mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	set construction, rather than intersecting various std::sets. This reduces the memory usage for the testcase in PR681 from 496 to 26MB of ram on my darwin system, and reduces the runtime from 32.8 to 0.8 seconds on a 2.5GHz G5. This also enables future code sharing between Dom and PostDom now that they share near-identical implementations. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26707 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			366 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			366 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- PostDominators.cpp - Post-Dominator Calculation --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the post-dominator construction algorithms.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/PostDominators.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| #include <iostream>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  ImmediatePostDominators Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<ImmediatePostDominators>
 | |
| D("postidom", "Immediate Post-Dominators Construction", true);
 | |
| 
 | |
| unsigned ImmediatePostDominators::DFSPass(BasicBlock *V, InfoRec &VInfo,
 | |
|                                           unsigned N) {
 | |
|   VInfo.Semi = ++N;
 | |
|   VInfo.Label = V;
 | |
|   
 | |
|   Vertex.push_back(V);        // Vertex[n] = V;
 | |
|                               //Info[V].Ancestor = 0;     // Ancestor[n] = 0
 | |
|                               //Child[V] = 0;             // Child[v] = 0
 | |
|   VInfo.Size = 1;             // Size[v] = 1
 | |
|   
 | |
|   // For PostDominators, we want to walk predecessors rather than successors
 | |
|   // as we do in forward Dominators.
 | |
|   for (pred_iterator PI = pred_begin(V), PE = pred_end(V); PI != PE; ++PI) {
 | |
|     InfoRec &SuccVInfo = Info[*PI];
 | |
|     if (SuccVInfo.Semi == 0) {
 | |
|       SuccVInfo.Parent = V;
 | |
|       N = DFSPass(*PI, SuccVInfo, N);
 | |
|     }
 | |
|   }
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| void ImmediatePostDominators::Compress(BasicBlock *V, InfoRec &VInfo) {
 | |
|   BasicBlock *VAncestor = VInfo.Ancestor;
 | |
|   InfoRec &VAInfo = Info[VAncestor];
 | |
|   if (VAInfo.Ancestor == 0)
 | |
|     return;
 | |
|   
 | |
|   Compress(VAncestor, VAInfo);
 | |
|   
 | |
|   BasicBlock *VAncestorLabel = VAInfo.Label;
 | |
|   BasicBlock *VLabel = VInfo.Label;
 | |
|   if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
 | |
|     VInfo.Label = VAncestorLabel;
 | |
|   
 | |
|   VInfo.Ancestor = VAInfo.Ancestor;
 | |
| }
 | |
| 
 | |
| BasicBlock *ImmediatePostDominators::Eval(BasicBlock *V) {
 | |
|   InfoRec &VInfo = Info[V];
 | |
| 
 | |
|   // Higher-complexity but faster implementation
 | |
|   if (VInfo.Ancestor == 0)
 | |
|     return V;
 | |
|   Compress(V, VInfo);
 | |
|   return VInfo.Label;
 | |
| }
 | |
| 
 | |
| void ImmediatePostDominators::Link(BasicBlock *V, BasicBlock *W, 
 | |
|                                    InfoRec &WInfo) {
 | |
|   // Higher-complexity but faster implementation
 | |
|   WInfo.Ancestor = V;
 | |
| }
 | |
| 
 | |
| bool ImmediatePostDominators::runOnFunction(Function &F) {
 | |
|   IDoms.clear();     // Reset from the last time we were run...
 | |
|   Roots.clear();
 | |
| 
 | |
|   // Step #0: Scan the function looking for the root nodes of the post-dominance
 | |
|   // relationships.  These blocks, which have no successors, end with return and
 | |
|   // unwind instructions.
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
 | |
|     if (succ_begin(I) == succ_end(I))
 | |
|       Roots.push_back(I);
 | |
|   
 | |
|   Vertex.push_back(0);
 | |
|   
 | |
|   // Step #1: Number blocks in depth-first order and initialize variables used
 | |
|   // in later stages of the algorithm.
 | |
|   unsigned N = 0;
 | |
|   for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|     N = DFSPass(Roots[i], Info[Roots[i]], N);
 | |
|   
 | |
|   for (unsigned i = N; i >= 2; --i) {
 | |
|     BasicBlock *W = Vertex[i];
 | |
|     InfoRec &WInfo = Info[W];
 | |
|     
 | |
|     // Step #2: Calculate the semidominators of all vertices
 | |
|     for (succ_iterator SI = succ_begin(W), SE = succ_end(W); SI != SE; ++SI)
 | |
|       if (Info.count(*SI)) {  // Only if this predecessor is reachable!
