mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This way of using getNextOperandForReg() was unlikely to work as intended. We don't give any guarantees about the order of operands in the use-def chains, so looking only at operands following a given operand in the chain doesn't make sense. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161542 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			725 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			725 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass identifies loops where we can generate the PPC branch instructions
 | |
| // that decrement and test the count register (CTR) (bdnz and friends).
 | |
| // This pass is based on the HexagonHardwareLoops pass.
 | |
| //
 | |
| // The pattern that defines the induction variable can changed depending on
 | |
| // prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
 | |
| // normalizes induction variables, and the Loop Strength Reduction pass
 | |
| // run by 'llc' may also make changes to the induction variable.
 | |
| // The pattern detected by this phase is due to running Strength Reduction.
 | |
| //
 | |
| // Criteria for CTR loops:
 | |
| //  - Countable loops (w/ ind. var for a trip count)
 | |
| //  - Assumes loops are normalized by IndVarSimplify
 | |
| //  - Try inner-most loops first
 | |
| //  - No nested CTR loops.
 | |
| //  - No function calls in loops.
 | |
| //
 | |
| //  Note: As with unconverted loops, PPCBranchSelector must be run after this
 | |
| //  pass in order to convert long-displacement jumps into jump pairs.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "ctrloops"
 | |
| #include "PPC.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "MCTargetDesc/PPCPredicates.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/PassSupport.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/RegisterScavenging.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
 | |
| 
 | |
| namespace {
 | |
|   class CountValue;
 | |
|   struct PPCCTRLoops : public MachineFunctionPass {
 | |
|     MachineLoopInfo       *MLI;
 | |
|     MachineRegisterInfo   *MRI;
 | |
|     const TargetInstrInfo *TII;
 | |
| 
 | |
|   public:
 | |
|     static char ID;   // Pass identification, replacement for typeid
 | |
| 
 | |
|     PPCCTRLoops() : MachineFunctionPass(ID) {}
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     const char *getPassName() const { return "PPC CTR Loops"; }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|       AU.addRequired<MachineLoopInfo>();
 | |
|       AU.addPreserved<MachineLoopInfo>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// getCanonicalInductionVariable - Check to see if the loop has a canonical
 | |
|     /// induction variable.
 | |
|     /// Should be defined in MachineLoop. Based upon version in class Loop.
 | |
|     void getCanonicalInductionVariable(MachineLoop *L,
 | |
|                               SmallVector<MachineInstr *, 4> &IVars,
 | |
|                               SmallVector<MachineInstr *, 4> &IOps) const;
 | |
| 
 | |
|     /// getTripCount - Return a loop-invariant LLVM register indicating the
 | |
|     /// number of times the loop will be executed.  If the trip-count cannot
 | |
|     /// be determined, this return null.
 | |
|     CountValue *getTripCount(MachineLoop *L,
 | |
|                              SmallVector<MachineInstr *, 2> &OldInsts) const;
 | |
| 
 | |
|     /// isInductionOperation - Return true if the instruction matches the
 | |
|     /// pattern for an opertion that defines an induction variable.
 | |
|     bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const;
 | |
| 
 | |
|     /// isInvalidOperation - Return true if the instruction is not valid within
 | |
|     /// a CTR loop.
 | |
|     bool isInvalidLoopOperation(const MachineInstr *MI) const;
 | |
| 
 | |
|     /// containsInavlidInstruction - Return true if the loop contains an
 | |
|     /// instruction that inhibits using the CTR loop.
 | |
|     bool containsInvalidInstruction(MachineLoop *L) const;
 | |
| 
 | |
|     /// converToCTRLoop - Given a loop, check if we can convert it to a
 | |
|     /// CTR loop.  If so, then perform the conversion and return true.
 | |
|     bool convertToCTRLoop(MachineLoop *L);
 | |
| 
 | |
|     /// isDead - Return true if the instruction is now dead.
