mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28017 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2495 lines
		
	
	
		
			103 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2495 lines
		
	
	
		
			103 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by Chris Lattner and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the PPCISelLowering class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "PPCISelLowering.h"
 | 
						|
#include "PPCTargetMachine.h"
 | 
						|
#include "PPCPerfectShuffle.h"
 | 
						|
#include "llvm/ADT/VectorExtras.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
 | 
						|
  : TargetLowering(TM) {
 | 
						|
    
 | 
						|
  // Fold away setcc operations if possible.
 | 
						|
  setSetCCIsExpensive();
 | 
						|
  setPow2DivIsCheap();
 | 
						|
  
 | 
						|
  // Use _setjmp/_longjmp instead of setjmp/longjmp.
 | 
						|
  setUseUnderscoreSetJmpLongJmp(true);
 | 
						|
    
 | 
						|
  // Set up the register classes.
 | 
						|
  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
 | 
						|
  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
 | 
						|
  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
 | 
						|
  
 | 
						|
  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
 | 
						|
 | 
						|
  // PowerPC has no intrinsics for these particular operations
 | 
						|
  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
 | 
						|
  
 | 
						|
  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
 | 
						|
  setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
 | 
						|
  setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
 | 
						|
  
 | 
						|
  // PowerPC has no SREM/UREM instructions
 | 
						|
  setOperationAction(ISD::SREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::UREM, MVT::i32, Expand);
 | 
						|
  
 | 
						|
  // We don't support sin/cos/sqrt/fmod
 | 
						|
  setOperationAction(ISD::FSIN , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FCOS , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FREM , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FREM , MVT::f32, Expand);
 | 
						|
  
 | 
						|
  // If we're enabling GP optimizations, use hardware square root
 | 
						|
  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
 | 
						|
    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
 | 
						|
    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
 | 
						|
  }
 | 
						|
  
 | 
						|
  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
 | 
						|
  
 | 
						|
  // PowerPC does not have BSWAP, CTPOP or CTTZ
 | 
						|
  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
 | 
						|
  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
 | 
						|
  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
 | 
						|
  
 | 
						|
  // PowerPC does not have ROTR
 | 
						|
  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
 | 
						|
  
 | 
						|
  // PowerPC does not have Select
 | 
						|
  setOperationAction(ISD::SELECT, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SELECT, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::SELECT, MVT::f64, Expand);
 | 
						|
  
 | 
						|
  // PowerPC wants to turn select_cc of FP into fsel when possible.
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
 | 
						|
 | 
						|
  // PowerPC wants to optimize integer setcc a bit
 | 
						|
  setOperationAction(ISD::SETCC, MVT::i32, Custom);
 | 
						|
  
 | 
						|
  // PowerPC does not have BRCOND which requires SetCC
 | 
						|
  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
 | 
						|
  
 | 
						|
  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
 | 
						|
  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | 
						|
 | 
						|
  // PowerPC does not have [U|S]INT_TO_FP
 | 
						|
  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
 | 
						|
 | 
						|
  // PowerPC does not have truncstore for i1.
 | 
						|
  setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
 | 
						|
 | 
						|
  // We cannot sextinreg(i1).  Expand to shifts.
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | 
						|
  
 | 
						|
  
 | 
						|
  // Support label based line numbers.
 | 
						|
  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
 | 
						|
  // FIXME - use subtarget debug flags
 | 
						|
  if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
 | 
						|
    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
 | 
						|
  
 | 
						|
  // We want to legalize GlobalAddress and ConstantPool nodes into the 
 | 
						|
  // appropriate instructions to materialize the address.
 | 
						|
  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
 | 
						|
 | 
						|
  // RET must be custom lowered, to meet ABI requirements
 | 
						|
  setOperationAction(ISD::RET               , MVT::Other, Custom);
 | 
						|
  
 | 
						|
  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
 | 
						|
  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
 | 
						|
  
 | 
						|
  // Use the default implementation.
 | 
						|
  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand); 
 | 
						|
  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
 | 
						|
  
 | 
						|
  // We want to custom lower some of our intrinsics.
 | 
						|
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | 
						|
  
 | 
						|
  if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
 | 
						|
    // They also have instructions for converting between i64 and fp.
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | 
						|
    
 | 
						|
    // FIXME: disable this lowered code.  This generates 64-bit register values,
 | 
						|
    // and we don't model the fact that the top part is clobbered by calls.  We
 | 
						|
    // need to flag these together so that the value isn't live across a call.
 | 
						|
    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | 
						|
    
 | 
						|
    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
 | 
						|
  } else {
 | 
						|
    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) {
 | 
						|
    // 64 bit PowerPC implementations can support i64 types directly
 | 
						|
    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
 | 
						|
    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
 | 
						|
    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
 | 
						|
  } else {
 | 
						|
    // 32 bit PowerPC wants to expand i64 shifts itself.
 | 
						|
    setOperationAction(ISD::SHL, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::SRL, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::SRA, MVT::i64, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
 | 
						|
    // First set operation action for all vector types to expand. Then we
 | 
						|
    // will selectively turn on ones that can be effectively codegen'd.
 | 
						|
    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
 | 
						|
         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
 | 
						|
      // add/sub are legal for all supported vector VT's.
 | 
						|
      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
 | 
						|
      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
 | 
						|
      
 | 
						|
      // We promote all shuffles to v16i8.
 | 
						|
      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
 | 
						|
      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
 | 
						|
 | 
						|
      // We promote all non-typed operations to v4i32.
 | 
						|
      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
 | 
						|
      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
 | 
						|
      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
 | 
						|
      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
 | 
						|
      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
 | 
						|
      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
 | 
						|
      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
 | 
						|
      
 | 
						|
      // No other operations are legal.
 | 
						|
      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
 | 
						|
      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
 | 
						|
      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
 | 
						|
      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
 | 
						|
      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
 | 
						|
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
 | 
						|
      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
 | 
						|
 | 
						|
      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
 | 
						|
    }
 | 
						|
 | 
						|
    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
 | 
						|
    // with merges, splats, etc.
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
 | 
						|
    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
 | 
						|
    
 | 
						|
    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
 | 
						|
    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
 | 
						|
    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
 | 
						|
    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
 | 
						|
    
 | 
						|
    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
 | 
						|
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
 | 
						|
    
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
 | 
						|
  }
 | 
						|
  
 | 
						|
  setSetCCResultContents(ZeroOrOneSetCCResult);
 | 
						|
  setStackPointerRegisterToSaveRestore(PPC::R1);
 | 
						|
  
 | 
						|
  // We have target-specific dag combine patterns for the following nodes:
 | 
						|
  setTargetDAGCombine(ISD::SINT_TO_FP);
 | 
						|
  setTargetDAGCombine(ISD::STORE);
 | 
						|
  setTargetDAGCombine(ISD::BR_CC);
 | 
						|
  
 | 
						|
  computeRegisterProperties();
 | 
						|
}
 | 
						|
 | 
						|
const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | 
						|
  switch (Opcode) {
 | 
						|
  default: return 0;
 | 
						|
  case PPCISD::FSEL:          return "PPCISD::FSEL";
 | 
						|
  case PPCISD::FCFID:         return "PPCISD::FCFID";
 | 
						|
  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
 | 
						|
  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
 | 
						|
  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
 | 
						|
  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
 | 
						|
  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
 | 
						|
  case PPCISD::VPERM:         return "PPCISD::VPERM";
 | 
						|
  case PPCISD::Hi:            return "PPCISD::Hi";
 | 
						|
  case PPCISD::Lo:            return "PPCISD::Lo";
 | 
						|
  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
 | 
						|
  case PPCISD::SRL:           return "PPCISD::SRL";
 | 
						|
  case PPCISD::SRA:           return "PPCISD::SRA";
 | 
						|
  case PPCISD::SHL:           return "PPCISD::SHL";
 | 
						|
  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
 | 
						|
  case PPCISD::STD_32:        return "PPCISD::STD_32";
 | 
						|
  case PPCISD::CALL:          return "PPCISD::CALL";
 | 
						|
  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
 | 
						|
  case PPCISD::MFCR:          return "PPCISD::MFCR";
 | 
						|
  case PPCISD::VCMP:          return "PPCISD::VCMP";
 | 
						|
  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
 | 
						|
  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Node matching predicates, for use by the tblgen matching code.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
 | 
						|
static bool isFloatingPointZero(SDOperand Op) {
 | 
						|
  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
 | 
						|
    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
 | 
						|
  else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
 | 
						|
    // Maybe this has already been legalized into the constant pool?
 | 
						|
    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
 | 
						|
      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
 | 
						|
        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
 | 
						|
/// true if Op is undef or if it matches the specified value.
 | 
						|
static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
 | 
						|
  return Op.getOpcode() == ISD::UNDEF || 
 | 
						|
         cast<ConstantSDNode>(Op)->getValue() == Val;
 | 
						|
}
 | 
						|
 | 
						|
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
 | 
						|
/// VPKUHUM instruction.
 | 
						|
bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
 | 
						|
  if (!isUnary) {
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
 | 
						|
        return false;
 | 
						|
  } else {
 | 
						|
    for (unsigned i = 0; i != 8; ++i)
 | 
						|
      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
 | 
						|
          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
 | 
						|
/// VPKUWUM instruction.
 | 
						|
bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
 | 
						|
  if (!isUnary) {
 | 
						|
    for (unsigned i = 0; i != 16; i += 2)
 | 
						|
      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
 | 
						|
          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
 | 
						|
        return false;
 | 
						|
  } else {
 | 
						|
    for (unsigned i = 0; i != 8; i += 2)
 | 
						|
      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
 | 
						|
          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
 | 
						|
          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
 | 
						|
          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVMerge - Common function, used to match vmrg* shuffles.
 | 
						|
///
 | 
						|
static bool isVMerge(SDNode *N, unsigned UnitSize, 
 | 
						|
                     unsigned LHSStart, unsigned RHSStart) {
 | 
						|
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
 | 
						|
  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
 | 
						|
         "Unsupported merge size!");
 | 
						|
  
 | 
						|
  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
 | 
						|
    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
 | 
						|
      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
 | 
						|
                             LHSStart+j+i*UnitSize) ||
 | 
						|
          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
 | 
						|
                             RHSStart+j+i*UnitSize))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
      return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
 | 
						|
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
 | 
						|
bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
 | 
						|
  if (!isUnary)
 | 
						|
    return isVMerge(N, UnitSize, 8, 24);
 | 
						|
  return isVMerge(N, UnitSize, 8, 8);
 | 
						|
}
 | 
						|
 | 
						|
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
 | 
						|
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
 | 
						|
bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
 | 
						|
  if (!isUnary)
 | 
						|
    return isVMerge(N, UnitSize, 0, 16);
 | 
						|
  return isVMerge(N, UnitSize, 0, 0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
 | 
						|
/// amount, otherwise return -1.
 | 
						|
int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
 | 
						|
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
 | 
						|
  // Find the first non-undef value in the shuffle mask.
 | 
						|
  unsigned i;
 | 
						|
  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
 | 
						|
    /*search*/;
 | 
						|
  
