llvm-6502/lib/CodeGen/SplitKit.h
Jakob Stoklund Olesen f0ac26c511 Move calcLiveBlockInfo() and the BlockInfo struct into SplitAnalysis.
No functional changes intended.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125231 91177308-0d34-0410-b5e6-96231b3b80d8
2011-02-09 22:50:26 +00:00

453 lines
17 KiB
C++

//===-------- SplitKit.h - Toolkit for splitting live ranges ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SplitAnalysis class as well as mutator functions for
// live range splitting.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/SlotIndexes.h"
namespace llvm {
class ConnectedVNInfoEqClasses;
class LiveInterval;
class LiveIntervals;
class LiveRangeEdit;
class MachineInstr;
class MachineLoop;
class MachineLoopInfo;
class MachineRegisterInfo;
class TargetInstrInfo;
class TargetRegisterInfo;
class VirtRegMap;
class VNInfo;
class raw_ostream;
/// At some point we should just include MachineDominators.h:
class MachineDominatorTree;
template <class NodeT> class DomTreeNodeBase;
typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode;
/// SplitAnalysis - Analyze a LiveInterval, looking for live range splitting
/// opportunities.
class SplitAnalysis {
public:
const MachineFunction &MF;
const LiveIntervals &LIS;
const MachineLoopInfo &Loops;
const TargetInstrInfo &TII;
// Instructions using the the current register.
typedef SmallPtrSet<const MachineInstr*, 16> InstrPtrSet;
InstrPtrSet UsingInstrs;
// Sorted slot indexes of using instructions.
SmallVector<SlotIndex, 8> UseSlots;
// The number of instructions using CurLI in each basic block.
typedef DenseMap<const MachineBasicBlock*, unsigned> BlockCountMap;
BlockCountMap UsingBlocks;
// The number of basic block using CurLI in each loop.
typedef DenseMap<const MachineLoop*, unsigned> LoopCountMap;
LoopCountMap UsingLoops;
/// Additional information about basic blocks where the current variable is
/// live. Such a block will look like one of these templates:
///
/// 1. | o---x | Internal to block. Variable is only live in this block.
/// 2. |---x | Live-in, kill.
/// 3. | o---| Def, live-out.
/// 4. |---x o---| Live-in, kill, def, live-out.
/// 5. |---o---o---| Live-through with uses or defs.
/// 6. |-----------| Live-through without uses. Transparent.
///
struct BlockInfo {
MachineBasicBlock *MBB;
SlotIndex FirstUse; ///< First instr using current reg.
SlotIndex LastUse; ///< Last instr using current reg.
SlotIndex Kill; ///< Interval end point inside block.
SlotIndex Def; ///< Interval start point inside block.
/// Last possible point for splitting live ranges.
SlotIndex LastSplitPoint;
bool Uses; ///< Current reg has uses or defs in block.
bool LiveThrough; ///< Live in whole block (Templ 5. or 6. above).
bool LiveIn; ///< Current reg is live in.
bool LiveOut; ///< Current reg is live out.
// Per-interference pattern scratch data.
bool OverlapEntry; ///< Interference overlaps entering interval.
bool OverlapExit; ///< Interference overlaps exiting interval.
};
/// Basic blocks where var is live. This array is parallel to
/// SpillConstraints.
SmallVector<BlockInfo, 8> LiveBlocks;
private:
// Current live interval.
const LiveInterval *CurLI;
// Sumarize statistics by counting instructions using CurLI.
void analyzeUses();
/// calcLiveBlockInfo - Compute per-block information about CurLI.
void calcLiveBlockInfo();
/// canAnalyzeBranch - Return true if MBB ends in a branch that can be
/// analyzed.
bool canAnalyzeBranch(const MachineBasicBlock *MBB);
public:
SplitAnalysis(const MachineFunction &mf, const LiveIntervals &lis,
const MachineLoopInfo &mli);
/// analyze - set CurLI to the specified interval, and analyze how it may be
/// split.
void analyze(const LiveInterval *li);
/// clear - clear all data structures so SplitAnalysis is ready to analyze a
/// new interval.
void clear();
/// hasUses - Return true if MBB has any uses of CurLI.
bool hasUses(const MachineBasicBlock *MBB) const {
return UsingBlocks.lookup(MBB);
}
typedef SmallPtrSet<const MachineBasicBlock*, 16> BlockPtrSet;
typedef SmallPtrSet<const MachineLoop*, 16> LoopPtrSet;
// Print a set of blocks with use counts.
void print(const BlockPtrSet&, raw_ostream&) const;
// Sets of basic blocks surrounding a machine loop.
struct LoopBlocks {
BlockPtrSet Loop; // Blocks in the loop.
