mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26670 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			849 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			849 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the default implementation of the Alias Analysis interface
 | |
| // that simply implements a few identities (two different globals cannot alias,
 | |
| // etc), but otherwise does no analysis.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/Passes.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| // Make sure that anything that uses AliasAnalysis pulls in this file...
 | |
| void llvm::BasicAAStub() {}
 | |
| 
 | |
| namespace {
 | |
|   /// NoAA - This class implements the -no-aa pass, which always returns "I
 | |
|   /// don't know" for alias queries.  NoAA is unlike other alias analysis
 | |
|   /// implementations, in that it does not chain to a previous analysis.  As
 | |
|   /// such it doesn't follow many of the rules that other alias analyses must.
 | |
|   ///
 | |
|   struct NoAA : public ImmutablePass, public AliasAnalysis {
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<TargetData>();
 | |
|     }
 | |
| 
 | |
|     virtual void initializePass() {
 | |
|       TD = &getAnalysis<TargetData>();
 | |
|     }
 | |
| 
 | |
|     virtual AliasResult alias(const Value *V1, unsigned V1Size,
 | |
|                               const Value *V2, unsigned V2Size) {
 | |
|       return MayAlias;
 | |
|     }
 | |
| 
 | |
|     virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
 | |
|                                          std::vector<PointerAccessInfo> *Info) {
 | |
|       return UnknownModRefBehavior;
 | |
|     }
 | |
| 
 | |
|     virtual void getArgumentAccesses(Function *F, CallSite CS,
 | |
|                                      std::vector<PointerAccessInfo> &Info) {
 | |
|       assert(0 && "This method may not be called on this function!");
 | |
|     }
 | |
| 
 | |
|     virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
 | |
|     virtual bool pointsToConstantMemory(const Value *P) { return false; }
 | |
|     virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
 | |
|       return ModRef;
 | |
|     }
 | |
|     virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
 | |
|       return ModRef;
 | |
|     }
 | |
|     virtual bool hasNoModRefInfoForCalls() const { return true; }
 | |
| 
 | |
|     virtual void deleteValue(Value *V) {}
 | |
|     virtual void copyValue(Value *From, Value *To) {}
 | |
|   };
 | |
| 
 | |
|   // Register this pass...
 | |
|   RegisterOpt<NoAA>
 | |
|   U("no-aa", "No Alias Analysis (always returns 'may' alias)");
 | |
| 
 | |
|   // Declare that we implement the AliasAnalysis interface
 | |
|   RegisterAnalysisGroup<AliasAnalysis, NoAA> V;
 | |
| }  // End of anonymous namespace
 | |
| 
 | |
| ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
 | |
| 
 | |
| namespace {
 | |
|   /// BasicAliasAnalysis - This is the default alias analysis implementation.
 | |
|   /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
 | |
|   /// derives from the NoAA class.
 | |
|   struct BasicAliasAnalysis : public NoAA {
 | |
|     AliasResult alias(const Value *V1, unsigned V1Size,
 | |
|                       const Value *V2, unsigned V2Size);
 | |
| 
 | |
|     ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
 | |
|     ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
 | |
|       return NoAA::getModRefInfo(CS1,CS2);
 | |
|     }
 | |
| 
 | |
|     /// hasNoModRefInfoForCalls - We can provide mod/ref information against
 | |
|     /// non-escaping allocations.
 | |
|     virtual bool hasNoModRefInfoForCalls() const { return false; }
 | |
| 
 | |
|     /// pointsToConstantMemory - Chase pointers until we find a (constant
 | |
|     /// global) or not.
 | |
|     bool pointsToConstantMemory(const Value *P);
 | |
| 
 | |
|     virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
 | |
|                                              std::vector<PointerAccessInfo> *Info);
 | |
| 
 | |
|   private:
 | |
|     // CheckGEPInstructions - Check two GEP instructions with known
 | |
|     // must-aliasing base pointers.  This checks to see if the index expressions
 | |
|     // preclude the pointers from aliasing...
 | |
|     AliasResult
 | |
|     CheckGEPInstructions(const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops,
 | |
|                          unsigned G1Size,
 | |
|                          const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops,
 | |
|                          unsigned G2Size);
 | |
|   };
 | |
| 
 | |
|   // Register this pass...
 | |
|   RegisterOpt<BasicAliasAnalysis>
 | |
|   X("basicaa", "Basic Alias Analysis (default AA impl)");
 | |
| 
 | |
|   // Declare that we implement the AliasAnalysis interface
 | |
|   RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y;
 | |
| }  // End of anonymous namespace
 | |
| 
 | |
| ImmutablePass *llvm::createBasicAliasAnalysisPass() {
 | |
|   return new BasicAliasAnalysis();
 | |
| }
 | |
| 
 | |
| // hasUniqueAddress - Return true if the specified value points to something
 | |
| // with a unique, discernable, address.
