mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26763 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			936 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			936 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements simple dominator construction algorithms for finding
 | 
						|
// forward dominators.  Postdominators are available in libanalysis, but are not
 | 
						|
// included in libvmcore, because it's not needed.  Forward dominators are
 | 
						|
// needed to support the Verifier pass.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SetOperations.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <iostream>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  ImmediateDominators Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Immediate Dominators construction - This pass constructs immediate dominator
 | 
						|
// information for a flow-graph based on the algorithm described in this
 | 
						|
// document:
 | 
						|
//
 | 
						|
//   A Fast Algorithm for Finding Dominators in a Flowgraph
 | 
						|
//   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
 | 
						|
//
 | 
						|
// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
 | 
						|
// LINK, but it turns out that the theoretically slower O(n*log(n))
 | 
						|
// implementation is actually faster than the "efficient" algorithm (even for
 | 
						|
// large CFGs) because the constant overheads are substantially smaller.  The
 | 
						|
// lower-complexity version can be enabled with the following #define:
 | 
						|
//
 | 
						|
#define BALANCE_IDOM_TREE 0
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static RegisterAnalysis<ImmediateDominators>
 | 
						|
C("idom", "Immediate Dominators Construction", true);
 | 
						|
 | 
						|
unsigned ImmediateDominators::DFSPass(BasicBlock *V, InfoRec &VInfo,
 | 
						|
                                      unsigned N) {
 | 
						|
  VInfo.Semi = ++N;
 | 
						|
  VInfo.Label = V;
 | 
						|
 | 
						|
  Vertex.push_back(V);        // Vertex[n] = V;
 | 
						|
  //Info[V].Ancestor = 0;     // Ancestor[n] = 0
 | 
						|
  //Child[V] = 0;             // Child[v] = 0
 | 
						|
  VInfo.Size = 1;             // Size[v] = 1
 | 
						|
 | 
						|
  for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
 | 
						|
    InfoRec &SuccVInfo = Info[*SI];
 | 
						|
    if (SuccVInfo.Semi == 0) {
 | 
						|
      SuccVInfo.Parent = V;
 | 
						|
      N = DFSPass(*SI, SuccVInfo, N);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return N;
 | 
						|
}
 | 
						|
 | 
						|
void ImmediateDominators::Compress(BasicBlock *V, InfoRec &VInfo) {
 | 
						|
  BasicBlock *VAncestor = VInfo.Ancestor;
 | 
						|
  InfoRec &VAInfo = Info[VAncestor];
 | 
						|
  if (VAInfo.Ancestor == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  Compress(VAncestor, VAInfo);
 | 
						|
 | 
						|
  BasicBlock *VAncestorLabel = VAInfo.Label;
 | 
						|
  BasicBlock *VLabel = VInfo.Label;
 | 
						|
  if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
 | 
						|
    VInfo.Label = VAncestorLabel;
 | 
						|
 | 
						|
  VInfo.Ancestor = VAInfo.Ancestor;
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *ImmediateDominators::Eval(BasicBlock *V) {
 | 
						|
  InfoRec &VInfo = Info[V];
 | 
						|
#if !BALANCE_IDOM_TREE
 | 
						|
  // Higher-complexity but faster implementation
 | 
						|
  if (VInfo.Ancestor == 0)
 | 
						|
    return V;
 | 
						|
  Compress(V, VInfo);
 | 
						|
  return VInfo.Label;
 | 
						|
#else
 | 
						|
  // Lower-complexity but slower implementation
 | 
						|
  if (VInfo.Ancestor == 0)
 | 
						|
    return VInfo.Label;
 | 
						|
  Compress(V, VInfo);
 | 
						|
  BasicBlock *VLabel = VInfo.Label;
 | 
						|
 | 
						|
  BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label;
 | 
						|
  if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi)
 | 
						|
    return VLabel;
 | 
						|
  else
 | 
						|
    return VAncestorLabel;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void ImmediateDominators::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){
 | 
						|
#if !BALANCE_IDOM_TREE
 | 
						|
  // Higher-complexity but faster implementation
 | 
						|
  WInfo.Ancestor = V;
 | 
						|
#else
 | 
						|
  // Lower-complexity but slower implementation
 | 
						|
  BasicBlock *WLabel = WInfo.Label;
 | 
						|
  unsigned WLabelSemi = Info[WLabel].Semi;
 | 
						|
  BasicBlock *S = W;
 | 
						|
  InfoRec *SInfo = &Info[S];
 | 
						|
 | 
						|
  BasicBlock *SChild = SInfo->Child;
 | 
						|
  InfoRec *SChildInfo = &Info[SChild];
 | 
						|
 | 
						|
  while (WLabelSemi < Info[SChildInfo->Label].Semi) {
 | 
						|
