mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29911 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			903 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			903 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by Evan Cheng and is distributed under the
 | 
						|
// University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements bottom-up and top-down register pressure reduction list
 | 
						|
// schedulers, using standard algorithms.  The basic approach uses a priority
 | 
						|
// queue of available nodes to schedule.  One at a time, nodes are taken from
 | 
						|
// the priority queue (thus in priority order), checked for legality to
 | 
						|
// schedule, and emitted if legal.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "sched"
 | 
						|
#include "llvm/CodeGen/ScheduleDAG.h"
 | 
						|
#include "llvm/CodeGen/SchedulerRegistry.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/Target/MRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include <climits>
 | 
						|
#include <iostream>
 | 
						|
#include <queue>
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static RegisterScheduler
 | 
						|
  burrListDAGScheduler("list-burr",
 | 
						|
                       "  Bottom-up register reduction list scheduling",
 | 
						|
                       createBURRListDAGScheduler);
 | 
						|
static RegisterScheduler
 | 
						|
  tdrListrDAGScheduler("list-tdrr",
 | 
						|
                       "  Top-down register reduction list scheduling",
 | 
						|
                       createTDRRListDAGScheduler);
 | 
						|
 | 
						|
namespace {
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ScheduleDAGRRList - The actual register reduction list scheduler
 | 
						|
/// implementation.  This supports both top-down and bottom-up scheduling.
 | 
						|
///
 | 
						|
 | 
						|
class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
 | 
						|
private:
 | 
						|
  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
 | 
						|
  /// it is top-down.
 | 
						|
  bool isBottomUp;
 | 
						|
  
 | 
						|
  /// AvailableQueue - The priority queue to use for the available SUnits.
 | 
						|
  ///
 | 
						|
  SchedulingPriorityQueue *AvailableQueue;
 | 
						|
 | 
						|
public:
 | 
						|
  ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
 | 
						|
                  const TargetMachine &tm, bool isbottomup,
 | 
						|
                  SchedulingPriorityQueue *availqueue)
 | 
						|
    : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
 | 
						|
      AvailableQueue(availqueue) {
 | 
						|
    }
 | 
						|
 | 
						|
  ~ScheduleDAGRRList() {
 | 
						|
    delete AvailableQueue;
 | 
						|
  }
 | 
						|
 | 
						|
  void Schedule();
 | 
						|
 | 
						|
private:
 | 
						|
  void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
 | 
						|
  void ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle);
 | 
						|
  void ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle);
 | 
						|
  void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
 | 
						|
  void ListScheduleTopDown();
 | 
						|
  void ListScheduleBottomUp();
 | 
						|
  void CommuteNodesToReducePressure();
 | 
						|
};
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
/// Schedule - Schedule the DAG using list scheduling.
 | 
						|
void ScheduleDAGRRList::Schedule() {
 | 
						|
  DEBUG(std::cerr << "********** List Scheduling **********\n");
 | 
						|
  
 | 
						|
  // Build scheduling units.
 | 
						|
  BuildSchedUnits();
 | 
						|
 | 
						|
  CalculateDepths();
 | 
						|
  CalculateHeights();
 | 
						|
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
          SUnits[su].dumpAll(&DAG));
 | 
						|
 | 
						|
  AvailableQueue->initNodes(SUnits);
 | 
						|
 | 
						|
  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
 | 
						|
  if (isBottomUp)
 | 
						|
    ListScheduleBottomUp();
 | 
						|
  else
 | 
						|
    ListScheduleTopDown();
 | 
						|
  
 | 
						|
  AvailableQueue->releaseState();
 | 
						|
 | 
						|
  CommuteNodesToReducePressure();
 | 
						|
  
 | 
						|
  DEBUG(std::cerr << "*** Final schedule ***\n");
 | 
						|
  DEBUG(dumpSchedule());
 | 
						|
  DEBUG(std::cerr << "\n");
 | 
						|
  