 | |
| static inline bool hasUniqueAddress(const Value *V) {
 | |
|   return isa<GlobalValue>(V) || isa<AllocationInst>(V);
 | |
| }
 | |
| 
 | |
| // getUnderlyingObject - This traverses the use chain to figure out what object
 | |
| // the specified value points to.  If the value points to, or is derived from, a
 | |
| // unique object or an argument, return it.
 | |
| static const Value *getUnderlyingObject(const Value *V) {
 | |
|   if (!isa<PointerType>(V->getType())) return 0;
 | |
| 
 | |
|   // If we are at some type of object... return it.
 | |
|   if (hasUniqueAddress(V) || isa<Argument>(V)) return V;
 | |
| 
 | |
|   // Traverse through different addressing mechanisms...
 | |
|   if (const Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
 | |
|       return getUnderlyingObject(I->getOperand(0));
 | |
|   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | |
|     if (CE->getOpcode() == Instruction::Cast ||
 | |
|         CE->getOpcode() == Instruction::GetElementPtr)
 | |
|       return getUnderlyingObject(CE->getOperand(0));
 | |
|   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|     return GV;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static const User *isGEP(const Value *V) {
 | |
|   if (isa<GetElementPtrInst>(V) ||
 | |
|       (isa<ConstantExpr>(V) &&
 | |
|        cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
 | |
|     return cast<User>(V);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static const Value *GetGEPOperands(const Value *V, std::vector<Value*> &GEPOps){
 | |
|   assert(GEPOps.empty() && "Expect empty list to populate!");
 | |
|   GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
 | |
|                 cast<User>(V)->op_end());
 | |
| 
 | |
|   // Accumulate all of the chained indexes into the operand array
 | |
|   V = cast<User>(V)->getOperand(0);
 | |
| 
 | |
|   while (const User *G = isGEP(V)) {
 | |
|     if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
 | |
|         !cast<Constant>(GEPOps[0])->isNullValue())
 | |
|       break;  // Don't handle folding arbitrary pointer offsets yet...
 | |
|     GEPOps.erase(GEPOps.begin());   // Drop the zero index
 | |
|     GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
 | |
|     V = G->getOperand(0);
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// pointsToConstantMemory - Chase pointers until we find a (constant
 | |
| /// global) or not.
 | |
| bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
 | |
|   if (const Value *V = getUnderlyingObject(P))
 | |
|     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | |
|       return GV->isConstant();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool AddressMightEscape(const Value *V) {
 | |
|   for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     const Instruction *I = cast<Instruction>(*UI);
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::Load: break;
 | |
|     case Instruction::Store:
 | |
|       if (I->getOperand(0) == V)
 | |
|         return true; // Escapes if the pointer is stored.
 | |
|       break;
 | |
|     case Instruction::GetElementPtr:
 | |
|       if (AddressMightEscape(I)) return true;
 | |
|       break;
 | |
|     case Instruction::Cast:
 | |
|       if (!isa<PointerType>(I->getType()))
 | |
|         return true;
 | |
|       if (AddressMightEscape(I)) return true;
 | |
|       break;
 | |
|     case Instruction::Ret:
 | |
|       // If returned, the address will escape to calling functions, but no
 | |
|       // callees could modify it.
 | |
|       break;
 | |
|     default:
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // getModRefInfo - Check to see if the specified callsite can clobber the
 | |
| // specified memory object.  Since we only look at local properties of this
 | |
| // function, we really can't say much about this query.  We do, however, use
 | |
| // simple "address taken" analysis on local objects.
 | |
| //
 | |
| AliasAnalysis::ModRefResult
 | |
| BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
 | |
|   if (!isa<Constant>(P))
 | |
|     if (const AllocationInst *AI =
 | |
|                   dyn_cast_or_null<AllocationInst>(getUnderlyingObject(P))) {
 | |
|       // Okay, the pointer is to a stack allocated object.  If we can prove that
 | |
|       // the pointer never "escapes", then we know the call cannot clobber it,
 | |
|       // because it simply can't get its address.
 | |
|       if (!AddressMightEscape(AI))
 | |
|         return NoModRef;
 | |
| 
 | |
|       // If this is a tail call and P points to a stack location, we know that
 | |
|       // the tail call cannot access or modify the local stack.
 | |
|       if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
 | |
|         if (CI->isTailCall() && isa<AllocaInst>(AI))
 | |
|           return NoModRef;
 | |
|     }
 | |
| 
 | |
|   // The AliasAnalysis base class has some smarts, lets use them.
 | |
|   return AliasAnalysis::getModRefInfo(CS, P, Size);
 | |
| }
 | |
| 
 | |
| // alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
 | |
| // as array references.  Note that this function is heavily tail recursive.