    BasicBlock *SChildChild = SChildInfo->Child;
 | 
						|
    if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) {
 | 
						|
      SChildInfo->Ancestor = S;
 | 
						|
      SInfo->Child = SChild = SChildChild;
 | 
						|
      SChildInfo = &Info[SChild];
 | 
						|
    } else {
 | 
						|
      SChildInfo->Size = SInfo->Size;
 | 
						|
      S = SInfo->Ancestor = SChild;
 | 
						|
      SInfo = SChildInfo;
 | 
						|
      SChild = SChildChild;
 | 
						|
      SChildInfo = &Info[SChild];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  InfoRec &VInfo = Info[V];
 | 
						|
  SInfo->Label = WLabel;
 | 
						|
 | 
						|
  assert(V != W && "The optimization here will not work in this case!");
 | 
						|
  unsigned WSize = WInfo.Size;
 | 
						|
  unsigned VSize = (VInfo.Size += WSize);
 | 
						|
 | 
						|
  if (VSize < 2*WSize)
 | 
						|
    std::swap(S, VInfo.Child);
 | 
						|
 | 
						|
  while (S) {
 | 
						|
    SInfo = &Info[S];
 | 
						|
    SInfo->Ancestor = V;
 | 
						|
    S = SInfo->Child;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
bool ImmediateDominators::runOnFunction(Function &F) {
 | 
						|
  IDoms.clear();     // Reset from the last time we were run...
 | 
						|
  BasicBlock *Root = &F.getEntryBlock();
 | 
						|
  Roots.clear();
 | 
						|
  Roots.push_back(Root);
 | 
						|
 | 
						|
  Vertex.push_back(0);
 | 
						|
 | 
						|
  // Step #1: Number blocks in depth-first order and initialize variables used
 | 
						|
  // in later stages of the algorithm.
 | 
						|
  unsigned N = 0;
 | 
						|
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | 
						|
    N = DFSPass(Roots[i], Info[Roots[i]], 0);
 | 
						|
 | 
						|
  for (unsigned i = N; i >= 2; --i) {
 | 
						|
    BasicBlock *W = Vertex[i];
 | 
						|
    InfoRec &WInfo = Info[W];
 | 
						|
 | 
						|
    // Step #2: Calculate the semidominators of all vertices
 | 
						|
    for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI)
 | 
						|
      if (Info.count(*PI)) {  // Only if this predecessor is reachable!
 | 
						|
        unsigned SemiU = Info[Eval(*PI)].Semi;
 | 
						|
        if (SemiU < WInfo.Semi)
 | 
						|
          WInfo.Semi = SemiU;
 | 
						|
      }
 | 
						|
 | 
						|
    Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
 | 
						|
 | 
						|
    BasicBlock *WParent = WInfo.Parent;
 | 
						|
    Link(WParent, W, WInfo);
 | 
						|
 | 
						|
    // Step #3: Implicitly define the immediate dominator of vertices
 | 
						|
    std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
 | 
						|
    while (!WParentBucket.empty()) {
 | 
						|
      BasicBlock *V = WParentBucket.back();
 | 
						|
      WParentBucket.pop_back();
 | 
						|
      BasicBlock *U = Eval(V);
 | 
						|
      IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Step #4: Explicitly define the immediate dominator of each vertex
 | 
						|
  for (unsigned i = 2; i <= N; ++i) {
 | 
						|
    BasicBlock *W = Vertex[i];
 | 
						|
    BasicBlock *&WIDom = IDoms[W];
 | 
						|
    if (WIDom != Vertex[Info[W].Semi])
 | 
						|
      WIDom = IDoms[WIDom];
 | 
						|
  }
 | 
						|
 | 
						|
  // Free temporary memory used to construct idom's
 | 
						|
  Info.clear();
 | 
						|
  std::vector<BasicBlock*>().swap(Vertex);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void ImmediateDominatorsBase::print(std::ostream &o, const Module* ) const {
 | 
						|
  Function *F = getRoots()[0]->getParent();
 | 
						|
  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
 | 
						|
    o << "  Immediate Dominator For Basic Block:";
 | 
						|
    WriteAsOperand(o, I, false);
 | 
						|
    o << " is:";
 | 
						|
    if (BasicBlock *ID = get(I))
 | 
						|
      WriteAsOperand(o, ID, false);
 | 
						|
    else
 | 
						|
      o << " <<exit node>>";
 | 
						|
    o << "\n";
 | 
						|
  }
 | 
						|
  o << "\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  DominatorSet Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static RegisterAnalysis<DominatorSet>
 | 
						|
B("domset", "Dominator Set Construction", true);
 | 
						|
 | 
						|
// dominates - Return true if A dominates B.  This performs the special checks
 | 
						|
// necessary if A and B are in the same basic block.
 | 
						|
//
 | 
						|
bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
 | 
						|
  BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
 | 
						|
  if (BBA != BBB) return dominates(BBA, BBB);
 | 
						|
 | 
						|
  // Loop through the basic block until we find A or B.
 | 
						|
  BasicBlock::iterator I = BBA->begin();
 | 
						|
  for (; &*I != A && &*I != B; ++I) /*empty*/;
 | 