 | |
|     bool isDead(const MachineInstr *MI,
 | |
|                 SmallVector<MachineInstr *, 1> &DeadPhis) const;
 | |
| 
 | |
|     /// removeIfDead - Remove the instruction if it is now dead.
 | |
|     void removeIfDead(MachineInstr *MI);
 | |
|   };
 | |
| 
 | |
|   char PPCCTRLoops::ID = 0;
 | |
| 
 | |
| 
 | |
|   // CountValue class - Abstraction for a trip count of a loop. A
 | |
|   // smaller vesrsion of the MachineOperand class without the concerns
 | |
|   // of changing the operand representation.
 | |
|   class CountValue {
 | |
|   public:
 | |
|     enum CountValueType {
 | |
|       CV_Register,
 | |
|       CV_Immediate
 | |
|     };
 | |
|   private:
 | |
|     CountValueType Kind;
 | |
|     union Values {
 | |
|       unsigned RegNum;
 | |
|       int64_t ImmVal;
 | |
|       Values(unsigned r) : RegNum(r) {}
 | |
|       Values(int64_t i) : ImmVal(i) {}
 | |
|     } Contents;
 | |
|     bool isNegative;
 | |
| 
 | |
|   public:
 | |
|     CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r),
 | |
|                                        isNegative(neg) {}
 | |
|     explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i),
 | |
|                                      isNegative(i < 0) {}
 | |
|     CountValueType getType() const { return Kind; }
 | |
|     bool isReg() const { return Kind == CV_Register; }
 | |
|     bool isImm() const { return Kind == CV_Immediate; }
 | |
|     bool isNeg() const { return isNegative; }
 | |
| 
 | |
|     unsigned getReg() const {
 | |
|       assert(isReg() && "Wrong CountValue accessor");
 | |
|       return Contents.RegNum;
 | |
|     }
 | |
|     void setReg(unsigned Val) {
 | |
|       Contents.RegNum = Val;
 | |
|     }
 | |
|     int64_t getImm() const {
 | |
|       assert(isImm() && "Wrong CountValue accessor");
 | |
|       if (isNegative) {
 | |
|         return -Contents.ImmVal;
 | |
|       }
 | |
|       return Contents.ImmVal;
 | |
|     }
 | |
|     void setImm(int64_t Val) {
 | |
|       Contents.ImmVal = Val;
 | |
|     }
 | |
| 
 | |
|     void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
 | |
|       if (isReg()) { OS << PrintReg(getReg()); }
 | |
|       if (isImm()) { OS << getImm(); }
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| 
 | |
| /// isCompareEquals - Returns true if the instruction is a compare equals
 | |
| /// instruction with an immediate operand.
 | |
| static bool isCompareEqualsImm(const MachineInstr *MI, bool &SignedCmp) {
 | |
|   if (MI->getOpcode() == PPC::CMPWI || MI->getOpcode() == PPC::CMPDI) {
 | |
|     SignedCmp = true;
 | |
|     return true;
 | |
|   } else if (MI->getOpcode() == PPC::CMPLWI || MI->getOpcode() == PPC::CMPLDI) {
 | |
|     SignedCmp = false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// createPPCCTRLoops - Factory for creating
 | |
| /// the CTR loop phase.
 | |
| FunctionPass *llvm::createPPCCTRLoops() {
 | |
|   return new PPCCTRLoops();
 | |
| }
 | |
| 
 | |
| 
 | |
| bool PPCCTRLoops::runOnMachineFunction(MachineFunction &MF) {
 | |
|   DEBUG(dbgs() << "********* PPC CTR Loops *********\n");
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // get the loop information
 | |
|   MLI = &getAnalysis<MachineLoopInfo>();
 | |
|   // get the register information
 | |
|   MRI = &MF.getRegInfo();
 | |
|   // the target specific instructio info.
