mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152934 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			831 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			831 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the ScheduleDAGInstrs class, which implements re-scheduling
 | |
| // of MachineInstrs.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "sched-instrs"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/CodeGen/ScheduleDAGInstrs.h"
 | |
| #include "llvm/MC/MCInstrItineraries.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
 | |
|                                      const MachineLoopInfo &mli,
 | |
|                                      const MachineDominatorTree &mdt,
 | |
|                                      bool IsPostRAFlag,
 | |
|                                      LiveIntervals *lis)
 | |
|   : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
 | |
|     InstrItins(mf.getTarget().getInstrItineraryData()), LIS(lis),
 | |
|     IsPostRA(IsPostRAFlag), UnitLatencies(false), LoopRegs(MLI, MDT),
 | |
|     FirstDbgValue(0) {
 | |
|   assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
 | |
|   DbgValues.clear();
 | |
|   assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
 | |
|          "Virtual registers must be removed prior to PostRA scheduling");
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObjectFromInt - This is the function that does the work of
 | |
| /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
 | |
| static const Value *getUnderlyingObjectFromInt(const Value *V) {
 | |
|   do {
 | |
|     if (const Operator *U = dyn_cast<Operator>(V)) {
 | |
|       // If we find a ptrtoint, we can transfer control back to the
 | |
|       // regular getUnderlyingObjectFromInt.
 | |
|       if (U->getOpcode() == Instruction::PtrToInt)
 | |
|         return U->getOperand(0);
 | |
|       // If we find an add of a constant or a multiplied value, it's
 | |
|       // likely that the other operand will lead us to the base
 | |
|       // object. We don't have to worry about the case where the
 | |
|       // object address is somehow being computed by the multiply,
 | |
|       // because our callers only care when the result is an
 | |
|       // identifibale object.
 | |
|       if (U->getOpcode() != Instruction::Add ||
 | |
|           (!isa<ConstantInt>(U->getOperand(1)) &&
 | |
|            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
 | |
|         return V;
 | |
|       V = U->getOperand(0);
 | |
|     } else {
 | |
|       return V;
 | |
|     }
 | |
|     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
 | |
|   } while (1);
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
 | |
| /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
 | |
| static const Value *getUnderlyingObject(const Value *V) {
 | |
|   // First just call Value::getUnderlyingObject to let it do what it does.
 | |
|   do {
 | |
|     V = GetUnderlyingObject(V);
 | |
|     // If it found an inttoptr, use special code to continue climing.
 | |
|     if (Operator::getOpcode(V) != Instruction::IntToPtr)
 | |
|       break;
 | |
|     const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
 | |
|     // If that succeeded in finding a pointer, continue the search.
 | |
|     if (!O->getType()->isPointerTy())
 | |
|       break;
 | |
|     V = O;
 | |
|   } while (1);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObjectForInstr - If this machine instr has memory reference
 | |
| /// information and it can be tracked to a normal reference to a known
 | |
| /// object, return the Value for that object. Otherwise return null.
 | |
| static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
 | |
|                                                 const MachineFrameInfo *MFI,
 | |
|                                                 bool &MayAlias) {
 | |
|   MayAlias = true;
 | |
|   if (!MI->hasOneMemOperand() ||
 | |
|       !(*MI->memoperands_begin())->getValue() ||
 | |
|       (*MI->memoperands_begin())->isVolatile())
 | |
|     return 0;
 | |
| 
 | |
|   const Value *V = (*MI->memoperands_begin())->getValue();
 | |
|   if (!V)
 | |
|     return 0;
 | |
| 
 | |
|   V = getUnderlyingObject(V);
 | |
|   if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
 | |
|     // For now, ignore PseudoSourceValues which may alias LLVM IR values
 | |
|     // because the code that uses this function has no way to cope with
 | |
|     // such aliases.
 | |
|     if (PSV->isAliased(MFI))
 | |
|       return 0;
 | |
| 
 | |
|     MayAlias = PSV->mayAlias(MFI);
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   if (isIdentifiedObject(V))
 | |
|     return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::startBlock(MachineBasicBlock *BB) {
 | |
|   LoopRegs.Deps.clear();
 | |
|   if (MachineLoop *ML = MLI.getLoopFor(BB))
 | |
|     if (BB == ML->getLoopLatch())
 | |
|       LoopRegs.VisitLoop(ML);
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::finishBlock() {
 | |
|   // Nothing to do.