						|
 | 
						|
  if(!IsPostDominators) {
 | 
						|
    // A dominates B if it is found first in the basic block.
 | 
						|
    return &*I == A;
 | 
						|
  } else {
 | 
						|
    // A post-dominates B if B is found first in the basic block.
 | 
						|
    return &*I == B;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// runOnFunction - This method calculates the forward dominator sets for the
 | 
						|
// specified function.
 | 
						|
//
 | 
						|
bool DominatorSet::runOnFunction(Function &F) {
 | 
						|
  BasicBlock *Root = &F.getEntryBlock();
 | 
						|
  Roots.clear();
 | 
						|
  Roots.push_back(Root);
 | 
						|
  assert(pred_begin(Root) == pred_end(Root) &&
 | 
						|
         "Root node has predecessors in function!");
 | 
						|
 | 
						|
  ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
 | 
						|
  Doms.clear();
 | 
						|
  if (Roots.empty()) return false;
 | 
						|
 | 
						|
  // Root nodes only dominate themselves.
 | 
						|
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | 
						|
    Doms[Roots[i]].insert(Roots[i]);
 | 
						|
 | 
						|
  // Loop over all of the blocks in the function, calculating dominator sets for
 | 
						|
  // each function.
 | 
						|
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
 | 
						|
    if (BasicBlock *IDom = ID[I]) {   // Get idom if block is reachable
 | 
						|
      DomSetType &DS = Doms[I];
 | 
						|
      assert(DS.empty() && "Domset already filled in for this block?");
 | 
						|
      DS.insert(I);  // Blocks always dominate themselves
 | 
						|
 | 
						|
      // Insert all dominators into the set...
 | 
						|
      while (IDom) {
 | 
						|
        // If we have already computed the dominator sets for our immediate
 | 
						|
        // dominator, just use it instead of walking all the way up to the root.
 | 
						|
        DomSetType &IDS = Doms[IDom];
 | 
						|
        if (!IDS.empty()) {
 | 
						|
          DS.insert(IDS.begin(), IDS.end());
 | 
						|
          break;
 | 
						|
        } else {
 | 
						|
          DS.insert(IDom);
 | 
						|
          IDom = ID[IDom];
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Ensure that every basic block has at least an empty set of nodes.  This
 | 
						|
      // is important for the case when there is unreachable blocks.
 | 
						|
      Doms[I];
 | 
						|
    }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void DominatorSet::stub() {}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
static std::ostream &operator<<(std::ostream &o,
 | 
						|
                                const std::set<BasicBlock*> &BBs) {
 | 
						|
  for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (*I)
 | 
						|
      WriteAsOperand(o, *I, false);
 | 
						|
    else
 | 
						|
      o << " <<exit node>>";
 | 
						|
  return o;
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
void DominatorSetBase::print(std::ostream &o, const Module* ) const {
 | 
						|
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
    o << "  DomSet For BB: ";
 | 
						|
    if (I->first)
 | 
						|
      WriteAsOperand(o, I->first, false);
 | 
						|
    else
 | 
						|
      o << " <<exit node>>";
 | 
						|
    o << " is:\t" << I->second << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  DominatorTree Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static RegisterAnalysis<DominatorTree>
 | 
						|
E("domtree", "Dominator Tree Construction", true);
 | 
						|
 | 
						|
// DominatorTreeBase::reset - Free all of the tree node memory.
 | 
						|
//
 | 
						|
void DominatorTreeBase::reset() {
 | 
						|
  for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
 | 
						|
    delete I->second;
 | 
						|
  Nodes.clear();
 | 
						|
  RootNode = 0;
 | 
						|
}
 | 
						|
 | 
						|
void DominatorTreeBase::Node::setIDom(Node *NewIDom) {
 | 
						|
  assert(IDom && "No immediate dominator?");
 | 
						|
  if (IDom != NewIDom) {
 | 
						|
    std::vector<Node*>::iterator I =
 | 
						|
      std::find(IDom->Children.begin(), IDom->Children.end(), this);
 | 
						|
    assert(I != IDom->Children.end() &&
 | 
						|
           "Not in immediate dominator children set!");
 | 
						|
    // I am no longer your child...
 | 
						|
    IDom->Children.erase(I);
 | 
						|
 | 
						|
    // Switch to new dominator
 | 
						|
    IDom = NewIDom;
 | 
						|
    IDom->Children.push_back(this);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
DominatorTreeBase::Node *DominatorTree::getNodeForBlock(BasicBlock *BB) {
 | 
						|
  Node *&BBNode = Nodes[BB];
 | 
						|
  if (BBNode) return BBNode;
 | 
						|
 | 
						|
  // Haven't calculated this node yet?  Get or calculate the node for the
