mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 00:16:48 +00:00 
			
		
		
		
	Instead encode llvm IR level property "HasSideEffects" in an operand (shared with IsAlignStack). Added MachineInstrs::hasUnmodeledSideEffects() to check the operand when the instruction is an INLINEASM. This allows memory instructions to be moved around INLINEASM instructions. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123044 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			694 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			694 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the ScheduleDAGInstrs class, which implements re-scheduling
 | |
| // of MachineInstrs.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "sched-instrs"
 | |
| #include "ScheduleDAGInstrs.h"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtarget.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
 | |
|                                      const MachineLoopInfo &mli,
 | |
|                                      const MachineDominatorTree &mdt)
 | |
|   : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
 | |
|     InstrItins(mf.getTarget().getInstrItineraryData()),
 | |
|     Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()), LoopRegs(MLI, MDT) {
 | |
|   DbgValueVec.clear();
 | |
| }
 | |
| 
 | |
| /// Run - perform scheduling.
 | |
| ///
 | |
| void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
 | |
|                             MachineBasicBlock::iterator begin,
 | |
|                             MachineBasicBlock::iterator end,
 | |
|                             unsigned endcount) {
 | |
|   BB = bb;
 | |
|   Begin = begin;
 | |
|   InsertPosIndex = endcount;
 | |
| 
 | |
|   ScheduleDAG::Run(bb, end);
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObjectFromInt - This is the function that does the work of
 | |
| /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
 | |
| static const Value *getUnderlyingObjectFromInt(const Value *V) {
 | |
|   do {
 | |
|     if (const Operator *U = dyn_cast<Operator>(V)) {
 | |
|       // If we find a ptrtoint, we can transfer control back to the
 | |
|       // regular getUnderlyingObjectFromInt.
 | |
|       if (U->getOpcode() == Instruction::PtrToInt)
 | |
|         return U->getOperand(0);
 | |
|       // If we find an add of a constant or a multiplied value, it's
 | |
|       // likely that the other operand will lead us to the base
 | |
|       // object. We don't have to worry about the case where the
 | |
|       // object address is somehow being computed by the multiply,
 | |
|       // because our callers only care when the result is an
 | |
|       // identifibale object.
 | |
|       if (U->getOpcode() != Instruction::Add ||
 | |
|           (!isa<ConstantInt>(U->getOperand(1)) &&
 | |
|            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
 | |
|         return V;
 | |
|       V = U->getOperand(0);
 | |
|     } else {
 | |
|       return V;
 | |
|     }
 | |
|     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
 | |
|   } while (1);
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
 | |
| /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
 | |
| static const Value *getUnderlyingObject(const Value *V) {
 | |
|   // First just call Value::getUnderlyingObject to let it do what it does.
 | |
|   do {
 | |
|     V = GetUnderlyingObject(V);
 | |
|     // If it found an inttoptr, use special code to continue climing.
 | |
|     if (Operator::getOpcode(V) != Instruction::IntToPtr)
 | |
|       break;
 | |
|     const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
 | |
|     // If that succeeded in finding a pointer, continue the search.
 | |
|     if (!O->getType()->isPointerTy())
 | |
|       break;
 | |
|     V = O;
 | |
|   } while (1);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObjectForInstr - If this machine instr has memory reference
 | |
| /// information and it can be tracked to a normal reference to a known
 | |
| /// object, return the Value for that object. Otherwise return null.
 | |
| static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
 | |
|                                                 const MachineFrameInfo *MFI,
 | |
|                                                 bool &MayAlias) {
 | |
|   MayAlias = true;
 | |
|   if (!MI->hasOneMemOperand() ||
 | |
|       !(*MI->memoperands_begin())->getValue() ||
 | |
|       (*MI->memoperands_begin())->isVolatile())
 | |
|     return 0;
 | |
| 
 | |
|   const Value *V = (*MI->memoperands_begin())->getValue();
 | |
|   if (!V)
 | |
|     return 0;
 | |
| 
 | |
|   V = getUnderlyingObject(V);
 | |
|   if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
 | |
|     // For now, ignore PseudoSourceValues which may alias LLVM IR values
 | |
|     // because the code that uses this function has no way to cope with
 | |
|     // such aliases.