 | |
| }
 | |
| 
 | |
| /// Initialize the map with the number of registers.
 | |
| void Reg2SUnitsMap::setRegLimit(unsigned Limit) {
 | |
|   PhysRegSet.setUniverse(Limit);
 | |
|   SUnits.resize(Limit);
 | |
| }
 | |
| 
 | |
| /// Clear the map without deallocating storage.
 | |
| void Reg2SUnitsMap::clear() {
 | |
|   for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
 | |
|     SUnits[*I].clear();
 | |
|   }
 | |
|   PhysRegSet.clear();
 | |
| }
 | |
| 
 | |
| /// Initialize the DAG and common scheduler state for the current scheduling
 | |
| /// region. This does not actually create the DAG, only clears it. The
 | |
| /// scheduling driver may call BuildSchedGraph multiple times per scheduling
 | |
| /// region.
 | |
| void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
 | |
|                                     MachineBasicBlock::iterator begin,
 | |
|                                     MachineBasicBlock::iterator end,
 | |
|                                     unsigned endcount) {
 | |
|   BB = bb;
 | |
|   RegionBegin = begin;
 | |
|   RegionEnd = end;
 | |
|   EndIndex = endcount;
 | |
|   MISUnitMap.clear();
 | |
| 
 | |
|   // Check to see if the scheduler cares about latencies.
 | |
|   UnitLatencies = forceUnitLatencies();
 | |
| 
 | |
|   ScheduleDAG::clearDAG();
 | |
| }
 | |
| 
 | |
| /// Close the current scheduling region. Don't clear any state in case the
 | |
| /// driver wants to refer to the previous scheduling region.
 | |
| void ScheduleDAGInstrs::exitRegion() {
 | |
|   // Nothing to do.
 | |
| }
 | |
| 
 | |
| /// addSchedBarrierDeps - Add dependencies from instructions in the current
 | |
| /// list of instructions being scheduled to scheduling barrier by adding
 | |
| /// the exit SU to the register defs and use list. This is because we want to
 | |
| /// make sure instructions which define registers that are either used by
 | |
| /// the terminator or are live-out are properly scheduled. This is
 | |
| /// especially important when the definition latency of the return value(s)
 | |
| /// are too high to be hidden by the branch or when the liveout registers
 | |
| /// used by instructions in the fallthrough block.
 | |
| void ScheduleDAGInstrs::addSchedBarrierDeps() {
 | |
|   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
 | |
|   ExitSU.setInstr(ExitMI);
 | |
|   bool AllDepKnown = ExitMI &&
 | |
|     (ExitMI->isCall() || ExitMI->isBarrier());
 | |
|   if (ExitMI && AllDepKnown) {
 | |
|     // If it's a call or a barrier, add dependencies on the defs and uses of
 | |
|     // instruction.
 | |
|     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = ExitMI->getOperand(i);
 | |
|       if (!MO.isReg() || MO.isDef()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (Reg == 0) continue;
 | |
| 
 | |
|       if (TRI->isPhysicalRegister(Reg))
 | |
|         Uses[Reg].push_back(&ExitSU);
 | |
|       else {
 | |
|         assert(!IsPostRA && "Virtual register encountered after regalloc.");
 | |
|         addVRegUseDeps(&ExitSU, i);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // For others, e.g. fallthrough, conditional branch, assume the exit
 | |
|     // uses all the registers that are livein to the successor blocks.
 | |
|     assert(Uses.empty() && "Uses in set before adding deps?");
 | |
|     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
 | |
|            SE = BB->succ_end(); SI != SE; ++SI)
 | |
|       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
 | |
|              E = (*SI)->livein_end(); I != E; ++I) {
 | |
|         unsigned Reg = *I;
 | |
|         if (!Uses.contains(Reg))
 | |
|           Uses[Reg].push_back(&ExitSU);
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// MO is an operand of SU's instruction that defines a physical register. Add
 | |
| /// data dependencies from SU to any uses of the physical register.
 | |
| void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU,
 | |
|                                            const MachineOperand &MO) {
 | |
|   assert(MO.isDef() && "expect physreg def");
 | |
| 
 | |
|   // Ask the target if address-backscheduling is desirable, and if so how much.