 | |
| // Hopefully we have a smart C++ compiler.  :)
 | |
| //
 | |
| AliasAnalysis::AliasResult
 | |
| BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
 | |
|                           const Value *V2, unsigned V2Size) {
 | |
|   // Strip off any constant expression casts if they exist
 | |
|   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
 | |
|     if (CE->getOpcode() == Instruction::Cast &&
 | |
|         isa<PointerType>(CE->getOperand(0)->getType()))
 | |
|       V1 = CE->getOperand(0);
 | |
|   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
 | |
|     if (CE->getOpcode() == Instruction::Cast &&
 | |
|         isa<PointerType>(CE->getOperand(0)->getType()))
 | |
|       V2 = CE->getOperand(0);
 | |
| 
 | |
|   // Are we checking for alias of the same value?
 | |
|   if (V1 == V2) return MustAlias;
 | |
| 
 | |
|   if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
 | |
|       V1->getType() != Type::LongTy && V2->getType() != Type::LongTy)
 | |
|     return NoAlias;  // Scalars cannot alias each other
 | |
| 
 | |
|   // Strip off cast instructions...
 | |
|   if (const Instruction *I = dyn_cast<CastInst>(V1))
 | |
|     if (isa<PointerType>(I->getOperand(0)->getType()))
 | |
|       return alias(I->getOperand(0), V1Size, V2, V2Size);
 | |
|   if (const Instruction *I = dyn_cast<CastInst>(V2))
 | |
|     if (isa<PointerType>(I->getOperand(0)->getType()))
 | |
|       return alias(V1, V1Size, I->getOperand(0), V2Size);
 | |
| 
 | |
|   // Figure out what objects these things are pointing to if we can...
 | |
|   const Value *O1 = getUnderlyingObject(V1);
 | |
|   const Value *O2 = getUnderlyingObject(V2);
 | |
| 
 | |
|   // Pointing at a discernible object?
 | |
|   if (O1) {
 | |
|     if (O2) {
 | |
|       if (isa<Argument>(O1)) {
 | |
|         // Incoming argument cannot alias locally allocated object!
 | |
|         if (isa<AllocationInst>(O2)) return NoAlias;
 | |
|         // Otherwise, nothing is known...
 | |
|       } else if (isa<Argument>(O2)) {
 | |
|         // Incoming argument cannot alias locally allocated object!
 | |
|         if (isa<AllocationInst>(O1)) return NoAlias;
 | |
|         // Otherwise, nothing is known...
 | |
|       } else if (O1 != O2) {
 | |
|         // If they are two different objects, we know that we have no alias...
 | |
|         return NoAlias;
 | |
|       }
 | |
| 
 | |
|       // If they are the same object, they we can look at the indexes.  If they
 | |
|       // index off of the object is the same for both pointers, they must alias.
 | |
|       // If they are provably different, they must not alias.  Otherwise, we
 | |
|       // can't tell anything.
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (!isa<Argument>(O1) && isa<ConstantPointerNull>(V2))
 | |
|       return NoAlias;                    // Unique values don't alias null
 | |
| 
 | |
|     if (isa<GlobalVariable>(O1) ||
 | |
|         (isa<AllocationInst>(O1) &&
 | |
|          !cast<AllocationInst>(O1)->isArrayAllocation()))
 | |
|       if (cast<PointerType>(O1->getType())->getElementType()->isSized()) {
 | |
|         // If the size of the other access is larger than the total size of the
 | |
|         // global/alloca/malloc, it cannot be accessing the global (it's
 | |
|         // undefined to load or store bytes before or after an object).
 | |
|         const Type *ElTy = cast<PointerType>(O1->getType())->getElementType();
 | |
|         unsigned GlobalSize = getTargetData().getTypeSize(ElTy);
 | |
|         if (GlobalSize < V2Size && V2Size != ~0U)
 | |
|           return NoAlias;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if (O2) {
 | |
|     if (!isa<Argument>(O2) && isa<ConstantPointerNull>(V1))
 | |
|       return NoAlias;                    // Unique values don't alias null
 | |
| 
 | |
|     if (isa<GlobalVariable>(O2) ||
 | |
|         (isa<AllocationInst>(O2) &&
 | |
|          !cast<AllocationInst>(O2)->isArrayAllocation()))
 | |
|       if (cast<PointerType>(O2->getType())->getElementType()->isSized()) {
 | |
|         // If the size of the other access is larger than the total size of the
 | |
|         // global/alloca/malloc, it cannot be accessing the object (it's
 | |
|         // undefined to load or store bytes before or after an object).