 | |
|   TII = MF.getTarget().getInstrInfo();
 | |
| 
 | |
|   for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
 | |
|        I != E; ++I) {
 | |
|     MachineLoop *L = *I;
 | |
|     if (!L->getParentLoop()) {
 | |
|       Changed |= convertToCTRLoop(L);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// getCanonicalInductionVariable - Check to see if the loop has a canonical
 | |
| /// induction variable. We check for a simple recurrence pattern - an
 | |
| /// integer recurrence that decrements by one each time through the loop and
 | |
| /// ends at zero.  If so, return the phi node that corresponds to it.
 | |
| ///
 | |
| /// Based upon the similar code in LoopInfo except this code is specific to
 | |
| /// the machine.
 | |
| /// This method assumes that the IndVarSimplify pass has been run by 'opt'.
 | |
| ///
 | |
| void
 | |
| PPCCTRLoops::getCanonicalInductionVariable(MachineLoop *L,
 | |
|                                   SmallVector<MachineInstr *, 4> &IVars,
 | |
|                                   SmallVector<MachineInstr *, 4> &IOps) const {
 | |
|   MachineBasicBlock *TopMBB = L->getTopBlock();
 | |
|   MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
 | |
|   assert(PI != TopMBB->pred_end() &&
 | |
|          "Loop must have more than one incoming edge!");
 | |
|   MachineBasicBlock *Backedge = *PI++;
 | |
|   if (PI == TopMBB->pred_end()) return;  // dead loop
 | |
|   MachineBasicBlock *Incoming = *PI++;
 | |
|   if (PI != TopMBB->pred_end()) return;  // multiple backedges?
 | |
| 
 | |
|   // make sure there is one incoming and one backedge and determine which
 | |
|   // is which.
 | |
|   if (L->contains(Incoming)) {
 | |
|     if (L->contains(Backedge))
 | |
|       return;
 | |
|     std::swap(Incoming, Backedge);
 | |
|   } else if (!L->contains(Backedge))
 | |
|     return;
 | |
| 
 | |
|   // Loop over all of the PHI nodes, looking for a canonical induction variable:
 | |
|   //   - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2".
 | |
|   //   - The recurrence comes from the backedge.
 | |
|   //   - the definition is an induction operatio.n
 | |
|   for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end();
 | |
|        I != E && I->isPHI(); ++I) {
 | |
|     MachineInstr *MPhi = &*I;
 | |
|     unsigned DefReg = MPhi->getOperand(0).getReg();
 | |
|     for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
 | |
|       // Check each operand for the value from the backedge.
 | |
|       MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB();
 | |
|       if (L->contains(MBB)) { // operands comes from the backedge
 | |
|         // Check if the definition is an induction operation.
 | |
|         MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg());
 | |
|         if (isInductionOperation(DI, DefReg)) {
 | |
|           IOps.push_back(DI);
 | |
|           IVars.push_back(MPhi);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// getTripCount - Return a loop-invariant LLVM value indicating the
 | |
| /// number of times the loop will be executed.  The trip count can
 | |
| /// be either a register or a constant value.  If the trip-count
 | |
| /// cannot be determined, this returns null.
 | |
| ///
 | |
| /// We find the trip count from the phi instruction that defines the
 | |
| /// induction variable.  We follow the links to the CMP instruction
 | |
| /// to get the trip count.
 | |
| ///
 | |
| /// Based upon getTripCount in LoopInfo.
 | |
| ///
 | |
| CountValue *PPCCTRLoops::getTripCount(MachineLoop *L,
 | |
|                            SmallVector<MachineInstr *, 2> &OldInsts) const {
 | |
|   MachineBasicBlock *LastMBB = L->getExitingBlock();
 | |
|   // Don't generate a CTR loop if the loop has more than one exit.
 | |
|   if (LastMBB == 0)
 | |
|     return 0;
 | |
| 
 | |
|   MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
 | |
|   if (LastI->getOpcode() != PPC::BCC)
 | |
|     return 0;
 | |
| 
 | |
|   // We need to make sure that this compare is defining the condition
 | |
|   // register actually used by the terminating branch.