 | |
|   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
 | |
|   unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
 | |
|   unsigned DataLatency = SU->Latency;
 | |
| 
 | |
|   for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
 | |
|     if (!Uses.contains(*Alias))
 | |
|       continue;
 | |
|     std::vector<SUnit*> &UseList = Uses[*Alias];
 | |
|     for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
 | |
|       SUnit *UseSU = UseList[i];
 | |
|       if (UseSU == SU)
 | |
|         continue;
 | |
|       unsigned LDataLatency = DataLatency;
 | |
|       // Optionally add in a special extra latency for nodes that
 | |
|       // feed addresses.
 | |
|       // TODO: Perhaps we should get rid of
 | |
|       // SpecialAddressLatency and just move this into
 | |
|       // adjustSchedDependency for the targets that care about it.
 | |
|       if (SpecialAddressLatency != 0 && !UnitLatencies &&
 | |
|           UseSU != &ExitSU) {
 | |
|         MachineInstr *UseMI = UseSU->getInstr();
 | |
|         const MCInstrDesc &UseMCID = UseMI->getDesc();
 | |
|         int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias);
 | |
|         assert(RegUseIndex >= 0 && "UseMI doesn't use register!");
 | |
|         if (RegUseIndex >= 0 &&
 | |
|             (UseMI->mayLoad() || UseMI->mayStore()) &&
 | |
|             (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
 | |
|             UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
 | |
|           LDataLatency += SpecialAddressLatency;
 | |
|       }
 | |
|       // Adjust the dependence latency using operand def/use
 | |
|       // information (if any), and then allow the target to
 | |
|       // perform its own adjustments.
 | |
|       const SDep& dep = SDep(SU, SDep::Data, LDataLatency, *Alias);
 | |
|       if (!UnitLatencies) {
 | |
|         computeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
 | |
|         ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
 | |
|       }
 | |
|       UseSU->addPred(dep);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
 | |
| /// this SUnit to following instructions in the same scheduling region that
 | |
| /// depend the physical register referenced at OperIdx.
 | |
| void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
 | |
|   const MachineInstr *MI = SU->getInstr();
 | |
|   const MachineOperand &MO = MI->getOperand(OperIdx);
 | |
| 
 | |
|   // Optionally add output and anti dependencies. For anti
 | |
|   // dependencies we use a latency of 0 because for a multi-issue
 | |
|   // target we want to allow the defining instruction to issue
 | |
|   // in the same cycle as the using instruction.
 | |
|   // TODO: Using a latency of 1 here for output dependencies assumes
 | |
|   //       there's no cost for reusing registers.
 | |
|   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
 | |
|   for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
 | |
|     if (!Defs.contains(*Alias))
 | |
|       continue;
 | |
|     std::vector<SUnit *> &DefList = Defs[*Alias];
 | |
|     for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
 | |
|       SUnit *DefSU = DefList[i];
 | |
|       if (DefSU == &ExitSU)
 | |
|         continue;
 | |
|       if (DefSU != SU &&
 | |
|           (Kind != SDep::Output || !MO.isDead() ||
 | |
|            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
 | |
|         if (Kind == SDep::Anti)
 | |
|           DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
 | |
|         else {
 | |
|           unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
 | |
|                                                  DefSU->getInstr());
 | |
|           DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MO.isDef()) {
 | |
|     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
 | |
|     // retrieve the existing SUnits list for this register's uses.
 | |
|     // Push this SUnit on the use list.
 | |
|     Uses[MO.getReg()].push_back(SU);
 | |
|   }
 | |
|   else {
 | |
|     addPhysRegDataDeps(SU, MO);
 | |
| 
 | |
|     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
 | |
|     // retrieve the existing SUnits list for this register's defs.
 | |
|     std::vector<SUnit *> &DefList = Defs[MO.getReg()];
 | |
| 
 | |
|     // If a def is going to wrap back around to the top of the loop,
 | |
|     // backschedule it.
