS), Context(nullptr), PersonalityFn(nullptr),
 | |
|         SawFrameEscape(false) {}
 | |
| 
 | |
|   bool verify(const Function &F) {
 | |
|     M = F.getParent();
 | |
|     Context = &M->getContext();
 | |
| 
 | |
|     // First ensure the function is well-enough formed to compute dominance
 | |
|     // information.
 | |
|     if (F.empty()) {
 | |
|       OS << "Function '" << F.getName()
 | |
|          << "' does not contain an entry block!\n";
 | |
|       return false;
 | |
|     }
 | |
|     for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | |
|       if (I->empty() || !I->back().isTerminator()) {
 | |
|         OS << "Basic Block in function '" << F.getName()
 | |
|            << "' does not have terminator!\n";
 | |
|         I->printAsOperand(OS, true);
 | |
|         OS << "\n";
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now directly compute a dominance tree. We don't rely on the pass
 | |
|     // manager to provide this as it isolates us from a potentially
 | |
|     // out-of-date dominator tree and makes it significantly more complex to
 | |
|     // run this code outside of a pass manager.
 | |
|     // FIXME: It's really gross that we have to cast away constness here.
 | |
|     DT.recalculate(const_cast<Function &>(F));
 | |
| 
 | |
|     Broken = false;
 | |
|     // FIXME: We strip const here because the inst visitor strips const.
 | |
|     visit(const_cast<Function &>(F));
 | |
|     InstsInThisBlock.clear();
 | |
|     PersonalityFn = nullptr;
 | |
|     SawFrameEscape = false;
 | |
| 
 | |
|     return !Broken;
 | |
|   }
 | |
| 
 | |
|   bool verify(const Module &M) {
 | |
|     this->M = &M;
 | |
|     Context = &M.getContext();
 | |
|     Broken = false;
 | |
| 
 | |
|     // Scan through, checking all of the external function's linkage now...
 | |
|     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
 | |
|       visitGlobalValue(*I);
 | |
| 
 | |
|       // Check to make sure function prototypes are okay.
 | |
|       if (I->isDeclaration())
 | |
|         visitFunction(*I);
 | |
|     }
 | |
| 
 | |
|     // Now that we've visited every function, verify that we never asked to
 | |
|     // recover a frame index that wasn't escaped.
 | |
|     verifyFrameRecoverIndices();
 | |
| 
 | |
|     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
 | |
|          I != E; ++I)
 | |
|       visitGlobalVariable(*I);
 | |
| 
 | |
|     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
 | |
|          I != E; ++I)
 | |
|       visitGlobalAlias(*I);
 | |
| 
 | |
|     for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
 | |
|                                                E = M.named_metadata_end();
 | |
|          I != E; ++I)
 | |
|       visitNamedMDNode(*I);
 | |
| 
 | |
|     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
 | |
|       visitComdat(SMEC.getValue());
 | |
| 
 | |
|     visitModuleFlags(M);
 | |
|     visitModuleIdents(M);
 | |
| 
 | |
|     // Verify type referneces last.
 | |
|     verifyTypeRefs();
 | |
| 
 | |
|     return !Broken;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   // Verification methods...
 | |
|   void visitGlobalValue(const GlobalValue &GV);
 | |
|   void visitGlobalVariable(const GlobalVariable &GV);
 | |
|   void visitGlobalAlias(const GlobalAlias &GA);
 | |
|   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
 | |
|   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
 | |
|                            const GlobalAlias &A, const Constant &C);
 | |
|   void visitNamedMDNode(const NamedMDNode &NMD);
 | |
|   void visitMDNode(const MDNode &MD);
 | |
|   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
 | |
|   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
 | |
|   void visitComdat(const Comdat &C);
 | |
|   void visitModuleIdents(const Module &M);
 | |
|   void visitModuleFlags(const Module &M);
 | |
|   void visitModuleFlag(const MDNode *Op,
 | |
|                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
 | |
|                        SmallVectorImpl<const MDNode *> &Requirements);
 | |
|   void visitFunction(const Function &F);
 | |
|   void visitBasicBlock(BasicBlock &BB);
 | |
|   void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
 | |
| 
 | |
|   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
 | |
| #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
 | |
| #include "llvm/IR/Metadata.def"
 | |
|   void visitMDScope(const MDScope &N);
 | |
|   void visitMDDerivedTypeBase(const MDDerivedTypeBase &N);
 | |
|   void visitMDVariable(const MDVariable &N);
 | |
|   void visitMDLexicalBlockBase(const MDLexicalBlockBase &N);
 | |
|   void visitMDTemplateParameter(const MDTemplateParameter &N);
 | |
| 
 | |
|   /// \brief Check for a valid string-based type reference.
 | |
|   ///
 | |
|   /// Checks if \c MD is a string-based type reference.  If it is, keeps track
 | |
|   /// of it (and its user, \c N) for error messages later.
 | |
|   bool isValidUUID(const MDNode &N, const Metadata *MD);
 | |
| 
 | |
|   /// \brief Check for a valid type reference.
 | |
|   ///
 | |
|   /// Checks for subclasses of \a MDType, or \a isValidUUID().
 | |
|   bool isTypeRef(const MDNode &N, const Metadata *MD);
 | |
| 
 | |
|   /// \brief Check for a valid scope reference.
 | |
|   ///
 | |
|   /// Checks for subclasses of \a MDScope, or \a isValidUUID().
 | |
|   bool isScopeRef(const MDNode &N, const Metadata *MD);
 | |
| 
 | |
|   /// \brief Check for a valid debug info reference.
 | |
|   ///
 | |
|   /// Checks for subclasses of \a DebugNode, or \a isValidUUID().
 | |
|   bool isDIRef(const MDNode &N, const Metadata *MD);
 | |
| 
 | |
|   // InstVisitor overrides...
 | |
|   using InstVisitor<Verifier>::visit;
 | |
|   void visit(Instruction &I);
 | |
| 
 | |
|   void visitTruncInst(TruncInst &I);
 | |
|   void visitZExtInst(ZExtInst &I);
 | |
|   void visitSExtInst(SExtInst &I);
 | |
|   void visitFPTruncInst(FPTruncInst &I);
 | |
|   void visitFPExtInst(FPExtInst &I);
 | |
|   void visitFPToUIInst(FPToUIInst &I);
 | |
|   void visitFPToSIInst(FPToSIInst &I);
 | |
|   void visitUIToFPInst(UIToFPInst &I);
 | |
|   void visitSIToFPInst(SIToFPInst &I);
 | |
|   void visitIntToPtrInst(IntToPtrInst &I);
 | |
|   void visitPtrToIntInst(PtrToIntInst &I);
 | |
|   void visitBitCastInst(BitCastInst &I);
 | |
|   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
 | |
|   void visitPHINode(PHINode &PN);
 | |
|   void visitBinaryOperator(BinaryOperator &B);
 | |
|   void visitICmpInst(ICmpInst &IC);
 | |
|   void visitFCmpInst(FCmpInst &FC);
 | |
|   void visitExtractElementInst(ExtractElementInst &EI);
 | |
|   void visitInsertElementInst(InsertElementInst &EI);
 | |
|   void visitShuffleVectorInst(ShuffleVectorInst &EI);
 | |
|   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
 | |
|   void visitCallInst(CallInst &CI);
 | |
|   void visitInvokeInst(InvokeInst &II);
 | |
|   void visitGetElementPtrInst(GetElementPtrInst &GEP);
 | |
|   void visitLoadInst(LoadInst &LI);
 | |
|   void visitStoreInst(StoreInst &SI);
 | |
|   void verifyDominatesUse(Instruction &I, unsigned i);
 | |
|   void visitInstruction(Instruction &I);
 | |
|   void visitTerminatorInst(TerminatorInst &I);
 | |
|   void visitBranchInst(BranchInst &BI);
 | |
|   void visitReturnInst(ReturnInst &RI);
 | |
|   void visitSwitchInst(SwitchInst &SI);
 | |
|   void visitIndirectBrInst(IndirectBrInst &BI);
 | |
|   void visitSelectInst(SelectInst &SI);
 | |
|   void visitUserOp1(Instruction &I);
 | |
|   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
 | |
|   void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
 | |
|   template <class DbgIntrinsicTy>
 | |
|   void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
 | |
|   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
 | |
|   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
 | |
|   void visitFenceInst(FenceInst &FI);
 | |
|   void visitAllocaInst(AllocaInst &AI);
 | |
|   void visitExtractValueInst(ExtractValueInst &EVI);
 | |
|   void visitInsertValueInst(InsertValueInst &IVI);
 | |
|   void visitLandingPadInst(LandingPadInst &LPI);
 | |
| 
 | |
|   void VerifyCallSite(CallSite CS);
 | |
|   void verifyMustTailCall(CallInst &CI);
 | |
|   bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
 | |
|                         unsigned ArgNo, std::string &Suffix);
 | |
|   bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
 | |
|                            SmallVectorImpl<Type *> &ArgTys);
 | |
|   bool VerifyIntrinsicIsVarArg(bool isVarArg,
 | |
|                                ArrayRef<Intrinsic::IITDescriptor> &Infos);
 | |
|   bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
 | |
|   void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
 | |
|                             const Value *V);
 | |
|   void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
 | |
|                             bool isReturnValue, const Value *V);
 | |
|   void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
 | |
|                            const Value *V);
 | |
| 
 | |
|   void VerifyConstantExprBitcastType(const ConstantExpr *CE);
 | |
|   void VerifyStatepoint(ImmutableCallSite CS);
 | |
|   void verifyFrameRecoverIndices();
 | |
| 
 | |
|   // Module-level debug info verification...
 | |
|   void verifyTypeRefs();
 | |
|   void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
 | |
| };
 | |
| } // End anonymous namespace
 | |
| 
 | |
| // Assert - We know that cond should be true, if not print an error message.
 | |
| #define Assert(C, ...) \
 | |
|   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
 | |
| 
 | |
| void Verifier::visit(Instruction &I) {
 | |
|   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
 | |
|     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
 | |
|   InstVisitor<Verifier>::visit(I);
 | |
| }
 | |
| 
 | |
| 
 | |
| void Verifier::visitGlobalValue(const GlobalValue &GV) {
 | |
|   Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
 | |
|              GV.hasExternalWeakLinkage(),
 | |
|          "Global is external, but doesn't have external or weak linkage!", &GV);
 | |
| 
 | |
|   Assert(GV.getAlignment() <= Value::MaximumAlignment,
 | |
|          "huge alignment values are unsupported", &GV);
 | |
|   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
 | |
|          "Only global variables can have appending linkage!", &GV);
 | |
| 
 | |
|   if (GV.hasAppendingLinkage()) {
 | |
|     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
 | |
|     Assert(GVar && GVar->getType()->getElementType()->isArrayTy(),
 | |
|            "Only global arrays can have appending linkage!", GVar);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
 | |
|   if (GV.hasInitializer()) {
 | |
|     Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),
 | |
|            "Global variable initializer type does not match global "
 | |
|            "variable type!",
 | |
|            &GV);
 | |
| 
 | |
|     // If the global has common linkage, it must have a zero initializer and
 | |
|     // cannot be constant.
 | |
|     if (GV.hasCommonLinkage()) {
 | |
|       Assert(GV.getInitializer()->isNullValue(),
 | |
|              "'common' global must have a zero initializer!", &GV);
 | |
|       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
 | |
|              &GV);
 | |
|       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
 | |
|     }
 | |
|   } else {
 | |
|     Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
 | |
|            "invalid linkage type for global declaration", &GV);
 | |
|   }
 | |
| 
 | |
|   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
 | |
|                        GV.getName() == "llvm.global_dtors")) {
 | |
|     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
 | |
|            "invalid linkage for intrinsic global variable", &GV);
 | |
|     // Don't worry about emitting an error for it not being an array,
 | |
|     // visitGlobalValue will complain on appending non-array.
 | |
|     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType()->getElementType())) {
 | |
|       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
 | |
|       PointerType *FuncPtrTy =
 | |
|           FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
 | |
|       // FIXME: Reject the 2-field form in LLVM 4.0.
 | |
|       Assert(STy &&
 | |
|                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
 | |
|                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
 | |
|                  STy->getTypeAtIndex(1) == FuncPtrTy,
 | |
|              "wrong type for intrinsic global variable", &GV);
 | |
|       if (STy->getNumElements() == 3) {
 | |
|         Type *ETy = STy->getTypeAtIndex(2);
 | |
|         Assert(ETy->isPointerTy() &&
 | |
|                    cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
 | |
|                "wrong type for intrinsic global variable", &GV);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (GV.hasName() && (GV.getName() == "llvm.used" ||
 | |
|                        GV.getName() == "llvm.compiler.used")) {
 | |
|     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
 | |
|            "invalid linkage for intrinsic global variable", &GV);
 | |
|     Type *GVType = GV.getType()->getElementType();
 | |
|     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
 | |
|       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
 | |
|       Assert(PTy, "wrong type for intrinsic global variable", &GV);
 | |
|       if (GV.hasInitializer()) {
 | |
|         const Constant *Init = GV.getInitializer();
 | |
|         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
 | |
|         Assert(InitArray, "wrong initalizer for intrinsic global variable",
 | |
|                Init);
 | |
|         for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
 | |
|           Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
 | |
|           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
 | |
|                      isa<GlobalAlias>(V),
 | |
|                  "invalid llvm.used member", V);
 | |
|           Assert(V->hasName(), "members of llvm.used must be named", V);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Assert(!GV.hasDLLImportStorageClass() ||
 | |
|              (GV.isDeclaration() && GV.hasExternalLinkage()) ||
 | |
|              GV.hasAvailableExternallyLinkage(),
 | |
|          "Global is marked as dllimport, but not external", &GV);
 | |
| 
 | |
|   if (!GV.hasInitializer()) {
 | |
|     visitGlobalValue(GV);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Walk any aggregate initializers looking for bitcasts between address spaces
 | |
|   SmallPtrSet<const Value *, 4> Visited;
 | |
|   SmallVector<const Value *, 4> WorkStack;
 | |
|   WorkStack.push_back(cast<Value>(GV.getInitializer()));
 | |
| 
 | |
|   while (!WorkStack.empty()) {
 | |
|     const Value *V = WorkStack.pop_back_val();
 | |
|     if (!Visited.insert(V).second)
 | |
|       continue;
 | |
| 
 | |
|     if (const User *U = dyn_cast<User>(V)) {
 | |
|       WorkStack.append(U->op_begin(), U->op_end());
 | |
|     }
 | |
| 
 | |
|     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | |
|       VerifyConstantExprBitcastType(CE);
 | |
|       if (Broken)
 | |
|         return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   visitGlobalValue(GV);
 | |
| }
 | |
| 
 | |
| void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
 | |
|   SmallPtrSet<const GlobalAlias*, 4> Visited;
 | |
|   Visited.insert(&GA);
 | |
|   visitAliaseeSubExpr(Visited, GA, C);
 | |
| }
 | |
| 
 | |
| void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
 | |
|                                    const GlobalAlias &GA, const Constant &C) {
 | |
|   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
 | |
|     Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA);
 | |
| 
 | |
|     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
 | |
|       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
 | |
| 
 | |
|       Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
 | |
|              &GA);
 | |
|     } else {
 | |
|       // Only continue verifying subexpressions of GlobalAliases.
 | |
|       // Do not recurse into global initializers.