 | |
|         unsigned SemiU = Info[Eval(*SI)].Semi;
 | |
|         if (SemiU < WInfo.Semi)
 | |
|           WInfo.Semi = SemiU;
 | |
|       }
 | |
|         
 | |
|     Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
 | |
|     
 | |
|     BasicBlock *WParent = WInfo.Parent;
 | |
|     Link(WParent, W, WInfo);
 | |
|     
 | |
|     // Step #3: Implicitly define the immediate dominator of vertices
 | |
|     std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
 | |
|     while (!WParentBucket.empty()) {
 | |
|       BasicBlock *V = WParentBucket.back();
 | |
|       WParentBucket.pop_back();
 | |
|       BasicBlock *U = Eval(V);
 | |
|       IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Step #4: Explicitly define the immediate dominator of each vertex
 | |
|   for (unsigned i = 2; i <= N; ++i) {
 | |
|     BasicBlock *W = Vertex[i];
 | |
|     BasicBlock *&WIDom = IDoms[W];
 | |
|     if (WIDom != Vertex[Info[W].Semi])
 | |
|       WIDom = IDoms[WIDom];
 | |
|   }
 | |
|   
 | |
|   // Free temporary memory used to construct idom's
 | |
|   Info.clear();
 | |
|   std::vector<BasicBlock*>().swap(Vertex);
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  PostDominatorSet Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<PostDominatorSet>
 | |
| B("postdomset", "Post-Dominator Set Construction", true);
 | |
| 
 | |
| // Postdominator set construction.  This converts the specified function to only
 | |
| // have a single exit node (return stmt), then calculates the post dominance
 | |
| // sets for the function.
 | |
| //
 | |
| bool PostDominatorSet::runOnFunction(Function &F) {
 | |
|   // Scan the function looking for the root nodes of the post-dominance
 | |
|   // relationships.  These blocks end with return and unwind instructions.
 | |
|   // While we are iterating over the function, we also initialize all of the
 | |
|   // domsets to empty.
 | |
|   Roots.clear();
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
 | |
|     if (succ_begin(I) == succ_end(I))
 | |
|       Roots.push_back(I);
 | |
| 
 | |
|   // If there are no exit nodes for the function, postdomsets are all empty.
 | |
|   // This can happen if the function just contains an infinite loop, for
 | |
|   // example.
 | |
|   ImmediatePostDominators &IPD = getAnalysis<ImmediatePostDominators>();
 | |
|   Doms.clear();   // Reset from the last time we were run...
 | |
|   if (Roots.empty()) return false;
 | |
| 
 | |
|   // If we have more than one root, we insert an artificial "null" exit, which
 | |
|   // has "virtual edges" to each of the real exit nodes.
 | |
|   //if (Roots.size() > 1)
 | |
|   //  Doms[0].insert(0);
 | |
| 
 | |
|   // Root nodes only dominate themselves.
 | |
|   for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|     Doms[Roots[i]].insert(Roots[i]);
 | |
|   
 | |
|   // Loop over all of the blocks in the function, calculating dominator sets for
 | |
|   // each function.
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
 | |
|     if (BasicBlock *IPDom = IPD[I]) {   // Get idom if block is reachable
 | |
|       DomSetType &DS = Doms[I];
 | |
|       assert(DS.empty() && "PostDomset already filled in for this block?");
 | |
|       DS.insert(I);  // Blocks always dominate themselves
 | |
| 
 | |
|       // Insert all dominators into the set...
 | |
|       while (IPDom) {
 | |
|         // If we have already computed the dominator sets for our immediate post
 | |
|         // dominator, just use it instead of walking all the way up to the root.
 | |
|         DomSetType &IPDS = Doms[IPDom];
 | |
|         if (!IPDS.empty()) {
 | |
|           DS.insert(IPDS.begin(), IPDS.end());
 | |
|           break;
 | |
|         } else {
 | |
|           DS.insert(IPDom);
 | |
|           IPDom = IPD[IPDom];
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       // Ensure that every basic block has at least an empty set of nodes.  This
 | |
|       // is important for the case when there is unreachable blocks.
 | |
|       Doms[I];
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  PostDominatorTree Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<PostDominatorTree>
 | |
| F("postdomtree", "Post-Dominator Tree Construction", true);
 | |
| 
 | |
| DominatorTreeBase::Node *PostDominatorTree::getNodeForBlock(BasicBlock *BB) {
 | |
|   Node *&BBNode = Nodes[BB];
 | |
|   if (BBNode) return BBNode;
 | |
|   
 | |
|   // Haven't calculated this node yet?  Get or calculate the node for the
 | |
|   // immediate postdominator.
 | |
|   BasicBlock *IPDom = getAnalysis<ImmediatePostDominators>()[BB];
 | |
|   Node *IPDomNode = getNodeForBlock(IPDom);
 | |
|   
 | |
|   // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|   // IDomNode
 | |
|   return BBNode = IPDomNode->addChild(new Node(BB, IPDomNode));
 | |
| }
 | |
| 
 | |
| void PostDominatorTree::calculate(const ImmediatePostDominators &IPD) {
 | |
|   if (Roots.empty()) return;
 | |
| 
 | |
|   // Add a node for the root.  This node might be the actual root, if there is
 | |
|   // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
 | |
|   // which postdominates all real exits if there are multiple exit blocks.