 | |
|         const Type *ElTy = cast<PointerType>(O2->getType())->getElementType();
 | |
|         unsigned GlobalSize = getTargetData().getTypeSize(ElTy);
 | |
|         if (GlobalSize < V1Size && V1Size != ~0U)
 | |
|           return NoAlias;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // If we have two gep instructions with must-alias'ing base pointers, figure
 | |
|   // out if the indexes to the GEP tell us anything about the derived pointer.
 | |
|   // Note that we also handle chains of getelementptr instructions as well as
 | |
|   // constant expression getelementptrs here.
 | |
|   //
 | |
|   if (isGEP(V1) && isGEP(V2)) {
 | |
|     // Drill down into the first non-gep value, to test for must-aliasing of
 | |
|     // the base pointers.
 | |
|     const Value *BasePtr1 = V1, *BasePtr2 = V2;
 | |
|     do {
 | |
|       BasePtr1 = cast<User>(BasePtr1)->getOperand(0);
 | |
|     } while (isGEP(BasePtr1) &&
 | |
|              cast<User>(BasePtr1)->getOperand(1) ==
 | |
|        Constant::getNullValue(cast<User>(BasePtr1)->getOperand(1)->getType()));
 | |
|     do {
 | |
|       BasePtr2 = cast<User>(BasePtr2)->getOperand(0);
 | |
|     } while (isGEP(BasePtr2) &&
 | |
|              cast<User>(BasePtr2)->getOperand(1) ==
 | |
|        Constant::getNullValue(cast<User>(BasePtr2)->getOperand(1)->getType()));
 | |
| 
 | |
|     // Do the base pointers alias?
 | |
|     AliasResult BaseAlias = alias(BasePtr1, V1Size, BasePtr2, V2Size);
 | |
|     if (BaseAlias == NoAlias) return NoAlias;
 | |
|     if (BaseAlias == MustAlias) {
 | |
|       // If the base pointers alias each other exactly, check to see if we can
 | |
|       // figure out anything about the resultant pointers, to try to prove
 | |
|       // non-aliasing.
 | |
| 
 | |
|       // Collect all of the chained GEP operands together into one simple place
 | |
|       std::vector<Value*> GEP1Ops, GEP2Ops;
 | |
|       BasePtr1 = GetGEPOperands(V1, GEP1Ops);
 | |
|       BasePtr2 = GetGEPOperands(V2, GEP2Ops);
 | |
| 
 | |
|       // If GetGEPOperands were able to fold to the same must-aliased pointer,
 | |
|       // do the comparison.
 | |
|       if (BasePtr1 == BasePtr2) {
 | |
|         AliasResult GAlias =
 | |
|           CheckGEPInstructions(BasePtr1->getType(), GEP1Ops, V1Size,
 | |
|                                BasePtr2->getType(), GEP2Ops, V2Size);
 | |
|         if (GAlias != MayAlias)
 | |
|           return GAlias;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check to see if these two pointers are related by a getelementptr
 | |
|   // instruction.  If one pointer is a GEP with a non-zero index of the other
 | |
|   // pointer, we know they cannot alias.
 | |
|   //
 | |
|   if (isGEP(V2)) {
 | |
|     std::swap(V1, V2);
 | |
|     std::swap(V1Size, V2Size);
 | |
|   }
 | |
| 
 | |
|   if (V1Size != ~0U && V2Size != ~0U)
 | |
|     if (const User *GEP = isGEP(V1)) {
 | |
|       std::vector<Value*> GEPOperands;
 | |
|       const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
 | |
| 
 | |
|       AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
 | |
|       if (R == MustAlias) {
 | |
|         // If there is at least one non-zero constant index, we know they cannot
 | |
|         // alias.
 | |
|         bool ConstantFound = false;
 | |
|         bool AllZerosFound = true;
 | |
|         for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
 | |
|           if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
 | |
|             if (!C->isNullValue()) {
 | |
|               ConstantFound = true;
 | |
|               AllZerosFound = false;
 | |
|               break;
 | |
|             }
 | |
|           } else {
 | |
|             AllZerosFound = false;
 | |
|           }
 | |
| 
 | |
|         // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
 | |
|         // the ptr, the end result is a must alias also.
 | |
|         if (AllZerosFound)
 | |
|           return MustAlias;
 | |
| 
 | |
|         if (ConstantFound) {
 | |
|           if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
 | |
|             return NoAlias;
 | |
| 
 | |
|           // Otherwise we have to check to see that the distance is more than
 | |
|           // the size of the argument... build an index vector that is equal to
 | |
|           // the arguments provided, except substitute 0's for any variable
 | |
|           // indexes we find...