BlockPtrSet Preds; // Loop predecessor blocks.
BlockPtrSet Exits; // Loop exit blocks.
void clear() {
Loop.clear();
Preds.clear();
Exits.clear();
}
};
// Print loop blocks with use counts.
void print(const LoopBlocks&, raw_ostream&) const;
// Calculate the block sets surrounding the loop.
void getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks);
/// LoopPeripheralUse - how is a variable used in and around a loop?
/// Peripheral blocks are the loop predecessors and exit blocks.
enum LoopPeripheralUse {
ContainedInLoop, // All uses are inside the loop.
SinglePeripheral, // At most one instruction per peripheral block.
MultiPeripheral, // Multiple instructions in some peripheral blocks.
OutsideLoop // Uses outside loop periphery.
};
/// analyzeLoopPeripheralUse - Return an enum describing how CurLI is used in
/// and around the Loop.
LoopPeripheralUse analyzeLoopPeripheralUse(const LoopBlocks&);
/// getCriticalExits - It may be necessary to partially break critical edges
/// leaving the loop if an exit block has phi uses of CurLI. Collect the exit
/// blocks that need special treatment into CriticalExits.
void getCriticalExits(const LoopBlocks &Blocks, BlockPtrSet &CriticalExits);
/// canSplitCriticalExits - Return true if it is possible to insert new exit
/// blocks before the blocks in CriticalExits.
bool canSplitCriticalExits(const LoopBlocks &Blocks,
BlockPtrSet &CriticalExits);
/// getCriticalPreds - Get the set of loop predecessors with critical edges to
/// blocks outside the loop that have CurLI live in. We don't have to break
/// these edges, but they do require special treatment.
void getCriticalPreds(const LoopBlocks &Blocks, BlockPtrSet &CriticalPreds);
/// getSplitLoops - Get the set of loops that have CurLI uses and would be
/// profitable to split.
void getSplitLoops(LoopPtrSet&);
/// getBestSplitLoop - Return the loop where CurLI may best be split to a
/// separate register, or NULL.
const MachineLoop *getBestSplitLoop();
/// isBypassLoop - Return true if CurLI is live through Loop and has no uses
/// inside the loop. Bypass loops are candidates for splitting because it can
/// prevent interference inside the loop.
bool isBypassLoop(const MachineLoop *Loop);
/// getBypassLoops - Get all the maximal bypass loops. These are the bypass
/// loops whose parent is not a bypass loop.
void getBypassLoops(LoopPtrSet&);
/// getMultiUseBlocks - Add basic blocks to Blocks that may benefit from
/// having CurLI split to a new live interval. Return true if Blocks can be
/// passed to SplitEditor::splitSingleBlocks.
bool getMultiUseBlocks(BlockPtrSet &Blocks);
/// getBlockForInsideSplit - If CurLI is contained inside a single basic
/// block, and it would pay to subdivide the interval inside that block,
/// return it. Otherwise return NULL. The returned block can be passed to
/// SplitEditor::splitInsideBlock.
const MachineBasicBlock *getBlockForInsideSplit();
};
/// LiveIntervalMap - Map values from a large LiveInterval into a small
/// interval that is a subset. Insert phi-def values as needed. This class is
/// used by SplitEditor to create new smaller LiveIntervals.
///
/// ParentLI is the larger interval, LI is the subset interval. Every value
/// in LI corresponds to exactly one value in ParentLI, and the live range
/// of the value is contained within the live range of the ParentLI value.
/// Values in ParentLI may map to any number of OpenLI values, including 0.
class LiveIntervalMap {
LiveIntervals &LIS;
MachineDominatorTree &MDT;
// The parent interval is never changed.
const LiveInterval &ParentLI;
// The child interval's values are fully contained inside ParentLI values.
LiveInterval *LI;
typedef DenseMap<const VNInfo*, VNInfo*> ValueMap;
// Map ParentLI values to simple values in LI that are defined at the same
// SlotIndex, or NULL for ParentLI values that have complex LI defs.