 | |
|     if (!UnitLatencies && DefList.empty()) {
 | |
|       LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg());
 | |
|       if (I != LoopRegs.Deps.end()) {
 | |
|         const MachineOperand *UseMO = I->second.first;
 | |
|         unsigned Count = I->second.second;
 | |
|         const MachineInstr *UseMI = UseMO->getParent();
 | |
|         unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
 | |
|         const MCInstrDesc &UseMCID = UseMI->getDesc();
 | |
|         const TargetSubtargetInfo &ST =
 | |
|           TM.getSubtarget<TargetSubtargetInfo>();
 | |
|         unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
 | |
|         // TODO: If we knew the total depth of the region here, we could
 | |
|         // handle the case where the whole loop is inside the region but
 | |
|         // is large enough that the isScheduleHigh trick isn't needed.
 | |
|         if (UseMOIdx < UseMCID.getNumOperands()) {
 | |
|           // Currently, we only support scheduling regions consisting of
 | |
|           // single basic blocks. Check to see if the instruction is in
 | |
|           // the same region by checking to see if it has the same parent.
 | |
|           if (UseMI->getParent() != MI->getParent()) {
 | |
|             unsigned Latency = SU->Latency;
 | |
|             if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
 | |
|               Latency += SpecialAddressLatency;
 | |
|             // This is a wild guess as to the portion of the latency which
 | |
|             // will be overlapped by work done outside the current
 | |
|             // scheduling region.
 | |
|             Latency -= std::min(Latency, Count);
 | |
|             // Add the artificial edge.
 | |
|             ExitSU.addPred(SDep(SU, SDep::Order, Latency,
 | |
|                                 /*Reg=*/0, /*isNormalMemory=*/false,
 | |
|                                 /*isMustAlias=*/false,
 | |
|                                 /*isArtificial=*/true));
 | |
|           } else if (SpecialAddressLatency > 0 &&
 | |
|                      UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
 | |
|             // The entire loop body is within the current scheduling region
 | |
|             // and the latency of this operation is assumed to be greater
 | |
|             // than the latency of the loop.
 | |
|             // TODO: Recursively mark data-edge predecessors as
 | |
|             //       isScheduleHigh too.
 | |
|             SU->isScheduleHigh = true;
 | |
|           }
 | |
|         }
 | |
|         LoopRegs.Deps.erase(I);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // clear this register's use list
 | |
|     if (Uses.contains(MO.getReg()))
 | |
|       Uses[MO.getReg()].clear();
 | |
| 
 | |
|     if (!MO.isDead())
 | |
|       DefList.clear();
 | |
| 
 | |
|     // Calls will not be reordered because of chain dependencies (see
 | |
|     // below). Since call operands are dead, calls may continue to be added
 | |
|     // to the DefList making dependence checking quadratic in the size of
 | |
|     // the block. Instead, we leave only one call at the back of the
 | |
|     // DefList.
 | |
|     if (SU->isCall) {
 | |
|       while (!DefList.empty() && DefList.back()->isCall)
 | |
|         DefList.pop_back();
 | |
|     }
 | |
|     // Defs are pushed in the order they are visited and never reordered.
 | |
|     DefList.push_back(SU);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// addVRegDefDeps - Add register output and data dependencies from this SUnit
 | |
| /// to instructions that occur later in the same scheduling region if they read
 | |
| /// from or write to the virtual register defined at OperIdx.
 | |
| ///
 | |
| /// TODO: Hoist loop induction variable increments. This has to be
 | |
| /// reevaluated. Generally, IV scheduling should be done before coalescing.
 | |
| void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
 | |
|   const MachineInstr *MI = SU->getInstr();
 | |
|   unsigned Reg = MI->getOperand(OperIdx).getReg();
 | |
| 
 | |
|   // SSA defs do not have output/anti dependencies.
 | |
|   // The current operand is a def, so we have at least one.
 | |
|   if (llvm::next(MRI.def_begin(Reg)) == MRI.def_end())
 | |
|     return;
 | |
| 
 | |
|   // Add output dependence to the next nearest def of this vreg.
 | |
|   //
 | |
|   // Unless this definition is dead, the output dependence should be
 | |
|   // transitively redundant with antidependencies from this definition's
 | |
|   // uses. We're conservative for now until we have a way to guarantee the uses
 | |
|   // are not eliminated sometime during scheduling. The output dependence edge
 | |
|   // is also useful if output latency exceeds def-use latency.