 | 
						|
  // Emit in scheduled order
 | 
						|
  EmitSchedule();
 | 
						|
}
 | 
						|
 | 
						|
/// CommuteNodesToReducePressure - Is a node is two-address and commutable, and
 | 
						|
/// it is not the last use of its first operand, add it to the CommuteSet if
 | 
						|
/// possible. It will be commuted when it is translated to a MI.
 | 
						|
void ScheduleDAGRRList::CommuteNodesToReducePressure() {
 | 
						|
  std::set<SUnit *> OperandSeen;
 | 
						|
  for (unsigned i = Sequence.size()-1; i != 0; --i) {  // Ignore first node.
 | 
						|
    SUnit *SU = Sequence[i];
 | 
						|
    if (!SU) continue;
 | 
						|
    if (SU->isTwoAddress && SU->isCommutable) {
 | 
						|
      SDNode *OpN = SU->Node->getOperand(0).Val;
 | 
						|
      SUnit *OpSU = SUnitMap[OpN];
 | 
						|
      if (OpSU && OperandSeen.count(OpSU) == 1) {
 | 
						|
        // Ok, so SU is not the last use of OpSU, but SU is two-address so
 | 
						|
        // it will clobber OpSU. Try to commute it if possible.
 | 
						|
        bool DoCommute = true;
 | 
						|
        for (unsigned j = 1, e = SU->Node->getNumOperands(); j != e; ++j) {
 | 
						|
          OpN = SU->Node->getOperand(j).Val;
 | 
						|
          OpSU = SUnitMap[OpN];
 | 
						|
          if (OpSU && OperandSeen.count(OpSU) == 1) {
 | 
						|
            DoCommute = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (DoCommute)
 | 
						|
          CommuteSet.insert(SU->Node);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (!I->second)
 | 
						|
        OperandSeen.insert(I->first);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Bottom-Up Scheduling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static const TargetRegisterClass *getRegClass(SUnit *SU,
 | 
						|
                                              const TargetInstrInfo *TII,
 | 
						|
                                              const MRegisterInfo *MRI,
 | 
						|
                                              SSARegMap *RegMap) {
 | 
						|
  if (SU->Node->isTargetOpcode()) {
 | 
						|
    unsigned Opc = SU->Node->getTargetOpcode();
 | 
						|
    const TargetInstrDescriptor &II = TII->get(Opc);
 | 
						|
    return MRI->getRegClass(II.OpInfo->RegClass);
 | 
						|
  } else {
 | 
						|
    assert(SU->Node->getOpcode() == ISD::CopyFromReg);
 | 
						|
    unsigned SrcReg = cast<RegisterSDNode>(SU->Node->getOperand(1))->getReg();
 | 
						|
    if (MRegisterInfo::isVirtualRegister(SrcReg))
 | 
						|
      return RegMap->getRegClass(SrcReg);
 | 
						|
    else {
 | 
						|
      for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
 | 
						|
             E = MRI->regclass_end(); I != E; ++I)
 | 
						|
        if ((*I)->hasType(SU->Node->getValueType(0)) &&
 | 
						|
            (*I)->contains(SrcReg))
 | 
						|
          return *I;
 | 
						|
      assert(false && "Couldn't find register class for reg copy!");
 | 
						|
    }
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getNumResults(SUnit *SU) {
 | 
						|
  unsigned NumResults = 0;
 | 
						|
  for (unsigned i = 0, e = SU->Node->getNumValues(); i != e; ++i) {
 | 
						|
    MVT::ValueType VT = SU->Node->getValueType(i);
 | 
						|
    if (VT != MVT::Other && VT != MVT::Flag)
 | 
						|
      NumResults++;
 | 
						|
  }
 | 
						|
  return NumResults;
 | 
						|
}
 | 
						|
 | 
						|
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
 | 
						|
/// the Available queue is the count reaches zero. Also update its cycle bound.
 | 
						|
void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain, 
 | 
						|
                                    unsigned CurCycle) {
 | 
						|
  // FIXME: the distance between two nodes is not always == the predecessor's
 | 
						|
  // latency. For example, the reader can very well read the register written
 | 
						|
  // by the predecessor later than the issue cycle. It also depends on the
 | 
						|
  // interrupt model (drain vs. freeze).
 | 
						|
  PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
 | 
						|
 | 
						|
  if (!isChain)
 | 
						|
    PredSU->NumSuccsLeft--;
 | 
						|
  else
 | 
						|
    PredSU->NumChainSuccsLeft--;
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
 | 
						|
    std::cerr << "*** List scheduling failed! ***\n";
 | 
						|
    PredSU->dump(&DAG);
 | 
						|
    std::cerr << " has been released too many times!\n";
 | 
						|
    assert(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  
 | 
						|
  if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
 | 
						|
    // EntryToken has to go last!  Special case it here.
 | 
						|
    if (PredSU->Node->getOpcode() != ISD::EntryToken) {
 | 
						|
      PredSU->isAvailable = true;
 | 
						|
      AvailableQueue->push(PredSU);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
 | 
						|
/// count of its predecessors. If a predecessor pending count is zero, add it to
 | 
						|
/// the Available queue.
 | 
						|
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
 | 
						|
  DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
 | 
						|
  DEBUG(SU->dump(&DAG));
 | 
						|
  SU->Cycle = CurCycle;
 | 
						|
 | 
						|
  AvailableQueue->ScheduledNode(SU);
 | 
						|
  Sequence.push_back(SU);
 | 
						|
 | 
						|
  // Bottom up: release predecessors
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I)
 | 
						|
    ReleasePred(I->first, I->second, CurCycle);
 | 
						|
  SU->isScheduled = true;
 | 
						|
}
 | 
						|
 | 
						|
/// isReady - True if node's lower cycle bound is less or equal to the current
 | 
						|
/// scheduling cycle. Always true if all nodes have uniform latency 1.
 | 
						|
static inline bool isReady(SUnit *SU, unsigned CurCycle) {
 | 
						|
  return SU->CycleBound <= CurCycle;
 | 
						|
}
 | 
						|
 | 
						|
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
 | 
						|
/// schedulers.
 | 
						|
void ScheduleDAGRRList::ListScheduleBottomUp() {
 | 
						|
  unsigned CurCycle = 0;
 | 
						|
  // Add root to Available queue.
 | 
						|
  AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);
 | 
						|
 | 
						|
  // While Available queue is not empty, grab the node with the highest
 | 
						|
  // priority. If it is not ready put it back. Schedule the node.
 | 
						|
  std::vector<SUnit*> NotReady;
 | 
						|
  SUnit *CurNode = NULL;
 | 
						|
  while (!AvailableQueue->empty()) {
 | 
						|
    SUnit *CurNode = AvailableQueue->pop();
 | 
						|
    while (CurNode && !isReady(CurNode, CurCycle)) {
 | 
						|
      NotReady.push_back(CurNode);
 | 
						|
      CurNode = AvailableQueue->pop();
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Add the nodes that aren't ready back onto the available list.
 | 
						|
    AvailableQueue->push_all(NotReady);
 | 
						|
    NotReady.clear();
 | 
						|
 | 
						|
    if (CurNode != NULL)
 | 
						|
      ScheduleNodeBottomUp(CurNode, CurCycle);
 | 
						|
    CurCycle++;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add entry node last
 | 
						|
  if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
 | 
						|
    SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
 | 
						|
    Sequence.push_back(Entry);
 | 
						|
  }
 | 
						|
 | 
						|
  // Reverse the order if it is bottom up.
 | 
						|
  std::reverse(Sequence.begin(), Sequence.end());
 | 
						|
  