// Note there is a difference between values mapping to NULL (complex), and
// values not present (unknown/unmapped).
ValueMap Values;
typedef std::pair<VNInfo*, MachineDomTreeNode*> LiveOutPair;
typedef DenseMap<MachineBasicBlock*,LiveOutPair> LiveOutMap;
// LiveOutCache - Map each basic block where LI is live out to the live-out
// value and its defining block. One of these conditions shall be true:
//
// 1. !LiveOutCache.count(MBB)
// 2. LiveOutCache[MBB].second.getNode() == MBB
// 3. forall P in preds(MBB): LiveOutCache[P] == LiveOutCache[MBB]
//
// This is only a cache, the values can be computed as:
//
// VNI = LI->getVNInfoAt(LIS.getMBBEndIdx(MBB))
// Node = mbt_[LIS.getMBBFromIndex(VNI->def)]
//
// The cache is also used as a visiteed set by mapValue().
LiveOutMap LiveOutCache;
// Dump the live-out cache to dbgs().
void dumpCache();
public:
LiveIntervalMap(LiveIntervals &lis,
MachineDominatorTree &mdt,
const LiveInterval &parentli)
: LIS(lis), MDT(mdt), ParentLI(parentli), LI(0) {}
/// reset - clear all data structures and start a new live interval.
void reset(LiveInterval *);
/// getLI - return the current live interval.
LiveInterval *getLI() const { return LI; }
/// defValue - define a value in LI from the ParentLI value VNI and Idx.
/// Idx does not have to be ParentVNI->def, but it must be contained within
/// ParentVNI's live range in ParentLI.
/// Return the new LI value.
VNInfo *defValue(const VNInfo *ParentVNI, SlotIndex Idx);
/// mapValue - map ParentVNI to the corresponding LI value at Idx. It is
/// assumed that ParentVNI is live at Idx.
/// If ParentVNI has not been defined by defValue, it is assumed that
/// ParentVNI->def dominates Idx.
/// If ParentVNI has been defined by defValue one or more times, a value that
/// dominates Idx will be returned. This may require creating extra phi-def
/// values and adding live ranges to LI.
/// If simple is not NULL, *simple will indicate if ParentVNI is a simply
/// mapped value.
VNInfo *mapValue(const VNInfo *ParentVNI, SlotIndex Idx, bool *simple = 0);
// extendTo - Find the last LI value defined in MBB at or before Idx. The
// parentli is assumed to be live at Idx. Extend the live range to include
// Idx. Return the found VNInfo, or NULL.
VNInfo *extendTo(const MachineBasicBlock *MBB, SlotIndex Idx);
/// isMapped - Return true is ParentVNI is a known mapped value. It may be a
/// simple 1-1 mapping or a complex mapping to later defs.
bool isMapped(const VNInfo *ParentVNI) const {
return Values.count(ParentVNI);
}
/// isComplexMapped - Return true if ParentVNI has received new definitions
/// with defValue.
bool isComplexMapped(const VNInfo *ParentVNI) const;
/// markComplexMapped - Mark ParentVNI as complex mapped regardless of the
/// number of definitions.
void markComplexMapped(const VNInfo *ParentVNI) { Values[ParentVNI] = 0; }
// addSimpleRange - Add a simple range from ParentLI to LI.
// ParentVNI must be live in the [Start;End) interval.
void addSimpleRange(SlotIndex Start, SlotIndex End, const VNInfo *ParentVNI);
/// addRange - Add live ranges to LI where [Start;End) intersects ParentLI.
/// All needed values whose def is not inside [Start;End) must be defined
/// beforehand so mapValue will work.
void addRange(SlotIndex Start, SlotIndex End);
};
/// SplitEditor - Edit machine code and LiveIntervals for live range
/// splitting.
///
/// - Create a SplitEditor from a SplitAnalysis.
/// - Start a new live interval with openIntv.
/// - Mark the places where the new interval is entered using enterIntv*
/// - Mark the ranges where the new interval is used with useIntv*
/// - Mark the places where the interval is exited with exitIntv*.
/// - Finish the current interval with closeIntv and repeat from 2.
/// - Rewrite instructions with finish().