 | |
|     if (PSV->isAliased(MFI))
 | |
|       return 0;
 | |
|     
 | |
|     MayAlias = PSV->mayAlias(MFI);
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   if (isIdentifiedObject(V))
 | |
|     return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
 | |
|   if (MachineLoop *ML = MLI.getLoopFor(BB))
 | |
|     if (BB == ML->getLoopLatch()) {
 | |
|       MachineBasicBlock *Header = ML->getHeader();
 | |
|       for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
 | |
|            E = Header->livein_end(); I != E; ++I)
 | |
|         LoopLiveInRegs.insert(*I);
 | |
|       LoopRegs.VisitLoop(ML);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// AddSchedBarrierDeps - Add dependencies from instructions in the current
 | |
| /// list of instructions being scheduled to scheduling barrier by adding
 | |
| /// the exit SU to the register defs and use list. This is because we want to
 | |
| /// make sure instructions which define registers that are either used by
 | |
| /// the terminator or are live-out are properly scheduled. This is
 | |
| /// especially important when the definition latency of the return value(s)
 | |
| /// are too high to be hidden by the branch or when the liveout registers
 | |
| /// used by instructions in the fallthrough block.
 | |
| void ScheduleDAGInstrs::AddSchedBarrierDeps() {
 | |
|   MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
 | |
|   ExitSU.setInstr(ExitMI);
 | |
|   bool AllDepKnown = ExitMI &&
 | |
|     (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier());
 | |
|   if (ExitMI && AllDepKnown) {
 | |
|     // If it's a call or a barrier, add dependencies on the defs and uses of
 | |
|     // instruction.
 | |
|     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = ExitMI->getOperand(i);
 | |
|       if (!MO.isReg() || MO.isDef()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (Reg == 0) continue;
 | |
| 
 | |
|       assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
 | |
|       Uses[Reg].push_back(&ExitSU);
 | |
|     }
 | |
|   } else {
 | |
|     // For others, e.g. fallthrough, conditional branch, assume the exit
 | |
|     // uses all the registers that are livein to the successor blocks.
 | |
|     SmallSet<unsigned, 8> Seen;
 | |
|     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
 | |
|            SE = BB->succ_end(); SI != SE; ++SI)
 | |
|       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
 | |
|              E = (*SI)->livein_end(); I != E; ++I) {    
 | |
|         unsigned Reg = *I;
 | |
|         if (Seen.insert(Reg))
 | |
|           Uses[Reg].push_back(&ExitSU);
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
 | |
|   // We'll be allocating one SUnit for each instruction, plus one for
 | |
|   // the region exit node.
 | |
|   SUnits.reserve(BB->size());
 | |
| 
 | |
|   // We build scheduling units by walking a block's instruction list from bottom
 | |
|   // to top.
 | |
| 
 | |
|   // Remember where a generic side-effecting instruction is as we procede.
 | |
|   SUnit *BarrierChain = 0, *AliasChain = 0;
 | |
| 
 | |
|   // Memory references to specific known memory locations are tracked
 | |
|   // so that they can be given more precise dependencies. We track
 | |
|   // separately the known memory locations that may alias and those
 | |
|   // that are known not to alias
 | |
|   std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
 | |
|   std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
 | |
| 
 | |
|   // Keep track of dangling debug references to registers.
 | |
|   std::vector<std::pair<MachineInstr*, unsigned> >
 | |
|     DanglingDebugValue(TRI->getNumRegs(),
 | |
|     std::make_pair(static_cast<MachineInstr*>(0), 0));
 | |
| 
 | |
|   // Check to see if the scheduler cares about latencies.
 | |
|   bool UnitLatencies = ForceUnitLatencies();
 | |
| 
 | |
|   // Ask the target if address-backscheduling is desirable, and if so how much.
 | |
|   const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
 | |
|   unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
 | |
| 
 | |
|   // Remove any stale debug info; sometimes BuildSchedGraph is called again
 | |
|   // without emitting the info from the previous call.