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
 | |
|     VerifyConstantExprBitcastType(CE);
 | |
| 
 | |
|   for (const Use &U : C.operands()) {
 | |
|     Value *V = &*U;
 | |
|     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
 | |
|       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
 | |
|     else if (const auto *C2 = dyn_cast<Constant>(V))
 | |
|       visitAliaseeSubExpr(Visited, GA, *C2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
 | |
|   Assert(!GA.getName().empty(), "Alias name cannot be empty!", &GA);
 | |
|   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
 | |
|          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
 | |
|          "weak_odr, or external linkage!",
 | |
|          &GA);
 | |
|   const Constant *Aliasee = GA.getAliasee();
 | |
|   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
 | |
|   Assert(GA.getType() == Aliasee->getType(),
 | |
|          "Alias and aliasee types should match!", &GA);
 | |
| 
 | |
|   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
 | |
|          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
 | |
| 
 | |
|   visitAliaseeSubExpr(GA, *Aliasee);
 | |
| 
 | |
|   visitGlobalValue(GA);
 | |
| }
 | |
| 
 | |
| void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
 | |
|   for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
 | |
|     MDNode *MD = NMD.getOperand(i);
 | |
| 
 | |
|     if (NMD.getName() == "llvm.dbg.cu") {
 | |
|       Assert(MD && isa<MDCompileUnit>(MD), "invalid compile unit", &NMD, MD);
 | |
|     }
 | |
| 
 | |
|     if (!MD)
 | |
|       continue;
 | |
| 
 | |
|     visitMDNode(*MD);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDNode(const MDNode &MD) {
 | |
|   // Only visit each node once.  Metadata can be mutually recursive, so this
 | |
|   // avoids infinite recursion here, as well as being an optimization.
 | |
|   if (!MDNodes.insert(&MD).second)
 | |
|     return;
 | |
| 
 | |
|   switch (MD.getMetadataID()) {
 | |
|   default:
 | |
|     llvm_unreachable("Invalid MDNode subclass");
 | |
|   case Metadata::MDTupleKind:
 | |
|     break;
 | |
| #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
 | |
|   case Metadata::CLASS##Kind:                                                  \
 | |
|     visit##CLASS(cast<CLASS>(MD));                                             \
 | |
|     break;
 | |
| #include "llvm/IR/Metadata.def"
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
 | |
|     Metadata *Op = MD.getOperand(i);
 | |
|     if (!Op)
 | |
|       continue;
 | |
|     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
 | |
|            &MD, Op);
 | |
|     if (auto *N = dyn_cast<MDNode>(Op)) {
 | |
|       visitMDNode(*N);
 | |
|       continue;
 | |
|     }
 | |
|     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
 | |
|       visitValueAsMetadata(*V, nullptr);
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check these last, so we diagnose problems in operands first.
 | |
|   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
 | |
|   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
 | |
| }
 | |
| 
 | |
| void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
 | |
|   Assert(MD.getValue(), "Expected valid value", &MD);
 | |
|   Assert(!MD.getValue()->getType()->isMetadataTy(),
 | |
|          "Unexpected metadata round-trip through values", &MD, MD.getValue());
 | |
| 
 | |
|   auto *L = dyn_cast<LocalAsMetadata>(&MD);
 | |
|   if (!L)
 | |
|     return;
 | |
| 
 | |
|   Assert(F, "function-local metadata used outside a function", L);
 | |
| 
 | |
|   // If this was an instruction, bb, or argument, verify that it is in the
 | |
|   // function that we expect.
 | |
|   Function *ActualF = nullptr;
 | |
|   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
 | |
|     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
 | |
|     ActualF = I->getParent()->getParent();
 | |
|   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
 | |
|     ActualF = BB->getParent();
 | |
|   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
 | |
|     ActualF = A->getParent();
 | |
|   assert(ActualF && "Unimplemented function local metadata case!");
 | |
| 
 | |
|   Assert(ActualF == F, "function-local metadata used in wrong function", L);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
 | |
|   Metadata *MD = MDV.getMetadata();
 | |
|   if (auto *N = dyn_cast<MDNode>(MD)) {
 | |
|     visitMDNode(*N);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Only visit each node once.  Metadata can be mutually recursive, so this
 | |
|   // avoids infinite recursion here, as well as being an optimization.
 | |
|   if (!MDNodes.insert(MD).second)
 | |
|     return;
 | |
| 
 | |
|   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
 | |
|     visitValueAsMetadata(*V, F);
 | |
| }
 | |
| 
 | |
| bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
 | |
|   auto *S = dyn_cast<MDString>(MD);
 | |
|   if (!S)
 | |
|     return false;
 | |
|   if (S->getString().empty())
 | |
|     return false;
 | |
| 
 | |
|   // Keep track of names of types referenced via UUID so we can check that they
 | |
|   // actually exist.
 | |
|   TypeRefs.insert(std::make_pair(S, &N));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Check if a value can be a reference to a type.
 | |
| bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
 | |
|   return !MD || isValidUUID(N, MD) || isa<MDType>(MD);
 | |
| }
 | |
| 
 | |
| /// \brief Check if a value can be a ScopeRef.
 | |
| bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
 | |
|   return !MD || isValidUUID(N, MD) || isa<MDScope>(MD);
 | |
| }
 | |
| 
 | |
| /// \brief Check if a value can be a debug info ref.
 | |
| bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
 | |
|   return !MD || isValidUUID(N, MD) || isa<DebugNode>(MD);
 | |
| }
 | |
| 
 | |
| template <class Ty>
 | |
| bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
 | |
|   for (Metadata *MD : N.operands()) {
 | |
|     if (MD) {
 | |
|       if (!isa<Ty>(MD))
 | |
|         return false;
 | |
|     } else {
 | |
|       if (!AllowNull)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template <class Ty>
 | |
| bool isValidMetadataArray(const MDTuple &N) {
 | |
|   return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
 | |
| }
 | |
| 
 | |
| template <class Ty>
 | |
| bool isValidMetadataNullArray(const MDTuple &N) {
 | |
|   return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDLocation(const MDLocation &N) {
 | |
|   Assert(N.getRawScope() && isa<MDLocalScope>(N.getRawScope()),
 | |
|          "location requires a valid scope", &N, N.getRawScope());
 | |
|   if (auto *IA = N.getRawInlinedAt())
 | |
|     Assert(isa<MDLocation>(IA), "inlined-at should be a location", &N, IA);
 | |
| }
 | |
| 
 | |
| void Verifier::visitGenericDebugNode(const GenericDebugNode &N) {
 | |
|   Assert(N.getTag(), "invalid tag", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDScope(const MDScope &N) {
 | |
|   if (auto *F = N.getRawFile())
 | |
|     Assert(isa<MDFile>(F), "invalid file", &N, F);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDSubrange(const MDSubrange &N) {
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
 | |
|   Assert(N.getCount() >= -1, "invalid subrange count", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDEnumerator(const MDEnumerator &N) {
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDBasicType(const MDBasicType &N) {
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_base_type ||
 | |
|              N.getTag() == dwarf::DW_TAG_unspecified_type,
 | |
|          "invalid tag", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDDerivedTypeBase(const MDDerivedTypeBase &N) {
 | |
|   // Common scope checks.
 | |
|   visitMDScope(N);
 | |
| 
 | |
|   Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
 | |
|   Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
 | |
|          N.getBaseType());
 | |
| 
 | |
|   // FIXME: Sink this into the subclass verifies.
 | |
|   if (!N.getFile() || N.getFile()->getFilename().empty()) {
 | |
|     // Check whether the filename is allowed to be empty.
 | |
|     uint16_t Tag = N.getTag();
 | |
|     Assert(
 | |
|         Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
 | |
|             Tag == dwarf::DW_TAG_pointer_type ||
 | |
|             Tag == dwarf::DW_TAG_ptr_to_member_type ||
 | |
|             Tag == dwarf::DW_TAG_reference_type ||
 | |
|             Tag == dwarf::DW_TAG_rvalue_reference_type ||
 | |
|             Tag == dwarf::DW_TAG_restrict_type ||
 | |
|             Tag == dwarf::DW_TAG_array_type ||
 | |
|             Tag == dwarf::DW_TAG_enumeration_type ||
 | |
|             Tag == dwarf::DW_TAG_subroutine_type ||
 | |
|             Tag == dwarf::DW_TAG_inheritance || Tag == dwarf::DW_TAG_friend ||
 | |
|             Tag == dwarf::DW_TAG_structure_type ||
 | |
|             Tag == dwarf::DW_TAG_member || Tag == dwarf::DW_TAG_typedef,
 | |
|         "derived/composite type requires a filename", &N, N.getFile());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDDerivedType(const MDDerivedType &N) {
 | |
|   // Common derived type checks.
 | |
|   visitMDDerivedTypeBase(N);
 | |
| 
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_typedef ||
 | |
|              N.getTag() == dwarf::DW_TAG_pointer_type ||
 | |
|              N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
 | |
|              N.getTag() == dwarf::DW_TAG_reference_type ||
 | |
|              N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
 | |
|              N.getTag() == dwarf::DW_TAG_const_type ||
 | |
|              N.getTag() == dwarf::DW_TAG_volatile_type ||
 | |
|              N.getTag() == dwarf::DW_TAG_restrict_type ||
 | |
|              N.getTag() == dwarf::DW_TAG_member ||
 | |
|              N.getTag() == dwarf::DW_TAG_inheritance ||
 | |
|              N.getTag() == dwarf::DW_TAG_friend,
 | |
|          "invalid tag", &N);
 | |
|   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
 | |
|     Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
 | |
|            N.getExtraData());
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool hasConflictingReferenceFlags(unsigned Flags) {
 | |
|   return (Flags & DebugNode::FlagLValueReference) &&
 | |
|          (Flags & DebugNode::FlagRValueReference);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDCompositeType(const MDCompositeType &N) {
 | |
|   // Common derived type checks.
 | |
|   visitMDDerivedTypeBase(N);
 | |
| 
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_array_type ||
 | |
|              N.getTag() == dwarf::DW_TAG_structure_type ||
 | |
|              N.getTag() == dwarf::DW_TAG_union_type ||
 | |
|              N.getTag() == dwarf::DW_TAG_enumeration_type ||
 | |
|              N.getTag() == dwarf::DW_TAG_subroutine_type ||
 | |
|              N.getTag() == dwarf::DW_TAG_class_type,
 | |
|          "invalid tag", &N);
 | |
| 
 | |
|   Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
 | |
|          "invalid composite elements", &N, N.getRawElements());
 | |
|   Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
 | |
|          N.getRawVTableHolder());
 | |
|   Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
 | |
|          "invalid composite elements", &N, N.getRawElements());
 | |
|   Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
 | |
|          &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDSubroutineType(const MDSubroutineType &N) {
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
 | |
|   if (auto *Types = N.getRawTypeArray()) {
 | |
|     Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
 | |
|     for (Metadata *Ty : N.getTypeArray()->operands()) {
 | |
|       Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
 | |
|     }
 | |
|   }
 | |
|   Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
 | |
|          &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDFile(const MDFile &N) {
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDCompileUnit(const MDCompileUnit &N) {
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
 | |
| 
 | |
|   // Don't bother verifying the compilation directory or producer string
 | |
|   // as those could be empty.
 | |
|   Assert(N.getRawFile() && isa<MDFile>(N.getRawFile()),
 | |
|          "invalid file", &N, N.getRawFile());
 | |
|   Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
 | |
|          N.getFile());
 | |
| 
 | |
|   if (auto *Array = N.getRawEnumTypes()) {
 | |
|     Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
 | |
|     for (Metadata *Op : N.getEnumTypes()->operands()) {
 | |
|       auto *Enum = dyn_cast_or_null<MDCompositeType>(Op);
 | |
|       Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
 | |
|              "invalid enum type", &N, N.getEnumTypes(), Op);
 | |
|     }
 | |
|   }
 | |
|   if (auto *Array = N.getRawRetainedTypes()) {
 | |
|     Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
 | |
|     for (Metadata *Op : N.getRetainedTypes()->operands()) {
 | |
|       Assert(Op && isa<MDType>(Op), "invalid retained type", &N, Op);
 | |
|     }
 | |
|   }
 | |
|   if (auto *Array = N.getRawSubprograms()) {
 | |
|     Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
 | |
|     for (Metadata *Op : N.getSubprograms()->operands()) {
 | |
|       Assert(Op && isa<MDSubprogram>(Op), "invalid subprogram ref", &N, Op);
 | |
|     }
 | |
|   }
 | |
|   if (auto *Array = N.getRawGlobalVariables()) {
 | |
|     Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
 | |
|     for (Metadata *Op : N.getGlobalVariables()->operands()) {
 | |
|       Assert(Op && isa<MDGlobalVariable>(Op), "invalid global variable ref", &N,
 | |
|              Op);
 | |
|     }
 | |
|   }
 | |
|   if (auto *Array = N.getRawImportedEntities()) {
 | |
|     Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
 | |
|     for (Metadata *Op : N.getImportedEntities()->operands()) {
 | |
|       Assert(Op && isa<MDImportedEntity>(Op), "invalid imported entity ref", &N,
 | |
|              Op);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDSubprogram(const MDSubprogram &N) {
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
 | |
|   Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
 | |
|   if (auto *T = N.getRawType())
 | |
|     Assert(isa<MDSubroutineType>(T), "invalid subroutine type", &N, T);
 | |
|   Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
 | |
|          N.getRawContainingType());
 | |
|   if (auto *RawF = N.getRawFunction()) {
 | |
|     auto *FMD = dyn_cast<ConstantAsMetadata>(RawF);
 | |
|     auto *F = FMD ? FMD->getValue() : nullptr;
 | |
|     auto *FT = F ? dyn_cast<PointerType>(F->getType()) : nullptr;
 | |
|     Assert(F && FT && isa<FunctionType>(FT->getElementType()),
 | |
|            "invalid function", &N, F, FT);
 | |
|   }
 | |
|   if (N.getRawTemplateParams()) {
 | |
|     auto *Params = dyn_cast<MDTuple>(N.getRawTemplateParams());
 | |
|     Assert(Params, "invalid template params", &N, Params);
 | |
|     for (Metadata *Op : Params->operands()) {
 | |
|       Assert(Op && isa<MDTemplateParameter>(Op), "invalid template parameter",
 | |
|              &N, Params, Op);
 | |
|     }
 | |
|   }
 | |
|   if (auto *S = N.getRawDeclaration()) {
 | |
|     Assert(isa<MDSubprogram>(S) && !cast<MDSubprogram>(S)->isDefinition(),
 | |
|            "invalid subprogram declaration", &N, S);
 | |
|   }
 | |
|   if (N.getRawVariables()) {
 | |
|     auto *Vars = dyn_cast<MDTuple>(N.getRawVariables());
 | |
|     Assert(Vars, "invalid variable list", &N, Vars);
 | |
|     for (Metadata *Op : Vars->operands()) {
 | |
|       Assert(Op && isa<MDLocalVariable>(Op), "invalid local variable", &N, Vars,
 | |
|              Op);
 | |
|     }
 | |
|   }
 | |
|   Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
 | |
|          &N);
 | |
| 
 | |
|   if (!N.getFunction())
 | |
|     return;
 | |
| 
 | |
|   // FIXME: Should this be looking through bitcasts?
 | |
|   auto *F = dyn_cast<Function>(N.getFunction()->getValue());
 | |
|   if (!F)
 | |
|     return;
 | |
| 
 | |
|   // Check that all !dbg attachments lead to back to N (or, at least, another
 | |
|   // subprogram that describes the same function).
 | |
|   //
 | |
|   // FIXME: Check this incrementally while visiting !dbg attachments.
 | |
|   // FIXME: Only check when N is the canonical subprogram for F.
 | |
|   SmallPtrSet<const MDNode *, 32> Seen;
 | |
|   for (auto &BB : *F)
 | |
|     for (auto &I : BB) {
 | |
|       // Be careful about using MDLocation here since we might be dealing with
 | |
|       // broken code (this is the Verifier after all).
 | |
|       MDLocation *DL =
 | |
|           dyn_cast_or_null<MDLocation>(I.getDebugLoc().getAsMDNode());
 | |
|       if (!DL)
 | |
|         continue;
 | |
|       if (!Seen.insert(DL).second)
 | |
|         continue;
 | |
| 
 | |
|       MDLocalScope *Scope = DL->getInlinedAtScope();
 | |
|       if (Scope && !Seen.insert(Scope).second)
 | |
|         continue;
 | |
| 
 | |
|       MDSubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
 | |
|       if (SP && !Seen.insert(SP).second)
 | |
|         continue;
 | |
| 
 | |
|       // FIXME: Once N is canonical, check "SP == &N".