 | 
						|
  if (i == 16) return -1;  // all undef.
 | 
						|
  
 | 
						|
  // Otherwise, check to see if the rest of the elements are consequtively
 | 
						|
  // numbered from this value.
 | 
						|
  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
 | 
						|
  if (ShiftAmt < i) return -1;
 | 
						|
  ShiftAmt -= i;
 | 
						|
 | 
						|
  if (!isUnary) {
 | 
						|
    // Check the rest of the elements to see if they are consequtive.
 | 
						|
    for (++i; i != 16; ++i)
 | 
						|
      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
 | 
						|
        return -1;
 | 
						|
  } else {
 | 
						|
    // Check the rest of the elements to see if they are consequtive.
 | 
						|
    for (++i; i != 16; ++i)
 | 
						|
      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
 | 
						|
        return -1;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return ShiftAmt;
 | 
						|
}
 | 
						|
 | 
						|
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
 | 
						|
/// specifies a splat of a single element that is suitable for input to
 | 
						|
/// VSPLTB/VSPLTH/VSPLTW.
 | 
						|
bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
 | 
						|
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
         N->getNumOperands() == 16 &&
 | 
						|
         (EltSize == 1 || EltSize == 2 || EltSize == 4));
 | 
						|
  
 | 
						|
  // This is a splat operation if each element of the permute is the same, and
 | 
						|
  // if the value doesn't reference the second vector.
 | 
						|
  unsigned ElementBase = 0;
 | 
						|
  SDOperand Elt = N->getOperand(0);
 | 
						|
  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
 | 
						|
    ElementBase = EltV->getValue();
 | 
						|
  else
 | 
						|
    return false;   // FIXME: Handle UNDEF elements too!
 | 
						|
 | 
						|
  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Check that they are consequtive.
 | 
						|
  for (unsigned i = 1; i != EltSize; ++i) {
 | 
						|
    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
 | 
						|
        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
 | 
						|
  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
 | 
						|
    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | 
						|
    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
 | 
						|
           "Invalid VECTOR_SHUFFLE mask!");
 | 
						|
    for (unsigned j = 0; j != EltSize; ++j)
 | 
						|
      if (N->getOperand(i+j) != N->getOperand(j))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
 | 
						|
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
 | 
						|
unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
 | 
						|
  assert(isSplatShuffleMask(N, EltSize));
 | 
						|
  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
 | 
						|
}
 | 
						|
 | 
						|
/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
 | 
						|
/// by using a vspltis[bhw] instruction of the specified element size, return
 | 
						|
/// the constant being splatted.  The ByteSize field indicates the number of
 | 
						|
/// bytes of each element [124] -> [bhw].
 | 
						|
SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
 | 
						|
  SDOperand OpVal(0, 0);
 | 
						|
 | 
						|
  // If ByteSize of the splat is bigger than the element size of the
 | 
						|
  // build_vector, then we have a case where we are checking for a splat where
 | 
						|
  // multiple elements of the buildvector are folded together into a single
 | 
						|
  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
 | 
						|
  unsigned EltSize = 16/N->getNumOperands();
 | 
						|
  if (EltSize < ByteSize) {
 | 
						|
    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
 | 
						|
    SDOperand UniquedVals[4];
 | 
						|
    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
 | 
						|
    
 | 
						|
    // See if all of the elements in the buildvector agree across.
 | 
						|
    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | 
						|
      // If the element isn't a constant, bail fully out.
 | 
						|
      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
 | 
						|
 | 
						|
          
 | 
						|
      if (UniquedVals[i&(Multiple-1)].Val == 0)
 | 
						|
        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
 | 
						|
      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
 | 
						|
        return SDOperand();  // no match.
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
 | 
						|
    // either constant or undef values that are identical for each chunk.  See
 | 
						|
    // if these chunks can form into a larger vspltis*.
 | 
						|
    
 | 
						|
    // Check to see if all of the leading entries are either 0 or -1.  If
 | 
						|
    // neither, then this won't fit into the immediate field.
 | 
						|
    bool LeadingZero = true;
 | 
						|
    bool LeadingOnes = true;
 | 
						|
    for (unsigned i = 0; i != Multiple-1; ++i) {
 | 
						|
      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
 | 
						|
      
 | 
						|
      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
 | 
						|
      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
 | 
						|
    }
 | 
						|
    // Finally, check the least significant entry.
 | 
						|
    if (LeadingZero) {
 | 
						|
      if (UniquedVals[Multiple-1].Val == 0)
 | 
						|
        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
 | 
						|
      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
 | 
						|
      if (Val < 16)
 | 
						|
        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
 | 
						|
    }
 | 
						|
    if (LeadingOnes) {
 | 
						|
      if (UniquedVals[Multiple-1].Val == 0)
 | 
						|
        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
 | 
						|
      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
 | 
						|
      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
 | 
						|
        return DAG.getTargetConstant(Val, MVT::i32);
 | 
						|
    }
 | 
						|
    
 | 
						|
    return SDOperand();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check to see if this buildvec has a single non-undef value in its elements.
 | 
						|
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | 
						|
    if (OpVal.Val == 0)
 | 
						|
      OpVal = N->getOperand(i);
 | 
						|
    else if (OpVal != N->getOperand(i))
 | 
						|
      return SDOperand();
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
 | 
						|
  
 | 
						|
  unsigned ValSizeInBytes = 0;
 | 
						|
  uint64_t Value = 0;
 | 
						|
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
 | 
						|
    Value = CN->getValue();
 | 
						|
    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
 | 
						|
  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
 | 
						|
    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
 | 
						|
    Value = FloatToBits(CN->getValue());
 | 
						|
    ValSizeInBytes = 4;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the splat value is larger than the element value, then we can never do
 | 
						|
  // this splat.  The only case that we could fit the replicated bits into our
 | 
						|
  // immediate field for would be zero, and we prefer to use vxor for it.
 | 
						|
  if (ValSizeInBytes < ByteSize) return SDOperand();
 | 
						|
  
 | 
						|
  // If the element value is larger than the splat value, cut it in half and
 | 
						|
  // check to see if the two halves are equal.  Continue doing this until we
 | 
						|
  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
 | 
						|
  while (ValSizeInBytes > ByteSize) {
 | 
						|
    ValSizeInBytes >>= 1;
 | 
						|
    
 | 
						|
    // If the top half equals the bottom half, we're still ok.
 | 
						|
    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
 | 
						|
         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
 | 
						|
      return SDOperand();
 | 
						|
  }
 | 
						|
 | 
						|
  // Properly sign extend the value.
 | 
						|
  int ShAmt = (4-ByteSize)*8;
 | 
						|
  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
 | 
						|
  
 | 
						|
  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
 | 
						|
  if (MaskVal == 0) return SDOperand();
 | 
						|
 | 
						|
  // Finally, if this value fits in a 5 bit sext field, return it
 | 
						|
  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
 | 
						|
    return DAG.getTargetConstant(MaskVal, MVT::i32);
 | 
						|
  return SDOperand();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  LowerOperation implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | 
						|
  Constant *C = CP->get();
 | 
						|
  SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment());
 | 
						|
  SDOperand Zero = DAG.getConstant(0, MVT::i32);
 | 
						|
 | 
						|
  const TargetMachine &TM = DAG.getTarget();
 | 
						|
  
 | 
						|
  // If this is a non-darwin platform, we don't support non-static relo models
 | 
						|
  // yet.
 | 
						|
  if (TM.getRelocationModel() == Reloc::Static ||
 | 
						|
      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
 | 
						|
    // Generate non-pic code that has direct accesses to the constant pool.
 | 
						|
    // The address of the global is just (hi(&g)+lo(&g)).
 | 
						|
    SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
 | 
						|
    SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
 | 
						|
    return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
 | 
						|
  }
 | 
						|
  
 | 
						|
  SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
 | 
						|
  if (TM.getRelocationModel() == Reloc::PIC) {
 | 
						|
    // With PIC, the first instruction is actually "GR+hi(&G)".
 | 
						|
    Hi = DAG.getNode(ISD::ADD, MVT::i32,
 | 
						|
                     DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
 | 
						|
  }
 | 
						|
  
 | 
						|
  SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
 | 
						|
  Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
 | 
						|
  return Lo;
 | 
						|
}
 | 
						|
 | 
						|
static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
 | 
						|
  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
 | 
						|
  SDOperand Zero = DAG.getConstant(0, MVT::i32);
 | 
						|
  
 | 
						|
  const TargetMachine &TM = DAG.getTarget();
 | 
						|
  
 | 
						|
  // If this is a non-darwin platform, we don't support non-static relo models
 | 
						|
  // yet.
 | 
						|
  if (TM.getRelocationModel() == Reloc::Static ||
 | 
						|
      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
 | 
						|
    // Generate non-pic code that has direct accesses to the constant pool.
 | 
						|
    // The address of the global is just (hi(&g)+lo(&g)).
 | 
						|
    SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
 | 
						|
    SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
 | 
						|
    return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
 | 
						|
  }
 | 
						|
  
 | 
						|
  SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
 | 
						|
  if (TM.getRelocationModel() == Reloc::PIC) {
 | 
						|
    // With PIC, the first instruction is actually "GR+hi(&G)".
 | 
						|
    Hi = DAG.getNode(ISD::ADD, MVT::i32,
 | 
						|
                     DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
 | 
						|
  }
 | 
						|
  
 | 
						|
  SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
 | 
						|
  Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
 | 
						|
  return Lo;
 | 
						|
}
 | 
						|
 | 
						|
static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
 | 
						|
  GlobalValue *GV = GSDN->getGlobal();
 | 
						|
  SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset());
 | 
						|
  SDOperand Zero = DAG.getConstant(0, MVT::i32);
 | 
						|
  
 | 
						|
  const TargetMachine &TM = DAG.getTarget();
 | 
						|
 | 
						|
  // If this is a non-darwin platform, we don't support non-static relo models
 | 
						|
  // yet.
 | 
						|
  if (TM.getRelocationModel() == Reloc::Static ||
 | 
						|
      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
 | 
						|
    // Generate non-pic code that has direct accesses to globals.
 | 
						|
    // The address of the global is just (hi(&g)+lo(&g)).
 | 
						|
    SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
 | 
						|
    SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
 | 
						|
    return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
 | 
						|
  }
 | 
						|
  
 | 
						|
  SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
 | 
						|
  if (TM.getRelocationModel() == Reloc::PIC) {
 | 
						|
    // With PIC, the first instruction is actually "GR+hi(&G)".
 | 
						|
    Hi = DAG.getNode(ISD::ADD, MVT::i32,
 | 
						|
                     DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
 | 
						|
  }
 | 
						|
  
 | 
						|
  SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
 | 
						|
  Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
 | 
						|
  
 | 
						|
  if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
 | 
						|
      (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
 | 
						|
    return Lo;
 | 
						|
  
 | 
						|
  // If the global is weak or external, we have to go through the lazy
 | 
						|
  // resolution stub.
 | 
						|
  return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
 | 
						|
}
 | 
						|
 | 
						|
static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | 
						|
  