///
class SplitEditor {
SplitAnalysis &sa_;
LiveIntervals &LIS;
VirtRegMap &VRM;
MachineRegisterInfo &MRI;
MachineDominatorTree &MDT;
const TargetInstrInfo &TII;
const TargetRegisterInfo &TRI;
/// Edit - The current parent register and new intervals created.
LiveRangeEdit &Edit;
/// Index into Edit of the currently open interval.
/// The index 0 is used for the complement, so the first interval started by
/// openIntv will be 1.
unsigned OpenIdx;
typedef IntervalMap<SlotIndex, unsigned> RegAssignMap;
/// Allocator for the interval map. This will eventually be shared with
/// SlotIndexes and LiveIntervals.
RegAssignMap::Allocator Allocator;
/// RegAssign - Map of the assigned register indexes.
/// Edit.get(RegAssign.lookup(Idx)) is the register that should be live at
/// Idx.
RegAssignMap RegAssign;
/// LIMappers - One LiveIntervalMap or each interval in Edit.
SmallVector<LiveIntervalMap, 4> LIMappers;
/// defFromParent - Define Reg from ParentVNI at UseIdx using either
/// rematerialization or a COPY from parent. Return the new value.
VNInfo *defFromParent(unsigned RegIdx,
VNInfo *ParentVNI,
SlotIndex UseIdx,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I);
/// rewriteAssigned - Rewrite all uses of Edit.getReg() to assigned registers.
void rewriteAssigned();
/// rewriteComponents - Rewrite all uses of Intv[0] according to the eq
/// classes in ConEQ.
/// This must be done when Intvs[0] is styill live at all uses, before calling
/// ConEq.Distribute().
void rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs,
const ConnectedVNInfoEqClasses &ConEq);
public:
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
/// Newly created intervals will be appended to newIntervals.
SplitEditor(SplitAnalysis &SA, LiveIntervals&, VirtRegMap&,
MachineDominatorTree&, LiveRangeEdit&);
/// getAnalysis - Get the corresponding analysis.
SplitAnalysis &getAnalysis() { return sa_; }
/// Create a new virtual register and live interval.
void openIntv();
/// enterIntvBefore - Enter the open interval before the instruction at Idx.
/// If the parent interval is not live before Idx, a COPY is not inserted.
/// Return the beginning of the new live range.
SlotIndex enterIntvBefore(SlotIndex Idx);
/// enterIntvAtEnd - Enter the open interval at the end of MBB.
/// Use the open interval from he inserted copy to the MBB end.
/// Return the beginning of the new live range.
SlotIndex enterIntvAtEnd(MachineBasicBlock &MBB);
/// useIntv - indicate that all instructions in MBB should use OpenLI.
void useIntv(const MachineBasicBlock &MBB);
/// useIntv - indicate that all instructions in range should use OpenLI.
void useIntv(SlotIndex Start, SlotIndex End);
/// leaveIntvAfter - Leave the open interval after the instruction at Idx.
/// Return the end of the live range.
SlotIndex leaveIntvAfter(SlotIndex Idx);
/// leaveIntvAtTop - Leave the interval at the top of MBB.
/// Add liveness from the MBB top to the copy.
/// Return the end of the live range.
SlotIndex leaveIntvAtTop(MachineBasicBlock &MBB);
/// overlapIntv - Indicate that all instructions in range should use the open
/// interval, but also let the complement interval be live.
///
/// This doubles the register pressure, but is sometimes required to deal with
/// register uses after the last valid split point.
///
/// The Start index should be a return value from a leaveIntv* call, and End
/// should be in the same basic block. The parent interval must have the same
/// value across the range.
///
void overlapIntv(SlotIndex Start, SlotIndex End);
/// closeIntv - Indicate that we are done editing the currently open
/// LiveInterval, and ranges can be trimmed.
void closeIntv();
/// finish - after all the new live ranges have been created, compute the
/// remaining live range, and rewrite instructions to use the new registers.
void finish();
/// dump - print the current interval maping to dbgs().
void dump() const;
// ===--- High level methods ---===
/// splitAroundLoop - Split CurLI into a separate live interval inside
/// the loop.
void splitAroundLoop(const MachineLoop*);
/// splitSingleBlocks - Split CurLI into a separate live interval inside each
/// basic block in Blocks.
void splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks);
/// splitInsideBlock - Split CurLI into multiple intervals inside MBB.
void splitInsideBlock(const MachineBasicBlock *);
};
}