 | |
|       Assert(DISubprogram(SP).describes(F),
 | |
|              "!dbg attachment points at wrong subprogram for function", &N, F,
 | |
|              &I, DL, Scope, SP);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDLexicalBlockBase(const MDLexicalBlockBase &N) {
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
 | |
|   Assert(N.getRawScope() && isa<MDLocalScope>(N.getRawScope()),
 | |
|          "invalid local scope", &N, N.getRawScope());
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDLexicalBlock(const MDLexicalBlock &N) {
 | |
|   visitMDLexicalBlockBase(N);
 | |
| 
 | |
|   Assert(N.getLine() || !N.getColumn(),
 | |
|          "cannot have column info without line info", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDLexicalBlockFile(const MDLexicalBlockFile &N) {
 | |
|   visitMDLexicalBlockBase(N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDNamespace(const MDNamespace &N) {
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
 | |
|   if (auto *S = N.getRawScope())
 | |
|     Assert(isa<MDScope>(S), "invalid scope ref", &N, S);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDTemplateParameter(const MDTemplateParameter &N) {
 | |
|   Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDTemplateTypeParameter(const MDTemplateTypeParameter &N) {
 | |
|   visitMDTemplateParameter(N);
 | |
| 
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
 | |
|          &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDTemplateValueParameter(
 | |
|     const MDTemplateValueParameter &N) {
 | |
|   visitMDTemplateParameter(N);
 | |
| 
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
 | |
|              N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
 | |
|              N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
 | |
|          "invalid tag", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDVariable(const MDVariable &N) {
 | |
|   if (auto *S = N.getRawScope())
 | |
|     Assert(isa<MDScope>(S), "invalid scope", &N, S);
 | |
|   Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
 | |
|   if (auto *F = N.getRawFile())
 | |
|     Assert(isa<MDFile>(F), "invalid file", &N, F);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDGlobalVariable(const MDGlobalVariable &N) {
 | |
|   // Checks common to all variables.
 | |
|   visitMDVariable(N);
 | |
| 
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
 | |
|   Assert(!N.getName().empty(), "missing global variable name", &N);
 | |
|   if (auto *V = N.getRawVariable()) {
 | |
|     Assert(isa<ConstantAsMetadata>(V) &&
 | |
|                !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
 | |
|            "invalid global varaible ref", &N, V);
 | |
|   }
 | |
|   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
 | |
|     Assert(isa<MDDerivedType>(Member), "invalid static data member declaration",
 | |
|            &N, Member);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDLocalVariable(const MDLocalVariable &N) {
 | |
|   // Checks common to all variables.
 | |
|   visitMDVariable(N);
 | |
| 
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_auto_variable ||
 | |
|              N.getTag() == dwarf::DW_TAG_arg_variable,
 | |
|          "invalid tag", &N);
 | |
|   Assert(N.getRawScope() && isa<MDLocalScope>(N.getRawScope()),
 | |
|          "local variable requires a valid scope", &N, N.getRawScope());
 | |
|   if (auto *IA = N.getRawInlinedAt())
 | |
|     Assert(isa<MDLocation>(IA), "local variable requires a valid scope", &N,
 | |
|            IA);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDExpression(const MDExpression &N) {
 | |
|   Assert(N.isValid(), "invalid expression", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDObjCProperty(const MDObjCProperty &N) {
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
 | |
|   if (auto *T = N.getRawType())
 | |
|     Assert(isa<MDType>(T), "invalid type ref", &N, T);
 | |
|   if (auto *F = N.getRawFile())
 | |
|     Assert(isa<MDFile>(F), "invalid file", &N, F);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDImportedEntity(const MDImportedEntity &N) {
 | |
|   Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
 | |
|              N.getTag() == dwarf::DW_TAG_imported_declaration,
 | |
|          "invalid tag", &N);
 | |
|   if (auto *S = N.getRawScope())
 | |
|     Assert(isa<MDScope>(S), "invalid scope for imported entity", &N, S);
 | |
|   Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
 | |
|          N.getEntity());
 | |
| }
 | |
| 
 | |
| void Verifier::visitComdat(const Comdat &C) {
 | |
|   // The Module is invalid if the GlobalValue has private linkage.  Entities
 | |
|   // with private linkage don't have entries in the symbol table.
 | |
|   if (const GlobalValue *GV = M->getNamedValue(C.getName()))
 | |
|     Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
 | |
|            GV);
 | |
| }
 | |
| 
 | |
| void Verifier::visitModuleIdents(const Module &M) {
 | |
|   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
 | |
|   if (!Idents) 
 | |
|     return;
 | |
|   
 | |
|   // llvm.ident takes a list of metadata entry. Each entry has only one string.
 | |
|   // Scan each llvm.ident entry and make sure that this requirement is met.
 | |
|   for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
 | |
|     const MDNode *N = Idents->getOperand(i);
 | |
|     Assert(N->getNumOperands() == 1,
 | |
|            "incorrect number of operands in llvm.ident metadata", N);
 | |
|     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
 | |
|            ("invalid value for llvm.ident metadata entry operand"
 | |
|             "(the operand should be a string)"),
 | |
|            N->getOperand(0));
 | |
|   } 
 | |
| }
 | |
| 
 | |
| void Verifier::visitModuleFlags(const Module &M) {
 | |
|   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
 | |
|   if (!Flags) return;
 | |
| 
 | |
|   // Scan each flag, and track the flags and requirements.
 | |
|   DenseMap<const MDString*, const MDNode*> SeenIDs;
 | |
|   SmallVector<const MDNode*, 16> Requirements;
 | |
|   for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
 | |
|     visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
 | |
|   }
 | |
| 
 | |
|   // Validate that the requirements in the module are valid.
 | |
|   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
 | |
|     const MDNode *Requirement = Requirements[I];
 | |
|     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
 | |
|     const Metadata *ReqValue = Requirement->getOperand(1);
 | |
| 
 | |
|     const MDNode *Op = SeenIDs.lookup(Flag);
 | |
|     if (!Op) {
 | |
|       CheckFailed("invalid requirement on flag, flag is not present in module",
 | |
|                   Flag);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (Op->getOperand(2) != ReqValue) {
 | |
|       CheckFailed(("invalid requirement on flag, "
 | |
|                    "flag does not have the required value"),
 | |
|                   Flag);
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| Verifier::visitModuleFlag(const MDNode *Op,
 | |
|                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
 | |
|                           SmallVectorImpl<const MDNode *> &Requirements) {
 | |
|   // Each module flag should have three arguments, the merge behavior (a
 | |
|   // constant int), the flag ID (an MDString), and the value.
 | |
|   Assert(Op->getNumOperands() == 3,
 | |
|          "incorrect number of operands in module flag", Op);
 | |
|   Module::ModFlagBehavior MFB;
 | |
|   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
 | |
|     Assert(
 | |
|         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
 | |
|         "invalid behavior operand in module flag (expected constant integer)",
 | |
|         Op->getOperand(0));
 | |
|     Assert(false,
 | |
|            "invalid behavior operand in module flag (unexpected constant)",
 | |
|            Op->getOperand(0));
 | |
|   }
 | |
|   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
 | |
|   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
 | |
|          Op->getOperand(1));
 | |
| 
 | |
|   // Sanity check the values for behaviors with additional requirements.
 | |
|   switch (MFB) {
 | |
|   case Module::Error:
 | |
|   case Module::Warning:
 | |
|   case Module::Override:
 | |
|     // These behavior types accept any value.
 | |
|     break;
 | |
| 
 | |
|   case Module::Require: {
 | |
|     // The value should itself be an MDNode with two operands, a flag ID (an
 | |
|     // MDString), and a value.
 | |
|     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
 | |
|     Assert(Value && Value->getNumOperands() == 2,
 | |
|            "invalid value for 'require' module flag (expected metadata pair)",
 | |
|            Op->getOperand(2));
 | |
|     Assert(isa<MDString>(Value->getOperand(0)),
 | |
|            ("invalid value for 'require' module flag "
 | |
|             "(first value operand should be a string)"),
 | |
|            Value->getOperand(0));
 | |
| 
 | |
|     // Append it to the list of requirements, to check once all module flags are
 | |
|     // scanned.
 | |
|     Requirements.push_back(Value);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Module::Append:
 | |
|   case Module::AppendUnique: {
 | |
|     // These behavior types require the operand be an MDNode.
 | |
|     Assert(isa<MDNode>(Op->getOperand(2)),
 | |
|            "invalid value for 'append'-type module flag "
 | |
|            "(expected a metadata node)",
 | |
|            Op->getOperand(2));
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Unless this is a "requires" flag, check the ID is unique.
 | |
|   if (MFB != Module::Require) {
 | |
|     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
 | |
|     Assert(Inserted,
 | |
|            "module flag identifiers must be unique (or of 'require' type)", ID);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
 | |
|                                     bool isFunction, const Value *V) {
 | |
|   unsigned Slot = ~0U;
 | |
|   for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
 | |
|     if (Attrs.getSlotIndex(I) == Idx) {
 | |
|       Slot = I;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   assert(Slot != ~0U && "Attribute set inconsistency!");
 | |
| 
 | |
|   for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
 | |
|          I != E; ++I) {
 | |
|     if (I->isStringAttribute())
 | |
|       continue;
 | |
| 
 | |
|     if (I->getKindAsEnum() == Attribute::NoReturn ||
 | |
|         I->getKindAsEnum() == Attribute::NoUnwind ||
 | |
|         I->getKindAsEnum() == Attribute::NoInline ||
 | |
|         I->getKindAsEnum() == Attribute::AlwaysInline ||
 | |
|         I->getKindAsEnum() == Attribute::OptimizeForSize ||
 | |
|         I->getKindAsEnum() == Attribute::StackProtect ||
 | |
|         I->getKindAsEnum() == Attribute::StackProtectReq ||
 | |
|         I->getKindAsEnum() == Attribute::StackProtectStrong ||
 | |
|         I->getKindAsEnum() == Attribute::NoRedZone ||
 | |
|         I->getKindAsEnum() == Attribute::NoImplicitFloat ||
 | |
|         I->getKindAsEnum() == Attribute::Naked ||
 | |
|         I->getKindAsEnum() == Attribute::InlineHint ||
 | |
|         I->getKindAsEnum() == Attribute::StackAlignment ||
 | |
|         I->getKindAsEnum() == Attribute::UWTable ||
 | |
|         I->getKindAsEnum() == Attribute::NonLazyBind ||
 | |
|         I->getKindAsEnum() == Attribute::ReturnsTwice ||
 | |
|         I->getKindAsEnum() == Attribute::SanitizeAddress ||
 | |
|         I->getKindAsEnum() == Attribute::SanitizeThread ||
 | |
|         I->getKindAsEnum() == Attribute::SanitizeMemory ||
 | |
|         I->getKindAsEnum() == Attribute::MinSize ||
 | |
|         I->getKindAsEnum() == Attribute::NoDuplicate ||
 | |
|         I->getKindAsEnum() == Attribute::Builtin ||
 | |
|         I->getKindAsEnum() == Attribute::NoBuiltin ||
 | |
|         I->getKindAsEnum() == Attribute::Cold ||
 | |
|         I->getKindAsEnum() == Attribute::OptimizeNone ||
 | |
|         I->getKindAsEnum() == Attribute::JumpTable) {
 | |
|       if (!isFunction) {
 | |
|         CheckFailed("Attribute '" + I->getAsString() +
 | |
|                     "' only applies to functions!", V);
 | |
|         return;
 | |
|       }
 | |
|     } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
 | |
|                I->getKindAsEnum() == Attribute::ReadNone) {
 | |
|       if (Idx == 0) {
 | |
|         CheckFailed("Attribute '" + I->getAsString() +
 | |
|                     "' does not apply to function returns");
 | |
|         return;
 | |
|       }
 | |
|     } else if (isFunction) {
 | |
|       CheckFailed("Attribute '" + I->getAsString() +
 | |
|                   "' does not apply to functions!", V);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // VerifyParameterAttrs - Check the given attributes for an argument or return
 | |
| // value of the specified type.  The value V is printed in error messages.
 | |
| void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
 | |
|                                     bool isReturnValue, const Value *V) {
 | |
|   if (!Attrs.hasAttributes(Idx))
 | |
|     return;
 | |
| 
 | |
|   VerifyAttributeTypes(Attrs, Idx, false, V);
 | |
| 
 | |
|   if (isReturnValue)
 | |
|     Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
 | |
|                !Attrs.hasAttribute(Idx, Attribute::Nest) &&
 | |
|                !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
 | |
|                !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
 | |
|                !Attrs.hasAttribute(Idx, Attribute::Returned) &&
 | |
|                !Attrs.hasAttribute(Idx, Attribute::InAlloca),
 | |
|            "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
 | |
|            "'returned' do not apply to return values!",
 | |
|            V);
 | |
| 
 | |
|   // Check for mutually incompatible attributes.  Only inreg is compatible with
 | |
|   // sret.
 | |
|   unsigned AttrCount = 0;
 | |
|   AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
 | |
|   AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
 | |
|   AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
 | |
|                Attrs.hasAttribute(Idx, Attribute::InReg);
 | |
|   AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
 | |
|   Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
 | |
|                          "and 'sret' are incompatible!",
 | |
|          V);
 | |
| 
 | |
|   Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
 | |
|            Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
 | |
|          "Attributes "
 | |
|          "'inalloca and readonly' are incompatible!",
 | |
|          V);
 | |
| 
 | |
|   Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
 | |
|            Attrs.hasAttribute(Idx, Attribute::Returned)),
 | |
|          "Attributes "
 | |
|          "'sret and returned' are incompatible!",
 | |
|          V);
 | |
| 
 | |
|   Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
 | |
|            Attrs.hasAttribute(Idx, Attribute::SExt)),
 | |
|          "Attributes "
 | |
|          "'zeroext and signext' are incompatible!",
 | |
|          V);
 | |
| 
 | |
|   Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
 | |
|            Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
 | |
|          "Attributes "
 | |
|          "'readnone and readonly' are incompatible!",
 | |
|          V);
 | |
| 
 | |
|   Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
 | |
|            Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
 | |
|          "Attributes "
 | |
|          "'noinline and alwaysinline' are incompatible!",
 | |
|          V);
 | |
| 
 | |
|   Assert(!AttrBuilder(Attrs, Idx)
 | |
|               .hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
 | |
|          "Wrong types for attribute: " +
 | |
|              AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx),
 | |
|          V);
 | |
| 
 | |
|   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
 | |
|     SmallPtrSet<const Type*, 4> Visited;
 | |
|     if (!PTy->getElementType()->isSized(&Visited)) {
 | |
|       Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
 | |
|                  !Attrs.hasAttribute(Idx, Attribute::InAlloca),
 | |
|              "Attributes 'byval' and 'inalloca' do not support unsized types!",
 | |
|              V);
 | |
|     }
 | |
|   } else {
 | |
|     Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
 | |
|            "Attribute 'byval' only applies to parameters with pointer type!",
 | |
|            V);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // VerifyFunctionAttrs - Check parameter attributes against a function type.
 | |
| // The value V is printed in error messages.
 | |
| void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
 | |
|                                    const Value *V) {
 | |
|   if (Attrs.isEmpty())
 | |
|     return;
 | |
| 
 | |
|   bool SawNest = false;
 | |
|   bool SawReturned = false;
 | |
|   bool SawSRet = false;
 | |
| 
 | |
|   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
 | |
|     unsigned Idx = Attrs.getSlotIndex(i);
 | |
| 
 | |
|     Type *Ty;
 | |
|     if (Idx == 0)
 | |
|       Ty = FT->getReturnType();
 | |
|     else if (Idx-1 < FT->getNumParams())
 | |
|       Ty = FT->getParamType(Idx-1);
 | |
|     else
 | |
|       break;  // VarArgs attributes, verified elsewhere.