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Verify that all SUnits were scheduled.
 | 
						|
  bool AnyNotSched = false;
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
 | 
						|
      if (!AnyNotSched)
 | 
						|
        std::cerr << "*** List scheduling failed! ***\n";
 | 
						|
      SUnits[i].dump(&DAG);
 | 
						|
      std::cerr << "has not been scheduled!\n";
 | 
						|
      AnyNotSched = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(!AnyNotSched);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Top-Down Scheduling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | 
						|
/// the PendingQueue if the count reaches zero.
 | 
						|
void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain, 
 | 
						|
                                    unsigned CurCycle) {
 | 
						|
  // FIXME: the distance between two nodes is not always == the predecessor's
 | 
						|
  // latency. For example, the reader can very well read the register written
 | 
						|
  // by the predecessor later than the issue cycle. It also depends on the
 | 
						|
  // interrupt model (drain vs. freeze).
 | 
						|
  SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
 | 
						|
 | 
						|
  if (!isChain)
 | 
						|
    SuccSU->NumPredsLeft--;
 | 
						|
  else
 | 
						|
    SuccSU->NumChainPredsLeft--;
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
 | 
						|
    std::cerr << "*** List scheduling failed! ***\n";
 | 
						|
    SuccSU->dump(&DAG);
 | 
						|
    std::cerr << " has been released too many times!\n";
 | 
						|
    assert(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  
 | 
						|
  if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
 | 
						|
    SuccSU->isAvailable = true;
 | 
						|
    AvailableQueue->push(SuccSU);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | 
						|
/// count of its successors. If a successor pending count is zero, add it to
 | 
						|
/// the Available queue.
 | 
						|
void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
 | 
						|
  DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
 | 
						|
  DEBUG(SU->dump(&DAG));
 | 
						|
  SU->Cycle = CurCycle;
 | 
						|
 | 
						|
  AvailableQueue->ScheduledNode(SU);
 | 
						|
  Sequence.push_back(SU);
 | 
						|
 | 
						|
  // Top down: release successors
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I)
 | 
						|
    ReleaseSucc(I->first, I->second, CurCycle);
 | 
						|
  SU->isScheduled = true;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGRRList::ListScheduleTopDown() {
 | 
						|
  unsigned CurCycle = 0;
 | 
						|
  SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
 | 
						|
 | 
						|
  // All leaves to Available queue.
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    // It is available if it has no predecessors.
 | 
						|
    if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
 | 
						|
      AvailableQueue->push(&SUnits[i]);
 | 
						|
      SUnits[i].isAvailable = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Emit the entry node first.
 | 
						|
  ScheduleNodeTopDown(Entry, CurCycle);
 | 
						|
  CurCycle++;
 | 
						|
 | 
						|
  // While Available queue is not empty, grab the node with the highest
 | 
						|
  // priority. If it is not ready put it back. Schedule the node.
 | 
						|
  std::vector<SUnit*> NotReady;
 | 
						|
  SUnit *CurNode = NULL;
 | 
						|
  while (!AvailableQueue->empty()) {
 | 
						|
    SUnit *CurNode = AvailableQueue->pop();
 | 
						|
    while (CurNode && !isReady(CurNode, CurCycle)) {
 | 
						|
      NotReady.push_back(CurNode);
 | 
						|
      CurNode = AvailableQueue->pop();
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Add the nodes that aren't ready back onto the available list.
 | 
						|
    AvailableQueue->push_all(NotReady);
 | 
						|
    NotReady.clear();
 | 
						|
 | 
						|
    if (CurNode != NULL)
 | 
						|
      ScheduleNodeTopDown(CurNode, CurCycle);
 | 
						|
    CurCycle++;
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Verify that all SUnits were scheduled.
 | 
						|
  bool AnyNotSched = false;
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    if (!SUnits[i].isScheduled) {
 | 
						|
      if (!AnyNotSched)
 | 
						|
        std::cerr << "*** List scheduling failed! ***\n";
 | 
						|
      SUnits[i].dump(&DAG);
 | 
						|
      std::cerr << "has not been scheduled!\n";
 | 
						|
      AnyNotSched = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(!AnyNotSched);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                RegReductionPriorityQueue Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
 | 
						|
// to reduce register pressure.
 | 
						|
// 
 | 
						|
namespace {
 | 
						|
  template<class SF>
 | 
						|
  class RegReductionPriorityQueue;
 | 
						|
  