 | 
						|
  // immediate dominator.
 | 
						|
  BasicBlock *IDom = getAnalysis<ImmediateDominators>()[BB];
 | 
						|
  Node *IDomNode = getNodeForBlock(IDom);
 | 
						|
 | 
						|
  // Add a new tree node for this BasicBlock, and link it as a child of
 | 
						|
  // IDomNode
 | 
						|
  return BBNode = IDomNode->addChild(new Node(BB, IDomNode));
 | 
						|
}
 | 
						|
 | 
						|
void DominatorTree::calculate(const ImmediateDominators &ID) {
 | 
						|
  assert(Roots.size() == 1 && "DominatorTree should have 1 root block!");
 | 
						|
  BasicBlock *Root = Roots[0];
 | 
						|
  Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root...
 | 
						|
 | 
						|
  Function *F = Root->getParent();
 | 
						|
  // Loop over all of the reachable blocks in the function...
 | 
						|
  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
 | 
						|
    if (BasicBlock *ImmDom = ID.get(I)) {  // Reachable block.
 | 
						|
      Node *&BBNode = Nodes[I];
 | 
						|
      if (!BBNode) {  // Haven't calculated this node yet?
 | 
						|
        // Get or calculate the node for the immediate dominator
 | 
						|
        Node *IDomNode = getNodeForBlock(ImmDom);
 | 
						|
 | 
						|
        // Add a new tree node for this BasicBlock, and link it as a child of
 | 
						|
        // IDomNode
 | 
						|
        BBNode = IDomNode->addChild(new Node(I, IDomNode));
 | 
						|
      }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static std::ostream &operator<<(std::ostream &o,
 | 
						|
                                const DominatorTreeBase::Node *Node) {
 | 
						|
  if (Node->getBlock())
 | 
						|
    WriteAsOperand(o, Node->getBlock(), false);
 | 
						|
  else
 | 
						|
    o << " <<exit node>>";
 | 
						|
  return o << "\n";
 | 
						|
}
 | 
						|
 | 
						|
static void PrintDomTree(const DominatorTreeBase::Node *N, std::ostream &o,
 | 
						|
                         unsigned Lev) {
 | 
						|
  o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
 | 
						|
  for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end();
 | 
						|
       I != E; ++I)
 | 
						|
    PrintDomTree(*I, o, Lev+1);
 | 
						|
}
 | 
						|
 | 
						|
void DominatorTreeBase::print(std::ostream &o, const Module* ) const {
 | 
						|
  o << "=============================--------------------------------\n"
 | 
						|
    << "Inorder Dominator Tree:\n";
 | 
						|
  PrintDomTree(getRootNode(), o, 1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  DominanceFrontier Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static RegisterAnalysis<DominanceFrontier>
 | 
						|
G("domfrontier", "Dominance Frontier Construction", true);
 | 
						|
 | 
						|
const DominanceFrontier::DomSetType &
 | 
						|
DominanceFrontier::calculate(const DominatorTree &DT,
 | 
						|
                             const DominatorTree::Node *Node) {
 | 
						|
  // Loop over CFG successors to calculate DFlocal[Node]
 | 
						|
  BasicBlock *BB = Node->getBlock();
 | 
						|
  DomSetType &S = Frontiers[BB];       // The new set to fill in...
 | 
						|
 | 
						|
  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
 | 
						|
       SI != SE; ++SI) {
 | 
						|
    // Does Node immediately dominate this successor?
 | 
						|
    if (DT[*SI]->getIDom() != Node)
 | 
						|
      S.insert(*SI);
 | 
						|
  }
 | 
						|
 | 
						|
  // At this point, S is DFlocal.  Now we union in DFup's of our children...
 | 
						|
  // Loop through and visit the nodes that Node immediately dominates (Node's
 | 
						|
  // children in the IDomTree)
 | 
						|
  //
 | 
						|
  for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
 | 
						|
       NI != NE; ++NI) {
 | 
						|
    DominatorTree::Node *IDominee = *NI;
 | 
						|
    const DomSetType &ChildDF = calculate(DT, IDominee);
 | 
						|
 | 
						|
    DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
 | 
						|
    for (; CDFI != CDFE; ++CDFI) {
 | 
						|
      if (!Node->properlyDominates(DT[*CDFI]))
 | 
						|
        S.insert(*CDFI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
 | 
						|
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
    o << "  DomFrontier for BB";
 | 
						|
    if (I->first)
 | 
						|
      WriteAsOperand(o, I->first, false);
 | 
						|
    else
 | 
						|
      o << " <<exit node>>";
 | 
						|
    o << " is:\t" << I->second << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ETOccurrence Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void ETOccurrence::Splay() {
 | 
						|
  ETOccurrence *father;
 | 
						|
  ETOccurrence *grandfather;
 | 
						|
  int occdepth;
 | 
						|
  int fatherdepth;
 | 
						|
  