 | |
| 
 | |
|     VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
 | |
| 
 | |
|     if (Idx == 0)
 | |
|       continue;
 | |
| 
 | |
|     if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
 | |
|       Assert(!SawNest, "More than one parameter has attribute nest!", V);
 | |
|       SawNest = true;
 | |
|     }
 | |
| 
 | |
|     if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
 | |
|       Assert(!SawReturned, "More than one parameter has attribute returned!",
 | |
|              V);
 | |
|       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
 | |
|              "Incompatible "
 | |
|              "argument and return types for 'returned' attribute",
 | |
|              V);
 | |
|       SawReturned = true;
 | |
|     }
 | |
| 
 | |
|     if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
 | |
|       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
 | |
|       Assert(Idx == 1 || Idx == 2,
 | |
|              "Attribute 'sret' is not on first or second parameter!", V);
 | |
|       SawSRet = true;
 | |
|     }
 | |
| 
 | |
|     if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
 | |
|       Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
 | |
|              V);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
 | |
|     return;
 | |
| 
 | |
|   VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
 | |
| 
 | |
|   Assert(
 | |
|       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
 | |
|         Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
 | |
|       "Attributes 'readnone and readonly' are incompatible!", V);
 | |
| 
 | |
|   Assert(
 | |
|       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
 | |
|         Attrs.hasAttribute(AttributeSet::FunctionIndex,
 | |
|                            Attribute::AlwaysInline)),
 | |
|       "Attributes 'noinline and alwaysinline' are incompatible!", V);
 | |
| 
 | |
|   if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 
 | |
|                          Attribute::OptimizeNone)) {
 | |
|     Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
 | |
|            "Attribute 'optnone' requires 'noinline'!", V);
 | |
| 
 | |
|     Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
 | |
|                                Attribute::OptimizeForSize),
 | |
|            "Attributes 'optsize and optnone' are incompatible!", V);
 | |
| 
 | |
|     Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
 | |
|            "Attributes 'minsize and optnone' are incompatible!", V);
 | |
|   }
 | |
| 
 | |
|   if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
 | |
|                          Attribute::JumpTable)) {
 | |
|     const GlobalValue *GV = cast<GlobalValue>(V);
 | |
|     Assert(GV->hasUnnamedAddr(),
 | |
|            "Attribute 'jumptable' requires 'unnamed_addr'", V);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
 | |
|   if (CE->getOpcode() != Instruction::BitCast)
 | |
|     return;
 | |
| 
 | |
|   Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
 | |
|                                CE->getType()),
 | |
|          "Invalid bitcast", CE);
 | |
| }
 | |
| 
 | |
| bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
 | |
|   if (Attrs.getNumSlots() == 0)
 | |
|     return true;
 | |
| 
 | |
|   unsigned LastSlot = Attrs.getNumSlots() - 1;
 | |
|   unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
 | |
|   if (LastIndex <= Params
 | |
|       || (LastIndex == AttributeSet::FunctionIndex
 | |
|           && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Verify that statepoint intrinsic is well formed.
 | |
| void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
 | |
|   assert(CS.getCalledFunction() &&
 | |
|          CS.getCalledFunction()->getIntrinsicID() ==
 | |
|            Intrinsic::experimental_gc_statepoint);
 | |
| 
 | |
|   const Instruction &CI = *CS.getInstruction();
 | |
| 
 | |
|   Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory(),
 | |
|          "gc.statepoint must read and write memory to preserve "
 | |
|          "reordering restrictions required by safepoint semantics",
 | |
|          &CI);
 | |
| 
 | |
|   const Value *Target = CS.getArgument(0);
 | |
|   const PointerType *PT = dyn_cast<PointerType>(Target->getType());
 | |
|   Assert(PT && PT->getElementType()->isFunctionTy(),
 | |
|          "gc.statepoint callee must be of function pointer type", &CI, Target);
 | |
|   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
 | |
| 
 | |
|   const Value *NumCallArgsV = CS.getArgument(1);
 | |
|   Assert(isa<ConstantInt>(NumCallArgsV),
 | |
|          "gc.statepoint number of arguments to underlying call "
 | |
|          "must be constant integer",
 | |
|          &CI);
 | |
|   const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
 | |
|   Assert(NumCallArgs >= 0,
 | |
|          "gc.statepoint number of arguments to underlying call "
 | |
|          "must be positive",
 | |
|          &CI);
 | |
|   const int NumParams = (int)TargetFuncType->getNumParams();
 | |
|   if (TargetFuncType->isVarArg()) {
 | |
|     Assert(NumCallArgs >= NumParams,
 | |
|            "gc.statepoint mismatch in number of vararg call args", &CI);
 | |
| 
 | |
|     // TODO: Remove this limitation
 | |
|     Assert(TargetFuncType->getReturnType()->isVoidTy(),
 | |
|            "gc.statepoint doesn't support wrapping non-void "
 | |
|            "vararg functions yet",
 | |
|            &CI);
 | |
|   } else
 | |
|     Assert(NumCallArgs == NumParams,
 | |
|            "gc.statepoint mismatch in number of call args", &CI);
 | |
| 
 | |
|   const Value *Unused = CS.getArgument(2);
 | |
|   Assert(isa<ConstantInt>(Unused) && cast<ConstantInt>(Unused)->isNullValue(),
 | |
|          "gc.statepoint parameter #3 must be zero", &CI);
 | |
| 
 | |
|   // Verify that the types of the call parameter arguments match
 | |
|   // the type of the wrapped callee.
 | |
|   for (int i = 0; i < NumParams; i++) {
 | |
|     Type *ParamType = TargetFuncType->getParamType(i);
 | |
|     Type *ArgType = CS.getArgument(3+i)->getType();
 | |
|     Assert(ArgType == ParamType,
 | |
|            "gc.statepoint call argument does not match wrapped "
 | |
|            "function type",
 | |
|            &CI);
 | |
|   }
 | |
|   const int EndCallArgsInx = 2+NumCallArgs;
 | |
|   const Value *NumDeoptArgsV = CS.getArgument(EndCallArgsInx+1);
 | |
|   Assert(isa<ConstantInt>(NumDeoptArgsV),
 | |
|          "gc.statepoint number of deoptimization arguments "
 | |
|          "must be constant integer",
 | |
|          &CI);
 | |
|   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
 | |
|   Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
 | |
|                             "must be positive",
 | |
|          &CI);
 | |
| 
 | |
|   Assert(4 + NumCallArgs + NumDeoptArgs <= (int)CS.arg_size(),
 | |
|          "gc.statepoint too few arguments according to length fields", &CI);
 | |
| 
 | |
|   // Check that the only uses of this gc.statepoint are gc.result or 
 | |
|   // gc.relocate calls which are tied to this statepoint and thus part
 | |
|   // of the same statepoint sequence
 | |
|   for (const User *U : CI.users()) {
 | |
|     const CallInst *Call = dyn_cast<const CallInst>(U);
 | |
|     Assert(Call, "illegal use of statepoint token", &CI, U);
 | |
|     if (!Call) continue;
 | |
|     Assert(isGCRelocate(Call) || isGCResult(Call),
 | |
|            "gc.result or gc.relocate are the only value uses"
 | |
|            "of a gc.statepoint",
 | |
|            &CI, U);
 | |
|     if (isGCResult(Call)) {
 | |
|       Assert(Call->getArgOperand(0) == &CI,
 | |
|              "gc.result connected to wrong gc.statepoint", &CI, Call);
 | |
|     } else if (isGCRelocate(Call)) {
 | |
|       Assert(Call->getArgOperand(0) == &CI,
 | |
|              "gc.relocate connected to wrong gc.statepoint", &CI, Call);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Note: It is legal for a single derived pointer to be listed multiple
 | |
|   // times.  It's non-optimal, but it is legal.  It can also happen after
 | |
|   // insertion if we strip a bitcast away.
 | |
|   // Note: It is really tempting to check that each base is relocated and
 | |
|   // that a derived pointer is never reused as a base pointer.  This turns
 | |
|   // out to be problematic since optimizations run after safepoint insertion
 | |
|   // can recognize equality properties that the insertion logic doesn't know
 | |
|   // about.  See example statepoint.ll in the verifier subdirectory
 | |
| }
 | |
| 
 | |
| void Verifier::verifyFrameRecoverIndices() {
 | |
|   for (auto &Counts : FrameEscapeInfo) {
 | |
|     Function *F = Counts.first;
 | |
|     unsigned EscapedObjectCount = Counts.second.first;
 | |
|     unsigned MaxRecoveredIndex = Counts.second.second;
 | |
|     Assert(MaxRecoveredIndex <= EscapedObjectCount,
 | |
|            "all indices passed to llvm.framerecover must be less than the "
 | |
|            "number of arguments passed ot llvm.frameescape in the parent "
 | |
|            "function",
 | |
|            F);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // visitFunction - Verify that a function is ok.
 | |
| //
 | |
| void Verifier::visitFunction(const Function &F) {
 | |
|   // Check function arguments.
 | |
|   FunctionType *FT = F.getFunctionType();
 | |
|   unsigned NumArgs = F.arg_size();
 | |
| 
 | |
|   Assert(Context == &F.getContext(),
 | |
|          "Function context does not match Module context!", &F);
 | |
| 
 | |
|   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
 | |
|   Assert(FT->getNumParams() == NumArgs,
 | |
|          "# formal arguments must match # of arguments for function type!", &F,
 | |
|          FT);
 | |
|   Assert(F.getReturnType()->isFirstClassType() ||
 | |
|              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
 | |
|          "Functions cannot return aggregate values!", &F);
 | |
| 
 | |
|   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
 | |
|          "Invalid struct return type!", &F);
 | |
| 
 | |
|   AttributeSet Attrs = F.getAttributes();
 | |
| 
 | |
|   Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
 | |
|          "Attribute after last parameter!", &F);
 | |
| 
 | |
|   // Check function attributes.
 | |
|   VerifyFunctionAttrs(FT, Attrs, &F);
 | |
| 
 | |
|   // On function declarations/definitions, we do not support the builtin
 | |
|   // attribute. We do not check this in VerifyFunctionAttrs since that is
 | |
|   // checking for Attributes that can/can not ever be on functions.
 | |
|   Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
 | |
|          "Attribute 'builtin' can only be applied to a callsite.", &F);
 | |
| 
 | |
|   // Check that this function meets the restrictions on this calling convention.
 | |
|   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
 | |
|   // restrictions can be lifted.
 | |
|   switch (F.getCallingConv()) {
 | |
|   default:
 | |
|   case CallingConv::C:
 | |
|     break;
 | |
|   case CallingConv::Fast:
 | |
|   case CallingConv::Cold:
 | |
|   case CallingConv::Intel_OCL_BI:
 | |
|   case CallingConv::PTX_Kernel:
 | |
|   case CallingConv::PTX_Device:
 | |
|     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
 | |
|                           "perfect forwarding!",
 | |
|            &F);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   bool isLLVMdotName = F.getName().size() >= 5 &&
 | |
|                        F.getName().substr(0, 5) == "llvm.";
 | |
| 
 | |
|   // Check that the argument values match the function type for this function...
 | |
|   unsigned i = 0;
 | |
|   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
 | |
|        ++I, ++i) {
 | |
|     Assert(I->getType() == FT->getParamType(i),
 | |
|            "Argument value does not match function argument type!", I,
 | |
|            FT->getParamType(i));
 | |
|     Assert(I->getType()->isFirstClassType(),
 | |
|            "Function arguments must have first-class types!", I);
 | |
|     if (!isLLVMdotName)
 | |
|       Assert(!I->getType()->isMetadataTy(),
 | |
|              "Function takes metadata but isn't an intrinsic", I, &F);
 | |
|   }
 | |
| 
 | |
|   if (F.isMaterializable()) {
 | |
|     // Function has a body somewhere we can't see.
 | |
|   } else if (F.isDeclaration()) {
 | |
|     Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
 | |
|            "invalid linkage type for function declaration", &F);
 | |
|   } else {
 | |
|     // Verify that this function (which has a body) is not named "llvm.*".  It
 | |
|     // is not legal to define intrinsics.
 | |
|     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
 | |
| 
 | |
|     // Check the entry node
 | |
|     const BasicBlock *Entry = &F.getEntryBlock();
 | |
|     Assert(pred_empty(Entry),
 | |
|            "Entry block to function must not have predecessors!", Entry);
 | |
| 
 | |
|     // The address of the entry block cannot be taken, unless it is dead.
 | |
|     if (Entry->hasAddressTaken()) {
 | |
|       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
 | |
|              "blockaddress may not be used with the entry block!", Entry);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this function is actually an intrinsic, verify that it is only used in
 | |
|   // direct call/invokes, never having its "address taken".
 | |
|   if (F.getIntrinsicID()) {
 | |
|     const User *U;
 | |
|     if (F.hasAddressTaken(&U))
 | |
|       Assert(0, "Invalid user of intrinsic instruction!", U);
 | |
|   }
 | |
| 
 | |
|   Assert(!F.hasDLLImportStorageClass() ||
 | |
|              (F.isDeclaration() && F.hasExternalLinkage()) ||
 | |
|              F.hasAvailableExternallyLinkage(),
 | |
|          "Function is marked as dllimport, but not external.", &F);
 | |
| }
 | |
| 
 | |
| // verifyBasicBlock - Verify that a basic block is well formed...
 | |
| //
 | |
| void Verifier::visitBasicBlock(BasicBlock &BB) {
 | |
|   InstsInThisBlock.clear();
 | |
| 
 | |
|   // Ensure that basic blocks have terminators!
 | |
|   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
 | |
| 
 | |
|   // Check constraints that this basic block imposes on all of the PHI nodes in
 | |
|   // it.
 | |
|   if (isa<PHINode>(BB.front())) {
 | |
|     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
 | |
|     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
 | |
|     std::sort(Preds.begin(), Preds.end());
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
 | |
|       // Ensure that PHI nodes have at least one entry!
 | |
|       Assert(PN->getNumIncomingValues() != 0,
 | |
|              "PHI nodes must have at least one entry.  If the block is dead, "
 | |
|              "the PHI should be removed!",
 | |
|              PN);
 | |
|       Assert(PN->getNumIncomingValues() == Preds.size(),
 | |
|              "PHINode should have one entry for each predecessor of its "
 | |
|              "parent basic block!",
 | |
|              PN);
 | |
| 
 | |
|       // Get and sort all incoming values in the PHI node...
 | |
|       Values.clear();
 | |
|       Values.reserve(PN->getNumIncomingValues());
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
 | |
|                                         PN->getIncomingValue(i)));
 | |
|       std::sort(Values.begin(), Values.end());
 | |
| 
 | |
|       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
 | |
|         // Check to make sure that if there is more than one entry for a
 | |
|         // particular basic block in this PHI node, that the incoming values are
 | |
|         // all identical.
 | |
|         //
 | |
|         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
 | |
|                    Values[i].second == Values[i - 1].second,
 | |
|                "PHI node has multiple entries for the same basic block with "
 | |
|                "different incoming values!",
 | |
|                PN, Values[i].first, Values[i].second, Values[i - 1].second);
 | |
| 
 | |
|         // Check to make sure that the predecessors and PHI node entries are
 | |
|         // matched up.
 | |
|         Assert(Values[i].first == Preds[i],
 | |
|                "PHI node entries do not match predecessors!", PN,
 | |
|                Values[i].first, Preds[i]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that all instructions have their parent pointers set up correctly.
 | |
|   for (auto &I : BB)
 | |
|   {
 | |
|     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitTerminatorInst(TerminatorInst &I) {
 | |
|   // Ensure that terminators only exist at the end of the basic block.
 | |
|   Assert(&I == I.getParent()->getTerminator(),
 | |
|          "Terminator found in the middle of a basic block!", I.getParent());
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitBranchInst(BranchInst &BI) {
 | |
|   if (BI.isConditional()) {
 | |
|     Assert(BI.getCondition()->getType()->isIntegerTy(1),
 | |
|            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
 | |
|   }
 | |
|   visitTerminatorInst(BI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitReturnInst(ReturnInst &RI) {
 | |
|   Function *F = RI.getParent()->getParent();
 | |
|   unsigned N = RI.getNumOperands();
 | |
|   if (F->getReturnType()->isVoidTy())
 | |
|     Assert(N == 0,
 | |
|            "Found return instr that returns non-void in Function of void "
 | |
|            "return type!",
 | |
|            &RI, F->getReturnType());
 | |
|   else
 | |
|     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
 | |
|            "Function return type does not match operand "
 | |
|            "type of return inst!",
 | |
|            &RI, F->getReturnType());
 | |
| 
 | |
|   // Check to make sure that the return value has necessary properties for
 | |
|   // terminators...
 | |
|   visitTerminatorInst(RI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSwitchInst(SwitchInst &SI) {
 | |
|   // Check to make sure that all of the constants in the switch instruction
 | |
|   // have the same type as the switched-on value.
 | |
|   Type *SwitchTy = SI.getCondition()->getType();
 | |
|   SmallPtrSet<ConstantInt*, 32> Constants;
 | |
|   for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
 | |
|     Assert(i.getCaseValue()->getType() == SwitchTy,
 | |
|            "Switch constants must all be same type as switch value!", &SI);
 | |
|     Assert(Constants.insert(i.getCaseValue()).second,
 | |
|            "Duplicate integer as switch case", &SI, i.getCaseValue());
 | |
|   }
 | |
| 
 | |
|   visitTerminatorInst(SI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
 | |
|   Assert(BI.getAddress()->getType()->isPointerTy(),
 | |
|          "Indirectbr operand must have pointer type!", &BI);
 | |
|   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
 | |
|     Assert(BI.getDestination(i)->getType()->isLabelTy(),
 | |
|            "Indirectbr destinations must all have pointer type!", &BI);
 | |
| 
 | |
|   visitTerminatorInst(BI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSelectInst(SelectInst &SI) {
 | |
|   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
 | |
|                                          SI.getOperand(2)),
 | |
|          "Invalid operands for select instruction!", &SI);
 | |
| 
 | |
|   Assert(SI.getTrueValue()->getType() == SI.getType(),
 | |
|          "Select values must have same type as select instruction!", &SI);
 | |
|   visitInstruction(SI);
 | |
| }
 | |
| 
 | |
| /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
 | |
| /// a pass, if any exist, it's an error.