 | 
						|
  // If we're comparing for equality to zero, expose the fact that this is
 | 
						|
  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
 | 
						|
  // fold the new nodes.
 | 
						|
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | 
						|
    if (C->isNullValue() && CC == ISD::SETEQ) {
 | 
						|
      MVT::ValueType VT = Op.getOperand(0).getValueType();
 | 
						|
      SDOperand Zext = Op.getOperand(0);
 | 
						|
      if (VT < MVT::i32) {
 | 
						|
        VT = MVT::i32;
 | 
						|
        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
 | 
						|
      } 
 | 
						|
      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
 | 
						|
      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
 | 
						|
      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
 | 
						|
                                  DAG.getConstant(Log2b, MVT::i32));
 | 
						|
      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
 | 
						|
    }
 | 
						|
    // Leave comparisons against 0 and -1 alone for now, since they're usually 
 | 
						|
    // optimized.  FIXME: revisit this when we can custom lower all setcc
 | 
						|
    // optimizations.
 | 
						|
    if (C->isAllOnesValue() || C->isNullValue())
 | 
						|
      return SDOperand();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we have an integer seteq/setne, turn it into a compare against zero
 | 
						|
  // by subtracting the rhs from the lhs, which is faster than setting a
 | 
						|
  // condition register, reading it back out, and masking the correct bit.
 | 
						|
  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
 | 
						|
  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | 
						|
    MVT::ValueType VT = Op.getValueType();
 | 
						|
    SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0), 
 | 
						|
                                Op.getOperand(1));
 | 
						|
    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
 | 
						|
  }
 | 
						|
  return SDOperand();
 | 
						|
}
 | 
						|
 | 
						|
static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
 | 
						|
                              unsigned VarArgsFrameIndex) {
 | 
						|
  // vastart just stores the address of the VarArgsFrameIndex slot into the
 | 
						|
  // memory location argument.
 | 
						|
  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
 | 
						|
  return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR, 
 | 
						|
                     Op.getOperand(1), Op.getOperand(2));
 | 
						|
}
 | 
						|
 | 
						|
static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  SDOperand Copy;
 | 
						|
  switch(Op.getNumOperands()) {
 | 
						|
  default:
 | 
						|
    assert(0 && "Do not know how to return this many arguments!");
 | 
						|
    abort();
 | 
						|
  case 1: 
 | 
						|
    return SDOperand(); // ret void is legal
 | 
						|
  case 2: {
 | 
						|
    MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
 | 
						|
    unsigned ArgReg;
 | 
						|
    if (MVT::isVector(ArgVT))
 | 
						|
      ArgReg = PPC::V2;
 | 
						|
    else if (MVT::isInteger(ArgVT))
 | 
						|
      ArgReg = PPC::R3;
 | 
						|
    else {
 | 
						|
      assert(MVT::isFloatingPoint(ArgVT));
 | 
						|
      ArgReg = PPC::F1;
 | 
						|
    }
 | 
						|
    
 | 
						|
    Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
 | 
						|
                            SDOperand());
 | 
						|
    
 | 
						|
    // If we haven't noted the R3/F1 are live out, do so now.
 | 
						|
    if (DAG.getMachineFunction().liveout_empty())
 | 
						|
      DAG.getMachineFunction().addLiveOut(ArgReg);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case 3:
 | 
						|
    Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2), 
 | 
						|
                            SDOperand());
 | 
						|
    Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
 | 
						|
    // If we haven't noted the R3+R4 are live out, do so now.
 | 
						|
    if (DAG.getMachineFunction().liveout_empty()) {
 | 
						|
      DAG.getMachineFunction().addLiveOut(PPC::R3);
 | 
						|
      DAG.getMachineFunction().addLiveOut(PPC::R4);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
 | 
						|
}
 | 
						|
 | 
						|
/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
 | 
						|
/// possible.
 | 
						|
static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  // Not FP? Not a fsel.
 | 
						|
  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
 | 
						|
      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
 | 
						|
    return SDOperand();
 | 
						|
  
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | 
						|
  
 | 
						|
  // Cannot handle SETEQ/SETNE.
 | 
						|
  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
 | 
						|
  
 | 
						|
  MVT::ValueType ResVT = Op.getValueType();
 | 
						|
  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
 | 
						|
  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | 
						|
  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
 | 
						|
  
 | 
						|
  // If the RHS of the comparison is a 0.0, we don't need to do the
 | 
						|
  // subtraction at all.
 | 
						|
  if (isFloatingPointZero(RHS))
 | 
						|
    switch (CC) {
 | 
						|
    default: break;       // SETUO etc aren't handled by fsel.
 | 
						|
    case ISD::SETULT:
 | 
						|
    case ISD::SETLT:
 | 
						|
      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | 
						|
    case ISD::SETUGE:
 | 
						|
    case ISD::SETGE:
 | 
						|
      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
 | 
						|
    case ISD::SETUGT:
 | 
						|
    case ISD::SETGT:
 | 
						|
      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | 
						|
    case ISD::SETULE:
 | 
						|
    case ISD::SETLE:
 | 
						|
      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, ResVT,
 | 
						|
                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
 | 
						|
    }
 | 
						|
      
 | 
						|
      SDOperand Cmp;
 | 
						|
  switch (CC) {
 | 
						|
  default: break;       // SETUO etc aren't handled by fsel.
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETLT:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
 | 
						|
  case ISD::SETUGE:
 | 
						|
  case ISD::SETGE:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
 | 
						|
  case ISD::SETUGT:
 | 
						|
  case ISD::SETGT:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETLE:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
 | 
						|
  }
 | 
						|
  return SDOperand();
 | 
						|
}
 | 
						|
 | 
						|
static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
 | 
						|
  SDOperand Src = Op.getOperand(0);
 | 
						|
  if (Src.getValueType() == MVT::f32)
 | 
						|
    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
 | 
						|
  
 | 
						|
  SDOperand Tmp;
 | 
						|
  switch (Op.getValueType()) {
 | 
						|
  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
 | 
						|
  case MVT::i32:
 | 
						|
    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
 | 
						|
    break;
 | 
						|
  case MVT::i64:
 | 
						|
    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Convert the FP value to an int value through memory.
 | 
						|
  SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
 | 
						|
  if (Op.getValueType() == MVT::i32)
 | 
						|
    Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
 | 
						|
  return Bits;
 | 
						|
}
 | 
						|
 | 
						|
static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  if (Op.getOperand(0).getValueType() == MVT::i64) {
 | 
						|
    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
 | 
						|
    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
 | 
						|
    if (Op.getValueType() == MVT::f32)
 | 
						|
      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
 | 
						|
    return FP;
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
 | 
						|
         "Unhandled SINT_TO_FP type in custom expander!");
 | 
						|
  // Since we only generate this in 64-bit mode, we can take advantage of
 | 
						|
  // 64-bit registers.  In particular, sign extend the input value into the
 | 
						|
  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
 | 
						|
  // then lfd it and fcfid it.
 | 
						|
  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
 | 
						|
  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
 | 
						|
  
 | 
						|
  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
 | 
						|
                                Op.getOperand(0));
 | 
						|
  
 | 
						|
  // STD the extended value into the stack slot.
 | 
						|
  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
 | 
						|
                                DAG.getEntryNode(), Ext64, FIdx,
 | 
						|
                                DAG.getSrcValue(NULL));
 | 
						|
  // Load the value as a double.
 | 
						|
  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
 | 
						|
  
 | 
						|
  // FCFID it and return it.
 | 
						|
  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
 | 
						|
  if (Op.getValueType() == MVT::f32)
 | 
						|
    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
 | 
						|
  return FP;
 | 
						|
}
 | 
						|
 | 
						|
static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  assert(Op.getValueType() == MVT::i64 &&
 | 
						|
         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
 | 
						|
  // The generic code does a fine job expanding shift by a constant.
 | 
						|
  if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
 | 
						|
  
 | 
						|
  // Otherwise, expand into a bunch of logical ops.  Note that these ops
 | 
						|
  // depend on the PPC behavior for oversized shift amounts.
 | 
						|
  SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
 | 
						|
                             DAG.getConstant(0, MVT::i32));
 | 
						|
  SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
 | 
						|
                             DAG.getConstant(1, MVT::i32));
 | 
						|
  SDOperand Amt = Op.getOperand(1);
 | 
						|
  
 | 
						|
  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
 | 
						|
                               DAG.getConstant(32, MVT::i32), Amt);
 | 
						|
  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
 | 
						|
  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
 | 
						|
  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
 | 
						|
  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
 | 
						|
                               DAG.getConstant(-32U, MVT::i32));
 | 
						|
  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
 | 
						|
  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
 | 
						|
  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
 | 
						|
  return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
 | 
						|
}
 | 
						|
 | 
						|
static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  assert(Op.getValueType() == MVT::i64 &&
 | 
						|
         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
 | 
						|
  // The generic code does a fine job expanding shift by a constant.
 | 
						|
  if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
 | 
						|
  
 | 
						|
  // Otherwise, expand into a bunch of logical ops.  Note that these ops
 | 
						|
  // depend on the PPC behavior for oversized shift amounts.
 | 
						|
  SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
 | 
						|
                             DAG.getConstant(0, MVT::i32));
 | 
						|
  SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
 | 
						|
                             DAG.getConstant(1, MVT::i32));
 | 
						|
  SDOperand Amt = Op.getOperand(1);
 | 
						|
  
 | 
						|
  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
 | 
						|
                               DAG.getConstant(32, MVT::i32), Amt);
 | 
						|
  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
 | 
						|
  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
 | 
						|
  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
 | 
						|
  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
 | 
						|
                               DAG.getConstant(-32U, MVT::i32));
 | 
						|
  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
 | 
						|
  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
 | 
						|
  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
 | 
						|
  return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
 | 
						|
}
 | 
						|
 | 
						|
static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  assert(Op.getValueType() == MVT::i64 &&
 | 
						|
         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
 | 
						|
  // The generic code does a fine job expanding shift by a constant.
 | 
						|
  if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
 | 
						|
  
 | 
						|
  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
 | 
						|
  SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
 | 
						|
                             DAG.getConstant(0, MVT::i32));
 | 
						|
  SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
 | 
						|
                             DAG.getConstant(1, MVT::i32));
 | 
						|
  SDOperand Amt = Op.getOperand(1);
 | 
						|
  
 | 
						|
  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
 | 
						|
                               DAG.getConstant(32, MVT::i32), Amt);
 | 
						|
  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
 | 
						|
  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
 | 
						|
  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
 | 
						|
  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
 | 
						|
                               DAG.getConstant(-32U, MVT::i32));
 | 
						|
  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
 | 
						|
  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
 | 
						|
  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
 | 
						|
                                    Tmp4, Tmp6, ISD::SETLE);
 | 
						|
  return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Vector related lowering.
 | 
						|
//
 | 
						|
 | 
						|
// If this is a vector of constants or undefs, get the bits.  A bit in
 | 
						|
// UndefBits is set if the corresponding element of the vector is an 
 | 
						|
// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
 | 
						|
// zero.   Return true if this is not an array of constants, false if it is.
 | 
						|
//
 | 
						|
static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
 | 
						|
                                       uint64_t UndefBits[2]) {
 | 
						|
  // Start with zero'd results.
 | 
						|
  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
 | 
						|
  
 | 
						|
  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
 | 
						|
  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
 | 
						|
    SDOperand OpVal = BV->getOperand(i);
 | 
						|
    
 | 
						|
    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
 | 
						|
    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
 | 
						|
 | 
						|
    uint64_t EltBits = 0;
 | 
						|
    if (OpVal.getOpcode() == ISD::UNDEF) {
 | 
						|
      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
 | 
						|
      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
 | 
						|
      continue;
 | 
						|
    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
 | 
						|
      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
 | 
						|
    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
 | 
						|
      assert(CN->getValueType(0) == MVT::f32 &&
 | 
						|
             "Only one legal FP vector type!");
 | 
						|
      EltBits = FloatToBits(CN->getValue());
 | 
						|
    } else {
 | 
						|
      // Nonconstant element.
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
 | 
						|
  }
 | 
						|
  