 | |
|   VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
 | |
|   if (DefI == VRegDefs.end())
 | |
|     VRegDefs.insert(VReg2SUnit(Reg, SU));
 | |
|   else {
 | |
|     SUnit *DefSU = DefI->SU;
 | |
|     if (DefSU != SU && DefSU != &ExitSU) {
 | |
|       unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
 | |
|                                                   DefSU->getInstr());
 | |
|       DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
 | |
|     }
 | |
|     DefI->SU = SU;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// addVRegUseDeps - Add a register data dependency if the instruction that
 | |
| /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
 | |
| /// register antidependency from this SUnit to instructions that occur later in
 | |
| /// the same scheduling region if they write the virtual register.
 | |
| ///
 | |
| /// TODO: Handle ExitSU "uses" properly.
 | |
| void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
 | |
|   MachineInstr *MI = SU->getInstr();
 | |
|   unsigned Reg = MI->getOperand(OperIdx).getReg();
 | |
| 
 | |
|   // Lookup this operand's reaching definition.
 | |
|   assert(LIS && "vreg dependencies requires LiveIntervals");
 | |
|   SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot();
 | |
|   LiveInterval *LI = &LIS->getInterval(Reg);
 | |
|   VNInfo *VNI = LI->getVNInfoBefore(UseIdx);
 | |
|   // VNI will be valid because MachineOperand::readsReg() is checked by caller.
 | |
|   MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
 | |
|   // Phis and other noninstructions (after coalescing) have a NULL Def.
 | |
|   if (Def) {
 | |
|     SUnit *DefSU = getSUnit(Def);
 | |
|     if (DefSU) {
 | |
|       // The reaching Def lives within this scheduling region.
 | |
|       // Create a data dependence.
 | |
|       //
 | |
|       // TODO: Handle "special" address latencies cleanly.
 | |
|       const SDep &dep = SDep(DefSU, SDep::Data, DefSU->Latency, Reg);
 | |
|       if (!UnitLatencies) {
 | |
|         // Adjust the dependence latency using operand def/use information, then
 | |
|         // allow the target to perform its own adjustments.
 | |
|         computeOperandLatency(DefSU, SU, const_cast<SDep &>(dep));
 | |
|         const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
 | |
|         ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
 | |
|       }
 | |
|       SU->addPred(dep);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add antidependence to the following def of the vreg it uses.
 | |
|   VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
 | |
|   if (DefI != VRegDefs.end() && DefI->SU != SU)
 | |
|     DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg));
 | |
| }
 | |
| 
 | |
| /// Create an SUnit for each real instruction, numbered in top-down toplological
 | |
| /// order. The instruction order A < B, implies that no edge exists from B to A.
 | |
| ///
 | |
| /// Map each real instruction to its SUnit.
 | |
| ///
 | |
| /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
 | |
| /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
 | |
| /// instead of pointers.
 | |
| ///
 | |
| /// MachineScheduler relies on initSUnits numbering the nodes by their order in
 | |
| /// the original instruction list.
 | |
| void ScheduleDAGInstrs::initSUnits() {
 | |
|   // We'll be allocating one SUnit for each real instruction in the region,
 | |
|   // which is contained within a basic block.
 | |
|   SUnits.reserve(BB->size());
 | |
| 
 | |
|   for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
 | |
|     MachineInstr *MI = I;
 | |
|     if (MI->isDebugValue())
 | |
|       continue;
 | |
| 
 | |
|     SUnit *SU = newSUnit(MI);
 | |
|     MISUnitMap[MI] = SU;
 | |
| 
 | |
|     SU->isCall = MI->isCall();
 | |
|     SU->isCommutable = MI->isCommutable();
 | |
| 
 | |
|     // Assign the Latency field of SU using target-provided information.
 | |
|     if (UnitLatencies)
 | |
|       SU->Latency = 1;
 | |
|     else
 | |
|       computeLatency(SU);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA) {
 | |
|   // Create an SUnit for each real instruction.
 | |
|   initSUnits();
 | |
| 
 | |
|   // We build scheduling units by walking a block's instruction list from bottom
 | |
|   // to top.
 | |
| 
 | |
|   // Remember where a generic side-effecting instruction is as we procede.