 | |
|           if (cast<PointerType>(
 | |
|                 BasePtr->getType())->getElementType()->isSized()) {
 | |
|             for (unsigned i = 0; i != GEPOperands.size(); ++i)
 | |
|               if (!isa<ConstantInt>(GEPOperands[i]))
 | |
|                 GEPOperands[i] =
 | |
|                   Constant::getNullValue(GEPOperands[i]->getType());
 | |
|             int64_t Offset =
 | |
|               getTargetData().getIndexedOffset(BasePtr->getType(), GEPOperands);
 | |
| 
 | |
|             if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
 | |
|               return NoAlias;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   return MayAlias;
 | |
| }
 | |
| 
 | |
| static bool ValuesEqual(Value *V1, Value *V2) {
 | |
|   if (V1->getType() == V2->getType())
 | |
|     return V1 == V2;
 | |
|   if (Constant *C1 = dyn_cast<Constant>(V1))
 | |
|     if (Constant *C2 = dyn_cast<Constant>(V2)) {
 | |
|       // Sign extend the constants to long types.
 | |
|       C1 = ConstantExpr::getSignExtend(C1, Type::LongTy);
 | |
|       C2 = ConstantExpr::getSignExtend(C2, Type::LongTy);
 | |
|       return C1 == C2;
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
 | |
| /// base pointers.  This checks to see if the index expressions preclude the
 | |
| /// pointers from aliasing...
 | |
| AliasAnalysis::AliasResult BasicAliasAnalysis::
 | |
| CheckGEPInstructions(const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops,
 | |
|                      unsigned G1S,
 | |
|                      const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops,
 | |
|                      unsigned G2S) {
 | |
|   // We currently can't handle the case when the base pointers have different
 | |
|   // primitive types.  Since this is uncommon anyway, we are happy being
 | |
|   // extremely conservative.
 | |
|   if (BasePtr1Ty != BasePtr2Ty)
 | |
|     return MayAlias;
 | |
| 
 | |
|   const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
 | |
| 
 | |
|   // Find the (possibly empty) initial sequence of equal values... which are not
 | |
|   // necessarily constants.
 | |
|   unsigned NumGEP1Operands = GEP1Ops.size(), NumGEP2Operands = GEP2Ops.size();
 | |
|   unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
 | |
|   unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
 | |
|   unsigned UnequalOper = 0;
 | |
|   while (UnequalOper != MinOperands &&
 | |
|          ValuesEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
 | |
|     // Advance through the type as we go...
 | |
|     ++UnequalOper;
 | |
|     if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
 | |
|       BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
 | |
|     else {
 | |
|       // If all operands equal each other, then the derived pointers must
 | |
|       // alias each other...
 | |
|       BasePtr1Ty = 0;
 | |
|       assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
 | |
|              "Ran out of type nesting, but not out of operands?");
 | |
|       return MustAlias;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have seen all constant operands, and run out of indexes on one of the
 | |
|   // getelementptrs, check to see if the tail of the leftover one is all zeros.
 | |
|   // If so, return mustalias.
 | |
|   if (UnequalOper == MinOperands) {
 | |
|     if (GEP1Ops.size() < GEP2Ops.size()) std::swap(GEP1Ops, GEP2Ops);
 | |
| 
 | |
|     bool AllAreZeros = true;
 | |
|     for (unsigned i = UnequalOper; i != MaxOperands; ++i)
 | |
|       if (!isa<Constant>(GEP1Ops[i]) ||
 | |
|           !cast<Constant>(GEP1Ops[i])->isNullValue()) {
 | |
|         AllAreZeros = false;
 | |
|         break;
 | |
|       }
 | |
|     if (AllAreZeros) return MustAlias;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // So now we know that the indexes derived from the base pointers,
 | |
|   // which are known to alias, are different.  We can still determine a
 | |
|   // no-alias result if there are differing constant pairs in the index
 | |
|   // chain.  For example:
 | |
|   //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
 | |
|   //
 | |
|   // We have to be careful here about array accesses.  In particular, consider:
 | |
|   //        A[1][0] vs A[0][i]
 | |
|   // In this case, we don't *know* that the array will be accessed in bounds:
 | |
|   // the index could even be negative.  Because of this, we have to
 | |
|   // conservatively *give up* and return may alias.  We disregard differing
 | |
|   // array subscripts that are followed by a variable index without going
 | |
|   // through a struct.
 | |
|   //
 | |
|   unsigned SizeMax = std::max(G1S, G2S);
 | |
|   if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
 | |
| 
 | |
|   // Scan for the first operand that is constant and unequal in the
 | |
|   // two getelementptrs...
 | |
|   unsigned FirstConstantOper = UnequalOper;
 | |
|   for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
 | |
|     const Value *G1Oper = GEP1Ops[FirstConstantOper];
 | |
|     const Value *G2Oper = GEP2Ops[FirstConstantOper];
 | |
| 
 | |
|     if (G1Oper != G2Oper)   // Found non-equal constant indexes...