 | 
						|
  //printf("%llx %llx  %llx %llx\n", 
 | 
						|
  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// If this is a splat (repetition) of a value across the whole vector, return
 | 
						|
// the smallest size that splats it.  For example, "0x01010101010101..." is a
 | 
						|
// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and 
 | 
						|
// SplatSize = 1 byte.
 | 
						|
static bool isConstantSplat(const uint64_t Bits128[2], 
 | 
						|
                            const uint64_t Undef128[2],
 | 
						|
                            unsigned &SplatBits, unsigned &SplatUndef,
 | 
						|
                            unsigned &SplatSize) {
 | 
						|
  
 | 
						|
  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
 | 
						|
  // the same as the lower 64-bits, ignoring undefs.
 | 
						|
  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
 | 
						|
    return false;  // Can't be a splat if two pieces don't match.
 | 
						|
  
 | 
						|
  uint64_t Bits64  = Bits128[0] | Bits128[1];
 | 
						|
  uint64_t Undef64 = Undef128[0] & Undef128[1];
 | 
						|
  
 | 
						|
  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
 | 
						|
  // undefs.
 | 
						|
  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
 | 
						|
    return false;  // Can't be a splat if two pieces don't match.
 | 
						|
 | 
						|
  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
 | 
						|
  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
 | 
						|
 | 
						|
  // If the top 16-bits are different than the lower 16-bits, ignoring
 | 
						|
  // undefs, we have an i32 splat.
 | 
						|
  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
 | 
						|
    SplatBits = Bits32;
 | 
						|
    SplatUndef = Undef32;
 | 
						|
    SplatSize = 4;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
 | 
						|
  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
 | 
						|
 | 
						|
  // If the top 8-bits are different than the lower 8-bits, ignoring
 | 
						|
  // undefs, we have an i16 splat.
 | 
						|
  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
 | 
						|
    SplatBits = Bits16;
 | 
						|
    SplatUndef = Undef16;
 | 
						|
    SplatSize = 2;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, we have an 8-bit splat.
 | 
						|
  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
 | 
						|
  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
 | 
						|
  SplatSize = 1;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// BuildSplatI - Build a canonical splati of Val with an element size of
 | 
						|
/// SplatSize.  Cast the result to VT.
 | 
						|
static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
 | 
						|
                             SelectionDAG &DAG) {
 | 
						|
  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
 | 
						|
  
 | 
						|
  // Force vspltis[hw] -1 to vspltisb -1.
 | 
						|
  if (Val == -1) SplatSize = 1;
 | 
						|
  
 | 
						|
  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
 | 
						|
    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
 | 
						|
  };
 | 
						|
  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
 | 
						|
  
 | 
						|
  // Build a canonical splat for this value.
 | 
						|
  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
 | 
						|
  std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt);
 | 
						|
  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops);
 | 
						|
  return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
 | 
						|
/// specified intrinsic ID.
 | 
						|
static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
 | 
						|
                                  SelectionDAG &DAG, 
 | 
						|
                                  MVT::ValueType DestVT = MVT::Other) {
 | 
						|
  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
 | 
						|
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
 | 
						|
                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
 | 
						|
/// specified intrinsic ID.
 | 
						|
static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
 | 
						|
                                  SDOperand Op2, SelectionDAG &DAG, 
 | 
						|
                                  MVT::ValueType DestVT = MVT::Other) {
 | 
						|
  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
 | 
						|
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
 | 
						|
                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
 | 
						|
/// amount.  The result has the specified value type.
 | 
						|
static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
 | 
						|
                             MVT::ValueType VT, SelectionDAG &DAG) {
 | 
						|
  // Force LHS/RHS to be the right type.
 | 
						|
  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
 | 
						|
  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
 | 
						|
  
 | 
						|
  std::vector<SDOperand> Ops;
 | 
						|
  for (unsigned i = 0; i != 16; ++i)
 | 
						|
    Ops.push_back(DAG.getConstant(i+Amt, MVT::i32));
 | 
						|
  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
 | 
						|
                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
 | 
						|
  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
 | 
						|
}
 | 
						|
 | 
						|
// If this is a case we can't handle, return null and let the default
 | 
						|
// expansion code take care of it.  If we CAN select this case, and if it
 | 
						|
// selects to a single instruction, return Op.  Otherwise, if we can codegen
 | 
						|
// this case more efficiently than a constant pool load, lower it to the
 | 
						|
// sequence of ops that should be used.
 | 
						|
static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  // If this is a vector of constants or undefs, get the bits.  A bit in
 | 
						|
  // UndefBits is set if the corresponding element of the vector is an 
 | 
						|
  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
 | 
						|
  // zero. 
 | 
						|
  uint64_t VectorBits[2];
 | 
						|
  uint64_t UndefBits[2];
 | 
						|
  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
 | 
						|
    return SDOperand();   // Not a constant vector.
 | 
						|
  
 | 
						|
  // If this is a splat (repetition) of a value across the whole vector, return
 | 
						|
  // the smallest size that splats it.  For example, "0x01010101010101..." is a
 | 
						|
  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and 
 | 
						|
  // SplatSize = 1 byte.
 | 
						|
  unsigned SplatBits, SplatUndef, SplatSize;
 | 
						|
  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
 | 
						|
    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
 | 
						|
    
 | 
						|
    // First, handle single instruction cases.
 | 
						|
    
 | 
						|
    // All zeros?
 | 
						|
    if (SplatBits == 0) {
 | 
						|
      // Canonicalize all zero vectors to be v4i32.
 | 
						|
      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
 | 
						|
        SDOperand Z = DAG.getConstant(0, MVT::i32);
 | 
						|
        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
 | 
						|
        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
 | 
						|
      }
 | 
						|
      return Op;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
 | 
						|
    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
 | 
						|
    if (SextVal >= -16 && SextVal <= 15)
 | 
						|
      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
 | 
						|
    
 | 
						|
    
 | 
						|
    // Two instruction sequences.
 | 
						|
    
 | 
						|
    // If this value is in the range [-32,30] and is even, use:
 | 
						|
    //    tmp = VSPLTI[bhw], result = add tmp, tmp
 | 
						|
    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
 | 
						|
      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
 | 
						|
      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is 
 | 
						|
    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
 | 
						|
    // for fneg/fabs.
 | 
						|
    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
 | 
						|
      // Make -1 and vspltisw -1:
 | 
						|
      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
 | 
						|
      
 | 
						|
      // Make the VSLW intrinsic, computing 0x8000_0000.
 | 
						|
      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 
 | 
						|
                                       OnesV, DAG);
 | 
						|
      
 | 
						|
      // xor by OnesV to invert it.
 | 
						|
      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
 | 
						|
      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
 | 
						|
    }
 | 
						|
 | 
						|
    // Check to see if this is a wide variety of vsplti*, binop self cases.
 | 
						|
    unsigned SplatBitSize = SplatSize*8;
 | 
						|
    static const char SplatCsts[] = {
 | 
						|
      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
 | 
						|
      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
 | 
						|
    };
 | 
						|
    for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
 | 
						|
      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
 | 
						|
      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
 | 
						|
      int i = SplatCsts[idx];
 | 
						|
      
 | 
						|
      // Figure out what shift amount will be used by altivec if shifted by i in
 | 
						|
      // this splat size.
 | 
						|
      unsigned TypeShiftAmt = i & (SplatBitSize-1);
 | 
						|
      
 | 
						|
      // vsplti + shl self.
 | 
						|
      if (SextVal == (i << (int)TypeShiftAmt)) {
 | 
						|
        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
 | 
						|
        static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | 
						|
          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
 | 
						|
          Intrinsic::ppc_altivec_vslw
 | 
						|
        };
 | 
						|
        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // vsplti + srl self.
 | 
						|
      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
 | 
						|
        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
 | 
						|
        static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | 
						|
          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
 | 
						|
          Intrinsic::ppc_altivec_vsrw
 | 
						|
        };
 | 
						|
        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // vsplti + sra self.
 | 
						|
      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
 | 
						|
        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
 | 
						|
        static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | 
						|
          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
 | 
						|
          Intrinsic::ppc_altivec_vsraw
 | 
						|
        };
 | 
						|
        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // vsplti + rol self.
 | 
						|
      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
 | 
						|
                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
 | 
						|
        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
 | 
						|
        static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | 
						|
          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
 | 
						|
          Intrinsic::ppc_altivec_vrlw
 | 
						|
        };
 | 
						|
        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
 | 
						|
      }
 | 
						|
 | 
						|
      // t = vsplti c, result = vsldoi t, t, 1
 | 
						|
      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
 | 
						|
        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
 | 
						|
        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
 | 
						|
      }
 | 
						|
      // t = vsplti c, result = vsldoi t, t, 2
 | 
						|
      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
 | 
						|
        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
 | 
						|
        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
 | 
						|
      }
 | 
						|
      // t = vsplti c, result = vsldoi t, t, 3
 | 
						|
      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
 | 
						|
        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
 | 
						|
        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Three instruction sequences.
 | 
						|
    
 | 
						|
    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
 | 
						|
    if (SextVal >= 0 && SextVal <= 31) {
 | 
						|
      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
 | 
						|
      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
 | 
						|
      return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
 | 
						|
    }
 | 
						|
    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
 | 
						|
    if (SextVal >= -31 && SextVal <= 0) {
 | 
						|
      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
 | 
						|
      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
 | 
						|
      return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  return SDOperand();
 | 
						|
}
 | 
						|
 | 
						|
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
 | 
						|
/// the specified operations to build the shuffle.
 | 
						|
static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
 | 
						|
                                        SDOperand RHS, SelectionDAG &DAG) {
 | 
						|
  unsigned OpNum = (PFEntry >> 26) & 0x0F;
 | 
						|
  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
 | 
						|
  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
 | 
						|
  
 | 
						|
  enum {
 | 
						|
    OP_COPY = 0,   // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | 
						|
    OP_VMRGHW,
 | 
						|
    OP_VMRGLW,
 | 
						|
    OP_VSPLTISW0,
 | 
						|
    OP_VSPLTISW1,
 | 
						|
    OP_VSPLTISW2,
 | 
						|
    OP_VSPLTISW3,
 | 
						|
    OP_VSLDOI4,
 | 
						|
    OP_VSLDOI8,
 | 
						|
    OP_VSLDOI12,
 | 
						|
  };
 | 
						|
  
 | 
						|
  if (OpNum == OP_COPY) {
 | 
						|
    if (LHSID == (1*9+2)*9+3) return LHS;
 | 
						|
    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
 | 
						|
    return RHS;
 | 
						|
  }
 | 
						|
  
 | 
						|
  SDOperand OpLHS, OpRHS;
 | 
						|
  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
 | 
						|
  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
 | 
						|
  
 | 
						|
  unsigned ShufIdxs[16];
 | 
						|
  switch (OpNum) {
 | 
						|
  default: assert(0 && "Unknown i32 permute!");
 | 
						|
  case OP_VMRGHW:
 | 
						|
    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
 | 
						|
    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
 | 
						|
    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
 | 
						|
    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
 | 
						|
    break;
 | 
						|
  case OP_VMRGLW:
 | 
						|
    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
 | 
						|
    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
 | 
						|
    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
 | 
						|
    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW0:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+0;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW1:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+4;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW2:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+8;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW3:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+12;
 | 
						|
    break;
 | 
						|
  case OP_VSLDOI4:
 | 
						|
    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
 | 
						|
  case OP_VSLDOI8:
 | 
						|
    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
 | 
						|
  case OP_VSLDOI12:
 | 
						|
    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
 | 
						|
  }
 | 
						|
  std::vector<SDOperand> Ops;
 | 
						|
  for (unsigned i = 0; i != 16; ++i)
 | 
						|
    Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32));
 | 
						|
  