 | |
|   DbgValueVec.clear();
 | |
| 
 | |
|   // Model data dependencies between instructions being scheduled and the
 | |
|   // ExitSU.
 | |
|   AddSchedBarrierDeps();
 | |
| 
 | |
|   // Walk the list of instructions, from bottom moving up.
 | |
|   for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
 | |
|        MII != MIE; --MII) {
 | |
|     MachineInstr *MI = prior(MII);
 | |
|     // DBG_VALUE does not have SUnit's built, so just remember these for later
 | |
|     // reinsertion.
 | |
|     if (MI->isDebugValue()) {
 | |
|       if (MI->getNumOperands()==3 && MI->getOperand(0).isReg() &&
 | |
|           MI->getOperand(0).getReg())
 | |
|         DanglingDebugValue[MI->getOperand(0).getReg()] =
 | |
|              std::make_pair(MI, DbgValueVec.size());
 | |
|       DbgValueVec.push_back(MI);
 | |
|       continue;
 | |
|     }
 | |
|     const TargetInstrDesc &TID = MI->getDesc();
 | |
|     assert(!TID.isTerminator() && !MI->isLabel() &&
 | |
|            "Cannot schedule terminators or labels!");
 | |
|     // Create the SUnit for this MI.
 | |
|     SUnit *SU = NewSUnit(MI);
 | |
|     SU->isCall = TID.isCall();
 | |
|     SU->isCommutable = TID.isCommutable();
 | |
| 
 | |
|     // Assign the Latency field of SU using target-provided information.
 | |
|     if (UnitLatencies)
 | |
|       SU->Latency = 1;
 | |
|     else
 | |
|       ComputeLatency(SU);
 | |
| 
 | |
|     // Add register-based dependencies (data, anti, and output).
 | |
|     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
 | |
|       const MachineOperand &MO = MI->getOperand(j);
 | |
|       if (!MO.isReg()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (Reg == 0) continue;
 | |
| 
 | |
|       assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
 | |
| 
 | |
|       if (MO.isDef() && DanglingDebugValue[Reg].first!=0) {
 | |
|         SU->DbgInstrList.push_back(DanglingDebugValue[Reg].first);
 | |
|         DbgValueVec[DanglingDebugValue[Reg].second] = 0;
 | |
|         DanglingDebugValue[Reg] = std::make_pair((MachineInstr*)0, 0);
 | |
|       }
 | |
| 
 | |
|       std::vector<SUnit *> &UseList = Uses[Reg];
 | |
|       std::vector<SUnit *> &DefList = Defs[Reg];
 | |
|       // Optionally add output and anti dependencies. For anti
 | |
|       // dependencies we use a latency of 0 because for a multi-issue
 | |
|       // target we want to allow the defining instruction to issue
 | |
|       // in the same cycle as the using instruction.
 | |
|       // TODO: Using a latency of 1 here for output dependencies assumes
 | |
|       //       there's no cost for reusing registers.
 | |
|       SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
 | |
|       unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
 | |
|       for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
 | |
|         SUnit *DefSU = DefList[i];
 | |
|         if (DefSU == &ExitSU)
 | |
|           continue;
 | |
|         if (DefSU != SU &&
 | |
|             (Kind != SDep::Output || !MO.isDead() ||
 | |
|              !DefSU->getInstr()->registerDefIsDead(Reg)))
 | |
|           DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
 | |
|       }
 | |
|       for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | |
|         std::vector<SUnit *> &DefList = Defs[*Alias];
 | |
|         for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
 | |
|           SUnit *DefSU = DefList[i];
 | |
|           if (DefSU == &ExitSU)
 | |
|             continue;
 | |
|           if (DefSU != SU &&
 | |
|               (Kind != SDep::Output || !MO.isDead() ||
 | |
|                !DefSU->getInstr()->registerDefIsDead(*Alias)))
 | |
|             DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (MO.isDef()) {
 | |
|         // Add any data dependencies.