 | 
						|
  while (Parent) {
 | 
						|
    occdepth = Depth;
 | 
						|
    
 | 
						|
    father = Parent;
 | 
						|
    fatherdepth = Parent->Depth;
 | 
						|
    grandfather = father->Parent;
 | 
						|
    
 | 
						|
    // If we have no grandparent, a single zig or zag will do.
 | 
						|
    if (!grandfather) {
 | 
						|
      setDepthAdd(fatherdepth);
 | 
						|
      MinOccurrence = father->MinOccurrence;
 | 
						|
      Min = father->Min;
 | 
						|
      
 | 
						|
      // See what we have to rotate
 | 
						|
      if (father->Left == this) {
 | 
						|
        // Zig
 | 
						|
        father->setLeft(Right);
 | 
						|
        setRight(father);
 | 
						|
        if (father->Left)
 | 
						|
          father->Left->setDepthAdd(occdepth);
 | 
						|
      } else {
 | 
						|
        // Zag
 | 
						|
        father->setRight(Left);
 | 
						|
        setLeft(father);
 | 
						|
        if (father->Right)
 | 
						|
          father->Right->setDepthAdd(occdepth);
 | 
						|
      }
 | 
						|
      father->setDepth(-occdepth);
 | 
						|
      Parent = NULL;
 | 
						|
      
 | 
						|
      father->recomputeMin();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If we have a grandfather, we need to do some
 | 
						|
    // combination of zig and zag.
 | 
						|
    int grandfatherdepth = grandfather->Depth;
 | 
						|
    
 | 
						|
    setDepthAdd(fatherdepth + grandfatherdepth);
 | 
						|
    MinOccurrence = grandfather->MinOccurrence;
 | 
						|
    Min = grandfather->Min;
 | 
						|
    
 | 
						|
    ETOccurrence *greatgrandfather = grandfather->Parent;
 | 
						|
    
 | 
						|
    if (grandfather->Left == father) {
 | 
						|
      if (father->Left == this) {
 | 
						|
        // Zig zig
 | 
						|
        grandfather->setLeft(father->Right);
 | 
						|
        father->setLeft(Right);
 | 
						|
        setRight(father);
 | 
						|
        father->setRight(grandfather);
 | 
						|
        
 | 
						|
        father->setDepth(-occdepth);
 | 
						|
        
 | 
						|
        if (father->Left)
 | 
						|
          father->Left->setDepthAdd(occdepth);
 | 
						|
        
 | 
						|
        grandfather->setDepth(-fatherdepth);
 | 
						|
        if (grandfather->Left)
 | 
						|
          grandfather->Left->setDepthAdd(fatherdepth);
 | 
						|
      } else {
 | 
						|
        // Zag zig
 | 
						|
        grandfather->setLeft(Right);
 | 
						|
        father->setRight(Left);
 | 
						|
        setLeft(father);
 | 
						|
        setRight(grandfather);
 | 
						|
        
 | 
						|
        father->setDepth(-occdepth);
 | 
						|
        if (father->Right)
 | 
						|
          father->Right->setDepthAdd(occdepth);
 | 
						|
        grandfather->setDepth(-occdepth - fatherdepth);
 | 
						|
        if (grandfather->Left)
 | 
						|
          grandfather->Left->setDepthAdd(occdepth + fatherdepth);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (father->Left == this) {
 | 
						|
        // Zig zag
 | 
						|
        grandfather->setRight(Left);
 | 
						|
        father->setLeft(Right);
 | 
						|
        setLeft(grandfather);
 | 
						|
        setRight(father);
 | 
						|
        
 | 
						|
        father->setDepth(-occdepth);
 | 
						|
        if (father->Left)
 | 
						|
          father->Left->setDepthAdd(occdepth);
 | 
						|
        grandfather->setDepth(-occdepth - fatherdepth);
 | 
						|
        if (grandfather->Right)
 | 
						|
          grandfather->Right->setDepthAdd(occdepth + fatherdepth);
 | 
						|
      } else {              // Zag Zag
 | 
						|
        grandfather->setRight(father->Left);
 | 
						|
        father->setRight(Left);
 | 
						|
        setLeft(father);
 | 
						|
        father->setLeft(grandfather);
 | 
						|
        