 | |
|       if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
 | |
|         if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
 | |
|           if (G1OC->getType() != G2OC->getType()) {
 | |
|             // Sign extend both operands to long.
 | |
|             G1OC = ConstantExpr::getSignExtend(G1OC, Type::LongTy);
 | |
|             G2OC = ConstantExpr::getSignExtend(G2OC, Type::LongTy);
 | |
|             GEP1Ops[FirstConstantOper] = G1OC;
 | |
|             GEP2Ops[FirstConstantOper] = G2OC;
 | |
|           }
 | |
|           
 | |
|           if (G1OC != G2OC) {
 | |
|             // Handle the "be careful" case above: if this is an array
 | |
|             // subscript, scan for a subsequent variable array index.
 | |
|             if (isa<ArrayType>(BasePtr1Ty))  {
 | |
|               const Type *NextTy =cast<ArrayType>(BasePtr1Ty)->getElementType();
 | |
|               bool isBadCase = false;
 | |
|               
 | |
|               for (unsigned Idx = FirstConstantOper+1;
 | |
|                    Idx != MinOperands && isa<ArrayType>(NextTy); ++Idx) {
 | |
|                 const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
 | |
|                 if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
 | |
|                   isBadCase = true;
 | |
|                   break;
 | |
|                 }
 | |
|                 NextTy = cast<ArrayType>(NextTy)->getElementType();
 | |
|               }
 | |
|               
 | |
|               if (isBadCase) G1OC = 0;
 | |
|             }
 | |
| 
 | |
|             // Make sure they are comparable (ie, not constant expressions), and
 | |
|             // make sure the GEP with the smaller leading constant is GEP1.
 | |
|             if (G1OC) {
 | |
|               Constant *Compare = ConstantExpr::getSetGT(G1OC, G2OC);
 | |
|               if (ConstantBool *CV = dyn_cast<ConstantBool>(Compare)) {
 | |
|                 if (CV->getValue())   // If they are comparable and G2 > G1
 | |
|                   std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|     BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
 | |
|   }
 | |
| 
 | |
|   // No shared constant operands, and we ran out of common operands.  At this
 | |
|   // point, the GEP instructions have run through all of their operands, and we
 | |
|   // haven't found evidence that there are any deltas between the GEP's.
 | |
|   // However, one GEP may have more operands than the other.  If this is the
 | |
|   // case, there may still be hope.  Check this now.
 | |
|   if (FirstConstantOper == MinOperands) {
 | |
|     // Make GEP1Ops be the longer one if there is a longer one.
 | |
|     if (GEP1Ops.size() < GEP2Ops.size())
 | |
|       std::swap(GEP1Ops, GEP2Ops);
 | |
| 
 | |
|     // Is there anything to check?
 | |
|     if (GEP1Ops.size() > MinOperands) {
 | |
|       for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
 | |
|         if (isa<ConstantInt>(GEP1Ops[i]) &&
 | |
|             !cast<Constant>(GEP1Ops[i])->isNullValue()) {
 | |
|           // Yup, there's a constant in the tail.  Set all variables to
 | |
|           // constants in the GEP instruction to make it suiteable for
 | |
|           // TargetData::getIndexedOffset.
 | |
|           for (i = 0; i != MaxOperands; ++i)
 | |
|             if (!isa<ConstantInt>(GEP1Ops[i]))
 | |
|               GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
 | |
|           // Okay, now get the offset.  This is the relative offset for the full
 | |
|           // instruction.
 | |
|           const TargetData &TD = getTargetData();
 | |
|           int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops);
 | |
| 
 | |
|           // Now crop off any constants from the end...
 | |
|           GEP1Ops.resize(MinOperands);
 | |
|           int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops);
 | |
| 
 | |
|           // If the tail provided a bit enough offset, return noalias!
 | |
|           if ((uint64_t)(Offset2-Offset1) >= SizeMax)
 | |
|             return NoAlias;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Couldn't find anything useful.
 | |
|     return MayAlias;
 | |
|   }
 | |
| 
 | |
|   // If there are non-equal constants arguments, then we can figure
 | |
|   // out a minimum known delta between the two index expressions... at
 | |
|   // this point we know that the first constant index of GEP1 is less
 | |
|   // than the first constant index of GEP2.
 | |
| 
 | |
|   // Advance BasePtr[12]Ty over this first differing constant operand.
 | |
|   BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
 | |
|       getTypeAtIndex(GEP2Ops[FirstConstantOper]);
 | |
|   BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
 | |
|       getTypeAtIndex(GEP1Ops[FirstConstantOper]);
 | |
| 
 | |
|   // We are going to be using TargetData::getIndexedOffset to determine the
 | |
|   // offset that each of the GEP's is reaching.  To do this, we have to convert
 | |
|   // all variable references to constant references.  To do this, we convert the
 | |
|   // initial sequence of array subscripts into constant zeros to start with.