 | |
|         unsigned DataLatency = SU->Latency;
 | |
|         for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
 | |
|           SUnit *UseSU = UseList[i];
 | |
|           if (UseSU == SU)
 | |
|             continue;
 | |
|           unsigned LDataLatency = DataLatency;
 | |
|           // Optionally add in a special extra latency for nodes that
 | |
|           // feed addresses.
 | |
|           // TODO: Do this for register aliases too.
 | |
|           // TODO: Perhaps we should get rid of
 | |
|           // SpecialAddressLatency and just move this into
 | |
|           // adjustSchedDependency for the targets that care about it.
 | |
|           if (SpecialAddressLatency != 0 && !UnitLatencies &&
 | |
|               UseSU != &ExitSU) {
 | |
|             MachineInstr *UseMI = UseSU->getInstr();
 | |
|             const TargetInstrDesc &UseTID = UseMI->getDesc();
 | |
|             int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
 | |
|             assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
 | |
|             if (RegUseIndex >= 0 &&
 | |
|                 (UseTID.mayLoad() || UseTID.mayStore()) &&
 | |
|                 (unsigned)RegUseIndex < UseTID.getNumOperands() &&
 | |
|                 UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
 | |
|               LDataLatency += SpecialAddressLatency;
 | |
|           }
 | |
|           // Adjust the dependence latency using operand def/use
 | |
|           // information (if any), and then allow the target to
 | |
|           // perform its own adjustments.
 | |
|           const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
 | |
|           if (!UnitLatencies) {
 | |
|             ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
 | |
|             ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
 | |
|           }
 | |
|           UseSU->addPred(dep);
 | |
|         }
 | |
|         for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | |
|           std::vector<SUnit *> &UseList = Uses[*Alias];
 | |
|           for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
 | |
|             SUnit *UseSU = UseList[i];
 | |
|             if (UseSU == SU)
 | |
|               continue;
 | |
|             const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
 | |
|             if (!UnitLatencies) {
 | |
|               ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
 | |
|               ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
 | |
|             }
 | |
|             UseSU->addPred(dep);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // If a def is going to wrap back around to the top of the loop,
 | |
|         // backschedule it.
 | |
|         if (!UnitLatencies && DefList.empty()) {
 | |
|           LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
 | |
|           if (I != LoopRegs.Deps.end()) {
 | |
|             const MachineOperand *UseMO = I->second.first;
 | |
|             unsigned Count = I->second.second;
 | |
|             const MachineInstr *UseMI = UseMO->getParent();
 | |
|             unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
 | |
|             const TargetInstrDesc &UseTID = UseMI->getDesc();
 | |
|             // TODO: If we knew the total depth of the region here, we could
 | |
|             // handle the case where the whole loop is inside the region but
 | |
|             // is large enough that the isScheduleHigh trick isn't needed.
 | |
|             if (UseMOIdx < UseTID.getNumOperands()) {
 | |
|               // Currently, we only support scheduling regions consisting of
 | |
|               // single basic blocks. Check to see if the instruction is in
 | |
|               // the same region by checking to see if it has the same parent.
 | |
|               if (UseMI->getParent() != MI->getParent()) {
 | |
|                 unsigned Latency = SU->Latency;
 | |
|                 if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
 | |
|                   Latency += SpecialAddressLatency;
 | |
|                 // This is a wild guess as to the portion of the latency which
 | |
|                 // will be overlapped by work done outside the current
 | |
|                 // scheduling region.
 | |
|                 Latency -= std::min(Latency, Count);
 | |
|                 // Add the artifical edge.
 | |
|                 ExitSU.addPred(SDep(SU, SDep::Order, Latency,
 | |
|                                     /*Reg=*/0, /*isNormalMemory=*/false,
 | |
|                                     /*isMustAlias=*/false,
 | |
|                                     /*isArtificial=*/true));
 | |
|               } else if (SpecialAddressLatency > 0 &&
 | |
|                          UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
 | |
|                 // The entire loop body is within the current scheduling region
 | |
|                 // and the latency of this operation is assumed to be greater
 | |
|                 // than the latency of the loop.
