mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	// C - zext(bool) -> bool ? C - 1 : C
    if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
      if (ZI->getSrcTy()->isIntegerTy(1))
        return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
This ends up forming sext i1 instructions that codegen to terrible code. e.g.
int blah(_Bool x, _Bool y) {
  return (x - y) + 1;
}
=>
        movzbl  %dil, %eax
        movzbl  %sil, %ecx
        shll    $31, %ecx
        sarl    $31, %ecx
        leal    1(%rax,%rcx), %eax
        ret
Without the rule, llvm now generates:
        movzbl  %sil, %ecx
        movzbl  %dil, %eax
        incl    %eax
        subl    %ecx, %eax
        ret
It also helps with ARM (and pretty much any target that doesn't have a sext i1 :-).
The transformation was done as part of Eli's r75531. He has given the ok to
remove it.
rdar://11748024
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159230 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			662 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			662 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstCombineAddSub.cpp ----------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visit functions for add, fadd, sub, and fsub.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombine.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/PatternMatch.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| /// AddOne - Add one to a ConstantInt.
 | |
| static Constant *AddOne(Constant *C) {
 | |
|   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
 | |
| }
 | |
| /// SubOne - Subtract one from a ConstantInt.
 | |
| static Constant *SubOne(ConstantInt *C) {
 | |
|   return ConstantInt::get(C->getContext(), C->getValue()-1);
 | |
| }
 | |
| 
 | |
| 
 | |
| // dyn_castFoldableMul - If this value is a multiply that can be folded into
 | |
| // other computations (because it has a constant operand), return the
 | |
| // non-constant operand of the multiply, and set CST to point to the multiplier.
 | |
| // Otherwise, return null.
 | |
| //
 | |
| static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
 | |
|   if (!V->hasOneUse() || !V->getType()->isIntegerTy())
 | |
|     return 0;
 | |
|   
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (I == 0) return 0;
 | |
|   
 | |
|   if (I->getOpcode() == Instruction::Mul)
 | |
|     if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
 | |
|       return I->getOperand(0);
 | |
|   if (I->getOpcode() == Instruction::Shl)
 | |
|     if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
 | |
|       // The multiplier is really 1 << CST.
 | |
|       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
 | |
|       uint32_t CSTVal = CST->getLimitedValue(BitWidth);
 | |
|       CST = ConstantInt::get(V->getType()->getContext(),
 | |
|                              APInt(BitWidth, 1).shl(CSTVal));
 | |
|       return I->getOperand(0);
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// WillNotOverflowSignedAdd - Return true if we can prove that:
 | |
| ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
 | |
| /// This basically requires proving that the add in the original type would not
 | |
| /// overflow to change the sign bit or have a carry out.
 | |
| bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
 | |
|   // There are different heuristics we can use for this.  Here are some simple
 | |
|   // ones.
 | |
|   
 | |
|   // Add has the property that adding any two 2's complement numbers can only 
 | |
|   // have one carry bit which can change a sign.  As such, if LHS and RHS each
 | |
|   // have at least two sign bits, we know that the addition of the two values
 | |
|   // will sign extend fine.
 | |
|   if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
 | |
|     return true;
 | |
|   
 | |
|   
 | |
|   // If one of the operands only has one non-zero bit, and if the other operand
 | |
|   // has a known-zero bit in a more significant place than it (not including the
 | |
|   // sign bit) the ripple may go up to and fill the zero, but won't change the
 | |
|   // sign.  For example, (X & ~4) + 1.
 | |
|   
 | |
|   // TODO: Implement.
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
 | |
|                                  I.hasNoUnsignedWrap(), TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // (A*B)+(A*C) -> A*(B+C) etc
 | |
|   if (Value *V = SimplifyUsingDistributiveLaws(I))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|     // X + (signbit) --> X ^ signbit
 | |
|     const APInt &Val = CI->getValue();
 | |
|     if (Val.isSignBit())
 | |
|       return BinaryOperator::CreateXor(LHS, RHS);
 | |
|     
 | |
|     // See if SimplifyDemandedBits can simplify this.  This handles stuff like
 | |
|     // (X & 254)+1 -> (X&254)|1
 | |
|     if (SimplifyDemandedInstructionBits(I))
 | |
|       return &I;
 | |
| 
 | |
|     // zext(bool) + C -> bool ? C + 1 : C
 | |
|     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
 | |
|       if (ZI->getSrcTy()->isIntegerTy(1))
 | |
|         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
 | |
|     
 | |
|     Value *XorLHS = 0; ConstantInt *XorRHS = 0;
 | |
|     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
 | |
|       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
 | |
|       const APInt &RHSVal = CI->getValue();
 | |
|       unsigned ExtendAmt = 0;
 | |
|       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
 | |
|       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
 | |
|       if (XorRHS->getValue() == -RHSVal) {
 | |
|         if (RHSVal.isPowerOf2())
 | |
|           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
 | |
|         else if (XorRHS->getValue().isPowerOf2())
 | |
|           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
 | |
|       }
 | |
|       
 | |
|       if (ExtendAmt) {
 | |
|         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
 | |
|         if (!MaskedValueIsZero(XorLHS, Mask))
 | |
|           ExtendAmt = 0;
 | |
|       }
 | |
|       
 | |
|       if (ExtendAmt) {
 | |
|         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
 | |
|         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
 | |
|         return BinaryOperator::CreateAShr(NewShl, ShAmt);
 | |
|       }
 | |
| 
 | |
|       // If this is a xor that was canonicalized from a sub, turn it back into
 | |
|       // a sub and fuse this add with it.