 | |
| 
 | |
|   unsigned PredReg = LastI->getOperand(1).getReg();
 | |
|   DEBUG(dbgs() << "Examining loop with first terminator: " << *LastI);
 | |
| 
 | |
|   unsigned PredCond = LastI->getOperand(0).getImm();
 | |
|   if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
 | |
|     return 0;
 | |
| 
 | |
|   // Check that the loop has a induction variable.
 | |
|   SmallVector<MachineInstr *, 4> IVars, IOps;
 | |
|   getCanonicalInductionVariable(L, IVars, IOps);
 | |
|   for (unsigned i = 0; i < IVars.size(); ++i) {
 | |
|     MachineInstr *IOp = IOps[i];
 | |
|     MachineInstr *IV_Inst = IVars[i];
 | |
| 
 | |
|     // Canonical loops will end with a 'cmpwi/cmpdi cr, IV, Imm',
 | |
|     //  if Imm is 0, get the count from the PHI opnd
 | |
|     //  if Imm is -M, than M is the count
 | |
|     //  Otherwise, Imm is the count
 | |
|     MachineOperand *IV_Opnd;
 | |
|     const MachineOperand *InitialValue;
 | |
|     if (!L->contains(IV_Inst->getOperand(2).getMBB())) {
 | |
|       InitialValue = &IV_Inst->getOperand(1);
 | |
|       IV_Opnd = &IV_Inst->getOperand(3);
 | |
|     } else {
 | |
|       InitialValue = &IV_Inst->getOperand(3);
 | |
|       IV_Opnd = &IV_Inst->getOperand(1);
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "Considering:\n");
 | |
|     DEBUG(dbgs() << "  induction operation: " << *IOp);
 | |
|     DEBUG(dbgs() << "  induction variable: " << *IV_Inst);
 | |
|     DEBUG(dbgs() << "  initial value: " << *InitialValue << "\n");
 | |
|   
 | |
|     // Look for the cmp instruction to determine if we
 | |
|     // can get a useful trip count.  The trip count can
 | |
|     // be either a register or an immediate.  The location
 | |
|     // of the value depends upon the type (reg or imm).
 | |
|     for (MachineRegisterInfo::reg_iterator
 | |
|          RI = MRI->reg_begin(IV_Opnd->getReg()), RE = MRI->reg_end();
 | |
|          RI != RE; ++RI) {
 | |
|       IV_Opnd = &RI.getOperand();
 | |
|       bool SignedCmp;
 | |
|       MachineInstr *MI = IV_Opnd->getParent();
 | |
|       if (L->contains(MI) && isCompareEqualsImm(MI, SignedCmp) &&
 | |
|           MI->getOperand(0).getReg() == PredReg) {
 | |
| 
 | |
|         OldInsts.push_back(MI);
 | |
|         OldInsts.push_back(IOp);
 | |
|  
 | |
|         DEBUG(dbgs() << "  compare: " << *MI);
 | |
|  
 | |
|         const MachineOperand &MO = MI->getOperand(2);
 | |
|         assert(MO.isImm() && "IV Cmp Operand should be an immediate");
 | |
| 
 | |
|         int64_t ImmVal;
 | |
|         if (SignedCmp)
 | |
|           ImmVal = (short) MO.getImm();
 | |
|         else
 | |
|           ImmVal = MO.getImm();
 | |
|   
 | |
|         const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg());
 | |
|         assert(L->contains(IV_DefInstr->getParent()) &&
 | |
|                "IV definition should occurs in loop");
 | |
|         int64_t iv_value = (short) IV_DefInstr->getOperand(2).getImm();
 | |
|   
 | |
|         assert(InitialValue->isReg() && "Expecting register for init value");
 | |
|         unsigned InitialValueReg = InitialValue->getReg();
 | |
|   
 | |
|         const MachineInstr *DefInstr = MRI->getVRegDef(InitialValueReg);
 | |
|   
 | |
|         // Here we need to look for an immediate load (an li or lis/ori pair).