 | |
|   const Type *ZeroIdxTy = GEPPointerTy;
 | |
|   for (unsigned i = 0; i != FirstConstantOper; ++i) {
 | |
|     if (!isa<StructType>(ZeroIdxTy))
 | |
|       GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::UIntTy);
 | |
| 
 | |
|     if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
 | |
|       ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
 | |
|   }
 | |
| 
 | |
|   // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
 | |
| 
 | |
|   // Loop over the rest of the operands...
 | |
|   for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
 | |
|     const Value *Op1 = i < GEP1Ops.size() ? GEP1Ops[i] : 0;
 | |
|     const Value *Op2 = i < GEP2Ops.size() ? GEP2Ops[i] : 0;
 | |
|     // If they are equal, use a zero index...
 | |
|     if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
 | |
|       if (!isa<ConstantInt>(Op1))
 | |
|         GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
 | |
|       // Otherwise, just keep the constants we have.
 | |
|     } else {
 | |
|       if (Op1) {
 | |
|         if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | |
|           // If this is an array index, make sure the array element is in range.
 | |
|           if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
 | |
|             if (Op1C->getRawValue() >= AT->getNumElements())
 | |
|               return MayAlias;  // Be conservative with out-of-range accesses
 | |
| 
 | |
|         } else {
 | |
|           // GEP1 is known to produce a value less than GEP2.  To be
 | |
|           // conservatively correct, we must assume the largest possible
 | |
|           // constant is used in this position.  This cannot be the initial
 | |
|           // index to the GEP instructions (because we know we have at least one
 | |
|           // element before this one with the different constant arguments), so
 | |
|           // we know that the current index must be into either a struct or
 | |
|           // array.  Because we know it's not constant, this cannot be a
 | |
|           // structure index.  Because of this, we can calculate the maximum
 | |
|           // value possible.
 | |
|           //
 | |
|           if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
 | |
|             GEP1Ops[i] = ConstantSInt::get(Type::LongTy,AT->getNumElements()-1);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (Op2) {
 | |
|         if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
 | |
|           // If this is an array index, make sure the array element is in range.
 | |
|           if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
 | |
|             if (Op2C->getRawValue() >= AT->getNumElements())
 | |
|               return MayAlias;  // Be conservative with out-of-range accesses
 | |
|         } else {  // Conservatively assume the minimum value for this index
 | |
|           GEP2Ops[i] = Constant::getNullValue(Op2->getType());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (BasePtr1Ty && Op1) {
 | |
|       if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
 | |
|         BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
 | |
|       else
 | |
|         BasePtr1Ty = 0;
 | |
|     }
 | |
| 
 | |
|     if (BasePtr2Ty && Op2) {
 | |
|       if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
 | |
|         BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
 | |
|       else
 | |
|         BasePtr2Ty = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (GEPPointerTy->getElementType()->isSized()) {
 | |
|     int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops);
 | |
|     int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops);
 | |
|     assert(Offset1<Offset2 && "There is at least one different constant here!");
 | |
| 
 | |
|     if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
 | |
|       //std::cerr << "Determined that these two GEP's don't alias ["
 | |
|       //          << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
 | |
|       return NoAlias;
 | |
|     }
 | |
|   }
 | |
|   return MayAlias;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct StringCompare {
 | |
|     bool operator()(const char *LHS, const char *RHS) {
 | |
|       return strcmp(LHS, RHS) < 0;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| // Note that this list cannot contain libm functions (such as acos and sqrt)
 | |
| // that set errno on a domain or other error.