 | |
|       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
 | |
|         IntegerType *IT = cast<IntegerType>(I.getType());
 | |
|         APInt LHSKnownOne(IT->getBitWidth(), 0);
 | |
|         APInt LHSKnownZero(IT->getBitWidth(), 0);
 | |
|         ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne);
 | |
|         if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
 | |
|           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
 | |
|                                            XorLHS);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isa<Constant>(RHS) && isa<PHINode>(LHS))
 | |
|     if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|       return NV;
 | |
| 
 | |
|   if (I.getType()->isIntegerTy(1))
 | |
|     return BinaryOperator::CreateXor(LHS, RHS);
 | |
| 
 | |
|   // X + X --> X << 1
 | |
|   if (LHS == RHS) {
 | |
|     BinaryOperator *New =
 | |
|       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
 | |
|     New->setHasNoSignedWrap(I.hasNoSignedWrap());
 | |
|     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
 | |
|     return New;
 | |
|   }
 | |
| 
 | |
|   // -A + B  -->  B - A
 | |
|   // -A + -B  -->  -(A + B)
 | |
|   if (Value *LHSV = dyn_castNegVal(LHS)) {
 | |
|     if (!isa<Constant>(RHS))
 | |
|       if (Value *RHSV = dyn_castNegVal(RHS)) {
 | |
|         Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
 | |
|         return BinaryOperator::CreateNeg(NewAdd);
 | |
|       }
 | |
|     
 | |
|     return BinaryOperator::CreateSub(RHS, LHSV);
 | |
|   }
 | |
| 
 | |
|   // A + -B  -->  A - B
 | |
|   if (!isa<Constant>(RHS))
 | |
|     if (Value *V = dyn_castNegVal(RHS))
 | |
|       return BinaryOperator::CreateSub(LHS, V);
 | |
| 
 | |
| 
 | |
|   ConstantInt *C2;
 | |
|   if (Value *X = dyn_castFoldableMul(LHS, C2)) {
 | |
|     if (X == RHS)   // X*C + X --> X * (C+1)
 | |
|       return BinaryOperator::CreateMul(RHS, AddOne(C2));
 | |
| 
 | |
|     // X*C1 + X*C2 --> X * (C1+C2)
 | |
|     ConstantInt *C1;
 | |
|     if (X == dyn_castFoldableMul(RHS, C1))
 | |
|       return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
 | |
|   }
 | |
| 
 | |
|   // X + X*C --> X * (C+1)
 | |
|   if (dyn_castFoldableMul(RHS, C2) == LHS)
 | |
|     return BinaryOperator::CreateMul(LHS, AddOne(C2));
 | |
| 
 | |
|   // A+B --> A|B iff A and B have no bits set in common.
 | |
|   if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
 | |
|     APInt LHSKnownOne(IT->getBitWidth(), 0);
 | |
|     APInt LHSKnownZero(IT->getBitWidth(), 0);
 | |
|     ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
 | |
|     if (LHSKnownZero != 0) {
 | |
|       APInt RHSKnownOne(IT->getBitWidth(), 0);
 | |
|       APInt RHSKnownZero(IT->getBitWidth(), 0);
 | |
|       ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
 | |
|       
 | |
|       // No bits in common -> bitwise or.
 | |
|       if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
 | |
|         return BinaryOperator::CreateOr(LHS, RHS);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // W*X + Y*Z --> W * (X+Z)  iff W == Y
 | |
|   {
 | |
|     Value *W, *X, *Y, *Z;
 | |
|     if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
 | |
|         match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
 | |
|       if (W != Y) {
 | |
|         if (W == Z) {
 | |
|           std::swap(Y, Z);
 | |
|         } else if (Y == X) {
 | |
|           std::swap(W, X);
 | |
|         } else if (X == Z) {
 | |
|           std::swap(Y, Z);
 | |
|           std::swap(W, X);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (W == Y) {
 | |
|         Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
 | |
|         return BinaryOperator::CreateMul(W, NewAdd);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
 | |
|     Value *X = 0;
 | |
|     if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X
 | |
|       return BinaryOperator::CreateSub(SubOne(CRHS), X);
 | |
| 
 | |
|     // (X & FF00) + xx00  -> (X+xx00) & FF00
 | |
|     if (LHS->hasOneUse() &&
 | |
|         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
 | |
|         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
 | |
|       // See if all bits from the first bit set in the Add RHS up are included
 | |
|       // in the mask.  First, get the rightmost bit.