 | |
|                 // TODO: Recursively mark data-edge predecessors as
 | |
|                 //       isScheduleHigh too.
 | |
|                 SU->isScheduleHigh = true;
 | |
|               }
 | |
|             }
 | |
|             LoopRegs.Deps.erase(I);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         UseList.clear();
 | |
|         if (!MO.isDead())
 | |
|           DefList.clear();
 | |
|         DefList.push_back(SU);
 | |
|       } else {
 | |
|         UseList.push_back(SU);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Add chain dependencies.
 | |
|     // Chain dependencies used to enforce memory order should have
 | |
|     // latency of 0 (except for true dependency of Store followed by
 | |
|     // aliased Load... we estimate that with a single cycle of latency
 | |
|     // assuming the hardware will bypass)
 | |
|     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
 | |
|     // after stack slots are lowered to actual addresses.
 | |
|     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
 | |
|     // produce more precise dependence information.
 | |
| #define STORE_LOAD_LATENCY 1
 | |
|     unsigned TrueMemOrderLatency = 0;
 | |
|     if (TID.isCall() || MI->hasUnmodeledSideEffects() ||
 | |
|         (MI->hasVolatileMemoryRef() && 
 | |
|          (!TID.mayLoad() || !MI->isInvariantLoad(AA)))) {
 | |
|       // Be conservative with these and add dependencies on all memory
 | |
|       // references, even those that are known to not alias.
 | |
|       for (std::map<const Value *, SUnit *>::iterator I = 
 | |
|              NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
 | |
|         I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|       }
 | |
|       for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
 | |
|              NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
 | |
|         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
 | |
|           I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
 | |
|       }
 | |
|       NonAliasMemDefs.clear();
 | |
|       NonAliasMemUses.clear();
 | |
|       // Add SU to the barrier chain.
 | |
|       if (BarrierChain)
 | |
|         BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|       BarrierChain = SU;
 | |
| 
 | |
|       // fall-through
 | |
|     new_alias_chain:
 | |
|       // Chain all possibly aliasing memory references though SU.
 | |
|       if (AliasChain)
 | |
|         AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|       AliasChain = SU;
 | |
|       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
 | |
|         PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
 | |
|       for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
 | |
|            E = AliasMemDefs.end(); I != E; ++I) {
 | |
|         I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|       }
 | |
|       for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
 | |
|            AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
 | |
|         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
 | |
|           I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
 | |
|       }
 | |
|       PendingLoads.clear();
 | |
|       AliasMemDefs.clear();
 | |
|       AliasMemUses.clear();
 | |
|     } else if (TID.mayStore()) {
 | |
|       bool MayAlias = true;
 | |
|       TrueMemOrderLatency = STORE_LOAD_LATENCY;
 | |
|       if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
 | |
|         // A store to a specific PseudoSourceValue. Add precise dependencies.
 | |
|         // Record the def in MemDefs, first adding a dep if there is
 | |
|         // an existing def.
 | |
|         std::map<const Value *, SUnit *>::iterator I = 
 | |
|           ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
 | |
|         std::map<const Value *, SUnit *>::iterator IE = 
 | |
|           ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
 | |
|         if (I != IE) {
 | |
|           I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
 | |
|                                   /*isNormalMemory=*/true));
 | |
|           I->second = SU;
 | |
|         } else {
 | |
|           if (MayAlias)
 | |
|             AliasMemDefs[V] = SU;
 | |
|           else
 | |
|             NonAliasMemDefs[V] = SU;
 | |
|         }
 | |
|         // Handle the uses in MemUses, if there are any.
 | |
|         std::map<const Value *, std::vector<SUnit *> >::iterator J =
 | |
|           ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
 | |
|         std::map<const Value *, std::vector<SUnit *> >::iterator JE =
 | |
|           ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
 | |
|         if (J != JE) {
 | |
|           for (unsigned i = 0, e = J->second.size(); i != e; ++i)
 | |
|             J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
 | |
|                                        /*Reg=*/0, /*isNormalMemory=*/true));
 | |
|           J->second.clear();
 | |
|         }
 | |
|         if (MayAlias) {
 | |
|           // Add dependencies from all the PendingLoads, i.e. loads
 | |
|           // with no underlying object.