 | |
| ///
 | |
| void Verifier::visitUserOp1(Instruction &I) {
 | |
|   Assert(0, "User-defined operators should not live outside of a pass!", &I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitTruncInst(TruncInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
 | |
|   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
 | |
|   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | |
|          "trunc source and destination must both be a vector or neither", &I);
 | |
|   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitZExtInst(ZExtInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
 | |
|   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
 | |
|   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | |
|          "zext source and destination must both be a vector or neither", &I);
 | |
|   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSExtInst(SExtInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
 | |
|   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
 | |
|   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | |
|          "sext source and destination must both be a vector or neither", &I);
 | |
|   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPTruncInst(FPTruncInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
 | |
|   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
 | |
|   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | |
|          "fptrunc source and destination must both be a vector or neither", &I);
 | |
|   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPExtInst(FPExtInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
 | |
|   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
 | |
|   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | |
|          "fpext source and destination must both be a vector or neither", &I);
 | |
|   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitUIToFPInst(UIToFPInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->isVectorTy();
 | |
|   bool DstVec = DestTy->isVectorTy();
 | |
| 
 | |
|   Assert(SrcVec == DstVec,
 | |
|          "UIToFP source and dest must both be vector or scalar", &I);
 | |
|   Assert(SrcTy->isIntOrIntVectorTy(),
 | |
|          "UIToFP source must be integer or integer vector", &I);
 | |
|   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
 | |
|          &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
 | |
|                cast<VectorType>(DestTy)->getNumElements(),
 | |
|            "UIToFP source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSIToFPInst(SIToFPInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->isVectorTy();
 | |
|   bool DstVec = DestTy->isVectorTy();
 | |
| 
 | |
|   Assert(SrcVec == DstVec,
 | |
|          "SIToFP source and dest must both be vector or scalar", &I);
 | |
|   Assert(SrcTy->isIntOrIntVectorTy(),
 | |
|          "SIToFP source must be integer or integer vector", &I);
 | |
|   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
 | |
|          &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
 | |
|                cast<VectorType>(DestTy)->getNumElements(),
 | |
|            "SIToFP source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPToUIInst(FPToUIInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->isVectorTy();
 | |
|   bool DstVec = DestTy->isVectorTy();
 | |
| 
 | |
|   Assert(SrcVec == DstVec,
 | |
|          "FPToUI source and dest must both be vector or scalar", &I);
 | |
|   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
 | |
|          &I);
 | |
|   Assert(DestTy->isIntOrIntVectorTy(),
 | |
|          "FPToUI result must be integer or integer vector", &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
 | |
|                cast<VectorType>(DestTy)->getNumElements(),
 | |
|            "FPToUI source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPToSIInst(FPToSIInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->isVectorTy();
 | |
|   bool DstVec = DestTy->isVectorTy();
 | |
| 
 | |
|   Assert(SrcVec == DstVec,
 | |
|          "FPToSI source and dest must both be vector or scalar", &I);
 | |
|   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
 | |
|          &I);
 | |
|   Assert(DestTy->isIntOrIntVectorTy(),
 | |
|          "FPToSI result must be integer or integer vector", &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
 | |
|                cast<VectorType>(DestTy)->getNumElements(),
 | |
|            "FPToSI source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert(SrcTy->getScalarType()->isPointerTy(),
 | |
|          "PtrToInt source must be pointer", &I);
 | |
|   Assert(DestTy->getScalarType()->isIntegerTy(),
 | |
|          "PtrToInt result must be integral", &I);
 | |
|   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
 | |
|          &I);
 | |
| 
 | |
|   if (SrcTy->isVectorTy()) {
 | |
|     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
 | |
|     VectorType *VDest = dyn_cast<VectorType>(DestTy);
 | |
|     Assert(VSrc->getNumElements() == VDest->getNumElements(),
 | |
|            "PtrToInt Vector width mismatch", &I);
 | |
|   }
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert(SrcTy->getScalarType()->isIntegerTy(),
 | |
|          "IntToPtr source must be an integral", &I);
 | |
|   Assert(DestTy->getScalarType()->isPointerTy(),
 | |
|          "IntToPtr result must be a pointer", &I);
 | |
|   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
 | |
|          &I);
 | |
|   if (SrcTy->isVectorTy()) {
 | |
|     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
 | |
|     VectorType *VDest = dyn_cast<VectorType>(DestTy);
 | |
|     Assert(VSrc->getNumElements() == VDest->getNumElements(),
 | |
|            "IntToPtr Vector width mismatch", &I);
 | |
|   }
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitBitCastInst(BitCastInst &I) {
 | |
|   Assert(
 | |
|       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
 | |
|       "Invalid bitcast", &I);
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
 | |
|          &I);
 | |
|   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
 | |
|          &I);
 | |
|   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
 | |
|          "AddrSpaceCast must be between different address spaces", &I);
 | |
|   if (SrcTy->isVectorTy())
 | |
|     Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
 | |
|            "AddrSpaceCast vector pointer number of elements mismatch", &I);
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| /// visitPHINode - Ensure that a PHI node is well formed.
 | |
| ///
 | |
| void Verifier::visitPHINode(PHINode &PN) {
 | |
|   // Ensure that the PHI nodes are all grouped together at the top of the block.
 | |
|   // This can be tested by checking whether the instruction before this is
 | |
|   // either nonexistent (because this is begin()) or is a PHI node.  If not,
 | |
|   // then there is some other instruction before a PHI.
 | |
|   Assert(&PN == &PN.getParent()->front() ||
 | |
|              isa<PHINode>(--BasicBlock::iterator(&PN)),
 | |
|          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
 | |
| 
 | |
|   // Check that all of the values of the PHI node have the same type as the
 | |
|   // result, and that the incoming blocks are really basic blocks.
 | |
|   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     Assert(PN.getType() == PN.getIncomingValue(i)->getType(),
 | |
|            "PHI node operands are not the same type as the result!", &PN);
 | |
|   }
 | |
| 
 | |
|   // All other PHI node constraints are checked in the visitBasicBlock method.
 | |
| 
 | |
|   visitInstruction(PN);
 | |
| }
 | |
| 
 | |
| void Verifier::VerifyCallSite(CallSite CS) {
 | |
|   Instruction *I = CS.getInstruction();
 | |
| 
 | |
|   Assert(CS.getCalledValue()->getType()->isPointerTy(),
 | |
|          "Called function must be a pointer!", I);
 | |
|   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
 | |
| 
 | |
|   Assert(FPTy->getElementType()->isFunctionTy(),
 | |
|          "Called function is not pointer to function type!", I);
 | |
|   FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
 | |
| 
 | |
|   // Verify that the correct number of arguments are being passed
 | |
|   if (FTy->isVarArg())
 | |
|     Assert(CS.arg_size() >= FTy->getNumParams(),
 | |
|            "Called function requires more parameters than were provided!", I);
 | |
|   else
 | |
|     Assert(CS.arg_size() == FTy->getNumParams(),
 | |
|            "Incorrect number of arguments passed to called function!", I);
 | |
| 
 | |
|   // Verify that all arguments to the call match the function type.
 | |
|   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | |
|     Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
 | |
|            "Call parameter type does not match function signature!",
 | |
|            CS.getArgument(i), FTy->getParamType(i), I);
 | |
| 
 | |
|   AttributeSet Attrs = CS.getAttributes();
 | |
| 
 | |
|   Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
 | |
|          "Attribute after last parameter!", I);
 | |
| 
 | |
|   // Verify call attributes.
 | |
|   VerifyFunctionAttrs(FTy, Attrs, I);
 | |
| 
 | |
|   // Conservatively check the inalloca argument.
 | |
|   // We have a bug if we can find that there is an underlying alloca without
 | |
|   // inalloca.
 | |
|   if (CS.hasInAllocaArgument()) {
 | |
|     Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
 | |
|     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
 | |
|       Assert(AI->isUsedWithInAlloca(),
 | |
|              "inalloca argument for call has mismatched alloca", AI, I);
 | |
|   }
 | |
| 
 | |
|   if (FTy->isVarArg()) {
 | |
|     // FIXME? is 'nest' even legal here?
 | |
|     bool SawNest = false;
 | |
|     bool SawReturned = false;
 | |
| 
 | |
|     for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
 | |
|       if (Attrs.hasAttribute(Idx, Attribute::Nest))
 | |
|         SawNest = true;
 | |
|       if (Attrs.hasAttribute(Idx, Attribute::Returned))
 | |
|         SawReturned = true;
 | |
|     }
 | |
| 
 | |
|     // Check attributes on the varargs part.
 | |
|     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
 | |
|       Type *Ty = CS.getArgument(Idx-1)->getType();
 | |
|       VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
 | |
| 
 | |
|       if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
 | |
|         Assert(!SawNest, "More than one parameter has attribute nest!", I);
 | |
|         SawNest = true;
 | |
|       }
 | |
| 
 | |
|       if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
 | |
|         Assert(!SawReturned, "More than one parameter has attribute returned!",
 | |
|                I);
 | |
|         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
 | |
|                "Incompatible argument and return types for 'returned' "
 | |
|                "attribute",
 | |
|                I);
 | |
|         SawReturned = true;
 | |
|       }
 | |
| 
 | |
|       Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
 | |
|              "Attribute 'sret' cannot be used for vararg call arguments!", I);
 | |
| 
 | |
|       if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
 | |
|         Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Verify that there's no metadata unless it's a direct call to an intrinsic.
 | |
|   if (CS.getCalledFunction() == nullptr ||
 | |
|       !CS.getCalledFunction()->getName().startswith("llvm.")) {
 | |
|     for (FunctionType::param_iterator PI = FTy->param_begin(),
 | |
|            PE = FTy->param_end(); PI != PE; ++PI)
 | |
|       Assert(!(*PI)->isMetadataTy(),
 | |
|              "Function has metadata parameter but isn't an intrinsic", I);
 | |
|   }
 | |
| 
 | |
|   visitInstruction(*I);
 | |
| }
 | |
| 
 | |
| /// Two types are "congruent" if they are identical, or if they are both pointer
 | |
| /// types with different pointee types and the same address space.
 | |
| static bool isTypeCongruent(Type *L, Type *R) {
 | |
|   if (L == R)
 | |
|     return true;
 | |
|   PointerType *PL = dyn_cast<PointerType>(L);
 | |
|   PointerType *PR = dyn_cast<PointerType>(R);
 | |
|   if (!PL || !PR)
 | |
|     return false;
 | |
|   return PL->getAddressSpace() == PR->getAddressSpace();
 | |
| }
 | |
| 
 | |
| static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
 | |
|   static const Attribute::AttrKind ABIAttrs[] = {
 | |
|       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
 | |
|       Attribute::InReg, Attribute::Returned};
 | |
|   AttrBuilder Copy;
 | |
|   for (auto AK : ABIAttrs) {
 | |
|     if (Attrs.hasAttribute(I + 1, AK))
 | |
|       Copy.addAttribute(AK);
 | |
|   }
 | |
|   if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
 | |
|     Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
 | |
|   return Copy;
 | |
| }
 | |
| 
 | |
| void Verifier::verifyMustTailCall(CallInst &CI) {
 | |
|   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
 | |
| 
 | |
|   // - The caller and callee prototypes must match.  Pointer types of
 | |
|   //   parameters or return types may differ in pointee type, but not
 | |
|   //   address space.
 | |
|   Function *F = CI.getParent()->getParent();
 | |
|   auto GetFnTy = [](Value *V) {
 | |
|     return cast<FunctionType>(
 | |
|         cast<PointerType>(V->getType())->getElementType());
 | |
|   };
 | |
|   FunctionType *CallerTy = GetFnTy(F);
 | |
|   FunctionType *CalleeTy = GetFnTy(CI.getCalledValue());
 | |
|   Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
 | |
|          "cannot guarantee tail call due to mismatched parameter counts", &CI);
 | |
|   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
 | |
|          "cannot guarantee tail call due to mismatched varargs", &CI);
 | |
|   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
 | |
|          "cannot guarantee tail call due to mismatched return types", &CI);
 | |
|   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
 | |
|     Assert(
 | |
|         isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
 | |
|         "cannot guarantee tail call due to mismatched parameter types", &CI);
 | |
|   }
 | |
| 
 | |
|   // - The calling conventions of the caller and callee must match.
 | |
|   Assert(F->getCallingConv() == CI.getCallingConv(),
 | |
|          "cannot guarantee tail call due to mismatched calling conv", &CI);
 | |
| 
 | |
|   // - All ABI-impacting function attributes, such as sret, byval, inreg,
 | |
|   //   returned, and inalloca, must match.
 | |
|   AttributeSet CallerAttrs = F->getAttributes();
 | |
|   AttributeSet CalleeAttrs = CI.getAttributes();
 | |
|   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
 | |
|     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
 | |
|     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
 | |
|     Assert(CallerABIAttrs == CalleeABIAttrs,
 | |
|            "cannot guarantee tail call due to mismatched ABI impacting "
 | |
|            "function attributes",
 | |
|            &CI, CI.getOperand(I));
 | |
|   }
 | |
| 
 | |
|   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
 | |
|   //   or a pointer bitcast followed by a ret instruction.
 | |
|   // - The ret instruction must return the (possibly bitcasted) value
 | |
|   //   produced by the call or void.
 | |
|   Value *RetVal = &CI;
 | |
|   Instruction *Next = CI.getNextNode();
 | |
| 
 | |
|   // Handle the optional bitcast.
 | |
|   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
 | |
|     Assert(BI->getOperand(0) == RetVal,
 | |
|            "bitcast following musttail call must use the call", BI);
 | |
|     RetVal = BI;
 | |
|     Next = BI->getNextNode();
 | |
|   }
 | |
| 
 | |
|   // Check the return.
 | |
|   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
 | |
|   Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
 | |
|          &CI);
 | |
|   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
 | |
|          "musttail call result must be returned", Ret);
 | |
| }
 | |
| 
 | |
| void Verifier::visitCallInst(CallInst &CI) {
 | |
|   VerifyCallSite(&CI);
 | |
| 
 | |
|   if (CI.isMustTailCall())
 | |
|     verifyMustTailCall(CI);
 | |
| 
 | |
|   if (Function *F = CI.getCalledFunction())
 | |
|     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
 | |
|       visitIntrinsicFunctionCall(ID, CI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitInvokeInst(InvokeInst &II) {
 | |
|   VerifyCallSite(&II);
 | |
| 
 | |
|   // Verify that there is a landingpad instruction as the first non-PHI
 | |
|   // instruction of the 'unwind' destination.
 | |
|   Assert(II.getUnwindDest()->isLandingPad(),
 | |
|          "The unwind destination does not have a landingpad instruction!", &II);
 | |
| 
 | |
|   if (Function *F = II.getCalledFunction())
 | |
|     // TODO: Ideally we should use visitIntrinsicFunction here. But it uses
 | |
|     //       CallInst as an input parameter. It not woth updating this whole
 | |
|     //       function only to support statepoint verification.
 | |
|     if (F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint)
 | |
|       VerifyStatepoint(ImmutableCallSite(&II));
 | |
| 
 | |
|   visitTerminatorInst(II);
 | |
| }
 | |
| 
 | |
| /// visitBinaryOperator - Check that both arguments to the binary operator are
 | |
| /// of the same type!
 | |
| ///
 | |
| void Verifier::visitBinaryOperator(BinaryOperator &B) {
 | |
|   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
 | |
|          "Both operands to a binary operator are not of the same type!", &B);
 | |
| 
 | |
|   switch (B.getOpcode()) {
 | |
|   // Check that integer arithmetic operators are only used with
 | |
|   // integral operands.