 | 
						|
        father->setDepth(-occdepth);
 | 
						|
        if (father->Right)
 | 
						|
          father->Right->setDepthAdd(occdepth);
 | 
						|
        grandfather->setDepth(-fatherdepth);
 | 
						|
        if (grandfather->Right)
 | 
						|
          grandfather->Right->setDepthAdd(fatherdepth);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Might need one more rotate depending on greatgrandfather.
 | 
						|
    setParent(greatgrandfather);
 | 
						|
    if (greatgrandfather) {
 | 
						|
      if (greatgrandfather->Left == grandfather)
 | 
						|
        greatgrandfather->Left = this;
 | 
						|
      else
 | 
						|
        greatgrandfather->Right = this;
 | 
						|
      
 | 
						|
    }
 | 
						|
    grandfather->recomputeMin();
 | 
						|
    father->recomputeMin();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ETNode implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void ETNode::Split() {
 | 
						|
  ETOccurrence *right, *left;
 | 
						|
  ETOccurrence *rightmost = RightmostOcc;
 | 
						|
  ETOccurrence *parent;
 | 
						|
 | 
						|
  // Update the occurrence tree first.
 | 
						|
  RightmostOcc->Splay();
 | 
						|
 | 
						|
  // Find the leftmost occurrence in the rightmost subtree, then splay
 | 
						|
  // around it.
 | 
						|
  for (right = rightmost->Right; right->Left; right = right->Left);
 | 
						|
 | 
						|
  right->Splay();
 | 
						|
 | 
						|
  // Start splitting
 | 
						|
  right->Left->Parent = NULL;
 | 
						|
  parent = ParentOcc;
 | 
						|
  parent->Splay();
 | 
						|
  ParentOcc = NULL;
 | 
						|
 | 
						|
  left = parent->Left;
 | 
						|
  parent->Right->Parent = NULL;
 | 
						|
 | 
						|
  right->setLeft(left);
 | 
						|
 | 
						|
  right->recomputeMin();
 | 
						|
 | 
						|
  rightmost->Splay();
 | 
						|
  rightmost->Depth = 0;
 | 
						|
  rightmost->Min = 0;
 | 
						|
 | 
						|
  delete parent;
 | 
						|
 | 
						|
  // Now update *our* tree
 | 
						|
 | 
						|
  if (Father->Son == this)
 | 
						|
    Father->Son = Right;
 | 
						|
 | 
						|
  if (Father->Son == this)
 | 
						|
    Father->Son = NULL;
 | 
						|
  else {
 | 
						|
    Left->Right = Right;
 | 
						|
    Right->Left = Left;
 | 
						|
  }
 | 
						|
  Left = Right = NULL;
 | 
						|
  Father = NULL;
 | 
						|
}
 | 
						|
 | 
						|
void ETNode::setFather(ETNode *NewFather) {
 | 
						|
  ETOccurrence *rightmost;
 | 
						|
  ETOccurrence *leftpart;
 | 
						|
  ETOccurrence *NewFatherOcc;
 | 
						|
  ETOccurrence *temp;
 | 
						|
 | 
						|
  // First update the path in the splay tree
 | 
						|
  NewFatherOcc = new ETOccurrence(NewFather);
 | 
						|
 | 
						|
  rightmost = NewFather->RightmostOcc;
 | 
						|
  rightmost->Splay();
 | 
						|
 | 
						|
  leftpart = rightmost->Left;
 | 
						|
 | 
						|
  temp = RightmostOcc;
 | 
						|
  temp->Splay();
 | 
						|
 | 
						|
  NewFatherOcc->setLeft(leftpart);
 | 
						|
  NewFatherOcc->setRight(temp);
 | 
						|
 | 
						|
  temp->Depth++;
 | 
						|
  temp->Min++;
 | 
						|
  NewFatherOcc->recomputeMin();
 | 
						|
 | 
						|
  rightmost->setLeft(NewFatherOcc);
 | 
						|
 | 
						|
  if (NewFatherOcc->Min + rightmost->Depth < rightmost->Min) {
 | 
						|
    rightmost->Min = NewFatherOcc->Min + rightmost->Depth;
 | 
						|
    rightmost->MinOccurrence = NewFatherOcc->MinOccurrence;
 | 
						|
  }
 | 
						|
 | 
						|
  delete ParentOcc;
 | 
						|
  ParentOcc = NewFatherOcc;
 | 
						|
 | 
						|
  // Update *our* tree
 | 
						|
  ETNode *left;
 | 
						|
  ETNode *right;
 | 
						|
 | 
						|
  Father = NewFather;
 | 
						|
  right = Father->Son;
 | 
						|
 | 
						|
  if (right)
 | 
						|
    left = right->Left;
 | 
						|
  else
 | 
						|
    left = right = this;
 | 
						|
 | 
						|
  left->Right = this;
 | 
						|
  right->Left = this;
 | 
						|
  Left = left;
 | 
						|
  Right = right;
 | 
						|
 | 
						|
  Father->Son = this;
 | 
						|
}
 | 
						|
 | 
						|
bool ETNode::Below(ETNode *other) {
 | 
						|
  ETOccurrence *up = other->RightmostOcc;
 | 
						|
  ETOccurrence *down = RightmostOcc;
 | 
						|
 | 
						|
  if (this == other)
 | 
						|
    return true;
 | 
						|
 | 
						|
  up->Splay();
 | 
						|
 | 
						|
  ETOccurrence *left, *right;
 | 
						|
  left = up->Left;
 | 
						|
  right = up->Right;
 | 
						|
 | 
						|
  if (!left)
 | 
						|
    return false;
 | 
						|
 | 
						|
  left->Parent = NULL;
 | 
						|
 | 
						|
  if (right)
 | 
						|
    right->Parent = NULL;
 | 
						|
 | 
						|
  down->Splay();
 | 
						|
 | 
						|
  if (left == down || left->Parent != NULL) {
 | 
						|
    if (right)
 | 
						|
      right->Parent = up;
 | 
						|
    up->setLeft(down);
 | 
						|
  } else {
 | 
						|
    left->Parent = up;
 | 
						|
 | 
						|
    // If the two occurrences are in different trees, put things
 | 
						|
    // back the way they were.
 | 
						|
    if (right && right->Parent != NULL)
 | 
						|
      up->setRight(down);
 | 
						|
    else
 | 
						|
      up->setRight(right);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (down->Depth <= 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return !down->Right || down->Right->Min + down->Depth >= 0;
 | 
						|
}
 | 
						|
 | 
						|
ETNode *ETNode::NCA(ETNode *other) {
 | 
						|
  ETOccurrence *occ1 = RightmostOcc;
 | 
						|
  ETOccurrence *occ2 = other->RightmostOcc;
 | 
						|
  