 | 
						|
  /// Sorting functions for the Available queue.
 | 
						|
  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | 
						|
    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
 | 
						|
    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
 | 
						|
    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | 
						|
    
 | 
						|
    bool operator()(const SUnit* left, const SUnit* right) const;
 | 
						|
  };
 | 
						|
 | 
						|
  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | 
						|
    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
 | 
						|
    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
 | 
						|
    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | 
						|
    
 | 
						|
    bool operator()(const SUnit* left, const SUnit* right) const;
 | 
						|
  };
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
namespace {
 | 
						|
  template<class SF>
 | 
						|
  class VISIBILITY_HIDDEN RegReductionPriorityQueue
 | 
						|
   : public SchedulingPriorityQueue {
 | 
						|
    std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
 | 
						|
 | 
						|
  public:
 | 
						|
    RegReductionPriorityQueue() :
 | 
						|
    Queue(SF(this)) {}
 | 
						|
    
 | 
						|
    virtual void initNodes(std::vector<SUnit> &sunits) {}
 | 
						|
    virtual void releaseState() {}
 | 
						|
    
 | 
						|
    virtual int getSethiUllmanNumber(unsigned NodeNum) const {
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    bool empty() const { return Queue.empty(); }
 | 
						|
    
 | 
						|
    void push(SUnit *U) {
 | 
						|
      Queue.push(U);
 | 
						|
    }
 | 
						|
    void push_all(const std::vector<SUnit *> &Nodes) {
 | 
						|
      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | 
						|
        Queue.push(Nodes[i]);
 | 
						|
    }
 | 
						|
    