 | |
|   SUnit *BarrierChain = 0, *AliasChain = 0;
 | |
| 
 | |
|   // Memory references to specific known memory locations are tracked
 | |
|   // so that they can be given more precise dependencies. We track
 | |
|   // separately the known memory locations that may alias and those
 | |
|   // that are known not to alias
 | |
|   std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
 | |
|   std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
 | |
| 
 | |
|   // Remove any stale debug info; sometimes BuildSchedGraph is called again
 | |
|   // without emitting the info from the previous call.
 | |
|   DbgValues.clear();
 | |
|   FirstDbgValue = NULL;
 | |
| 
 | |
|   assert(Defs.empty() && Uses.empty() &&
 | |
|          "Only BuildGraph should update Defs/Uses");
 | |
|   Defs.setRegLimit(TRI->getNumRegs());
 | |
|   Uses.setRegLimit(TRI->getNumRegs());
 | |
| 
 | |
|   assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
 | |
|   // FIXME: Allow SparseSet to reserve space for the creation of virtual
 | |
|   // registers during scheduling. Don't artificially inflate the Universe
 | |
|   // because we want to assert that vregs are not created during DAG building.
 | |
|   VRegDefs.setUniverse(MRI.getNumVirtRegs());
 | |
| 
 | |
|   // Model data dependencies between instructions being scheduled and the
 | |
|   // ExitSU.
 | |
|   addSchedBarrierDeps();
 | |
| 
 | |
|   // Walk the list of instructions, from bottom moving up.
 | |
|   MachineInstr *PrevMI = NULL;
 | |
|   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
 | |
|        MII != MIE; --MII) {
 | |
|     MachineInstr *MI = prior(MII);
 | |
|     if (MI && PrevMI) {
 | |
|       DbgValues.push_back(std::make_pair(PrevMI, MI));
 | |
|       PrevMI = NULL;
 | |
|     }
 | |
| 
 | |
|     if (MI->isDebugValue()) {
 | |
|       PrevMI = MI;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     assert(!MI->isTerminator() && !MI->isLabel() &&
 | |
|            "Cannot schedule terminators or labels!");
 | |
| 
 | |
|     SUnit *SU = MISUnitMap[MI];
 | |
|     assert(SU && "No SUnit mapped to this MI");
 | |
| 
 | |
|     // Add register-based dependencies (data, anti, and output).
 | |
|     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
 | |
|       const MachineOperand &MO = MI->getOperand(j);
 | |
|       if (!MO.isReg()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (Reg == 0) continue;
 | |
| 
 | |
|       if (TRI->isPhysicalRegister(Reg))
 | |
|         addPhysRegDeps(SU, j);
 | |
|       else {
 | |
|         assert(!IsPostRA && "Virtual register encountered!");
 | |
|         if (MO.isDef())
 | |
|           addVRegDefDeps(SU, j);
 | |
|         else if (MO.readsReg()) // ignore undef operands
 | |
|           addVRegUseDeps(SU, j);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Add chain dependencies.
 | |
|     // Chain dependencies used to enforce memory order should have
 | |
|     // latency of 0 (except for true dependency of Store followed by
 | |
|     // aliased Load... we estimate that with a single cycle of latency
 | |
|     // assuming the hardware will bypass)
 | |
|     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
 | |
|     // after stack slots are lowered to actual addresses.
 | |
|     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
 | |
|     // produce more precise dependence information.
 | |
| #define STORE_LOAD_LATENCY 1
 | |
|     unsigned TrueMemOrderLatency = 0;
 | |
|     if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
 | |
|         (MI->hasVolatileMemoryRef() &&
 | |
|          (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
 | |
|       // Be conservative with these and add dependencies on all memory
 | |
|       // references, even those that are known to not alias.
 | |
|       for (std::map<const Value *, SUnit *>::iterator I =
 | |
|              NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
 | |
|         I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|       }
 | |
|       for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
 | |
|              NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
 | |
|         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
 | |
|           I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
 | |
|       }
 | |
|       NonAliasMemDefs.clear();
 | |
|       NonAliasMemUses.clear();
 | |
|       // Add SU to the barrier chain.
 | |
|       if (BarrierChain)
 | |
|         BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|       BarrierChain = SU;
 | |
| 
 | |
|       // fall-through
 | |
|     new_alias_chain:
 | |
|       // Chain all possibly aliasing memory references though SU.