 | |
|         if (DefInstr && (DefInstr->getOpcode() == PPC::ORI8 ||
 | |
|                          DefInstr->getOpcode() == PPC::ORI)) {
 | |
|           int64_t start = (short) DefInstr->getOperand(2).getImm();
 | |
|           const MachineInstr *DefInstr2 =
 | |
|             MRI->getVRegDef(DefInstr->getOperand(0).getReg());
 | |
|           if (DefInstr2 && (DefInstr2->getOpcode() == PPC::LIS8 ||
 | |
|                             DefInstr2->getOpcode() == PPC::LIS)) {
 | |
|             DEBUG(dbgs() << "  initial constant: " << *DefInstr);
 | |
|             DEBUG(dbgs() << "  initial constant: " << *DefInstr2);
 | |
| 
 | |
|             start |= int64_t(short(DefInstr2->getOperand(1).getImm())) << 16;
 | |
|   
 | |
|             int64_t count = ImmVal - start;
 | |
|             if ((count % iv_value) != 0) {
 | |
|               return 0;
 | |
|             }
 | |
|             return new CountValue(count/iv_value);
 | |
|           }
 | |
|         } else if (DefInstr && (DefInstr->getOpcode() == PPC::LI8 ||
 | |
|                                 DefInstr->getOpcode() == PPC::LI)) {
 | |
|           DEBUG(dbgs() << "  initial constant: " << *DefInstr);
 | |
| 
 | |
|           int64_t count = ImmVal - int64_t(short(DefInstr->getOperand(1).getImm()));
 | |
|           if ((count % iv_value) != 0) {
 | |
|             return 0;
 | |
|           }
 | |
|           return new CountValue(count/iv_value);
 | |
|         } else if (iv_value == 1 || iv_value == -1) {
 | |
|           // We can't determine a constant starting value.
 | |
|           if (ImmVal == 0) {
 | |
|             return new CountValue(InitialValueReg, iv_value > 0);
 | |
|           }
 | |
|           // FIXME: handle non-zero end value.
 | |
|         }
 | |
|         // FIXME: handle non-unit increments (we might not want to introduce division
 | |
|         // but we can handle some 2^n cases with shifts).
 | |
|   
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// isInductionOperation - return true if the operation is matches the
 | |
| /// pattern that defines an induction variable:
 | |
| ///    addi iv, c
 | |
| ///
 | |
| bool
 | |
| PPCCTRLoops::isInductionOperation(const MachineInstr *MI,
 | |
|                                            unsigned IVReg) const {
 | |
|   return ((MI->getOpcode() == PPC::ADDI || MI->getOpcode() == PPC::ADDI8) &&
 | |
|           MI->getOperand(1).isReg() && // could be a frame index instead
 | |
|           MI->getOperand(1).getReg() == IVReg);
 | |
| }
 | |
| 
 | |
| /// isInvalidOperation - Return true if the operation is invalid within
 | |
| /// CTR loop.
 | |
| bool
 | |
| PPCCTRLoops::isInvalidLoopOperation(const MachineInstr *MI) const {
 | |
| 
 | |
|   // call is not allowed because the callee may use a CTR loop
 | |
|   if (MI->getDesc().isCall()) {
 | |
|     return true;
 | |
|   }
 | |
|   // check if the instruction defines a CTR loop register
 | |
|   // (this will also catch nested CTR loops)
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.isDef() &&
 | |
|         (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// containsInvalidInstruction - Return true if the loop contains
 | |
| /// an instruction that inhibits the use of the CTR loop function.
 | |
| ///
 | |
| bool PPCCTRLoops::containsInvalidInstruction(MachineLoop *L) const {
 | |
|   const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
 | |
|   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | |
|     MachineBasicBlock *MBB = Blocks[i];
 | |
|     for (MachineBasicBlock::iterator
 | |
|            MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
 | |
|       const MachineInstr *MI = &*MII;
 | |
|       if (isInvalidLoopOperation(MI)) {
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isDead returns true if the instruction is dead
 | |
| /// (this was essentially copied from DeadMachineInstructionElim::isDead, but
 | |
| /// with special cases for inline asm, physical registers and instructions with
 | |
| /// side effects removed)
 | |
| bool PPCCTRLoops::isDead(const MachineInstr *MI,
 | |
|                          SmallVector<MachineInstr *, 1> &DeadPhis) const {
 | |
|   // Examine each operand.