 | 
						|
  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
 | 
						|
                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
 | 
						|
}
 | 
						|
 | 
						|
/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
 | 
						|
/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
 | 
						|
/// return the code it can be lowered into.  Worst case, it can always be
 | 
						|
/// lowered into a vperm.
 | 
						|
static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  SDOperand V1 = Op.getOperand(0);
 | 
						|
  SDOperand V2 = Op.getOperand(1);
 | 
						|
  SDOperand PermMask = Op.getOperand(2);
 | 
						|
  
 | 
						|
  // Cases that are handled by instructions that take permute immediates
 | 
						|
  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
 | 
						|
  // selected by the instruction selector.
 | 
						|
  if (V2.getOpcode() == ISD::UNDEF) {
 | 
						|
    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
 | 
						|
        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
 | 
						|
        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
 | 
						|
        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
 | 
						|
        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
 | 
						|
        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
 | 
						|
        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
 | 
						|
        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
 | 
						|
        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
 | 
						|
        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
 | 
						|
        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
 | 
						|
        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
 | 
						|
      return Op;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Altivec has a variety of "shuffle immediates" that take two vector inputs
 | 
						|
  // and produce a fixed permutation.  If any of these match, do not lower to
 | 
						|
  // VPERM.
 | 
						|
  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
 | 
						|
      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
 | 
						|
      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
 | 
						|
      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
 | 
						|
      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
 | 
						|
      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
 | 
						|
      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
 | 
						|
      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
 | 
						|
      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
 | 
						|
    return Op;
 | 
						|
  
 | 
						|
  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
 | 
						|
  // perfect shuffle table to emit an optimal matching sequence.
 | 
						|
  unsigned PFIndexes[4];
 | 
						|
  bool isFourElementShuffle = true;
 | 
						|
  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
 | 
						|
    unsigned EltNo = 8;   // Start out undef.
 | 
						|
    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
 | 
						|
      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
 | 
						|
        continue;   // Undef, ignore it.
 | 
						|
      
 | 
						|
      unsigned ByteSource = 
 | 
						|
        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
 | 
						|
      if ((ByteSource & 3) != j) {
 | 
						|
        isFourElementShuffle = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (EltNo == 8) {
 | 
						|
        EltNo = ByteSource/4;
 | 
						|
      } else if (EltNo != ByteSource/4) {
 | 
						|
        isFourElementShuffle = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    PFIndexes[i] = EltNo;
 | 
						|
  }
 | 
						|
    
 | 
						|
  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 
 | 
						|
  // perfect shuffle vector to determine if it is cost effective to do this as
 | 
						|
  // discrete instructions, or whether we should use a vperm.
 | 
						|
  if (isFourElementShuffle) {
 | 
						|
    // Compute the index in the perfect shuffle table.
 | 
						|
    unsigned PFTableIndex = 
 | 
						|
      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | 
						|
    
 | 
						|
    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | 
						|
    unsigned Cost  = (PFEntry >> 30);
 | 
						|
    
 | 
						|
    // Determining when to avoid vperm is tricky.  Many things affect the cost
 | 
						|
    // of vperm, particularly how many times the perm mask needs to be computed.
 | 
						|
    // For example, if the perm mask can be hoisted out of a loop or is already
 | 
						|
    // used (perhaps because there are multiple permutes with the same shuffle
 | 
						|
    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
 | 
						|
    // the loop requires an extra register.
 | 
						|
    //
 | 
						|
    // As a compromise, we only emit discrete instructions if the shuffle can be
 | 
						|
    // generated in 3 or fewer operations.  When we have loop information 
 | 
						|
    // available, if this block is within a loop, we should avoid using vperm
 | 
						|
    // for 3-operation perms and use a constant pool load instead.
 | 
						|
    if (Cost < 3) 
 | 
						|
      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
 | 
						|
  // vector that will get spilled to the constant pool.
 | 
						|
  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
 | 
						|
  
 | 
						|
  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
 | 
						|
  // that it is in input element units, not in bytes.  Convert now.
 | 
						|
  MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
 | 
						|
  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
 | 
						|
  
 | 
						|
  std::vector<SDOperand> ResultMask;
 | 
						|
  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
 | 
						|
    unsigned SrcElt;
 | 
						|
    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
 | 
						|
      SrcElt = 0;
 | 
						|
    else 
 | 
						|
      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
 | 
						|
    
 | 
						|
    for (unsigned j = 0; j != BytesPerElement; ++j)
 | 
						|
      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
 | 
						|
                                           MVT::i8));
 | 
						|
  }
 | 
						|
  
 | 
						|
  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
 | 
						|
  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
 | 
						|
}
 | 
						|
 | 
						|
/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
 | 
						|
/// altivec comparison.  If it is, return true and fill in Opc/isDot with
 | 
						|
/// information about the intrinsic.
 | 
						|
static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
 | 
						|
                                  bool &isDot) {
 | 
						|
  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
 | 
						|
  CompareOpc = -1;
 | 
						|
  isDot = false;
 | 
						|
  switch (IntrinsicID) {
 | 
						|
  default: return false;
 | 
						|
    // Comparison predicates.
 | 
						|
  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
 | 
						|
    
 | 
						|
    // Normal Comparisons.
 | 
						|
  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
 | 
						|
/// lower, do it, otherwise return null.
 | 
						|
static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  // If this is a lowered altivec predicate compare, CompareOpc is set to the
 | 
						|
  // opcode number of the comparison.
 | 
						|
  int CompareOpc;
 | 
						|
  bool isDot;
 | 
						|
  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
 | 
						|
    return SDOperand();    // Don't custom lower most intrinsics.
 | 
						|
  
 | 
						|
  // If this is a non-dot comparison, make the VCMP node and we are done.
 | 
						|
  if (!isDot) {
 | 
						|
    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
 | 
						|
                                Op.getOperand(1), Op.getOperand(2),
 | 
						|
                                DAG.getConstant(CompareOpc, MVT::i32));
 | 
						|
    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Create the PPCISD altivec 'dot' comparison node.
 | 
						|
  std::vector<SDOperand> Ops;
 | 
						|
  std::vector<MVT::ValueType> VTs;
 | 
						|
  Ops.push_back(Op.getOperand(2));  // LHS
 | 
						|
  Ops.push_back(Op.getOperand(3));  // RHS
 | 
						|
  Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
 | 
						|
  VTs.push_back(Op.getOperand(2).getValueType());
 | 
						|
  VTs.push_back(MVT::Flag);
 | 
						|
  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
 | 
						|
  
 | 
						|
  // Now that we have the comparison, emit a copy from the CR to a GPR.
 | 
						|
  // This is flagged to the above dot comparison.
 | 
						|
  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
 | 
						|
                                DAG.getRegister(PPC::CR6, MVT::i32),
 | 
						|
                                CompNode.getValue(1)); 
 | 
						|
  
 | 
						|
  // Unpack the result based on how the target uses it.
 | 
						|
  unsigned BitNo;   // Bit # of CR6.
 | 
						|
  bool InvertBit;   // Invert result?
 | 
						|
  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
 | 
						|
  default:  // Can't happen, don't crash on invalid number though.
 | 
						|
  case 0:   // Return the value of the EQ bit of CR6.
 | 
						|
    BitNo = 0; InvertBit = false;
 | 
						|
    break;
 | 
						|
  case 1:   // Return the inverted value of the EQ bit of CR6.
 | 
						|
    BitNo = 0; InvertBit = true;
 | 
						|
    break;
 | 
						|
  case 2:   // Return the value of the LT bit of CR6.
 | 
						|
    BitNo = 2; InvertBit = false;
 | 
						|
    break;
 | 
						|
  case 3:   // Return the inverted value of the LT bit of CR6.
 | 
						|
    BitNo = 2; InvertBit = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Shift the bit into the low position.
 | 
						|
  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
 | 
						|
                      DAG.getConstant(8-(3-BitNo), MVT::i32));
 | 
						|
  // Isolate the bit.
 | 
						|
  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
 | 
						|
                      DAG.getConstant(1, MVT::i32));
 | 
						|
  
 | 
						|
  // If we are supposed to, toggle the bit.
 | 
						|
  if (InvertBit)
 | 
						|
    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
 | 
						|
                        DAG.getConstant(1, MVT::i32));
 | 
						|
  return Flags;
 | 
						|
}
 | 
						|
 | 
						|
static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  // Create a stack slot that is 16-byte aligned.
 | 
						|
  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
 | 
						|
  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
 | 
						|
  
 | 
						|
  // Store the input value into Value#0 of the stack slot.
 | 
						|
  SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
 | 
						|
                                Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
 | 
						|
  // Load it out.
 | 
						|
  return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
 | 
						|
}
 | 
						|
 | 
						|
static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  if (Op.getValueType() == MVT::v4i32) {
 | 
						|
    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | 
						|
    
 | 
						|
    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
 | 
						|
    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
 | 
						|
    
 | 
						|
    SDOperand RHSSwap =   // = vrlw RHS, 16
 | 
						|
      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
 | 
						|
    
 | 
						|
    // Shrinkify inputs to v8i16.
 | 
						|
    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
 | 
						|
    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
 | 
						|
    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
 | 
						|
    
 | 
						|
    // Low parts multiplied together, generating 32-bit results (we ignore the
 | 
						|
    // top parts).
 | 
						|
    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
 | 
						|
                                        LHS, RHS, DAG, MVT::v4i32);
 | 
						|
    
 | 
						|
    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
 | 
						|
                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
 | 
						|
    // Shift the high parts up 16 bits.
 | 
						|
    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
 | 
						|
    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
 | 
						|
  } else if (Op.getValueType() == MVT::v8i16) {
 | 
						|
    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | 
						|
    
 | 
						|
    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
 | 
						|
 | 
						|
    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
 | 
						|
                            LHS, RHS, Zero, DAG);
 | 
						|
  } else if (Op.getValueType() == MVT::v16i8) {
 | 
						|
    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | 
						|
    
 | 
						|
    // Multiply the even 8-bit parts, producing 16-bit sums.
 | 
						|
    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
 | 
						|
                                           LHS, RHS, DAG, MVT::v8i16);
 | 
						|
    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
 | 
						|
    
 | 
						|
    // Multiply the odd 8-bit parts, producing 16-bit sums.
 | 
						|
    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
 | 
						|
                                          LHS, RHS, DAG, MVT::v8i16);
 | 
						|
    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
 | 
						|
    
 | 
						|
    // Merge the results together.
 | 
						|
    std::vector<SDOperand> Ops;
 | 
						|
    for (unsigned i = 0; i != 8; ++i) {
 | 
						|
      Ops.push_back(DAG.getConstant(2*i+1, MVT::i8));
 | 
						|
      Ops.push_back(DAG.getConstant(2*i+1+16, MVT::i8));
 | 
						|
    }
 | 
						|
    