 | |
| static const char *DoesntAccessMemoryFns[] = {
 | |
|   "abs", "labs", "llabs", "imaxabs", "fabs", "fabsf", "fabsl",
 | |
|   "trunc", "truncf", "truncl", "ldexp",
 | |
| 
 | |
|   "atan", "atanf", "atanl",   "atan2", "atan2f", "atan2l",
 | |
|   "cbrt",
 | |
|   "cos", "cosf", "cosl",
 | |
|   "exp", "expf", "expl",
 | |
|   "hypot",
 | |
|   "sin", "sinf", "sinl",
 | |
|   "tan", "tanf", "tanl",      "tanh", "tanhf", "tanhl",
 | |
|   
 | |
|   "floor", "floorf", "floorl", "ceil", "ceilf", "ceill",
 | |
| 
 | |
|   // ctype.h
 | |
|   "isalnum", "isalpha", "iscntrl", "isdigit", "isgraph", "islower", "isprint"
 | |
|   "ispunct", "isspace", "isupper", "isxdigit", "tolower", "toupper",
 | |
| 
 | |
|   // wctype.h"
 | |
|   "iswalnum", "iswalpha", "iswcntrl", "iswdigit", "iswgraph", "iswlower",
 | |
|   "iswprint", "iswpunct", "iswspace", "iswupper", "iswxdigit",
 | |
| 
 | |
|   "iswctype", "towctrans", "towlower", "towupper",
 | |
| 
 | |
|   "btowc", "wctob",
 | |
| 
 | |
|   "isinf", "isnan", "finite",
 | |
| 
 | |
|   // C99 math functions
 | |
|   "copysign", "copysignf", "copysignd",
 | |
|   "nexttoward", "nexttowardf", "nexttowardd",
 | |
|   "nextafter", "nextafterf", "nextafterd",
 | |
| 
 | |
|   // ISO C99:
 | |
|   "__signbit", "__signbitf", "__signbitl",
 | |
| };
 | |
| 
 | |
| 
 | |
| static const char *OnlyReadsMemoryFns[] = {
 | |
|   "atoi", "atol", "atof", "atoll", "atoq", "a64l",
 | |
|   "bcmp", "memcmp", "memchr", "memrchr", "wmemcmp", "wmemchr",
 | |
| 
 | |
|   // Strings
 | |
|   "strcmp", "strcasecmp", "strcoll", "strncmp", "strncasecmp",
 | |
|   "strchr", "strcspn", "strlen", "strpbrk", "strrchr", "strspn", "strstr",
 | |
|   "index", "rindex",
 | |
| 
 | |
|   // Wide char strings
 | |
|   "wcschr", "wcscmp", "wcscoll", "wcscspn", "wcslen", "wcsncmp", "wcspbrk",
 | |
|   "wcsrchr", "wcsspn", "wcsstr",
 | |
| 
 | |
|   // glibc
 | |
|   "alphasort", "alphasort64", "versionsort", "versionsort64",
 | |
| 
 | |
|   // C99
 | |
|   "nan", "nanf", "nand",
 | |
| 
 | |
|   // File I/O
 | |
|   "feof", "ferror", "fileno",
 | |
|   "feof_unlocked", "ferror_unlocked", "fileno_unlocked"
 | |
| };
 | |
| 
 | |
| AliasAnalysis::ModRefBehavior
 | |
| BasicAliasAnalysis::getModRefBehavior(Function *F, CallSite CS,
 | |
|                                       std::vector<PointerAccessInfo> *Info) {
 | |
|   if (!F->isExternal()) return UnknownModRefBehavior;
 | |
| 
 | |
|   static std::vector<const char*> NoMemoryTable, OnlyReadsMemoryTable;
 | |
| 
 | |
|   static bool Initialized = false;
 | |
|   if (!Initialized) {
 | |
|     NoMemoryTable.insert(NoMemoryTable.end(),
 | |
|                          DoesntAccessMemoryFns, 
 | |
|                          DoesntAccessMemoryFns+
 | |
|                 sizeof(DoesntAccessMemoryFns)/sizeof(DoesntAccessMemoryFns[0]));
 | |
| 
 | |
|     OnlyReadsMemoryTable.insert(OnlyReadsMemoryTable.end(),
 | |
|                                 OnlyReadsMemoryFns, 
 | |
|                                 OnlyReadsMemoryFns+
 | |
|                       sizeof(OnlyReadsMemoryFns)/sizeof(OnlyReadsMemoryFns[0]));
 | |
| #define GET_MODREF_BEHAVIOR
 | |
| #include "llvm/Intrinsics.gen"
 | |
| #undef GET_MODREF_BEHAVIOR
 | |
|     
 | |
|     // Sort the table the first time through.
 | |
|     std::sort(NoMemoryTable.begin(), NoMemoryTable.end(), StringCompare());
 | |
|     std::sort(OnlyReadsMemoryTable.begin(), OnlyReadsMemoryTable.end(),
 | |
|               StringCompare());
 | |
|     Initialized = true;
 | |
|   }
 | |
| 
 | |
|   std::vector<const char*>::iterator Ptr =
 | |
|     std::lower_bound(NoMemoryTable.begin(), NoMemoryTable.end(),
 | |
|                      F->getName().c_str(), StringCompare());
 | |
|   if (Ptr != NoMemoryTable.end() && *Ptr == F->getName())
 | |
|     return DoesNotAccessMemory;
 | |
| 
 | |
|   Ptr = std::lower_bound(OnlyReadsMemoryTable.begin(),
 | |
|                          OnlyReadsMemoryTable.end(),
 | |
|                          F->getName().c_str(), StringCompare());
 | |
|   if (Ptr != OnlyReadsMemoryTable.end() && *Ptr == F->getName())
 | |
|     return OnlyReadsMemory;
 | |
| 
 | |
|   return UnknownModRefBehavior;
 | |
| }
 |