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.isDef()) {
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (!MRI->use_nodbg_empty(Reg)) {
 | |
|         // This instruction has users, but if the only user is the phi node for the
 | |
|         // parent block, and the only use of that phi node is this instruction, then
 | |
|         // this instruction is dead: both it (and the phi node) can be removed.
 | |
|         MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg);
 | |
|         if (llvm::next(I) == MRI->use_end() &&
 | |
|             I.getOperand().getParent()->isPHI()) {
 | |
|           MachineInstr *OnePhi = I.getOperand().getParent();
 | |
| 
 | |
|           for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
 | |
|             const MachineOperand &OPO = OnePhi->getOperand(j);
 | |
|             if (OPO.isReg() && OPO.isDef()) {
 | |
|               unsigned OPReg = OPO.getReg();
 | |
| 
 | |
|               MachineRegisterInfo::use_iterator nextJ;
 | |
|               for (MachineRegisterInfo::use_iterator J = MRI->use_begin(OPReg),
 | |
|                    E = MRI->use_end(); J!=E; J=nextJ) {
 | |
|                 nextJ = llvm::next(J);
 | |
|                 MachineOperand& Use = J.getOperand();
 | |
|                 MachineInstr *UseMI = Use.getParent();
 | |
| 
 | |
|                 if (MI != UseMI) {
 | |
|                   // The phi node has a user that is not MI, bail...
 | |
|                   return false;
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           DeadPhis.push_back(OnePhi);
 | |
|         } else {
 | |
|           // This def has a non-debug use. Don't delete the instruction!
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are no defs with uses, the instruction is dead.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void PPCCTRLoops::removeIfDead(MachineInstr *MI) {
 | |
|   // This procedure was essentially copied from DeadMachineInstructionElim
 | |
| 
 | |
|   SmallVector<MachineInstr *, 1> DeadPhis;
 | |
|   if (isDead(MI, DeadPhis)) {
 | |
|     DEBUG(dbgs() << "CTR looping will remove: " << *MI);
 | |
| 
 | |
|     // It is possible that some DBG_VALUE instructions refer to this
 | |
|     // instruction.  Examine each def operand for such references;
 | |
|     // if found, mark the DBG_VALUE as undef (but don't delete it).
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = MI->getOperand(i);
 | |
|       if (!MO.isReg() || !MO.isDef())
 | |
|         continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       MachineRegisterInfo::use_iterator nextI;
 | |
|       for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
 | |
|            E = MRI->use_end(); I!=E; I=nextI) {
 | |
|         nextI = llvm::next(I);  // I is invalidated by the setReg
 | |
|         MachineOperand& Use = I.getOperand();
 | |
|         MachineInstr *UseMI = Use.getParent();
 | |
|         if (UseMI==MI)
 | |
|           continue;
 | |
|         if (Use.isDebug()) // this might also be a instr -> phi -> instr case
 | |
|                            // which can also be removed.
 | |
|           UseMI->getOperand(0).setReg(0U);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     MI->eraseFromParent();
 | |
|     for (unsigned i = 0; i < DeadPhis.size(); ++i) {
 | |
|       DeadPhis[i]->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// converToCTRLoop - check if the loop is a candidate for
 | |
| /// converting to a CTR loop.  If so, then perform the
 | |
| /// transformation.
 | |
| ///
 | |
| /// This function works on innermost loops first.  A loop can
 | |
| /// be converted if it is a counting loop; either a register
 | |
| /// value or an immediate.