 | |
|           for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
 | |
|             PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
 | |
|           // Add dependence on alias chain, if needed.
 | |
|           if (AliasChain)
 | |
|             AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|         }
 | |
|         // Add dependence on barrier chain, if needed.
 | |
|         if (BarrierChain)
 | |
|           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|       } else {
 | |
|         // Treat all other stores conservatively.
 | |
|         goto new_alias_chain;
 | |
|       }
 | |
| 
 | |
|       if (!ExitSU.isPred(SU))
 | |
|         // Push store's up a bit to avoid them getting in between cmp
 | |
|         // and branches.
 | |
|         ExitSU.addPred(SDep(SU, SDep::Order, 0,
 | |
|                             /*Reg=*/0, /*isNormalMemory=*/false,
 | |
|                             /*isMustAlias=*/false,
 | |
|                             /*isArtificial=*/true));
 | |
|     } else if (TID.mayLoad()) {
 | |
|       bool MayAlias = true;
 | |
|       TrueMemOrderLatency = 0;
 | |
|       if (MI->isInvariantLoad(AA)) {
 | |
|         // Invariant load, no chain dependencies needed!
 | |
|       } else {
 | |
|         if (const Value *V = 
 | |
|             getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
 | |
|           // A load from a specific PseudoSourceValue. Add precise dependencies.
 | |
|           std::map<const Value *, SUnit *>::iterator I = 
 | |
|             ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
 | |
|           std::map<const Value *, SUnit *>::iterator IE = 
 | |
|             ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
 | |
|           if (I != IE)
 | |
|             I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
 | |
|                                     /*isNormalMemory=*/true));
 | |
|           if (MayAlias)
 | |
|             AliasMemUses[V].push_back(SU);
 | |
|           else 
 | |
|             NonAliasMemUses[V].push_back(SU);
 | |
|         } else {
 | |
|           // A load with no underlying object. Depend on all
 | |
|           // potentially aliasing stores.
 | |
|           for (std::map<const Value *, SUnit *>::iterator I = 
 | |
|                  AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
 | |
|             I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|           
 | |
|           PendingLoads.push_back(SU);
 | |
|           MayAlias = true;
 | |
|         }
 | |
|         
 | |
|         // Add dependencies on alias and barrier chains, if needed.
 | |
|         if (MayAlias && AliasChain)
 | |
|           AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|         if (BarrierChain)
 | |
|           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | |
|       } 
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
 | |
|     Defs[i].clear();
 | |
|     Uses[i].clear();
 | |
|   }
 | |
|   PendingLoads.clear();
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::FinishBlock() {
 | |
|   // Nothing to do.
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
 | |
|   // Compute the latency for the node.
 | |
|   if (!InstrItins || InstrItins->isEmpty()) {
 | |
|     SU->Latency = 1;
 | |
| 
 | |
|     // Simplistic target-independent heuristic: assume that loads take
 | |
|     // extra time.
 | |
|     if (SU->getInstr()->getDesc().mayLoad())
 | |
|       SU->Latency += 2;
 | |
|   } else {
 | |
|     SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use, 
 | |
|                                               SDep& dep) const {
 | |
|   if (!InstrItins || InstrItins->isEmpty())
 | |
|     return;
 | |
|   
 | |
|   // For a data dependency with a known register...
 | |
|   if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
 | |
|     return;
 | |
| 
 | |
|   const unsigned Reg = dep.getReg();
 | |
| 
 | |
|   // ... find the definition of the register in the defining
 | |
|   // instruction
 | |
|   MachineInstr *DefMI = Def->getInstr();
 | |
|   int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
 | |
|   if (DefIdx != -1) {
 | |
|     const MachineOperand &MO = DefMI->getOperand(DefIdx);
 | |
|     if (MO.isReg() && MO.isImplicit() &&
 | |
|         DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
 | |
|       // This is an implicit def, getOperandLatency() won't return the correct
 | |
|       // latency. e.g.