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::URem:
 | |
|     Assert(B.getType()->isIntOrIntVectorTy(),
 | |
|            "Integer arithmetic operators only work with integral types!", &B);
 | |
|     Assert(B.getType() == B.getOperand(0)->getType(),
 | |
|            "Integer arithmetic operators must have same type "
 | |
|            "for operands and result!",
 | |
|            &B);
 | |
|     break;
 | |
|   // Check that floating-point arithmetic operators are only used with
 | |
|   // floating-point operands.
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::FMul:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::FRem:
 | |
|     Assert(B.getType()->isFPOrFPVectorTy(),
 | |
|            "Floating-point arithmetic operators only work with "
 | |
|            "floating-point types!",
 | |
|            &B);
 | |
|     Assert(B.getType() == B.getOperand(0)->getType(),
 | |
|            "Floating-point arithmetic operators must have same type "
 | |
|            "for operands and result!",
 | |
|            &B);
 | |
|     break;
 | |
|   // Check that logical operators are only used with integral operands.
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     Assert(B.getType()->isIntOrIntVectorTy(),
 | |
|            "Logical operators only work with integral types!", &B);
 | |
|     Assert(B.getType() == B.getOperand(0)->getType(),
 | |
|            "Logical operators must have same type for operands and result!",
 | |
|            &B);
 | |
|     break;
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     Assert(B.getType()->isIntOrIntVectorTy(),
 | |
|            "Shifts only work with integral types!", &B);
 | |
|     Assert(B.getType() == B.getOperand(0)->getType(),
 | |
|            "Shift return type must be same as operands!", &B);
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Unknown BinaryOperator opcode!");
 | |
|   }
 | |
| 
 | |
|   visitInstruction(B);
 | |
| }
 | |
| 
 | |
| void Verifier::visitICmpInst(ICmpInst &IC) {
 | |
|   // Check that the operands are the same type
 | |
|   Type *Op0Ty = IC.getOperand(0)->getType();
 | |
|   Type *Op1Ty = IC.getOperand(1)->getType();
 | |
|   Assert(Op0Ty == Op1Ty,
 | |
|          "Both operands to ICmp instruction are not of the same type!", &IC);
 | |
|   // Check that the operands are the right type
 | |
|   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
 | |
|          "Invalid operand types for ICmp instruction", &IC);
 | |
|   // Check that the predicate is valid.
 | |
|   Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
 | |
|              IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
 | |
|          "Invalid predicate in ICmp instruction!", &IC);
 | |
| 
 | |
|   visitInstruction(IC);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFCmpInst(FCmpInst &FC) {
 | |
|   // Check that the operands are the same type
 | |
|   Type *Op0Ty = FC.getOperand(0)->getType();
 | |
|   Type *Op1Ty = FC.getOperand(1)->getType();
 | |
|   Assert(Op0Ty == Op1Ty,
 | |
|          "Both operands to FCmp instruction are not of the same type!", &FC);
 | |
|   // Check that the operands are the right type
 | |
|   Assert(Op0Ty->isFPOrFPVectorTy(),
 | |
|          "Invalid operand types for FCmp instruction", &FC);
 | |
|   // Check that the predicate is valid.
 | |
|   Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
 | |
|              FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
 | |
|          "Invalid predicate in FCmp instruction!", &FC);
 | |
| 
 | |
|   visitInstruction(FC);
 | |
| }
 | |
| 
 | |
| void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
 | |
|   Assert(
 | |
|       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
 | |
|       "Invalid extractelement operands!", &EI);
 | |
|   visitInstruction(EI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitInsertElementInst(InsertElementInst &IE) {
 | |
|   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
 | |
|                                             IE.getOperand(2)),
 | |
|          "Invalid insertelement operands!", &IE);
 | |
|   visitInstruction(IE);
 | |
| }
 | |
| 
 | |
| void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
 | |
|   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
 | |
|                                             SV.getOperand(2)),
 | |
|          "Invalid shufflevector operands!", &SV);
 | |
|   visitInstruction(SV);
 | |
| }
 | |
| 
 | |
| void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | |
|   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
 | |
| 
 | |
|   Assert(isa<PointerType>(TargetTy),
 | |
|          "GEP base pointer is not a vector or a vector of pointers", &GEP);
 | |
|   Assert(cast<PointerType>(TargetTy)->getElementType()->isSized(),
 | |
|          "GEP into unsized type!", &GEP);
 | |
|   Assert(GEP.getPointerOperandType()->isVectorTy() ==
 | |
|              GEP.getType()->isVectorTy(),
 | |
|          "Vector GEP must return a vector value", &GEP);
 | |
| 
 | |
|   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
 | |
|   Type *ElTy =
 | |
|       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
 | |
|   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
 | |
| 
 | |
|   Assert(GEP.getType()->getScalarType()->isPointerTy() &&
 | |
|              cast<PointerType>(GEP.getType()->getScalarType())
 | |
|                      ->getElementType() == ElTy,
 | |
|          "GEP is not of right type for indices!", &GEP, ElTy);
 | |
| 
 | |
|   if (GEP.getPointerOperandType()->isVectorTy()) {
 | |
|     // Additional checks for vector GEPs.
 | |
|     unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
 | |
|     Assert(GepWidth == GEP.getType()->getVectorNumElements(),
 | |
|            "Vector GEP result width doesn't match operand's", &GEP);
 | |
|     for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
 | |
|       Type *IndexTy = Idxs[i]->getType();
 | |
|       Assert(IndexTy->isVectorTy(), "Vector GEP must have vector indices!",
 | |
|              &GEP);
 | |
|       unsigned IndexWidth = IndexTy->getVectorNumElements();
 | |
|       Assert(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
 | |
|     }
 | |
|   }
 | |
|   visitInstruction(GEP);
 | |
| }
 | |
| 
 | |
| static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
 | |
|   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
 | |
| }
 | |
| 
 | |
| void Verifier::visitRangeMetadata(Instruction& I,
 | |
|                                   MDNode* Range, Type* Ty) {
 | |
|   assert(Range &&
 | |
|          Range == I.getMetadata(LLVMContext::MD_range) &&
 | |
|          "precondition violation");
 | |
| 
 | |
|   unsigned NumOperands = Range->getNumOperands();
 | |
|   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
 | |
|   unsigned NumRanges = NumOperands / 2;
 | |
|   Assert(NumRanges >= 1, "It should have at least one range!", Range);
 | |
| 
 | |
|   ConstantRange LastRange(1); // Dummy initial value
 | |
|   for (unsigned i = 0; i < NumRanges; ++i) {
 | |
|     ConstantInt *Low =
 | |
|         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
 | |
|     Assert(Low, "The lower limit must be an integer!", Low);
 | |
|     ConstantInt *High =
 | |
|         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
 | |
|     Assert(High, "The upper limit must be an integer!", High);
 | |
|     Assert(High->getType() == Low->getType() && High->getType() == Ty,
 | |
|            "Range types must match instruction type!", &I);
 | |
| 
 | |
|     APInt HighV = High->getValue();
 | |
|     APInt LowV = Low->getValue();
 | |
|     ConstantRange CurRange(LowV, HighV);
 | |
|     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
 | |
|            "Range must not be empty!", Range);
 | |
|     if (i != 0) {
 | |
|       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
 | |
|              "Intervals are overlapping", Range);
 | |
|       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
 | |
|              Range);
 | |
|       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
 | |
|              Range);
 | |
|     }
 | |
|     LastRange = ConstantRange(LowV, HighV);
 | |
|   }
 | |
|   if (NumRanges > 2) {
 | |
|     APInt FirstLow =
 | |
|         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
 | |
|     APInt FirstHigh =
 | |
|         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
 | |
|     ConstantRange FirstRange(FirstLow, FirstHigh);
 | |
|     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
 | |
|            "Intervals are overlapping", Range);
 | |
|     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
 | |
|            Range);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitLoadInst(LoadInst &LI) {
 | |
|   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
 | |
|   Assert(PTy, "Load operand must be a pointer.", &LI);
 | |
|   Type *ElTy = PTy->getElementType();
 | |
|   Assert(ElTy == LI.getType(),
 | |
|          "Load result type does not match pointer operand type!", &LI, ElTy);
 | |
|   Assert(LI.getAlignment() <= Value::MaximumAlignment,
 | |
|          "huge alignment values are unsupported", &LI);
 | |
|   if (LI.isAtomic()) {
 | |
|     Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
 | |
|            "Load cannot have Release ordering", &LI);
 | |
|     Assert(LI.getAlignment() != 0,
 | |
|            "Atomic load must specify explicit alignment", &LI);
 | |
|     if (!ElTy->isPointerTy()) {
 | |
|       Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!",
 | |
|              &LI, ElTy);
 | |
|       unsigned Size = ElTy->getPrimitiveSizeInBits();
 | |
|       Assert(Size >= 8 && !(Size & (Size - 1)),
 | |
|              "atomic load operand must be power-of-two byte-sized integer", &LI,
 | |
|              ElTy);
 | |
|     }
 | |
|   } else {
 | |
|     Assert(LI.getSynchScope() == CrossThread,
 | |
|            "Non-atomic load cannot have SynchronizationScope specified", &LI);
 | |
|   }
 | |
| 
 | |
|   visitInstruction(LI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitStoreInst(StoreInst &SI) {
 | |
|   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
 | |
|   Assert(PTy, "Store operand must be a pointer.", &SI);
 | |
|   Type *ElTy = PTy->getElementType();
 | |
|   Assert(ElTy == SI.getOperand(0)->getType(),
 | |
|          "Stored value type does not match pointer operand type!", &SI, ElTy);
 | |
|   Assert(SI.getAlignment() <= Value::MaximumAlignment,
 | |
|          "huge alignment values are unsupported", &SI);
 | |
|   if (SI.isAtomic()) {
 | |
|     Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
 | |
|            "Store cannot have Acquire ordering", &SI);
 | |
|     Assert(SI.getAlignment() != 0,
 | |
|            "Atomic store must specify explicit alignment", &SI);
 | |
|     if (!ElTy->isPointerTy()) {
 | |
|       Assert(ElTy->isIntegerTy(),
 | |
|              "atomic store operand must have integer type!", &SI, ElTy);
 | |
|       unsigned Size = ElTy->getPrimitiveSizeInBits();
 | |
|       Assert(Size >= 8 && !(Size & (Size - 1)),
 | |
|              "atomic store operand must be power-of-two byte-sized integer",
 | |
|              &SI, ElTy);
 | |
|     }
 | |
|   } else {
 | |
|     Assert(SI.getSynchScope() == CrossThread,
 | |
|            "Non-atomic store cannot have SynchronizationScope specified", &SI);
 | |
|   }
 | |
|   visitInstruction(SI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitAllocaInst(AllocaInst &AI) {
 | |
|   SmallPtrSet<const Type*, 4> Visited;
 | |
|   PointerType *PTy = AI.getType();
 | |
|   Assert(PTy->getAddressSpace() == 0,
 | |
|          "Allocation instruction pointer not in the generic address space!",
 | |
|          &AI);
 | |
|   Assert(PTy->getElementType()->isSized(&Visited),
 | |
|          "Cannot allocate unsized type", &AI);
 | |
|   Assert(AI.getArraySize()->getType()->isIntegerTy(),
 | |
|          "Alloca array size must have integer type", &AI);
 | |
|   Assert(AI.getAlignment() <= Value::MaximumAlignment,
 | |
|          "huge alignment values are unsupported", &AI);
 | |
| 
 | |
|   visitInstruction(AI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
 | |
| 
 | |
|   // FIXME: more conditions???
 | |
|   Assert(CXI.getSuccessOrdering() != NotAtomic,
 | |
|          "cmpxchg instructions must be atomic.", &CXI);
 | |
|   Assert(CXI.getFailureOrdering() != NotAtomic,
 | |
|          "cmpxchg instructions must be atomic.", &CXI);
 | |
|   Assert(CXI.getSuccessOrdering() != Unordered,
 | |
|          "cmpxchg instructions cannot be unordered.", &CXI);
 | |
|   Assert(CXI.getFailureOrdering() != Unordered,
 | |
|          "cmpxchg instructions cannot be unordered.", &CXI);
 | |
|   Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
 | |
|          "cmpxchg instructions be at least as constrained on success as fail",
 | |
|          &CXI);
 | |
|   Assert(CXI.getFailureOrdering() != Release &&
 | |
|              CXI.getFailureOrdering() != AcquireRelease,
 | |
|          "cmpxchg failure ordering cannot include release semantics", &CXI);
 | |
| 
 | |
|   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
 | |
|   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
 | |
|   Type *ElTy = PTy->getElementType();
 | |
|   Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
 | |
|          ElTy);
 | |
|   unsigned Size = ElTy->getPrimitiveSizeInBits();
 | |
|   Assert(Size >= 8 && !(Size & (Size - 1)),
 | |
|          "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy);
 | |
|   Assert(ElTy == CXI.getOperand(1)->getType(),
 | |
|          "Expected value type does not match pointer operand type!", &CXI,
 | |
|          ElTy);
 | |
|   Assert(ElTy == CXI.getOperand(2)->getType(),
 | |
|          "Stored value type does not match pointer operand type!", &CXI, ElTy);
 | |
|   visitInstruction(CXI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
 | |
|   Assert(RMWI.getOrdering() != NotAtomic,
 | |
|          "atomicrmw instructions must be atomic.", &RMWI);
 | |
|   Assert(RMWI.getOrdering() != Unordered,
 | |
|          "atomicrmw instructions cannot be unordered.", &RMWI);
 | |
|   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
 | |
|   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
 | |
|   Type *ElTy = PTy->getElementType();
 | |
|   Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
 | |
|          &RMWI, ElTy);
 | |
|   unsigned Size = ElTy->getPrimitiveSizeInBits();
 | |
|   Assert(Size >= 8 && !(Size & (Size - 1)),
 | |
|          "atomicrmw operand must be power-of-two byte-sized integer", &RMWI,
 | |
|          ElTy);
 | |
|   Assert(ElTy == RMWI.getOperand(1)->getType(),
 | |
|          "Argument value type does not match pointer operand type!", &RMWI,
 | |
|          ElTy);
 | |
|   Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
 | |
|              RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
 | |
|          "Invalid binary operation!", &RMWI);
 | |
|   visitInstruction(RMWI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFenceInst(FenceInst &FI) {
 | |
|   const AtomicOrdering Ordering = FI.getOrdering();
 | |
|   Assert(Ordering == Acquire || Ordering == Release ||
 | |
|              Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
 | |
|          "fence instructions may only have "
 | |
|          "acquire, release, acq_rel, or seq_cst ordering.",
 | |
|          &FI);
 | |
|   visitInstruction(FI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
 | |
|   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
 | |
|                                           EVI.getIndices()) == EVI.getType(),
 | |
|          "Invalid ExtractValueInst operands!", &EVI);
 | |
| 
 | |
|   visitInstruction(EVI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
 | |
|   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
 | |
|                                           IVI.getIndices()) ==
 | |
|              IVI.getOperand(1)->getType(),
 | |
|          "Invalid InsertValueInst operands!", &IVI);
 | |
| 
 | |
|   visitInstruction(IVI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
 | |
|   BasicBlock *BB = LPI.getParent();
 | |
| 
 | |
|   // The landingpad instruction is ill-formed if it doesn't have any clauses and
 | |
|   // isn't a cleanup.
 | |
|   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
 | |
|          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
 | |
| 
 | |
|   // The landingpad instruction defines its parent as a landing pad block. The
 | |
|   // landing pad block may be branched to only by the unwind edge of an invoke.
 | |
|   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
 | |
|     const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
 | |
|     Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
 | |
|            "Block containing LandingPadInst must be jumped to "
 | |
|            "only by the unwind edge of an invoke.",
 | |
|            &LPI);
 | |
|   }
 | |
| 
 | |
|   // The landingpad instruction must be the first non-PHI instruction in the
 | |
|   // block.
 | |
|   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
 | |
|          "LandingPadInst not the first non-PHI instruction in the block.",
 | |
|          &LPI);
 | |
| 
 | |
|   // The personality functions for all landingpad instructions within the same
 | |
|   // function should match.
 | |
|   if (PersonalityFn)
 | |
|     Assert(LPI.getPersonalityFn() == PersonalityFn,
 | |
|            "Personality function doesn't match others in function", &LPI);
 | |
|   PersonalityFn = LPI.getPersonalityFn();
 | |
| 
 | |
|   // All operands must be constants.
 | |
|   Assert(isa<Constant>(PersonalityFn), "Personality function is not constant!",
 | |
|          &LPI);
 | |
|   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
 | |
|     Constant *Clause = LPI.getClause(i);
 | |
|     if (LPI.isCatch(i)) {
 | |
|       Assert(isa<PointerType>(Clause->getType()),
 | |
|              "Catch operand does not have pointer type!", &LPI);
 | |
|     } else {
 | |
|       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
 | |
|       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
 | |
|              "Filter operand is not an array of constants!", &LPI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   visitInstruction(LPI);
 | |
| }
 | |
| 
 | |
| void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
 | |
|   Instruction *Op = cast<Instruction>(I.getOperand(i));
 | |
|   // If the we have an invalid invoke, don't try to compute the dominance.
 | |
|   // We already reject it in the invoke specific checks and the dominance
 | |
|   // computation doesn't handle multiple edges.