 | 
						|
    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
 | 
						|
                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
 | 
						|
  } else {
 | 
						|
    assert(0 && "Unknown mul to lower!");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// LowerOperation - Provide custom lowering hooks for some operations.
 | 
						|
///
 | 
						|
SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: assert(0 && "Wasn't expecting to be able to lower this!"); 
 | 
						|
  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
 | 
						|
  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
 | 
						|
  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
 | 
						|
  case ISD::SETCC:              return LowerSETCC(Op, DAG);
 | 
						|
  case ISD::VASTART:            return LowerVASTART(Op, DAG, VarArgsFrameIndex);
 | 
						|
  case ISD::RET:                return LowerRET(Op, DAG);
 | 
						|
    
 | 
						|
  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
 | 
						|
  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
 | 
						|
  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
 | 
						|
 | 
						|
  // Lower 64-bit shifts.
 | 
						|
  case ISD::SHL:                return LowerSHL(Op, DAG);
 | 
						|
  case ISD::SRL:                return LowerSRL(Op, DAG);
 | 
						|
  case ISD::SRA:                return LowerSRA(Op, DAG);
 | 
						|
 | 
						|
  // Vector-related lowering.
 | 
						|
  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
 | 
						|
  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | 
						|
  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
 | 
						|
  case ISD::MUL:                return LowerMUL(Op, DAG);
 | 
						|
  }
 | 
						|
  return SDOperand();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Other Lowering Code
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
std::vector<SDOperand>
 | 
						|
PPCTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
 | 
						|
  //
 | 
						|
  // add beautiful description of PPC stack frame format, or at least some docs
 | 
						|
  //
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  MachineBasicBlock& BB = MF.front();
 | 
						|
  SSARegMap *RegMap = MF.getSSARegMap();
 | 
						|
  std::vector<SDOperand> ArgValues;
 | 
						|
  
 | 
						|
  unsigned ArgOffset = 24;
 | 
						|
  unsigned GPR_remaining = 8;
 | 
						|
  unsigned FPR_remaining = 13;
 | 
						|
  unsigned GPR_idx = 0, FPR_idx = 0;
 | 
						|
  static const unsigned GPR[] = {
 | 
						|
    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | 
						|
    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | 
						|
  };
 | 
						|
  static const unsigned FPR[] = {
 | 
						|
    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | 
						|
    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
 | 
						|
  };
 | 
						|
  
 | 
						|
  // Add DAG nodes to load the arguments...  On entry to a function on PPC,
 | 
						|
  // the arguments start at offset 24, although they are likely to be passed
 | 
						|
  // in registers.
 | 
						|
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
 | 
						|
    SDOperand newroot, argt;
 | 
						|
    unsigned ObjSize;
 | 
						|
    bool needsLoad = false;
 | 
						|
    bool ArgLive = !I->use_empty();
 | 
						|
    MVT::ValueType ObjectVT = getValueType(I->getType());
 | 
						|
    
 | 
						|
    switch (ObjectVT) {
 | 
						|
    default: assert(0 && "Unhandled argument type!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:
 | 
						|
    case MVT::i16:
 | 
						|
    case MVT::i32:
 | 
						|
      ObjSize = 4;
 | 
						|
      if (!ArgLive) break;
 | 
						|
      if (GPR_remaining > 0) {
 | 
						|
        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
        MF.addLiveIn(GPR[GPR_idx], VReg);
 | 
						|
        argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
 | 
						|
        if (ObjectVT != MVT::i32) {
 | 
						|
          unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext 
 | 
						|
                                                       : ISD::AssertZext;
 | 
						|
          argt = DAG.getNode(AssertOp, MVT::i32, argt, 
 | 
						|
                             DAG.getValueType(ObjectVT));
 | 
						|
          argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, argt);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        needsLoad = true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case MVT::i64:
 | 
						|
      ObjSize = 8;
 | 
						|
      if (!ArgLive) break;
 | 
						|
      if (GPR_remaining > 0) {
 | 
						|
        SDOperand argHi, argLo;
 | 
						|
        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
        MF.addLiveIn(GPR[GPR_idx], VReg);
 | 
						|
        argHi = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
 | 
						|
        // If we have two or more remaining argument registers, then both halves
 | 
						|
        // of the i64 can be sourced from there.  Otherwise, the lower half will
 | 
						|
        // have to come off the stack.  This can happen when an i64 is preceded
 | 
						|
        // by 28 bytes of arguments.
 | 
						|
        if (GPR_remaining > 1) {
 | 
						|
          unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
          MF.addLiveIn(GPR[GPR_idx+1], VReg);
 | 
						|
          argLo = DAG.getCopyFromReg(argHi, VReg, MVT::i32);
 | 
						|
        } else {
 | 
						|
          int FI = MFI->CreateFixedObject(4, ArgOffset+4);
 | 
						|
          SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
 | 
						|
          argLo = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN,
 | 
						|
                              DAG.getSrcValue(NULL));
 | 
						|
        }
 | 
						|
        // Build the outgoing arg thingy
 | 
						|
        argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi);
 | 
						|
        newroot = argLo;
 | 
						|
      } else {
 | 
						|
        needsLoad = true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case MVT::f32:
 | 
						|
    case MVT::f64:
 | 
						|
      ObjSize = (ObjectVT == MVT::f64) ? 8 : 4;
 | 
						|
      if (!ArgLive) {
 | 
						|
        if (FPR_remaining > 0) {
 | 
						|
          --FPR_remaining;
 | 
						|
          ++FPR_idx;
 | 
						|
        }        
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (FPR_remaining > 0) {
 | 
						|
        unsigned VReg;
 | 
						|
        if (ObjectVT == MVT::f32)
 | 
						|
          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
 | 
						|
        else
 | 
						|
          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
 | 
						|
        MF.addLiveIn(FPR[FPR_idx], VReg);
 | 
						|
        argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, ObjectVT);
 | 
						|
        --FPR_remaining;
 | 
						|
        ++FPR_idx;
 | 
						|
      } else {
 | 
						|
        needsLoad = true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // We need to load the argument to a virtual register if we determined above
 | 
						|
    // that we ran out of physical registers of the appropriate type
 | 
						|
    if (needsLoad) {
 | 
						|
      unsigned SubregOffset = 0;
 | 
						|
      if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3;
 | 
						|
      if (ObjectVT == MVT::i16) SubregOffset = 2;
 | 
						|
      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
 | 
						|
      SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
 | 
						|
      FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN,
 | 
						|
                        DAG.getConstant(SubregOffset, MVT::i32));
 | 
						|
      argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
 | 
						|
                                   DAG.getSrcValue(NULL));
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Every 4 bytes of argument space consumes one of the GPRs available for
 | 
						|
    // argument passing.
 | 
						|
    if (GPR_remaining > 0) {
 | 
						|
      unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
 | 
						|
      GPR_remaining -= delta;
 | 
						|
      GPR_idx += delta;
 | 
						|
    }
 | 
						|
    ArgOffset += ObjSize;
 | 
						|
    if (newroot.Val)
 | 
						|
      DAG.setRoot(newroot.getValue(1));
 | 
						|
    
 | 
						|
    ArgValues.push_back(argt);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the function takes variable number of arguments, make a frame index for
 | 
						|
  // the start of the first vararg value... for expansion of llvm.va_start.
 | 
						|
  if (F.isVarArg()) {
 | 
						|
    VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
 | 
						|
    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
 | 
						|
    // If this function is vararg, store any remaining integer argument regs
 | 
						|
    // to their spots on the stack so that they may be loaded by deferencing the
 | 
						|
    // result of va_next.
 | 
						|
    std::vector<SDOperand> MemOps;
 | 
						|
    for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
 | 
						|
      unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
      MF.addLiveIn(GPR[GPR_idx], VReg);
 | 
						|
      SDOperand Val = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
 | 
						|
      SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
 | 
						|
                                    Val, FIN, DAG.getSrcValue(NULL));
 | 
						|
      MemOps.push_back(Store);
 | 
						|
      // Increment the address by four for the next argument to store
 | 
						|
      SDOperand PtrOff = DAG.getConstant(4, getPointerTy());
 | 
						|
      FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
 | 
						|
    }
 | 
						|
    if (!MemOps.empty()) {
 | 
						|
      MemOps.push_back(DAG.getRoot());
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return ArgValues;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<SDOperand, SDOperand>
 | 
						|
PPCTargetLowering::LowerCallTo(SDOperand Chain,
 | 
						|
                               const Type *RetTy, bool isVarArg,
 | 
						|
                               unsigned CallingConv, bool isTailCall,
 | 
						|
                               SDOperand Callee, ArgListTy &Args,
 | 
						|
                               SelectionDAG &DAG) {
 | 
						|
  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
 | 
						|
  // SelectExpr to use to put the arguments in the appropriate registers.
 | 
						|
  std::vector<SDOperand> args_to_use;
 | 
						|
  
 | 
						|
  // Count how many bytes are to be pushed on the stack, including the linkage
 | 
						|
  // area, and parameter passing area.
 | 
						|
  unsigned NumBytes = 24;
 | 
						|
  
 | 
						|
  if (Args.empty()) {
 | 
						|
    Chain = DAG.getCALLSEQ_START(Chain,
 | 
						|
                                 DAG.getConstant(NumBytes, getPointerTy()));
 | 
						|
  } else {
 | 
						|
    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | 
						|
      switch (getValueType(Args[i].second)) {
 | 
						|
      default: assert(0 && "Unknown value type!");
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i8:
 | 
						|
      case MVT::i16:
 | 
						|
      case MVT::i32:
 | 
						|
      case MVT::f32:
 | 
						|
        NumBytes += 4;
 | 
						|
        break;
 | 
						|
      case MVT::i64:
 | 
						|
      case MVT::f64:
 | 
						|
        NumBytes += 8;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
        
 | 
						|
    // Just to be safe, we'll always reserve the full 24 bytes of linkage area
 | 
						|
    // plus 32 bytes of argument space in case any called code gets funky on us.
 | 
						|
    // (Required by ABI to support var arg)
 | 
						|
    if (NumBytes < 56) NumBytes = 56;
 | 
						|
    
 | 
						|
    // Adjust the stack pointer for the new arguments...
 | 
						|
    // These operations are automatically eliminated by the prolog/epilog pass
 | 
						|
    Chain = DAG.getCALLSEQ_START(Chain,
 | 
						|
                                 DAG.getConstant(NumBytes, getPointerTy()));
 | 
						|
    
 | 
						|
    // Set up a copy of the stack pointer for use loading and storing any
 | 
						|
    // arguments that may not fit in the registers available for argument
 | 
						|
    // passing.
 | 
						|
    SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | 
						|
    
 | 
						|
    // Figure out which arguments are going to go in registers, and which in
 | 
						|
    // memory.  Also, if this is a vararg function, floating point operations
 | 
						|
    // must be stored to our stack, and loaded into integer regs as well, if
 | 
						|
    // any integer regs are available for argument passing.
 | 
						|
    unsigned ArgOffset = 24;
 | 
						|
    unsigned GPR_remaining = 8;
 | 
						|
    unsigned FPR_remaining = 13;
 | 
						|
    
 | 
						|
    std::vector<SDOperand> MemOps;
 | 
						|
    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | 
						|
      // PtrOff will be used to store the current argument to the stack if a
 | 
						|
      // register cannot be found for it.
 | 
						|
      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
 | 
						|
      PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
 | 
						|
      MVT::ValueType ArgVT = getValueType(Args[i].second);
 | 
						|
      