 | |
|       if (AliasChain)
 | |
|         AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|       AliasChain = SU;
 | |
|       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
 | |
|         PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
 | |
|       for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
 | |
|            E = AliasMemDefs.end(); I != E; ++I) {
 | |
|         I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|       }
 | |
|       for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
 | |
|            AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
 | |
|         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
 | |
|           I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
 | |
|       }
 | |
|       PendingLoads.clear();
 | |
|       AliasMemDefs.clear();
 | |
|       AliasMemUses.clear();
 | |
|     } else if (MI->mayStore()) {
 | |
|       bool MayAlias = true;
 | |
|       TrueMemOrderLatency = STORE_LOAD_LATENCY;
 | |
|       if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
 | |
|         // A store to a specific PseudoSourceValue. Add precise dependencies.
 | |
|         // Record the def in MemDefs, first adding a dep if there is
 | |
|         // an existing def.
 | |
|         std::map<const Value *, SUnit *>::iterator I =
 | |
|           ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
 | |
|         std::map<const Value *, SUnit *>::iterator IE =
 | |
|           ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
 | |
|         if (I != IE) {
 | |
|           I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
 | |
|                                   /*isNormalMemory=*/true));
 | |
|           I->second = SU;
 | |
|         } else {
 | |
|           if (MayAlias)
 | |
|             AliasMemDefs[V] = SU;
 | |
|           else
 | |
|             NonAliasMemDefs[V] = SU;
 | |
|         }
 | |
|         // Handle the uses in MemUses, if there are any.
 | |
|         std::map<const Value *, std::vector<SUnit *> >::iterator J =
 | |
|           ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
 | |
|         std::map<const Value *, std::vector<SUnit *> >::iterator JE =
 | |
|           ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
 | |
|         if (J != JE) {
 | |
|           for (unsigned i = 0, e = J->second.size(); i != e; ++i)
 | |
|             J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
 | |
|                                        /*Reg=*/0, /*isNormalMemory=*/true));
 | |
|           J->second.clear();
 | |
|         }
 | |
|         if (MayAlias) {
 | |
|           // Add dependencies from all the PendingLoads, i.e. loads
 | |
|           // with no underlying object.
 | |
|           for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
 | |
|             PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
 | |
|           // Add dependence on alias chain, if needed.
 | |
|           if (AliasChain)
 | |
|             AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|         }
 | |
|         // Add dependence on barrier chain, if needed.
 | |
|         if (BarrierChain)
 | |
|           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|       } else {
 | |
|         // Treat all other stores conservatively.
 | |
|         goto new_alias_chain;
 | |
|       }
 | |
| 
 | |
|       if (!ExitSU.isPred(SU))
 | |
|         // Push store's up a bit to avoid them getting in between cmp
 | |
|         // and branches.
 | |
|         ExitSU.addPred(SDep(SU, SDep::Order, 0,
 | |
|                             /*Reg=*/0, /*isNormalMemory=*/false,
 | |
|                             /*isMustAlias=*/false,
 | |
|                             /*isArtificial=*/true));
 | |
|     } else if (MI->mayLoad()) {
 | |
|       bool MayAlias = true;
 | |
|       TrueMemOrderLatency = 0;
 | |
|       if (MI->isInvariantLoad(AA)) {
 | |
|         // Invariant load, no chain dependencies needed!
 | |
|       } else {
 | |
|         if (const Value *V =
 | |
|             getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
 | |
|           // A load from a specific PseudoSourceValue. Add precise dependencies.
 | |
|           std::map<const Value *, SUnit *>::iterator I =
 | |
|             ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
 | |
|           std::map<const Value *, SUnit *>::iterator IE =
 | |
|             ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
 | |
|           if (I != IE)
 | |
|             I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
 | |
|                                     /*isNormalMemory=*/true));
 | |
|           if (MayAlias)
 | |
|             AliasMemUses[V].push_back(SU);
 | |
|           else
 | |
|             NonAliasMemUses[V].push_back(SU);
 | |
|         } else {
 | |
|           // A load with no underlying object. Depend on all
 | |
|           // potentially aliasing stores.