 | |
|       //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
 | |
|       //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
 | |
|       // What we want is to compute latency between def of %D6/%D7 and use of
 | |
|       // %Q3 instead.
 | |
|       DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
 | |
|     }
 | |
|     MachineInstr *UseMI = Use->getInstr();
 | |
|     // For all uses of the register, calculate the maxmimum latency
 | |
|     int Latency = -1;
 | |
|     if (UseMI) {
 | |
|       for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
 | |
|         const MachineOperand &MO = UseMI->getOperand(i);
 | |
|         if (!MO.isReg() || !MO.isUse())
 | |
|           continue;
 | |
|         unsigned MOReg = MO.getReg();
 | |
|         if (MOReg != Reg)
 | |
|           continue;
 | |
| 
 | |
|         int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
 | |
|                                               UseMI, i);
 | |
|         Latency = std::max(Latency, UseCycle);
 | |
|       }
 | |
|     } else {
 | |
|       // UseMI is null, then it must be a scheduling barrier.
 | |
|       if (!InstrItins || InstrItins->isEmpty())
 | |
|         return;
 | |
|       unsigned DefClass = DefMI->getDesc().getSchedClass();
 | |
|       Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
 | |
|     }
 | |
| 
 | |
|     // If we found a latency, then replace the existing dependence latency.
 | |
|     if (Latency >= 0)
 | |
|       dep.setLatency(Latency);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
 | |
|   SU->getInstr()->dump();
 | |
| }
 | |
| 
 | |
| std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
 | |
|   std::string s;
 | |
|   raw_string_ostream oss(s);
 | |
|   if (SU == &EntrySU)
 | |
|     oss << "<entry>";
 | |
|   else if (SU == &ExitSU)
 | |
|     oss << "<exit>";
 | |
|   else
 | |
|     SU->getInstr()->print(oss);
 | |
|   return oss.str();
 | |
| }
 | |
| 
 | |
| // EmitSchedule - Emit the machine code in scheduled order.
 | |
| MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
 | |
|   // For MachineInstr-based scheduling, we're rescheduling the instructions in
 | |
|   // the block, so start by removing them from the block.
 | |
|   while (Begin != InsertPos) {
 | |
|     MachineBasicBlock::iterator I = Begin;
 | |
|     ++Begin;
 | |
|     BB->remove(I);
 | |
|   }
 | |
| 
 | |
|   // First reinsert any remaining debug_values; these are either constants,
 | |
|   // or refer to live-in registers.  The beginning of the block is the right
 | |
|   // place for the latter.  The former might reasonably be placed elsewhere
 | |
|   // using some kind of ordering algorithm, but right now it doesn't matter.
 | |
|   for (int i = DbgValueVec.size()-1; i>=0; --i)
 | |
|     if (DbgValueVec[i])
 | |
|       BB->insert(InsertPos, DbgValueVec[i]);
 | |
| 
 | |
|   // Then re-insert them according to the given schedule.
 | |
|   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | |
|     SUnit *SU = Sequence[i];
 | |
|     if (!SU) {
 | |
|       // Null SUnit* is a noop.
 | |
|       EmitNoop();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     BB->insert(InsertPos, SU->getInstr());
 | |
|     for (unsigned i = 0, e = SU->DbgInstrList.size() ; i < e ; ++i)
 | |
|       BB->insert(InsertPos, SU->DbgInstrList[i]);
 | |
|   }
 | |
| 
 | |
|   // Update the Begin iterator, as the first instruction in the block
 | |
|   // may have been scheduled later.
 | |
|   if (!DbgValueVec.empty()) {
 | |
|     for (int i = DbgValueVec.size()-1; i>=0; --i)
 | |
|       if (DbgValueVec[i]!=0) {
 | |
|         Begin = DbgValueVec[DbgValueVec.size()-1];
 | |
|         break;
 | |
|       }
 | |
|   } else if (!Sequence.empty())
 | |
|     Begin = Sequence[0]->getInstr();
 | |
| 
 | |
|   DbgValueVec.clear();
 | |
|   return BB;
 | |
| }
 |