 | 
						|
    SUnit *pop() {
 | 
						|
      if (empty()) return NULL;
 | 
						|
      SUnit *V = Queue.top();
 | 
						|
      Queue.pop();
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template<class SF>
 | 
						|
  class VISIBILITY_HIDDEN BURegReductionPriorityQueue
 | 
						|
   : public RegReductionPriorityQueue<SF> {
 | 
						|
    // SUnits - The SUnits for the current graph.
 | 
						|
    const std::vector<SUnit> *SUnits;
 | 
						|
    
 | 
						|
    // SethiUllmanNumbers - The SethiUllman number for each node.
 | 
						|
    std::vector<int> SethiUllmanNumbers;
 | 
						|
 | 
						|
  public:
 | 
						|
    BURegReductionPriorityQueue() {}
 | 
						|
 | 
						|
    void initNodes(std::vector<SUnit> &sunits) {
 | 
						|
      SUnits = &sunits;
 | 
						|
      // Add pseudo dependency edges for two-address nodes.
 | 
						|
      AddPseudoTwoAddrDeps();
 | 
						|
      // Calculate node priorities.
 | 
						|
      CalculatePriorities();
 | 
						|
    }
 | 
						|
 | 
						|
    void releaseState() {
 | 
						|
      SUnits = 0;
 | 
						|
      SethiUllmanNumbers.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    int getSethiUllmanNumber(unsigned NodeNum) const {
 | 
						|
      assert(NodeNum < SethiUllmanNumbers.size());
 | 
						|
      return SethiUllmanNumbers[NodeNum];
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    void AddPseudoTwoAddrDeps();
 | 
						|
    void CalculatePriorities();
 | 
						|
    int CalcNodePriority(const SUnit *SU);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  template<class SF>
 | 
						|
  class TDRegReductionPriorityQueue : public RegReductionPriorityQueue<SF> {
 | 
						|
    // SUnits - The SUnits for the current graph.
 | 
						|
    const std::vector<SUnit> *SUnits;
 | 
						|
    