 | |
|           for (std::map<const Value *, SUnit *>::iterator I =
 | |
|                  AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
 | |
|             I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
| 
 | |
|           PendingLoads.push_back(SU);
 | |
|           MayAlias = true;
 | |
|         }
 | |
| 
 | |
|         // Add dependencies on alias and barrier chains, if needed.
 | |
|         if (MayAlias && AliasChain)
 | |
|           AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|         if (BarrierChain)
 | |
|           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (PrevMI)
 | |
|     FirstDbgValue = PrevMI;
 | |
| 
 | |
|   Defs.clear();
 | |
|   Uses.clear();
 | |
|   VRegDefs.clear();
 | |
|   PendingLoads.clear();
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::computeLatency(SUnit *SU) {
 | |
|   // Compute the latency for the node.
 | |
|   if (!InstrItins || InstrItins->isEmpty()) {
 | |
|     SU->Latency = 1;
 | |
| 
 | |
|     // Simplistic target-independent heuristic: assume that loads take
 | |
|     // extra time.
 | |
|     if (SU->getInstr()->mayLoad())
 | |
|       SU->Latency += 2;
 | |
|   } else {
 | |
|     SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::computeOperandLatency(SUnit *Def, SUnit *Use,
 | |
|                                               SDep& dep) const {
 | |
|   if (!InstrItins || InstrItins->isEmpty())
 | |
|     return;
 | |
| 
 | |
|   // For a data dependency with a known register...
 | |
|   if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
 | |
|     return;
 | |
| 
 | |
|   const unsigned Reg = dep.getReg();
 | |
| 
 | |
|   // ... find the definition of the register in the defining
 | |
|   // instruction
 | |
|   MachineInstr *DefMI = Def->getInstr();
 | |
|   int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
 | |
|   if (DefIdx != -1) {
 | |
|     const MachineOperand &MO = DefMI->getOperand(DefIdx);
 | |
|     if (MO.isReg() && MO.isImplicit() &&
 | |
|         DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
 | |
|       // This is an implicit def, getOperandLatency() won't return the correct
 | |
|       // latency. e.g.
 | |
|       //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
 | |
|       //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
 | |
|       // What we want is to compute latency between def of %D6/%D7 and use of
 | |
|       // %Q3 instead.
 | |
|       unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
 | |
|       if (DefMI->getOperand(Op2).isReg())
 | |
|         DefIdx = Op2;
 | |
|     }
 | |
|     MachineInstr *UseMI = Use->getInstr();
 | |
|     // For all uses of the register, calculate the maxmimum latency
 | |
|     int Latency = -1;
 | |
|     if (UseMI) {
 | |
|       for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
 | |
|         const MachineOperand &MO = UseMI->getOperand(i);
 | |
|         if (!MO.isReg() || !MO.isUse())
 | |
|           continue;
 | |
|         unsigned MOReg = MO.getReg();
 | |
|         if (MOReg != Reg)
 | |
|           continue;
 | |
| 
 | |
|         int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
 | |
|                                               UseMI, i);
 | |
|         Latency = std::max(Latency, UseCycle);
 | |
|       }
 | |
|     } else {
 | |
|       // UseMI is null, then it must be a scheduling barrier.
 | |
|       if (!InstrItins || InstrItins->isEmpty())
 | |
|         return;
 | |
|       unsigned DefClass = DefMI->getDesc().getSchedClass();
 | |
|       Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
 | |
|     }
 | |
| 
 | |
|     // If we found a latency, then replace the existing dependence latency.
 | |
|     if (Latency >= 0)
 | |
|       dep.setLatency(Latency);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
 | |
|   SU->getInstr()->dump();
 | |
| }
 | |
| 
 | |
| std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
 | |
|   std::string s;
 | |
|   raw_string_ostream oss(s);
 | |
|   if (SU == &EntrySU)
 | |
|     oss << "<entry>";
 | |
|   else if (SU == &ExitSU)
 | |
|     oss << "<exit>";
 | |
|   else
 | |
|     SU->getInstr()->print(oss);
 | |
|   return oss.str();
 | |
| }
 | |
| 
 | |
| /// Return the basic block label. It is not necessarilly unique because a block
 | |
| /// contains multiple scheduling regions. But it is fine for visualization.
 | |
| std::string ScheduleDAGInstrs::getDAGName() const {
 | |
|   return "dag." + BB->getFullName();
 | |
| }
 |