 | 
						|
  ETOccurrence *left, *right, *ret;
 | 
						|
  ETOccurrence *occmin;
 | 
						|
  int mindepth;
 | 
						|
  
 | 
						|
  if (this == other)
 | 
						|
    return this;
 | 
						|
  
 | 
						|
  occ1->Splay();
 | 
						|
  left = occ1->Left;
 | 
						|
  right = occ1->Right;
 | 
						|
  
 | 
						|
  if (left)
 | 
						|
    left->Parent = NULL;
 | 
						|
  
 | 
						|
  if (right)
 | 
						|
    right->Parent = NULL;
 | 
						|
  occ2->Splay();
 | 
						|
 | 
						|
  if (left == occ2 || (left && left->Parent != NULL)) {
 | 
						|
    ret = occ2->Right;
 | 
						|
    
 | 
						|
    occ1->setLeft(occ2);
 | 
						|
    if (right)
 | 
						|
      right->Parent = occ1;
 | 
						|
  } else {
 | 
						|
    ret = occ2->Left;
 | 
						|
    
 | 
						|
    occ1->setRight(occ2);
 | 
						|
    if (left)
 | 
						|
      left->Parent = occ1;
 | 
						|
  }
 | 
						|
 | 
						|
  if (occ2->Depth > 0) {
 | 
						|
    occmin = occ1;
 | 
						|
    mindepth = occ1->Depth;
 | 
						|
  } else {
 | 
						|
    occmin = occ2;
 | 
						|
    mindepth = occ2->Depth + occ1->Depth;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (ret && ret->Min + occ1->Depth + occ2->Depth < mindepth)
 | 
						|
    return ret->MinOccurrence->OccFor;
 | 
						|
  else
 | 
						|
    return occmin->OccFor;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ETForest implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static RegisterAnalysis<ETForest>
 | 
						|
D("etforest", "ET Forest Construction", true);
 | 
						|
 | 
						|
void ETForestBase::reset() {
 | 
						|
  for (ETMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
 | 
						|
    delete I->second;
 | 
						|
  Nodes.clear();
 | 
						|
}
 | 
						|
 | 
						|
void ETForestBase::updateDFSNumbers()
 | 
						|
{
 | 
						|
  int dfsnum = 0;
 | 
						|
  // Iterate over all nodes in depth first order.
 | 
						|
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | 
						|
    for (df_iterator<BasicBlock*> I = df_begin(Roots[i]),
 | 
						|
           E = df_end(Roots[i]); I != E; ++I) {
 | 
						|
      BasicBlock *BB = *I;
 | 
						|
      if (!getNode(BB)->hasFather())
 | 
						|
        getNode(BB)->assignDFSNumber(dfsnum);    
 | 
						|
  }
 | 
						|
  SlowQueries = 0;
 | 
						|
  DFSInfoValid = true;
 | 
						|
}
 | 
						|
 | 
						|
ETNode *ETForest::getNodeForBlock(BasicBlock *BB) {
 | 
						|
  ETNode *&BBNode = Nodes[BB];
 | 
						|
  if (BBNode) return BBNode;
 | 
						|
 | 
						|
  // Haven't calculated this node yet?  Get or calculate the node for the
 | 
						|
  // immediate dominator.
 | 
						|
  BasicBlock *IDom = getAnalysis<ImmediateDominators>()[BB];
 | 
						|
 | 
						|
  // If we are unreachable, we may not have an immediate dominator.
 | 
						|
  if (!IDom)
 | 
						|
    return BBNode = new ETNode(BB);
 | 
						|
  else {
 | 
						|
    ETNode *IDomNode = getNodeForBlock(IDom);
 | 
						|
    