 | 
						|
    // SethiUllmanNumbers - The SethiUllman number for each node.
 | 
						|
    std::vector<int> SethiUllmanNumbers;
 | 
						|
 | 
						|
  public:
 | 
						|
    TDRegReductionPriorityQueue() {}
 | 
						|
 | 
						|
    void initNodes(std::vector<SUnit> &sunits) {
 | 
						|
      SUnits = &sunits;
 | 
						|
      // Calculate node priorities.
 | 
						|
      CalculatePriorities();
 | 
						|
    }
 | 
						|
 | 
						|
    void releaseState() {
 | 
						|
      SUnits = 0;
 | 
						|
      SethiUllmanNumbers.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    int getSethiUllmanNumber(unsigned NodeNum) const {
 | 
						|
      assert(NodeNum < SethiUllmanNumbers.size());
 | 
						|
      return SethiUllmanNumbers[NodeNum];
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    void CalculatePriorities();
 | 
						|
    int CalcNodePriority(const SUnit *SU);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static bool isFloater(const SUnit *SU) {
 | 
						|
  if (SU->Node->isTargetOpcode()) {
 | 
						|
    if (SU->NumPreds == 0)
 | 
						|
      return true;
 | 
						|
    if (SU->NumPreds == 1) {
 | 
						|
      for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
 | 
						|
           I != E; ++I) {
 | 
						|
        if (I->second) continue;
 | 
						|
 | 
						|
        SUnit *PredSU = I->first;
 | 
						|
        unsigned Opc = PredSU->Node->getOpcode();
 | 
						|
        if (Opc != ISD::EntryToken && Opc != ISD::TokenFactor &&
 | 
						|
            Opc != ISD::CopyFromReg && Opc != ISD::CopyToReg)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isSimpleFloaterUse(const SUnit *SU) {
 | 
						|
  unsigned NumOps = 0;
 | 
						|
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->second) continue;
 | 
						|
    if (++NumOps > 1)
 | 
						|
      return false;
 | 
						|
    if (!isFloater(I->first))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Bottom up
 | 
						|
bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | 
						|
  unsigned LeftNum  = left->NodeNum;
 | 
						|
  unsigned RightNum = right->NodeNum;
 | 
						|
  bool LIsTarget = left->Node->isTargetOpcode();
 | 
						|
  bool RIsTarget = right->Node->isTargetOpcode();
 | 
						|
  int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
 | 
						|
  int RPriority = SPQ->getSethiUllmanNumber(RightNum);
 | 
						|
  int LBonus = 0;
 | 
						|
  int RBonus = 0;
 | 
						|
 | 
						|
  // Schedule floaters (e.g. load from some constant address) and those nodes
 | 
						|
  // with a single predecessor each first. They maintain / reduce register
 | 
						|
  // pressure.
 | 
						|
  if (isFloater(left) || isSimpleFloaterUse(left))
 | 
						|
    LBonus += 2;
 | 
						|
  if (isFloater(right) || isSimpleFloaterUse(right))
 | 
						|
    RBonus += 2;
 | 
						|
 | 
						|
  // Special tie breaker: if two nodes share a operand, the one that use it
 | 
						|
  // as a def&use operand is preferred.
 | 
						|
  if (LIsTarget && RIsTarget) {
 | 
						|
    if (left->isTwoAddress && !right->isTwoAddress) {
 | 
						|
      SDNode *DUNode = left->Node->getOperand(0).Val;
 | 
						|
      if (DUNode->isOperand(right->Node))
 | 
						|
        LBonus += 2;
 | 
						|
    }
 | 
						|
    if (!left->isTwoAddress && right->isTwoAddress) {
 | 
						|
      SDNode *DUNode = right->Node->getOperand(0).Val;
 | 
						|
      if (DUNode->isOperand(left->Node))
 | 
						|
        RBonus += 2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (LPriority+LBonus < RPriority+RBonus)
 | 
						|
    return true;
 | 
						|
  else if (LPriority+LBonus == RPriority+RBonus)
 | 
						|
    if (left->Height > right->Height)
 | 
						|
      return true;
 | 
						|
    else if (left->Height == right->Height)
 | 
						|
      if (left->Depth < right->Depth)
 | 
						|
        return true;
 | 
						|
      else if (left->Depth == right->Depth)
 | 
						|
        if (left->CycleBound > right->CycleBound) 
 | 
						|
          return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isCopyFromLiveIn(const SUnit *SU) {
 | 
						|
  SDNode *N = SU->Node;
 | 
						|
  return N->getOpcode() == ISD::CopyFromReg &&
 | 
						|
    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: This is probably too slow!
 | 
						|
static void isReachable(SUnit *SU, SUnit *TargetSU,
 | 
						|
                        std::set<SUnit *> &Visited, bool &Reached) {
 | 
						|
  if (Reached) return;
 | 
						|
  if (SU == TargetSU) {
 | 
						|
    Reached = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (!Visited.insert(SU).second) return;
 | 
						|
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E;
 | 
						|
       ++I)
 | 
						|
    isReachable(I->first, TargetSU, Visited, Reached);
 | 
						|
}
 | 
						|
 | 
						|
static bool isReachable(SUnit *SU, SUnit *TargetSU) {
 | 
						|
  std::set<SUnit *> Visited;
 | 
						|
  bool Reached = false;
 | 
						|
  isReachable(SU, TargetSU, Visited, Reached);
 | 
						|
  return Reached;
 | 
						|
}
 | 
						|
 | 
						|
static SUnit *getDefUsePredecessor(SUnit *SU) {
 | 
						|
  SDNode *DU = SU->Node->getOperand(0).Val;