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
 | |
|     if (II->getNormalDest() == II->getUnwindDest())
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   const Use &U = I.getOperandUse(i);
 | |
|   Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
 | |
|          "Instruction does not dominate all uses!", Op, &I);
 | |
| }
 | |
| 
 | |
| /// verifyInstruction - Verify that an instruction is well formed.
 | |
| ///
 | |
| void Verifier::visitInstruction(Instruction &I) {
 | |
|   BasicBlock *BB = I.getParent();
 | |
|   Assert(BB, "Instruction not embedded in basic block!", &I);
 | |
| 
 | |
|   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
 | |
|     for (User *U : I.users()) {
 | |
|       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
 | |
|              "Only PHI nodes may reference their own value!", &I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that void typed values don't have names
 | |
|   Assert(!I.getType()->isVoidTy() || !I.hasName(),
 | |
|          "Instruction has a name, but provides a void value!", &I);
 | |
| 
 | |
|   // Check that the return value of the instruction is either void or a legal
 | |
|   // value type.
 | |
|   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
 | |
|          "Instruction returns a non-scalar type!", &I);
 | |
| 
 | |
|   // Check that the instruction doesn't produce metadata. Calls are already
 | |
|   // checked against the callee type.
 | |
|   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
 | |
|          "Invalid use of metadata!", &I);
 | |
| 
 | |
|   // Check that all uses of the instruction, if they are instructions
 | |
|   // themselves, actually have parent basic blocks.  If the use is not an
 | |
|   // instruction, it is an error!
 | |
|   for (Use &U : I.uses()) {
 | |
|     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
 | |
|       Assert(Used->getParent() != nullptr,
 | |
|              "Instruction referencing"
 | |
|              " instruction not embedded in a basic block!",
 | |
|              &I, Used);
 | |
|     else {
 | |
|       CheckFailed("Use of instruction is not an instruction!", U);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | |
|     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
 | |
| 
 | |
|     // Check to make sure that only first-class-values are operands to
 | |
|     // instructions.
 | |
|     if (!I.getOperand(i)->getType()->isFirstClassType()) {
 | |
|       Assert(0, "Instruction operands must be first-class values!", &I);
 | |
|     }
 | |
| 
 | |
|     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
 | |
|       // Check to make sure that the "address of" an intrinsic function is never
 | |
|       // taken.
 | |
|       Assert(
 | |
|           !F->isIntrinsic() ||
 | |
|               i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
 | |
|           "Cannot take the address of an intrinsic!", &I);
 | |
|       Assert(
 | |
|           !F->isIntrinsic() || isa<CallInst>(I) ||
 | |
|               F->getIntrinsicID() == Intrinsic::donothing ||
 | |
|               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
 | |
|               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
 | |
|               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
 | |
|           "Cannot invoke an intrinsinc other than"
 | |
|           " donothing or patchpoint",
 | |
|           &I);
 | |
|       Assert(F->getParent() == M, "Referencing function in another module!",
 | |
|              &I);
 | |
|     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
 | |
|       Assert(OpBB->getParent() == BB->getParent(),
 | |
|              "Referring to a basic block in another function!", &I);
 | |
|     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
 | |
|       Assert(OpArg->getParent() == BB->getParent(),
 | |
|              "Referring to an argument in another function!", &I);
 | |
|     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
 | |
|       Assert(GV->getParent() == M, "Referencing global in another module!", &I);
 | |
|     } else if (isa<Instruction>(I.getOperand(i))) {
 | |
|       verifyDominatesUse(I, i);
 | |
|     } else if (isa<InlineAsm>(I.getOperand(i))) {
 | |
|       Assert((i + 1 == e && isa<CallInst>(I)) ||
 | |
|                  (i + 3 == e && isa<InvokeInst>(I)),
 | |
|              "Cannot take the address of an inline asm!", &I);
 | |
|     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
 | |
|       if (CE->getType()->isPtrOrPtrVectorTy()) {
 | |
|         // If we have a ConstantExpr pointer, we need to see if it came from an
 | |
|         // illegal bitcast (inttoptr <constant int> )
 | |
|         SmallVector<const ConstantExpr *, 4> Stack;
 | |
|         SmallPtrSet<const ConstantExpr *, 4> Visited;
 | |
|         Stack.push_back(CE);
 | |
| 
 | |
|         while (!Stack.empty()) {
 | |
|           const ConstantExpr *V = Stack.pop_back_val();
 | |
|           if (!Visited.insert(V).second)
 | |
|             continue;
 | |
| 
 | |
|           VerifyConstantExprBitcastType(V);
 | |
| 
 | |
|           for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
 | |
|             if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
 | |
|               Stack.push_back(Op);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
 | |
|     Assert(I.getType()->isFPOrFPVectorTy(),
 | |
|            "fpmath requires a floating point result!", &I);
 | |
|     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
 | |
|     if (ConstantFP *CFP0 =
 | |
|             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
 | |
|       APFloat Accuracy = CFP0->getValueAPF();
 | |
|       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
 | |
|              "fpmath accuracy not a positive number!", &I);
 | |
|     } else {
 | |
|       Assert(false, "invalid fpmath accuracy!", &I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
 | |
|     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
 | |
|            "Ranges are only for loads, calls and invokes!", &I);
 | |
|     visitRangeMetadata(I, Range, I.getType());
 | |
|   }
 | |
| 
 | |
|   if (I.getMetadata(LLVMContext::MD_nonnull)) {
 | |
|     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
 | |
|            &I);
 | |
|     Assert(isa<LoadInst>(I),
 | |
|            "nonnull applies only to load instructions, use attributes"
 | |
|            " for calls or invokes",
 | |
|            &I);
 | |
|   }
 | |
| 
 | |
|   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
 | |
|     Assert(isa<MDLocation>(N), "invalid !dbg metadata attachment", &I, N);
 | |
|     visitMDNode(*N);
 | |
|   }
 | |
| 
 | |
|   InstsInThisBlock.insert(&I);
 | |
| }
 | |
| 
 | |
| /// VerifyIntrinsicType - Verify that the specified type (which comes from an
 | |
| /// intrinsic argument or return value) matches the type constraints specified
 | |
| /// by the .td file (e.g. an "any integer" argument really is an integer).
 | |
| ///
 | |
| /// This return true on error but does not print a message.
 | |
| bool Verifier::VerifyIntrinsicType(Type *Ty,
 | |
|                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
 | |
|                                    SmallVectorImpl<Type*> &ArgTys) {
 | |
|   using namespace Intrinsic;
 | |
| 
 | |
|   // If we ran out of descriptors, there are too many arguments.
 | |
|   if (Infos.empty()) return true;
 | |
|   IITDescriptor D = Infos.front();
 | |
|   Infos = Infos.slice(1);
 | |
| 
 | |
|   switch (D.Kind) {
 | |
|   case IITDescriptor::Void: return !Ty->isVoidTy();
 | |
|   case IITDescriptor::VarArg: return true;
 | |
|   case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
 | |
|   case IITDescriptor::Metadata: return !Ty->isMetadataTy();
 | |
|   case IITDescriptor::Half: return !Ty->isHalfTy();
 | |
|   case IITDescriptor::Float: return !Ty->isFloatTy();
 | |
|   case IITDescriptor::Double: return !Ty->isDoubleTy();
 | |
|   case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
 | |
|   case IITDescriptor::Vector: {
 | |
|     VectorType *VT = dyn_cast<VectorType>(Ty);
 | |
|     return !VT || VT->getNumElements() != D.Vector_Width ||
 | |
|            VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
 | |
|   }
 | |
|   case IITDescriptor::Pointer: {
 | |
|     PointerType *PT = dyn_cast<PointerType>(Ty);
 | |
|     return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
 | |
|            VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
 | |
|   }
 | |
| 
 | |
|   case IITDescriptor::Struct: {
 | |
|     StructType *ST = dyn_cast<StructType>(Ty);
 | |
|     if (!ST || ST->getNumElements() != D.Struct_NumElements)
 | |
|       return true;
 | |
| 
 | |
|     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
 | |
|       if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case IITDescriptor::Argument:
 | |
|     // Two cases here - If this is the second occurrence of an argument, verify
 | |
|     // that the later instance matches the previous instance.
 | |
|     if (D.getArgumentNumber() < ArgTys.size())
 | |
|       return Ty != ArgTys[D.getArgumentNumber()];
 | |
| 
 | |
|     // Otherwise, if this is the first instance of an argument, record it and
 | |
|     // verify the "Any" kind.
 | |
|     assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
 | |
|     ArgTys.push_back(Ty);
 | |
| 
 | |
|     switch (D.getArgumentKind()) {
 | |
|     case IITDescriptor::AK_Any:        return false; // Success
 | |
|     case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
 | |
|     case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
 | |
|     case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
 | |
|     case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
 | |
|     }
 | |
|     llvm_unreachable("all argument kinds not covered");
 | |
| 
 | |
|   case IITDescriptor::ExtendArgument: {
 | |
|     // This may only be used when referring to a previous vector argument.
 | |
|     if (D.getArgumentNumber() >= ArgTys.size())
 | |
|       return true;
 | |
| 
 | |
|     Type *NewTy = ArgTys[D.getArgumentNumber()];
 | |
|     if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
 | |
|       NewTy = VectorType::getExtendedElementVectorType(VTy);
 | |
|     else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
 | |
|       NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
 | |
|     else
 | |
|       return true;
 | |
| 
 | |
|     return Ty != NewTy;
 | |
|   }
 | |
|   case IITDescriptor::TruncArgument: {
 | |
|     // This may only be used when referring to a previous vector argument.
 | |
|     if (D.getArgumentNumber() >= ArgTys.size())
 | |
|       return true;
 | |
| 
 | |
|     Type *NewTy = ArgTys[D.getArgumentNumber()];
 | |
|     if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
 | |
|       NewTy = VectorType::getTruncatedElementVectorType(VTy);
 | |
|     else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
 | |
|       NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
 | |
|     else
 | |
|       return true;
 | |
| 
 | |
|     return Ty != NewTy;
 | |
|   }
 | |
|   case IITDescriptor::HalfVecArgument:
 | |
|     // This may only be used when referring to a previous vector argument.
 | |
|     return D.getArgumentNumber() >= ArgTys.size() ||
 | |
|            !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
 | |
|            VectorType::getHalfElementsVectorType(
 | |
|                          cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
 | |
|   case IITDescriptor::SameVecWidthArgument: {
 | |
|     if (D.getArgumentNumber() >= ArgTys.size())
 | |
|       return true;
 | |
|     VectorType * ReferenceType =
 | |
|       dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
 | |
|     VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
 | |
|     if (!ThisArgType || !ReferenceType || 
 | |
|         (ReferenceType->getVectorNumElements() !=
 | |
|          ThisArgType->getVectorNumElements()))
 | |
|       return true;
 | |
|     return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
 | |
|                                Infos, ArgTys);
 | |
|   }
 | |
|   case IITDescriptor::PtrToArgument: {
 | |
|     if (D.getArgumentNumber() >= ArgTys.size())
 | |
|       return true;
 | |
|     Type * ReferenceType = ArgTys[D.getArgumentNumber()];
 | |
|     PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
 | |
|     return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
 | |
|   }
 | |
|   case IITDescriptor::VecOfPtrsToElt: {
 | |
|     if (D.getArgumentNumber() >= ArgTys.size())
 | |
|       return true;
 | |
|     VectorType * ReferenceType =
 | |
|       dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
 | |
|     VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
 | |
|     if (!ThisArgVecTy || !ReferenceType || 
 | |
|         (ReferenceType->getVectorNumElements() !=
 | |
|          ThisArgVecTy->getVectorNumElements()))
 | |
|       return true;
 | |
|     PointerType *ThisArgEltTy =
 | |
|       dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
 | |
|     if (!ThisArgEltTy)
 | |
|       return true;
 | |
|     return (!(ThisArgEltTy->getElementType() ==
 | |
|             ReferenceType->getVectorElementType()));
 | |
|   }
 | |
|   }
 | |
|   llvm_unreachable("unhandled");
 | |
| }
 | |
| 
 | |
| /// \brief Verify if the intrinsic has variable arguments.
 | |
| /// This method is intended to be called after all the fixed arguments have been
 | |
| /// verified first.
 | |
| ///
 | |
| /// This method returns true on error and does not print an error message.
 | |
| bool
 | |
| Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
 | |
|                                   ArrayRef<Intrinsic::IITDescriptor> &Infos) {
 | |
|   using namespace Intrinsic;
 | |
| 
 | |
|   // If there are no descriptors left, then it can't be a vararg.
 | |
|   if (Infos.empty())
 | |
|     return isVarArg;
 | |
| 
 | |
|   // There should be only one descriptor remaining at this point.
 | |
|   if (Infos.size() != 1)
 | |
|     return true;
 | |
| 
 | |
|   // Check and verify the descriptor.
 | |
|   IITDescriptor D = Infos.front();
 | |
|   Infos = Infos.slice(1);
 | |
|   if (D.Kind == IITDescriptor::VarArg)
 | |
|     return !isVarArg;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
 | |
| ///
 | |
| void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
 | |
|   Function *IF = CI.getCalledFunction();
 | |
|   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
 | |
|          IF);
 | |
| 
 | |
|   // Verify that the intrinsic prototype lines up with what the .td files
 | |
|   // describe.
 | |
|   FunctionType *IFTy = IF->getFunctionType();
 | |
|   bool IsVarArg = IFTy->isVarArg();
 | |
| 
 | |
|   SmallVector<Intrinsic::IITDescriptor, 8> Table;
 | |
|   getIntrinsicInfoTableEntries(ID, Table);
 | |
|   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
 | |
| 
 | |
|   SmallVector<Type *, 4> ArgTys;
 | |
|   Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
 | |
|          "Intrinsic has incorrect return type!", IF);
 | |
|   for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
 | |
|     Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
 | |
|            "Intrinsic has incorrect argument type!", IF);
 | |
| 
 | |
|   // Verify if the intrinsic call matches the vararg property.
 | |
|   if (IsVarArg)
 | |
|     Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
 | |
|            "Intrinsic was not defined with variable arguments!", IF);
 | |
|   else
 | |
|     Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
 | |
|            "Callsite was not defined with variable arguments!", IF);
 | |
| 
 | |
|   // All descriptors should be absorbed by now.
 | |
|   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
 | |
| 
 | |
|   // Now that we have the intrinsic ID and the actual argument types (and we
 | |
|   // know they are legal for the intrinsic!) get the intrinsic name through the
 | |
|   // usual means.  This allows us to verify the mangling of argument types into
 | |
|   // the name.
 | |
|   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
 | |
|   Assert(ExpectedName == IF->getName(),
 | |
|          "Intrinsic name not mangled correctly for type arguments! "
 | |
|          "Should be: " +
 | |
|              ExpectedName,
 | |
|          IF);
 | |
| 
 | |
|   // If the intrinsic takes MDNode arguments, verify that they are either global
 | |
|   // or are local to *this* function.