 | |
| ///
 | |
| /// The code makes several assumptions about the representation
 | |
| /// of the loop in llvm.
 | |
| bool PPCCTRLoops::convertToCTRLoop(MachineLoop *L) {
 | |
|   bool Changed = false;
 | |
|   // Process nested loops first.
 | |
|   for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
 | |
|     Changed |= convertToCTRLoop(*I);
 | |
|   }
 | |
|   // If a nested loop has been converted, then we can't convert this loop.
 | |
|   if (Changed) {
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   SmallVector<MachineInstr *, 2> OldInsts;
 | |
|   // Are we able to determine the trip count for the loop?
 | |
|   CountValue *TripCount = getTripCount(L, OldInsts);
 | |
|   if (TripCount == 0) {
 | |
|     DEBUG(dbgs() << "failed to get trip count!\n");
 | |
|     return false;
 | |
|   }
 | |
|   // Does the loop contain any invalid instructions?
 | |
|   if (containsInvalidInstruction(L)) {
 | |
|     return false;
 | |
|   }
 | |
|   MachineBasicBlock *Preheader = L->getLoopPreheader();
 | |
|   // No preheader means there's not place for the loop instr.
 | |
|   if (Preheader == 0) {
 | |
|     return false;
 | |
|   }
 | |
|   MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
 | |
| 
 | |
|   DebugLoc dl;
 | |
|   if (InsertPos != Preheader->end())
 | |
|     dl = InsertPos->getDebugLoc();
 | |
| 
 | |
|   MachineBasicBlock *LastMBB = L->getExitingBlock();
 | |
|   // Don't generate CTR loop if the loop has more than one exit.
 | |
|   if (LastMBB == 0) {
 | |
|     return false;
 | |
|   }
 | |
|   MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
 | |
| 
 | |
|   // Determine the loop start.
 | |
|   MachineBasicBlock *LoopStart = L->getTopBlock();
 | |
|   if (L->getLoopLatch() != LastMBB) {
 | |
|     // When the exit and latch are not the same, use the latch block as the
 | |
|     // start.
 | |
|     // The loop start address is used only after the 1st iteration, and the loop
 | |
|     // latch may contains instrs. that need to be executed after the 1st iter.
 | |
|     LoopStart = L->getLoopLatch();
 | |
|     // Make sure the latch is a successor of the exit, otherwise it won't work.
 | |
|     if (!LastMBB->isSuccessor(LoopStart)) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Convert the loop to a CTR loop
 | |
|   DEBUG(dbgs() << "Change to CTR loop at "; L->dump());
 | |
| 
 | |
|   MachineFunction *MF = LastMBB->getParent();
 | |
|   const PPCSubtarget &Subtarget = MF->getTarget().getSubtarget<PPCSubtarget>();
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
| 
 | |
|   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
 | |
|   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
 | |
|   const TargetRegisterClass *RC = isPPC64 ? G8RC : GPRC;
 | |
| 
 | |
|   unsigned CountReg;
 | |
|   if (TripCount->isReg()) {
 | |
|     // Create a copy of the loop count register.
 | |
|     const TargetRegisterClass *SrcRC =
 | |
|       MF->getRegInfo().getRegClass(TripCount->getReg());
 | |
|     CountReg = MF->getRegInfo().createVirtualRegister(RC);
 | |
|     unsigned CopyOp = (isPPC64 && SrcRC == GPRC) ?
 | |
|                         (unsigned) PPC::EXTSW_32_64 :
 | |
|                         (unsigned) TargetOpcode::COPY;
 | |
|     BuildMI(*Preheader, InsertPos, dl,
 | |
|             TII->get(CopyOp), CountReg).addReg(TripCount->getReg());
 | |
|     if (TripCount->isNeg()) {
 | |
|       unsigned CountReg1 = CountReg;
 | |
|       CountReg = MF->getRegInfo().createVirtualRegister(RC);
 | |
|       BuildMI(*Preheader, InsertPos, dl,
 | |
|               TII->get(isPPC64 ? PPC::NEG8 : PPC::NEG),
 | |
|                        CountReg).addReg(CountReg1);
 | |
|     }
 | |
|   } else {
 | |
|     assert(TripCount->isImm() && "Expecting immedate vaule for trip count");
 | |
|     // Put the trip count in a register for transfer into the count register.
