mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-21 03:32:21 +00:00
Ulrich Weigand
f0ef882828
[PowerPC] Report true displacement value from getPreIndexedAddressParts
DAGCombiner::CombineToPreIndexedLoadStore calls a target routine to decompose a memory address into a base/offset pair. It expects the offset (if constant) to be the true displacement value in order to perform optional additional optimizations; in particular, to convert other uses of the original pointer into uses of the new base pointer after pre-increment. The PowerPC implementation of getPreIndexedAddressParts, however, simply calls SelectAddressRegImm, which returns a TargetConstant. This value is appropriate for encoding into the instruction, but it is not always usable as true displacement value: - Its type is always MVT::i32, even on 64-bit, where addresses ought to be i64 ... this causes the optimization to simply always fail on 64-bit due to this line in DAGCombiner: // FIXME: In some cases, we can be smarter about this. if (Op1.getValueType() != Offset.getValueType()) { - Its value is truncated to an unsigned 16-bit value if negative. This causes the above opimization to generate wrong code. This patch fixes both problems by simply returning the true displacement value (in its original type). This doesn't affect any other user of the displacement. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182012 91177308-0d34-0410-b5e6-96231b3b80d8
Low Level Virtual Machine (LLVM) ================================ This directory and its subdirectories contain source code for the Low Level Virtual Machine, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments. LLVM is open source software. You may freely distribute it under the terms of the license agreement found in LICENSE.txt. Please see the documentation provided in docs/ for further assistance with LLVM, and in particular docs/GettingStarted.rst for getting started with LLVM and docs/README.txt for an overview of LLVM's documentation setup. If you're writing a package for LLVM, see docs/Packaging.rst for our suggestions.
Description
Languages
C++
48.7%
LLVM
38.5%
Assembly
10.2%
C
0.9%
Python
0.4%
Other
1.2%