 | 
						|
    // Add a new tree node for this BasicBlock, and link it as a child of
 | 
						|
    // IDomNode
 | 
						|
    BBNode = new ETNode(BB);
 | 
						|
    BBNode->setFather(IDomNode);
 | 
						|
    return BBNode;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ETForest::calculate(const ImmediateDominators &ID) {
 | 
						|
  assert(Roots.size() == 1 && "ETForest should have 1 root block!");
 | 
						|
  BasicBlock *Root = Roots[0];
 | 
						|
  Nodes[Root] = new ETNode(Root); // Add a node for the root
 | 
						|
 | 
						|
  Function *F = Root->getParent();
 | 
						|
  // Loop over all of the reachable blocks in the function...
 | 
						|
  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
 | 
						|
    if (BasicBlock *ImmDom = ID.get(I)) {  // Reachable block.
 | 
						|
      ETNode *&BBNode = Nodes[I];
 | 
						|
      if (!BBNode) {  // Haven't calculated this node yet?
 | 
						|
        // Get or calculate the node for the immediate dominator
 | 
						|
        ETNode *IDomNode =  getNodeForBlock(ImmDom);
 | 
						|
 | 
						|
        // Add a new ETNode for this BasicBlock, and set it's parent
 | 
						|
        // to it's immediate dominator.
 | 
						|
        BBNode = new ETNode(I);
 | 
						|
        BBNode->setFather(IDomNode);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Make sure we've got nodes around for every block
 | 
						|
  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
 | 
						|
    ETNode *&BBNode = Nodes[I];
 | 
						|
    if (!BBNode)
 | 
						|
      BBNode = new ETNode(I);
 | 
						|
  }
 | 
						|
 | 
						|
  updateDFSNumbers ();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ETForestBase Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void ETForestBase::addNewBlock(BasicBlock *BB, BasicBlock *IDom) {
 | 
						|
  ETNode *&BBNode = Nodes[BB];
 | 
						|
  assert(!BBNode && "BasicBlock already in ET-Forest");
 | 
						|
 | 
						|
  BBNode = new ETNode(BB);
 | 
						|
  BBNode->setFather(getNode(IDom));
 | 
						|
  DFSInfoValid = false;
 | 
						|
}
 | 
						|
 | 
						|
void ETForestBase::setImmediateDominator(BasicBlock *BB, BasicBlock *newIDom) {
 | 
						|
  assert(getNode(BB) && "BasicBlock not in ET-Forest");
 | 
						|
  assert(getNode(newIDom) && "IDom not in ET-Forest");
 | 
						|
  
 | 
						|
  ETNode *Node = getNode(BB);
 | 
						|
  if (Node->hasFather()) {
 | 
						|
    if (Node->getFather()->getData<BasicBlock>() == newIDom)
 | 
						|
      return;
 | 
						|
    Node->Split();
 | 
						|
  }
 | 
						|
  Node->setFather(getNode(newIDom));
 | 
						|
  DFSInfoValid= false;
 | 
						|
}
 | 
						|
 | 
						|
void ETForestBase::print(std::ostream &o, const Module *) const {
 | 
						|
  o << "=============================--------------------------------\n";
 | 
						|
  o << "ET Forest:\n";
 | 
						|
  o << "DFS Info ";
 | 
						|
  if (DFSInfoValid)
 | 
						|
    o << "is";
 | 
						|
  else
 | 
						|
    o << "is not";
 | 
						|
  o << " up to date\n";
 | 
						|
 | 
						|
  Function *F = getRoots()[0]->getParent();
 | 
						|
  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
 | 
						|
    o << "  DFS Numbers For Basic Block:";
 | 
						|
    WriteAsOperand(o, I, false);
 | 
						|
    o << " are:";
 | 
						|
    if (ETNode *EN = getNode(I)) {
 | 
						|
      o << "In: " << EN->getDFSNumIn();
 | 
						|
      o << " Out: " << EN->getDFSNumOut() << "\n";
 | 
						|
    } else {
 | 
						|
      o << "No associated ETNode";
 | 
						|
    }
 | 
						|
    o << "\n";
 | 
						|
  }
 | 
						|
  o << "\n";
 | 
						|
}
 |