 | |
|   for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
 | |
|     if (auto *MD = dyn_cast<MetadataAsValue>(CI.getArgOperand(i)))
 | |
|       visitMetadataAsValue(*MD, CI.getParent()->getParent());
 | |
| 
 | |
|   switch (ID) {
 | |
|   default:
 | |
|     break;
 | |
|   case Intrinsic::ctlz:  // llvm.ctlz
 | |
|   case Intrinsic::cttz:  // llvm.cttz
 | |
|     Assert(isa<ConstantInt>(CI.getArgOperand(1)),
 | |
|            "is_zero_undef argument of bit counting intrinsics must be a "
 | |
|            "constant int",
 | |
|            &CI);
 | |
|     break;
 | |
|   case Intrinsic::dbg_declare: // llvm.dbg.declare
 | |
|     Assert(isa<MetadataAsValue>(CI.getArgOperand(0)),
 | |
|            "invalid llvm.dbg.declare intrinsic call 1", &CI);
 | |
|     visitDbgIntrinsic("declare", cast<DbgDeclareInst>(CI));
 | |
|     break;
 | |
|   case Intrinsic::dbg_value: // llvm.dbg.value
 | |
|     visitDbgIntrinsic("value", cast<DbgValueInst>(CI));
 | |
|     break;
 | |
|   case Intrinsic::memcpy:
 | |
|   case Intrinsic::memmove:
 | |
|   case Intrinsic::memset: {
 | |
|     ConstantInt *AlignCI = dyn_cast<ConstantInt>(CI.getArgOperand(3));
 | |
|     Assert(AlignCI,
 | |
|            "alignment argument of memory intrinsics must be a constant int",
 | |
|            &CI);
 | |
|     const APInt &AlignVal = AlignCI->getValue();
 | |
|     Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
 | |
|            "alignment argument of memory intrinsics must be a power of 2", &CI);
 | |
|     Assert(isa<ConstantInt>(CI.getArgOperand(4)),
 | |
|            "isvolatile argument of memory intrinsics must be a constant int",
 | |
|            &CI);
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::gcroot:
 | |
|   case Intrinsic::gcwrite:
 | |
|   case Intrinsic::gcread:
 | |
|     if (ID == Intrinsic::gcroot) {
 | |
|       AllocaInst *AI =
 | |
|         dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
 | |
|       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
 | |
|       Assert(isa<Constant>(CI.getArgOperand(1)),
 | |
|              "llvm.gcroot parameter #2 must be a constant.", &CI);
 | |
|       if (!AI->getType()->getElementType()->isPointerTy()) {
 | |
|         Assert(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
 | |
|                "llvm.gcroot parameter #1 must either be a pointer alloca, "
 | |
|                "or argument #2 must be a non-null constant.",
 | |
|                &CI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Assert(CI.getParent()->getParent()->hasGC(),
 | |
|            "Enclosing function does not use GC.", &CI);
 | |
|     break;
 | |
|   case Intrinsic::init_trampoline:
 | |
|     Assert(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
 | |
|            "llvm.init_trampoline parameter #2 must resolve to a function.",
 | |
|            &CI);
 | |
|     break;
 | |
|   case Intrinsic::prefetch:
 | |
|     Assert(isa<ConstantInt>(CI.getArgOperand(1)) &&
 | |
|                isa<ConstantInt>(CI.getArgOperand(2)) &&
 | |
|                cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
 | |
|                cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
 | |
|            "invalid arguments to llvm.prefetch", &CI);
 | |
|     break;
 | |
|   case Intrinsic::stackprotector:
 | |
|     Assert(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
 | |
|            "llvm.stackprotector parameter #2 must resolve to an alloca.", &CI);
 | |
|     break;
 | |
|   case Intrinsic::lifetime_start:
 | |
|   case Intrinsic::lifetime_end:
 | |
|   case Intrinsic::invariant_start:
 | |
|     Assert(isa<ConstantInt>(CI.getArgOperand(0)),
 | |
|            "size argument of memory use markers must be a constant integer",
 | |
|            &CI);
 | |
|     break;
 | |
|   case Intrinsic::invariant_end:
 | |
|     Assert(isa<ConstantInt>(CI.getArgOperand(1)),
 | |
|            "llvm.invariant.end parameter #2 must be a constant integer", &CI);
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::frameescape: {
 | |
|     BasicBlock *BB = CI.getParent();
 | |
|     Assert(BB == &BB->getParent()->front(),
 | |
|            "llvm.frameescape used outside of entry block", &CI);
 | |
|     Assert(!SawFrameEscape,
 | |
|            "multiple calls to llvm.frameescape in one function", &CI);
 | |
|     for (Value *Arg : CI.arg_operands()) {
 | |
|       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
 | |
|       Assert(AI && AI->isStaticAlloca(),
 | |
|              "llvm.frameescape only accepts static allocas", &CI);
 | |
|     }
 | |
|     FrameEscapeInfo[BB->getParent()].first = CI.getNumArgOperands();
 | |
|     SawFrameEscape = true;
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::framerecover: {
 | |
|     Value *FnArg = CI.getArgOperand(0)->stripPointerCasts();
 | |
|     Function *Fn = dyn_cast<Function>(FnArg);
 | |
|     Assert(Fn && !Fn->isDeclaration(),
 | |
|            "llvm.framerecover first "
 | |
|            "argument must be function defined in this module",
 | |
|            &CI);
 | |
|     auto *IdxArg = dyn_cast<ConstantInt>(CI.getArgOperand(2));
 | |
|     Assert(IdxArg, "idx argument of llvm.framerecover must be a constant int",
 | |
|            &CI);
 | |
|     auto &Entry = FrameEscapeInfo[Fn];
 | |
|     Entry.second = unsigned(
 | |
|         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::eh_parentframe: {
 | |
|     auto *AI = dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
 | |
|     Assert(AI && AI->isStaticAlloca(),
 | |
|            "llvm.eh.parentframe requires a static alloca", &CI);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::eh_unwindhelp: {
 | |
|     auto *AI = dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
 | |
|     Assert(AI && AI->isStaticAlloca(),
 | |
|            "llvm.eh.unwindhelp requires a static alloca", &CI);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::experimental_gc_statepoint:
 | |
|     Assert(!CI.isInlineAsm(),
 | |
|            "gc.statepoint support for inline assembly unimplemented", &CI);
 | |
|     Assert(CI.getParent()->getParent()->hasGC(),
 | |
|            "Enclosing function does not use GC.", &CI);
 | |
| 
 | |
|     VerifyStatepoint(ImmutableCallSite(&CI));
 | |
|     break;
 | |
|   case Intrinsic::experimental_gc_result_int:
 | |
|   case Intrinsic::experimental_gc_result_float:
 | |
|   case Intrinsic::experimental_gc_result_ptr:
 | |
|   case Intrinsic::experimental_gc_result: {
 | |
|     Assert(CI.getParent()->getParent()->hasGC(),
 | |
|            "Enclosing function does not use GC.", &CI);
 | |
|     // Are we tied to a statepoint properly?
 | |
|     CallSite StatepointCS(CI.getArgOperand(0));
 | |
|     const Function *StatepointFn =
 | |
|       StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
 | |
|     Assert(StatepointFn && StatepointFn->isDeclaration() &&
 | |
|                StatepointFn->getIntrinsicID() ==
 | |
|                    Intrinsic::experimental_gc_statepoint,
 | |
|            "gc.result operand #1 must be from a statepoint", &CI,
 | |
|            CI.getArgOperand(0));
 | |
| 
 | |
|     // Assert that result type matches wrapped callee.
 | |
|     const Value *Target = StatepointCS.getArgument(0);
 | |
|     const PointerType *PT = cast<PointerType>(Target->getType());
 | |
|     const FunctionType *TargetFuncType =
 | |
|       cast<FunctionType>(PT->getElementType());
 | |
|     Assert(CI.getType() == TargetFuncType->getReturnType(),
 | |
|            "gc.result result type does not match wrapped callee", &CI);
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::experimental_gc_relocate: {
 | |
|     Assert(CI.getNumArgOperands() == 3, "wrong number of arguments", &CI);
 | |
| 
 | |
|     // Check that this relocate is correctly tied to the statepoint
 | |
| 
 | |
|     // This is case for relocate on the unwinding path of an invoke statepoint
 | |
|     if (ExtractValueInst *ExtractValue =
 | |
|           dyn_cast<ExtractValueInst>(CI.getArgOperand(0))) {
 | |
|       Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),
 | |
|              "gc relocate on unwind path incorrectly linked to the statepoint",
 | |
|              &CI);
 | |
| 
 | |
|       const BasicBlock *invokeBB =
 | |
|         ExtractValue->getParent()->getUniquePredecessor();
 | |
| 
 | |
|       // Landingpad relocates should have only one predecessor with invoke
 | |
|       // statepoint terminator
 | |
|       Assert(invokeBB, "safepoints should have unique landingpads",
 | |
|              ExtractValue->getParent());
 | |
|       Assert(invokeBB->getTerminator(), "safepoint block should be well formed",
 | |
|              invokeBB);
 | |
|       Assert(isStatepoint(invokeBB->getTerminator()),
 | |
|              "gc relocate should be linked to a statepoint", invokeBB);
 | |
|     }
 | |
|     else {
 | |
|       // In all other cases relocate should be tied to the statepoint directly.
 | |
|       // This covers relocates on a normal return path of invoke statepoint and
 | |
|       // relocates of a call statepoint
 | |
|       auto Token = CI.getArgOperand(0);
 | |
|       Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
 | |
|              "gc relocate is incorrectly tied to the statepoint", &CI, Token);
 | |
|     }
 | |
| 
 | |
|     // Verify rest of the relocate arguments
 | |
| 
 | |
|     GCRelocateOperands ops(&CI);
 | |
|     ImmutableCallSite StatepointCS(ops.statepoint());
 | |
| 
 | |
|     // Both the base and derived must be piped through the safepoint
 | |
|     Value* Base = CI.getArgOperand(1);
 | |
|     Assert(isa<ConstantInt>(Base),
 | |
|            "gc.relocate operand #2 must be integer offset", &CI);
 | |
| 
 | |
|     Value* Derived = CI.getArgOperand(2);
 | |
|     Assert(isa<ConstantInt>(Derived),
 | |
|            "gc.relocate operand #3 must be integer offset", &CI);
 | |
| 
 | |
|     const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
 | |
|     const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
 | |
|     // Check the bounds
 | |
|     Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
 | |
|            "gc.relocate: statepoint base index out of bounds", &CI);
 | |
|     Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
 | |
|            "gc.relocate: statepoint derived index out of bounds", &CI);
 | |
| 
 | |
|     // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
 | |
|     // section of the statepoint's argument
 | |
|     Assert(StatepointCS.arg_size() > 0,
 | |
|            "gc.statepoint: insufficient arguments");
 | |
|     Assert(isa<ConstantInt>(StatepointCS.getArgument(1)),
 | |
|            "gc.statement: number of call arguments must be constant integer");
 | |
|     const unsigned NumCallArgs =
 | |
|       cast<ConstantInt>(StatepointCS.getArgument(1))->getZExtValue();
 | |
|     Assert(StatepointCS.arg_size() > NumCallArgs+3,
 | |
|            "gc.statepoint: mismatch in number of call arguments");
 | |
|     Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs+3)),
 | |
|            "gc.statepoint: number of deoptimization arguments must be "
 | |
|            "a constant integer");
 | |
|     const int NumDeoptArgs =
 | |
|       cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 3))->getZExtValue();
 | |
|     const int GCParamArgsStart = NumCallArgs + NumDeoptArgs + 4;
 | |
|     const int GCParamArgsEnd = StatepointCS.arg_size();
 | |
|     Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
 | |
|            "gc.relocate: statepoint base index doesn't fall within the "
 | |
|            "'gc parameters' section of the statepoint call",
 | |
|            &CI);
 | |
|     Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
 | |
|            "gc.relocate: statepoint derived index doesn't fall within the "
 | |
|            "'gc parameters' section of the statepoint call",
 | |
|            &CI);
 | |
| 
 | |
|     // Assert that the result type matches the type of the relocated pointer
 | |
|     GCRelocateOperands Operands(&CI);
 | |
|     Assert(Operands.derivedPtr()->getType() == CI.getType(),
 | |
|            "gc.relocate: relocating a pointer shouldn't change its type", &CI);
 | |
|     break;
 | |
|   }
 | |
|   };
 | |
| }
 | |
| 
 | |
| template <class DbgIntrinsicTy>
 | |
| void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
 | |
|   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
 | |
|   Assert(isa<ValueAsMetadata>(MD) ||
 | |
|              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
 | |
|          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
 | |
|   Assert(isa<MDLocalVariable>(DII.getRawVariable()),
 | |
|          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
 | |
|          DII.getRawVariable());
 | |
|   Assert(isa<MDExpression>(DII.getRawExpression()),
 | |
|          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
 | |
|          DII.getRawExpression());
 | |
| }
 | |
| 
 | |
| void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
 | |
|   // This is in its own function so we get an error for each bad type ref (not
 | |
|   // just the first).
 | |
|   Assert(false, "unresolved type ref", S, N);
 | |
| }
 | |
| 
 | |
| void Verifier::verifyTypeRefs() {
 | |
|   auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
 | |
|   if (!CUs)
 | |
|     return;
 | |
| 
 | |
|   // Visit all the compile units again to check the type references.
 | |
|   for (auto *CU : CUs->operands())
 | |
|     if (auto *Ts = cast<MDCompileUnit>(CU)->getRetainedTypes())
 | |
|       for (auto &Op : Ts->operands())
 | |
|         if (auto *T = dyn_cast<MDCompositeType>(Op))
 | |
|           TypeRefs.erase(T->getRawIdentifier());
 | |
|   if (TypeRefs.empty())
 | |
|     return;
 | |
| 
 | |
|   // Sort the unresolved references by name so the output is deterministic.
 | |
|   typedef std::pair<const MDString *, const MDNode *> TypeRef;
 | |
|   SmallVector<TypeRef, 32> Unresolved(TypeRefs.begin(), TypeRefs.end());
 | |
|   std::sort(Unresolved.begin(), Unresolved.end(),
 | |
|             [](const TypeRef &LHS, const TypeRef &RHS) {
 | |
|     return LHS.first->getString() < RHS.first->getString();
 | |
|   });
 | |
| 
 | |
|   // Visit the unresolved refs (printing out the errors).
 | |
|   for (const TypeRef &TR : Unresolved)
 | |
|     visitUnresolvedTypeRef(TR.first, TR.second);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Implement the public interfaces to this file...
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
 | |
|   Function &F = const_cast<Function &>(f);
 | |
|   assert(!F.isDeclaration() && "Cannot verify external functions");
 | |
| 
 | |
|   raw_null_ostream NullStr;
 | |
|   Verifier V(OS ? *OS : NullStr);
 | |
| 
 | |
|   // Note that this function's return value is inverted from what you would
 | |
|   // expect of a function called "verify".
 | |
|   return !V.verify(F);
 | |
| }
 | |
| 
 | |
| bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
 | |
|   raw_null_ostream NullStr;
 | |
|   Verifier V(OS ? *OS : NullStr);
 | |
| 
 | |
|   bool Broken = false;
 | |
|   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
 | |
|     if (!I->isDeclaration() && !I->isMaterializable())
 | |
|       Broken |= !V.verify(*I);
 | |
| 
 | |
|   // Note that this function's return value is inverted from what you would
 | |
|   // expect of a function called "verify".
 | |
|   return !V.verify(M) || Broken;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct VerifierLegacyPass : public FunctionPass {
 | |
|   static char ID;
 | |
| 
 | |
|   Verifier V;
 | |
|   bool FatalErrors;
 | |
| 
 | |
|   VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
 | |
|     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
|   explicit VerifierLegacyPass(bool FatalErrors)
 | |
|       : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
 | |
|     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     if (!V.verify(F) && FatalErrors)
 | |
|       report_fatal_error("Broken function found, compilation aborted!");
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool doFinalization(Module &M) override {
 | |
|     if (!V.verify(M) && FatalErrors)
 | |
|       report_fatal_error("Broken module found, compilation aborted!");
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesAll();
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| char VerifierLegacyPass::ID = 0;
 | |
| INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
 | |
|   return new VerifierLegacyPass(FatalErrors);
 | |
| }
 | |
| 
 | |
| PreservedAnalyses VerifierPass::run(Module &M) {
 | |
|   if (verifyModule(M, &dbgs()) && FatalErrors)
 | |
|     report_fatal_error("Broken module found, compilation aborted!");
 | |
| 
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| PreservedAnalyses VerifierPass::run(Function &F) {
 | |
|   if (verifyFunction(F, &dbgs()) && FatalErrors)
 | |
|     report_fatal_error("Broken function found, compilation aborted!");
 | |
| 
 | |
|   return PreservedAnalyses::all();
 | |
| }
 |