 | 
						|
      switch (ArgVT) {
 | 
						|
      default: assert(0 && "Unexpected ValueType for argument!");
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i8:
 | 
						|
      case MVT::i16:
 | 
						|
        // Promote the integer to 32 bits.  If the input type is signed use a
 | 
						|
        // sign extend, otherwise use a zero extend.
 | 
						|
        if (Args[i].second->isSigned())
 | 
						|
          Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
 | 
						|
        else
 | 
						|
          Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
 | 
						|
        // FALL THROUGH
 | 
						|
      case MVT::i32:
 | 
						|
        if (GPR_remaining > 0) {
 | 
						|
          args_to_use.push_back(Args[i].first);
 | 
						|
          --GPR_remaining;
 | 
						|
        } else {
 | 
						|
          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | 
						|
                                       Args[i].first, PtrOff,
 | 
						|
                                       DAG.getSrcValue(NULL)));
 | 
						|
        }
 | 
						|
        ArgOffset += 4;
 | 
						|
        break;
 | 
						|
      case MVT::i64:
 | 
						|
        // If we have one free GPR left, we can place the upper half of the i64
 | 
						|
        // in it, and store the other half to the stack.  If we have two or more
 | 
						|
        // free GPRs, then we can pass both halves of the i64 in registers.
 | 
						|
        if (GPR_remaining > 0) {
 | 
						|
          SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
 | 
						|
                                     Args[i].first, DAG.getConstant(1, MVT::i32));
 | 
						|
          SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
 | 
						|
                                     Args[i].first, DAG.getConstant(0, MVT::i32));
 | 
						|
          args_to_use.push_back(Hi);
 | 
						|
          --GPR_remaining;
 | 
						|
          if (GPR_remaining > 0) {
 | 
						|
            args_to_use.push_back(Lo);
 | 
						|
            --GPR_remaining;
 | 
						|
          } else {
 | 
						|
            SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
 | 
						|
            PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
 | 
						|
            MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | 
						|
                                         Lo, PtrOff, DAG.getSrcValue(NULL)));
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | 
						|
                                       Args[i].first, PtrOff,
 | 
						|
                                       DAG.getSrcValue(NULL)));
 | 
						|
        }
 | 
						|
        ArgOffset += 8;
 | 
						|
        break;
 | 
						|
      case MVT::f32:
 | 
						|
      case MVT::f64:
 | 
						|
        if (FPR_remaining > 0) {
 | 
						|
          args_to_use.push_back(Args[i].first);
 | 
						|
          --FPR_remaining;
 | 
						|
          if (isVarArg) {
 | 
						|
            SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | 
						|
                                          Args[i].first, PtrOff,
 | 
						|
                                          DAG.getSrcValue(NULL));
 | 
						|
            MemOps.push_back(Store);
 | 
						|
            // Float varargs are always shadowed in available integer registers
 | 
						|
            if (GPR_remaining > 0) {
 | 
						|
              SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
 | 
						|
                                           DAG.getSrcValue(NULL));
 | 
						|
              MemOps.push_back(Load.getValue(1));
 | 
						|
              args_to_use.push_back(Load);
 | 
						|
              --GPR_remaining;
 | 
						|
            }
 | 
						|
            if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
 | 
						|
              SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
 | 
						|
              PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
 | 
						|
              SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
 | 
						|
                                           DAG.getSrcValue(NULL));
 | 
						|
              MemOps.push_back(Load.getValue(1));
 | 
						|
              args_to_use.push_back(Load);
 | 
						|
              --GPR_remaining;
 | 
						|
            }
 | 
						|
          } else {
 | 
						|
            // If we have any FPRs remaining, we may also have GPRs remaining.
 | 
						|
            // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
 | 
						|
            // GPRs.
 | 
						|
            if (GPR_remaining > 0) {
 | 
						|
              args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
 | 
						|
              --GPR_remaining;
 | 
						|
            }
 | 
						|
            if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
 | 
						|
              args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
 | 
						|
              --GPR_remaining;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | 
						|
                                       Args[i].first, PtrOff,
 | 
						|
                                       DAG.getSrcValue(NULL)));
 | 
						|
        }
 | 
						|
        ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!MemOps.empty())
 | 
						|
      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
 | 
						|
  }
 | 
						|
  
 | 
						|
  std::vector<MVT::ValueType> RetVals;
 | 
						|
  MVT::ValueType RetTyVT = getValueType(RetTy);
 | 
						|
  MVT::ValueType ActualRetTyVT = RetTyVT;
 | 
						|
  if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16)
 | 
						|
    ActualRetTyVT = MVT::i32;   // Promote result to i32.
 | 
						|
    
 | 
						|
  if (RetTyVT == MVT::i64) {
 | 
						|
    RetVals.push_back(MVT::i32);
 | 
						|
    RetVals.push_back(MVT::i32);
 | 
						|
  } else if (RetTyVT != MVT::isVoid) {
 | 
						|
    RetVals.push_back(ActualRetTyVT);
 | 
						|
  }
 | 
						|
  RetVals.push_back(MVT::Other);
 | 
						|
  
 | 
						|
  // If the callee is a GlobalAddress node (quite common, every direct call is)
 | 
						|
  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
 | 
						|
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
 | 
						|
    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
 | 
						|
  
 | 
						|
  std::vector<SDOperand> Ops;
 | 
						|
  Ops.push_back(Chain);
 | 
						|
  Ops.push_back(Callee);
 | 
						|
  Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
 | 
						|
  SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops);
 | 
						|
  Chain = TheCall.getValue(TheCall.Val->getNumValues()-1);
 | 
						|
  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
 | 
						|
                      DAG.getConstant(NumBytes, getPointerTy()));
 | 
						|
  SDOperand RetVal = TheCall;
 | 
						|
  
 | 
						|
  // If the result is a small value, add a note so that we keep track of the
 | 
						|
  // information about whether it is sign or zero extended.
 | 
						|
  if (RetTyVT != ActualRetTyVT) {
 | 
						|
    RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext,
 | 
						|
                         MVT::i32, RetVal, DAG.getValueType(RetTyVT));
 | 
						|
    RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal);
 | 
						|
  } else if (RetTyVT == MVT::i64) {
 | 
						|
    RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, RetVal, RetVal.getValue(1));
 | 
						|
  }
 | 
						|
  
 | 
						|
  return std::make_pair(RetVal, Chain);
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
 | 
						|
                                           MachineBasicBlock *BB) {
 | 
						|
  assert((MI->getOpcode() == PPC::SELECT_CC_Int ||
 | 
						|
          MI->getOpcode() == PPC::SELECT_CC_F4 ||
 | 
						|
          MI->getOpcode() == PPC::SELECT_CC_F8 ||
 | 
						|
          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
 | 
						|
         "Unexpected instr type to insert");
 | 
						|
  
 | 
						|
  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
 | 
						|
  // control-flow pattern.  The incoming instruction knows the destination vreg
 | 
						|
  // to set, the condition code register to branch on, the true/false values to
 | 
						|
  // select between, and a branch opcode to use.
 | 
						|
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | 
						|
  ilist<MachineBasicBlock>::iterator It = BB;
 | 
						|
  ++It;
 | 
						|
  
 | 
						|
  //  thisMBB:
 | 
						|
  //  ...
 | 
						|
  //   TrueVal = ...
 | 
						|
  //   cmpTY ccX, r1, r2
 | 
						|
  //   bCC copy1MBB
 | 
						|
  //   fallthrough --> copy0MBB
 | 
						|
  MachineBasicBlock *thisMBB = BB;
 | 
						|
  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
 | 
						|
  BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
 | 
						|
    .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
 | 
						|
  MachineFunction *F = BB->getParent();
 | 
						|
  F->getBasicBlockList().insert(It, copy0MBB);
 | 
						|
  F->getBasicBlockList().insert(It, sinkMBB);
 | 
						|
  // Update machine-CFG edges by first adding all successors of the current
 | 
						|
  // block to the new block which will contain the Phi node for the select.
 | 
						|
  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), 
 | 
						|
      e = BB->succ_end(); i != e; ++i)
 | 
						|
    sinkMBB->addSuccessor(*i);
 | 
						|
  // Next, remove all successors of the current block, and add the true
 | 
						|
  // and fallthrough blocks as its successors.
 | 
						|
  while(!BB->succ_empty())
 | 
						|
    BB->removeSuccessor(BB->succ_begin());
 | 
						|
  BB->addSuccessor(copy0MBB);
 | 
						|
  BB->addSuccessor(sinkMBB);
 | 
						|
  
 | 
						|
  //  copy0MBB:
 | 
						|
  //   %FalseValue = ...
 | 
						|
  //   # fallthrough to sinkMBB
 | 
						|
  BB = copy0MBB;
 | 
						|
  
 | 
						|
  // Update machine-CFG edges
 | 
						|
  BB->addSuccessor(sinkMBB);
 | 
						|
  
 | 
						|
  //  sinkMBB:
 | 
						|
  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | 
						|
  //  ...
 | 
						|
  BB = sinkMBB;
 | 
						|
  BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
 | 
						|
    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
 | 
						|
    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
 | 
						|
 | 
						|
  delete MI;   // The pseudo instruction is gone now.
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Target Optimization Hooks
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N, 
 | 
						|
                                               DAGCombinerInfo &DCI) const {
 | 
						|
  TargetMachine &TM = getTargetMachine();
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::SINT_TO_FP:
 | 
						|
    if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
 | 
						|
      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
 | 
						|
        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
 | 
						|
        // We allow the src/dst to be either f32/f64, but the intermediate
 | 
						|
        // type must be i64.
 | 
						|
        if (N->getOperand(0).getValueType() == MVT::i64) {
 | 
						|
          SDOperand Val = N->getOperand(0).getOperand(0);
 | 
						|
          if (Val.getValueType() == MVT::f32) {
 | 
						|
            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
 | 
						|
            DCI.AddToWorklist(Val.Val);
 | 
						|
          }
 | 
						|
            
 | 
						|
          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
 | 
						|
          DCI.AddToWorklist(Val.Val);
 | 
						|
          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
 | 
						|
          DCI.AddToWorklist(Val.Val);
 | 
						|
          if (N->getValueType(0) == MVT::f32) {
 | 
						|
            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
 | 
						|
            DCI.AddToWorklist(Val.Val);
 | 
						|
          }
 | 
						|
          return Val;
 | 
						|
        } else if (N->getOperand(0).getValueType() == MVT::i32) {
 | 
						|
          // If the intermediate type is i32, we can avoid the load/store here
 | 
						|
          // too.
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::STORE:
 | 
						|
    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
 | 
						|
    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
 | 
						|
        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
 | 
						|
        N->getOperand(1).getValueType() == MVT::i32) {
 | 
						|
      SDOperand Val = N->getOperand(1).getOperand(0);
 | 
						|
      if (Val.getValueType() == MVT::f32) {
 | 
						|
        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
 | 
						|
        DCI.AddToWorklist(Val.Val);
 | 
						|
      }
 | 
						|
      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
 | 
						|
      DCI.AddToWorklist(Val.Val);
 | 
						|
 | 
						|
      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
 | 
						|
                        N->getOperand(2), N->getOperand(3));
 | 
						|
      DCI.AddToWorklist(Val.Val);
 | 
						|
      return Val;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case PPCISD::VCMP: {
 | 
						|
    // If a VCMPo node already exists with exactly the same operands as this
 | 
						|
    // node, use its result instead of this node (VCMPo computes both a CR6 and
 | 
						|
    // a normal output).
 | 
						|
    //
 | 
						|
    if (!N->getOperand(0).hasOneUse() &&
 | 
						|
        !N->getOperand(1).hasOneUse() &&
 | 
						|
        !N->getOperand(2).hasOneUse()) {
 | 
						|
      