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->second) continue;  // ignore chain preds
 | 
						|
    SUnit *PredSU = I->first;
 | 
						|
    if (PredSU->Node == DU)
 | 
						|
      return PredSU;
 | 
						|
  }
 | 
						|
 | 
						|
  // Must be flagged.
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static bool canClobber(SUnit *SU, SUnit *Op) {
 | 
						|
  if (SU->isTwoAddress)
 | 
						|
    return Op == getDefUsePredecessor(SU);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
 | 
						|
/// it as a def&use operand. Add a pseudo control edge from it to the other
 | 
						|
/// node (if it won't create a cycle) so the two-address one will be scheduled
 | 
						|
/// first (lower in the schedule).
 | 
						|
template<class SF>
 | 
						|
void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
 | 
						|
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
 | 
						|
    SUnit *SU = (SUnit *)&((*SUnits)[i]);
 | 
						|
    SDNode *Node = SU->Node;
 | 
						|
    if (!Node->isTargetOpcode())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (SU->isTwoAddress) {
 | 
						|
      SUnit *DUSU = getDefUsePredecessor(SU);
 | 
						|
      if (!DUSU) continue;
 | 
						|
 | 
						|
      for (SUnit::succ_iterator I = DUSU->Succs.begin(), E = DUSU->Succs.end();
 | 
						|
           I != E; ++I) {
 | 
						|
        if (I->second) continue;
 | 
						|
        SUnit *SuccSU = I->first;
 | 
						|
        if (SuccSU != SU &&
 | 
						|
            (!canClobber(SuccSU, DUSU) ||
 | 
						|
             (!SU->isCommutable && SuccSU->isCommutable))){
 | 
						|
          if (SuccSU->Depth == SU->Depth && !isReachable(SuccSU, SU)) {
 | 
						|
            DEBUG(std::cerr << "Adding an edge from SU # " << SU->NodeNum
 | 
						|
                  << " to SU #" << SuccSU->NodeNum << "\n");
 | 
						|
            if (SU->addPred(SuccSU, true))
 | 
						|
              SU->NumChainPredsLeft++;
 | 
						|
            if (SuccSU->addSucc(SU, true))
 | 
						|
              SuccSU->NumChainSuccsLeft++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CalcNodePriority - Priority is the Sethi Ullman number. 
 | 
						|
/// Smaller number is the higher priority.
 | 
						|
template<class SF>
 | 
						|
int BURegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
 | 
						|
  int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
 | 
						|
  if (SethiUllmanNumber != 0)
 | 
						|
    return SethiUllmanNumber;
 | 
						|
 | 
						|
  unsigned Opc = SU->Node->getOpcode();
 | 
						|
  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | 
						|
    SethiUllmanNumber = INT_MAX - 10;
 | 
						|
  else if (SU->NumSuccsLeft == 0)
 | 
						|
    // If SU does not have a use, i.e. it doesn't produce a value that would
 | 
						|
    // be consumed (e.g. store), then it terminates a chain of computation.
 | 
						|
    // Give it a small SethiUllman number so it will be scheduled right before its
 | 
						|
    // predecessors that it doesn't lengthen their live ranges.
 | 
						|
    SethiUllmanNumber = INT_MIN + 10;
 | 
						|
  // FIXME: remove this else if? It seems to reduce register spills but often
 | 
						|
  // ends up increasing runtime. Need to investigate.
 | 
						|
  else if (SU->NumPredsLeft == 0 &&
 | 
						|
           (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
 | 
						|
    SethiUllmanNumber = INT_MAX - 10;
 | 
						|
  else {
 | 
						|
    int Extra = 0;
 | 
						|
    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (I->second) continue;  // ignore chain preds
 | 
						|
      SUnit *PredSU = I->first;
 | 
						|
      int PredSethiUllman = CalcNodePriority(PredSU);
 | 
						|
      if (PredSethiUllman > SethiUllmanNumber) {
 | 
						|
        SethiUllmanNumber = PredSethiUllman;
 | 
						|
        Extra = 0;
 | 
						|
      } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
 | 
						|
        Extra++;
 | 
						|
    }
 | 
						|
 | 
						|
    SethiUllmanNumber += Extra;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return SethiUllmanNumber;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculatePriorities - Calculate priorities of all scheduling units.
 | 
						|
template<class SF>
 | 
						|
void BURegReductionPriorityQueue<SF>::CalculatePriorities() {
 | 
						|
  SethiUllmanNumbers.assign(SUnits->size(), 0);
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | 
						|
    CalcNodePriority(&(*SUnits)[i]);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) {
 | 
						|
  unsigned Sum = 0;
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    SUnit *SuccSU = I->first;
 | 
						|
    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
 | 
						|
         EE = SuccSU->Preds.end(); II != EE; ++II) {
 | 
						|
      SUnit *PredSU = II->first;
 | 
						|
      if (!PredSU->isScheduled)
 | 
						|
        Sum++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Sum;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Top down
 | 
						|
bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | 
						|
  unsigned LeftNum  = left->NodeNum;
 | 
						|
  unsigned RightNum = right->NodeNum;
 | 
						|
  int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
 | 
						|