 | |
| 
 | |
|     int64_t CountImm = TripCount->getImm();
 | |
|     assert(!TripCount->isNeg() && "Constant trip count must be positive");
 | |
| 
 | |
|     CountReg = MF->getRegInfo().createVirtualRegister(RC);
 | |
|     if (CountImm > 0xFFFF) {
 | |
|       BuildMI(*Preheader, InsertPos, dl,
 | |
|               TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS),
 | |
|               CountReg).addImm(CountImm >> 16);
 | |
|       unsigned CountReg1 = CountReg;
 | |
|       CountReg = MF->getRegInfo().createVirtualRegister(RC);
 | |
|       BuildMI(*Preheader, InsertPos, dl,
 | |
|               TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
 | |
|               CountReg).addReg(CountReg1).addImm(CountImm & 0xFFFF);
 | |
|     } else {
 | |
|       BuildMI(*Preheader, InsertPos, dl,
 | |
|               TII->get(isPPC64 ? PPC::LI8 : PPC::LI),
 | |
|               CountReg).addImm(CountImm);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add the mtctr instruction to the beginning of the loop.
 | |
|   BuildMI(*Preheader, InsertPos, dl,
 | |
|           TII->get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(CountReg,
 | |
|             TripCount->isImm() ? RegState::Kill : 0);
 | |
| 
 | |
|   // Make sure the loop start always has a reference in the CFG.  We need to
 | |
|   // create a BlockAddress operand to get this mechanism to work both the
 | |
|   // MachineBasicBlock and BasicBlock objects need the flag set.
 | |
|   LoopStart->setHasAddressTaken();
 | |
|   // This line is needed to set the hasAddressTaken flag on the BasicBlock
 | |
|   // object
 | |
|   BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
 | |
| 
 | |
|   // Replace the loop branch with a bdnz instruction.
 | |
|   dl = LastI->getDebugLoc();
 | |
|   const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
 | |
|   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | |
|     MachineBasicBlock *MBB = Blocks[i];
 | |
|     if (MBB != Preheader)
 | |
|       MBB->addLiveIn(isPPC64 ? PPC::CTR8 : PPC::CTR);
 | |
|   }
 | |
| 
 | |
|   // The loop ends with either:
 | |
|   //  - a conditional branch followed by an unconditional branch, or
 | |
|   //  - a conditional branch to the loop start.
 | |
|   assert(LastI->getOpcode() == PPC::BCC &&
 | |
|          "loop end must start with a BCC instruction");
 | |
|   // Either the BCC branches to the beginning of the loop, or it
 | |
|   // branches out of the loop and there is an unconditional branch
 | |
|   // to the start of the loop.
 | |
|   MachineBasicBlock *BranchTarget = LastI->getOperand(2).getMBB();
 | |
|   BuildMI(*LastMBB, LastI, dl,
 | |
|         TII->get((BranchTarget == LoopStart) ?
 | |
|                  (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
 | |
|                  (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(BranchTarget);
 | |
| 
 | |
|   // Conditional branch; just delete it.
 | |
|   DEBUG(dbgs() << "Removing old branch: " << *LastI);
 | |
|   LastMBB->erase(LastI);
 | |
| 
 | |
|   delete TripCount;
 | |
| 
 | |
|   // The induction operation (add) and the comparison (cmpwi) may now be
 | |
|   // unneeded. If these are unneeded, then remove them.
 | |
|   for (unsigned i = 0; i < OldInsts.size(); ++i)
 | |
|     removeIfDead(OldInsts[i]);
 | |
| 
 | |
|   ++NumCTRLoops;
 | |
|   return true;
 | |
| }
 | |
| 
 |