 | 
						|
      // Scan all of the users of the LHS, looking for VCMPo's that match.
 | 
						|
      SDNode *VCMPoNode = 0;
 | 
						|
      
 | 
						|
      SDNode *LHSN = N->getOperand(0).Val;
 | 
						|
      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
 | 
						|
           UI != E; ++UI)
 | 
						|
        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
 | 
						|
            (*UI)->getOperand(1) == N->getOperand(1) &&
 | 
						|
            (*UI)->getOperand(2) == N->getOperand(2) &&
 | 
						|
            (*UI)->getOperand(0) == N->getOperand(0)) {
 | 
						|
          VCMPoNode = *UI;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      
 | 
						|
      // If there is no VCMPo node, or if the flag value has a single use, don't
 | 
						|
      // transform this.
 | 
						|
      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
 | 
						|
        break;
 | 
						|
        
 | 
						|
      // Look at the (necessarily single) use of the flag value.  If it has a 
 | 
						|
      // chain, this transformation is more complex.  Note that multiple things
 | 
						|
      // could use the value result, which we should ignore.
 | 
						|
      SDNode *FlagUser = 0;
 | 
						|
      for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 
 | 
						|
           FlagUser == 0; ++UI) {
 | 
						|
        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
 | 
						|
        SDNode *User = *UI;
 | 
						|
        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
 | 
						|
          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
 | 
						|
            FlagUser = User;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
 | 
						|
      // give up for right now.
 | 
						|
      if (FlagUser->getOpcode() == PPCISD::MFCR)
 | 
						|
        return SDOperand(VCMPoNode, 0);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::BR_CC: {
 | 
						|
    // If this is a branch on an altivec predicate comparison, lower this so
 | 
						|
    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
 | 
						|
    // lowering is done pre-legalize, because the legalizer lowers the predicate
 | 
						|
    // compare down to code that is difficult to reassemble.
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | 
						|
    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
 | 
						|
    int CompareOpc;
 | 
						|
    bool isDot;
 | 
						|
    
 | 
						|
    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
 | 
						|
        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
 | 
						|
        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
 | 
						|
      assert(isDot && "Can't compare against a vector result!");
 | 
						|
      
 | 
						|
      // If this is a comparison against something other than 0/1, then we know
 | 
						|
      // that the condition is never/always true.
 | 
						|
      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
 | 
						|
      if (Val != 0 && Val != 1) {
 | 
						|
        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
 | 
						|
          return N->getOperand(0);
 | 
						|
        // Always !=, turn it into an unconditional branch.
 | 
						|
        return DAG.getNode(ISD::BR, MVT::Other, 
 | 
						|
                           N->getOperand(0), N->getOperand(4));
 | 
						|
      }
 | 
						|
    
 | 
						|
      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
 | 
						|
      
 | 
						|
      // Create the PPCISD altivec 'dot' comparison node.
 | 
						|
      std::vector<SDOperand> Ops;
 | 
						|
      std::vector<MVT::ValueType> VTs;
 | 
						|
      Ops.push_back(LHS.getOperand(2));  // LHS of compare
 | 
						|
      Ops.push_back(LHS.getOperand(3));  // RHS of compare
 | 
						|
      Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
 | 
						|
      VTs.push_back(LHS.getOperand(2).getValueType());
 | 
						|
      VTs.push_back(MVT::Flag);
 | 
						|
      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
 | 
						|
      
 | 
						|
      // Unpack the result based on how the target uses it.
 | 
						|
      unsigned CompOpc;
 | 
						|
      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
 | 
						|
      default:  // Can't happen, don't crash on invalid number though.
 | 
						|
      case 0:   // Branch on the value of the EQ bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::BEQ : PPC::BNE;
 | 
						|
        break;
 | 
						|
      case 1:   // Branch on the inverted value of the EQ bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::BNE : PPC::BEQ;
 | 
						|
        break;
 | 
						|
      case 2:   // Branch on the value of the LT bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::BLT : PPC::BGE;
 | 
						|
        break;
 | 
						|
      case 3:   // Branch on the inverted value of the LT bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::BGE : PPC::BLT;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
 | 
						|
                         DAG.getRegister(PPC::CR6, MVT::i32),
 | 
						|
                         DAG.getConstant(CompOpc, MVT::i32),
 | 
						|
                         N->getOperand(4), CompNode.getValue(1));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return SDOperand();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Inline Assembly Support
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
 | 
						|
                                                       uint64_t Mask,
 | 
						|
                                                       uint64_t &KnownZero, 
 | 
						|
                                                       uint64_t &KnownOne,
 | 
						|
                                                       unsigned Depth) const {
 | 
						|
  KnownZero = 0;
 | 
						|
  KnownOne = 0;
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: {
 | 
						|
    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::ppc_altivec_vcmpbfp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpeqfp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequb_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequh_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequw_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgefp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtfp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsb_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsh_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsw_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtub_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtuh_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtuw_p:
 | 
						|
      KnownZero = ~1U;  // All bits but the low one are known to be zero.
 | 
						|
      break;
 | 
						|
    }        
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getConstraintType - Given a constraint letter, return the type of
 | 
						|
/// constraint it is for this target.
 | 
						|
PPCTargetLowering::ConstraintType 
 | 
						|
PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
 | 
						|
  switch (ConstraintLetter) {
 | 
						|
  default: break;
 | 
						|
  case 'b':
 | 
						|
  case 'r':
 | 
						|
  case 'f':
 | 
						|
  case 'v':
 | 
						|
  case 'y':
 | 
						|
    return C_RegisterClass;
 | 
						|
  }  
 | 
						|
  return TargetLowering::getConstraintType(ConstraintLetter);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
std::vector<unsigned> PPCTargetLowering::
 | 
						|
getRegClassForInlineAsmConstraint(const std::string &Constraint,
 | 
						|
                                  MVT::ValueType VT) const {
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    switch (Constraint[0]) {      // GCC RS6000 Constraint Letters
 | 
						|
    default: break;  // Unknown constriant letter
 | 
						|
    case 'b': 
 | 
						|
      return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
 | 
						|
                                   PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
 | 
						|
                                   PPC::R8 , PPC::R9 , PPC::R10, PPC::R11, 
 | 
						|
                                   PPC::R12, PPC::R13, PPC::R14, PPC::R15, 
 | 
						|
                                   PPC::R16, PPC::R17, PPC::R18, PPC::R19, 
 | 
						|
                                   PPC::R20, PPC::R21, PPC::R22, PPC::R23, 
 | 
						|
                                   PPC::R24, PPC::R25, PPC::R26, PPC::R27, 
 | 
						|
                                   PPC::R28, PPC::R29, PPC::R30, PPC::R31, 
 | 
						|
                                   0);
 | 
						|
    case 'r': 
 | 
						|
      return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
 | 
						|
                                   PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
 | 
						|
                                   PPC::R8 , PPC::R9 , PPC::R10, PPC::R11, 
 | 
						|
                                   PPC::R12, PPC::R13, PPC::R14, PPC::R15, 
 | 
						|
                                   PPC::R16, PPC::R17, PPC::R18, PPC::R19, 
 | 
						|
                                   PPC::R20, PPC::R21, PPC::R22, PPC::R23, 
 | 
						|
                                   PPC::R24, PPC::R25, PPC::R26, PPC::R27, 
 | 
						|
                                   PPC::R28, PPC::R29, PPC::R30, PPC::R31, 
 | 
						|
                                   0);
 | 
						|
    case 'f': 
 | 
						|
      return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
 | 
						|
                                   PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
 | 
						|
                                   PPC::F8 , PPC::F9 , PPC::F10, PPC::F11, 
 | 
						|
                                   PPC::F12, PPC::F13, PPC::F14, PPC::F15, 
 | 
						|
                                   PPC::F16, PPC::F17, PPC::F18, PPC::F19, 
 | 
						|
                                   PPC::F20, PPC::F21, PPC::F22, PPC::F23, 
 | 
						|
                                   PPC::F24, PPC::F25, PPC::F26, PPC::F27, 
 | 
						|
                                   PPC::F28, PPC::F29, PPC::F30, PPC::F31, 
 | 
						|
                                   0);
 | 
						|
    case 'v': 
 | 
						|
      return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
 | 
						|
                                   PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
 | 
						|
                                   PPC::V8 , PPC::V9 , PPC::V10, PPC::V11, 
 | 
						|
                                   PPC::V12, PPC::V13, PPC::V14, PPC::V15, 
 | 
						|
                                   PPC::V16, PPC::V17, PPC::V18, PPC::V19, 
 | 
						|
                                   PPC::V20, PPC::V21, PPC::V22, PPC::V23, 
 | 
						|
                                   PPC::V24, PPC::V25, PPC::V26, PPC::V27, 
 | 
						|
                                   PPC::V28, PPC::V29, PPC::V30, PPC::V31, 
 | 
						|
                                   0);
 | 
						|
    case 'y': 
 | 
						|
      return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
 | 
						|
                                   PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
 | 
						|
                                   0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return std::vector<unsigned>();
 | 
						|
}
 | 
						|
 | 
						|
// isOperandValidForConstraint
 | 
						|
bool PPCTargetLowering::
 | 
						|
isOperandValidForConstraint(SDOperand Op, char Letter) {
 | 
						|
  switch (Letter) {
 | 
						|
  default: break;
 | 
						|
  case 'I':
 | 
						|
  case 'J':
 | 
						|
  case 'K':
 | 
						|
  case 'L':
 | 
						|
  case 'M':
 | 
						|
  case 'N':
 | 
						|
  case 'O':
 | 
						|
  case 'P': {
 | 
						|
    if (!isa<ConstantSDNode>(Op)) return false;  // Must be an immediate.
 | 
						|
    unsigned Value = cast<ConstantSDNode>(Op)->getValue();
 | 
						|
    switch (Letter) {
 | 
						|
    default: assert(0 && "Unknown constraint letter!");
 | 
						|
    case 'I':  // "I" is a signed 16-bit constant.
 | 
						|
      return (short)Value == (int)Value;
 | 
						|
    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
 | 
						|
    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
 | 
						|
      return (short)Value == 0;
 | 
						|
    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
 | 
						|
      return (Value >> 16) == 0;
 | 
						|
    case 'M':  // "M" is a constant that is greater than 31.
 | 
						|
      return Value > 31;
 | 
						|
    case 'N':  // "N" is a positive constant that is an exact power of two.
 | 
						|
      return (int)Value > 0 && isPowerOf2_32(Value);
 | 
						|
    case 'O':  // "O" is the constant zero. 
 | 
						|
      return Value == 0;
 | 
						|
    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
 | 
						|
      return (short)-Value == (int)-Value;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Handle standard constraint letters.
 | 
						|
  return TargetLowering::isOperandValidForConstraint(Op, Letter);
 | 
						|
}
 | 
						|
 | 
						|
/// isLegalAddressImmediate - Return true if the integer value can be used
 | 
						|
/// as the offset of the target addressing mode.
 | 
						|
bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
 | 
						|
  // PPC allows a sign-extended 16-bit immediate field.
 | 
						|
  return (V > -(1 << 16) && V < (1 << 16)-1);
 | 
						|
}
 |