  int RPriority = SPQ->getSethiUllmanNumber(RightNum);
 | 
						|
  bool LIsTarget = left->Node->isTargetOpcode();
 | 
						|
  bool RIsTarget = right->Node->isTargetOpcode();
 | 
						|
  bool LIsFloater = LIsTarget && left->NumPreds == 0;
 | 
						|
  bool RIsFloater = RIsTarget && right->NumPreds == 0;
 | 
						|
  unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0;
 | 
						|
  unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0;
 | 
						|
 | 
						|
  if (left->NumSuccs == 0 && right->NumSuccs != 0)
 | 
						|
    return false;
 | 
						|
  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Special tie breaker: if two nodes share a operand, the one that use it
 | 
						|
  // as a def&use operand is preferred.
 | 
						|
  if (LIsTarget && RIsTarget) {
 | 
						|
    if (left->isTwoAddress && !right->isTwoAddress) {
 | 
						|
      SDNode *DUNode = left->Node->getOperand(0).Val;
 | 
						|
      if (DUNode->isOperand(right->Node))
 | 
						|
        RBonus += 2;
 | 
						|
    }
 | 
						|
    if (!left->isTwoAddress && right->isTwoAddress) {
 | 
						|
      SDNode *DUNode = right->Node->getOperand(0).Val;
 | 
						|
      if (DUNode->isOperand(left->Node))
 | 
						|
        LBonus += 2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (LIsFloater)
 | 
						|
    LBonus -= 2;
 | 
						|
  if (RIsFloater)
 | 
						|
    RBonus -= 2;
 | 
						|
  if (left->NumSuccs == 1)
 | 
						|
    LBonus += 2;
 | 
						|
  if (right->NumSuccs == 1)
 | 
						|
    RBonus += 2;
 | 
						|
 | 
						|
  if (LPriority+LBonus < RPriority+RBonus)
 | 
						|
    return true;
 | 
						|
  else if (LPriority == RPriority)
 | 
						|
    if (left->Depth < right->Depth)
 | 
						|
      return true;
 | 
						|
    else if (left->Depth == right->Depth)
 | 
						|
      if (left->NumSuccsLeft > right->NumSuccsLeft)
 | 
						|
        return true;
 | 
						|
      else if (left->NumSuccsLeft == right->NumSuccsLeft)
 | 
						|
        if (left->CycleBound > right->CycleBound) 
 | 
						|
          return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CalcNodePriority - Priority is the Sethi Ullman number. 
 | 
						|
/// Smaller number is the higher priority.
 | 
						|
template<class SF>
 | 
						|
int TDRegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
 | 
						|
  int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
 | 
						|
  if (SethiUllmanNumber != 0)
 | 
						|
    return SethiUllmanNumber;
 | 
						|
 | 
						|
  unsigned Opc = SU->Node->getOpcode();
 | 
						|
  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | 
						|
    SethiUllmanNumber = INT_MAX - 10;
 | 
						|
  else if (SU->NumSuccsLeft == 0)
 | 
						|
    // If SU does not have a use, i.e. it doesn't produce a value that would
 | 
						|
    // be consumed (e.g. store), then it terminates a chain of computation.
 | 
						|
    // Give it a small SethiUllman number so it will be scheduled right before its
 | 
						|
    // predecessors that it doesn't lengthen their live ranges.
 | 
						|
    SethiUllmanNumber = INT_MIN + 10;
 | 
						|
  else if (SU->NumPredsLeft == 0 &&
 | 
						|
           (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
 | 
						|
    SethiUllmanNumber = 1;
 | 
						|
  else {
 | 
						|
    int Extra = 0;
 | 
						|
    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (I->second) continue;  // ignore chain preds
 | 
						|
      SUnit *PredSU = I->first;
 | 
						|
      int PredSethiUllman = CalcNodePriority(PredSU);
 | 
						|
      if (PredSethiUllman > SethiUllmanNumber) {
 | 
						|
        SethiUllmanNumber = PredSethiUllman;
 | 
						|
        Extra = 0;
 | 
						|
      } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
 | 
						|
        Extra++;
 | 
						|
    }
 | 
						|
 | 
						|
    SethiUllmanNumber += Extra;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return SethiUllmanNumber;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculatePriorities - Calculate priorities of all scheduling units.
 | 
						|
template<class SF>
 | 
						|
void TDRegReductionPriorityQueue<SF>::CalculatePriorities() {
 | 
						|
  SethiUllmanNumbers.assign(SUnits->size(), 0);
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | 
						|
    CalcNodePriority(&(*SUnits)[i]);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Public Constructor Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
 | 
						|
                                                    SelectionDAG *DAG,
 | 
						|
                                                    MachineBasicBlock *BB) {
 | 
						|
  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true,
 | 
						|
                               new BURegReductionPriorityQueue<bu_ls_rr_sort>());
 | 
						|
}
 | 
						|
 | 
						|
llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
 | 
						|
                                                    SelectionDAG *DAG,
 | 
						|
                                                    MachineBasicBlock *BB) {
 | 
						|
  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false,
 | 
						|
                               new TDRegReductionPriorityQueue<td_ls_rr_sort>());
 | 
						|
}
 | 
						|
 |