 | |
|   BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0;
 | |
|   Nodes[Root] = RootNode = new Node(Root, 0);
 | |
|   
 | |
|   Function *F = Roots[0]->getParent();
 | |
|   // Loop over all of the reachable blocks in the function...
 | |
|   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
 | |
|     if (BasicBlock *ImmPostDom = IPD.get(I)) {  // Reachable block.
 | |
|       Node *&BBNode = Nodes[I];
 | |
|       if (!BBNode) {  // Haven't calculated this node yet?
 | |
|                       // Get or calculate the node for the immediate dominator
 | |
|         Node *IPDomNode = getNodeForBlock(ImmPostDom);
 | |
|         
 | |
|         // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|         // IDomNode
 | |
|         BBNode = IPDomNode->addChild(new Node(I, IPDomNode));
 | |
|       }
 | |
|     }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // PostETForest Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<PostETForest>
 | |
| G("postetforest", "Post-ET-Forest Construction", true);
 | |
| 
 | |
| ETNode *PostETForest::getNodeForBlock(BasicBlock *BB) {
 | |
|   ETNode *&BBNode = Nodes[BB];
 | |
|   if (BBNode) return BBNode;
 | |
| 
 | |
|   // Haven't calculated this node yet?  Get or calculate the node for the
 | |
|   // immediate dominator.
 | |
|   BasicBlock *IDom = getAnalysis<ImmediatePostDominators>()[BB];
 | |
| 
 | |
|   // If we are unreachable, we may not have an immediate dominator.
 | |
|   if (!IDom)
 | |
|     return BBNode = new ETNode(BB);
 | |
|   else {
 | |
|     ETNode *IDomNode = getNodeForBlock(IDom);
 | |
|     
 | |
|     // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|     // IDomNode
 | |
|     BBNode = new ETNode(BB);
 | |
|     BBNode->setFather(IDomNode);
 | |
|     return BBNode;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void PostETForest::calculate(const ImmediatePostDominators &ID) {
 | |
|   for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|     Nodes[Roots[i]] = new ETNode(Roots[i]); // Add a node for the root
 | |
| 
 | |
|   // Iterate over all nodes in inverse depth first order.
 | |
|   for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|     for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]),
 | |
|            E = idf_end(Roots[i]); I != E; ++I) {
 | |
|     BasicBlock *BB = *I;
 | |
|     ETNode *&BBNode = Nodes[BB];
 | |
|     if (!BBNode) {  
 | |
|       ETNode *IDomNode =  NULL;
 | |
| 
 | |
|       if (ID.get(BB))
 | |
|         IDomNode = getNodeForBlock(ID.get(BB));
 | |
| 
 | |
|       // Add a new ETNode for this BasicBlock, and set it's parent
 | |
|       // to it's immediate dominator.
 | |
|       BBNode = new ETNode(BB);
 | |
|       if (IDomNode)          
 | |
|         BBNode->setFather(IDomNode);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int dfsnum = 0;
 | |
|   // Iterate over all nodes in depth first order...
 | |
|   for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|     for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]),
 | |
|            E = idf_end(Roots[i]); I != E; ++I) {
 | |
|         if (!getNodeForBlock(*I)->hasFather())
 | |
|           getNodeForBlock(*I)->assignDFSNumber(dfsnum);
 | |
|     }
 | |
|   DFSInfoValid = true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  PostDominanceFrontier Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<PostDominanceFrontier>
 | |
| H("postdomfrontier", "Post-Dominance Frontier Construction", true);
 | |
| 
 | |
| const DominanceFrontier::DomSetType &
 | |
| PostDominanceFrontier::calculate(const PostDominatorTree &DT,
 | |
|                                  const DominatorTree::Node *Node) {
 | |
|   // Loop over CFG successors to calculate DFlocal[Node]
 | |
|   BasicBlock *BB = Node->getBlock();
 | |
|   DomSetType &S = Frontiers[BB];       // The new set to fill in...
 | |
|   if (getRoots().empty()) return S;
 | |
| 
 | |
|   if (BB)
 | |
|     for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
 | |
|          SI != SE; ++SI)
 | |
|       // Does Node immediately dominate this predecessor?
 | |
|       if (DT[*SI]->getIDom() != Node)
 | |
|         S.insert(*SI);
 | |
| 
 | |
|   // At this point, S is DFlocal.  Now we union in DFup's of our children...
 | |
|   // Loop through and visit the nodes that Node immediately dominates (Node's
 | |
|   // children in the IDomTree)
 | |
|   //
 | |
|   for (PostDominatorTree::Node::const_iterator
 | |
|          NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
 | |
|     DominatorTree::Node *IDominee = *NI;
 | |
|     const DomSetType &ChildDF = calculate(DT, IDominee);
 | |
| 
 | |
|     DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
 | |
|     for (; CDFI != CDFE; ++CDFI) {
 | |
|       if (!Node->properlyDominates(DT[*CDFI]))
 | |
|         S.insert(*CDFI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| // stub - a dummy function to make linking work ok.
 | |
| void PostDominanceFrontier::stub() {
 | |
| }
 | |
| 
 |