 | |
|       const APInt &AddRHSV = CRHS->getValue();
 | |
|       
 | |
|       // Form a mask of all bits from the lowest bit added through the top.
 | |
|       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
 | |
| 
 | |
|       // See if the and mask includes all of these bits.
 | |
|       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
 | |
| 
 | |
|       if (AddRHSHighBits == AddRHSHighBitsAnd) {
 | |
|         // Okay, the xform is safe.  Insert the new add pronto.
 | |
|         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
 | |
|         return BinaryOperator::CreateAnd(NewAdd, C2);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant add into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
|   }
 | |
| 
 | |
|   // add (select X 0 (sub n A)) A  -->  select X A n
 | |
|   {
 | |
|     SelectInst *SI = dyn_cast<SelectInst>(LHS);
 | |
|     Value *A = RHS;
 | |
|     if (!SI) {
 | |
|       SI = dyn_cast<SelectInst>(RHS);
 | |
|       A = LHS;
 | |
|     }
 | |
|     if (SI && SI->hasOneUse()) {
 | |
|       Value *TV = SI->getTrueValue();
 | |
|       Value *FV = SI->getFalseValue();
 | |
|       Value *N;
 | |
| 
 | |
|       // Can we fold the add into the argument of the select?
 | |
|       // We check both true and false select arguments for a matching subtract.
 | |
|       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
 | |
|         // Fold the add into the true select value.
 | |
|         return SelectInst::Create(SI->getCondition(), N, A);
 | |
|       
 | |
|       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
 | |
|         // Fold the add into the false select value.
 | |
|         return SelectInst::Create(SI->getCondition(), A, N);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for (add (sext x), y), see if we can merge this into an
 | |
|   // integer add followed by a sext.
 | |
|   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
 | |
|     // (add (sext x), cst) --> (sext (add x, cst'))
 | |
|     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
 | |
|       Constant *CI = 
 | |
|         ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
 | |
|       if (LHSConv->hasOneUse() &&
 | |
|           ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
 | |
|           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
 | |
|         // Insert the new, smaller add.
 | |
|         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 
 | |
|                                               CI, "addconv");
 | |
|         return new SExtInst(NewAdd, I.getType());
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // (add (sext x), (sext y)) --> (sext (add int x, y))
 | |
|     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
 | |
|       // Only do this if x/y have the same type, if at last one of them has a
 | |
|       // single use (so we don't increase the number of sexts), and if the
 | |
|       // integer add will not overflow.
 | |
|       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
 | |
|           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
 | |
|           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
 | |
|                                    RHSConv->getOperand(0))) {
 | |
|         // Insert the new integer add.
 | |
|         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 
 | |
|                                              RHSConv->getOperand(0), "addconv");
 | |
|         return new SExtInst(NewAdd, I.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for (x & y) + (x ^ y)
 | |
|   {
 | |
|     Value *A = 0, *B = 0;
 | |
|     if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
 | |
|          match(LHS, m_And(m_Specific(B), m_Specific(A)))))
 | |
|       return BinaryOperator::CreateOr(A, B);
 | |
| 
 | |
|     if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
 | |
|          match(RHS, m_And(m_Specific(B), m_Specific(A)))))
 | |
|       return BinaryOperator::CreateOr(A, B);
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
| 
 | |
|   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | |
|     // X + 0 --> X
 | |
|     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
 | |
|       if (CFP->isExactlyValue(ConstantFP::getNegativeZero
 | |
|                               (I.getType())->getValueAPF()))
 | |
|         return ReplaceInstUsesWith(I, LHS);
 | |
|     }
 | |
| 
 | |
|     if (isa<PHINode>(LHS))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   // -A + B  -->  B - A
 | |
|   // -A + -B  -->  -(A + B)
 | |
|   if (Value *LHSV = dyn_castFNegVal(LHS))
 | |
|     return BinaryOperator::CreateFSub(RHS, LHSV);
 | |
| 
 | |
|   // A + -B  -->  A - B
 | |
|   if (!isa<Constant>(RHS))
 | |
|     if (Value *V = dyn_castFNegVal(RHS))
 | |
|       return BinaryOperator::CreateFSub(LHS, V);
 | |
| 
 | |
|   // Check for X+0.0.  Simplify it to X if we know X is not -0.0.
 | |
|   if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
 | |
|     if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
 | |
|       return ReplaceInstUsesWith(I, LHS);
 | |
| 
 | |
|   // Check for (fadd double (sitofp x), y), see if we can merge this into an
 | |
|   // integer add followed by a promotion.
 | |
|   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
 | |
|     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
 | |
|     // ... if the constant fits in the integer value.  This is useful for things
 | |
|     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
 | |
|     // requires a constant pool load, and generally allows the add to be better
 | |
|     // instcombined.
 | |
|     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
 | |
|       Constant *CI = 
 | |
|       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
 | |
|       if (LHSConv->hasOneUse() &&
 | |
|           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
 | |
|           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
 | |
|         // Insert the new integer add.
 | |
|         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
 | |
|                                               CI, "addconv");
 | |
|         return new SIToFPInst(NewAdd, I.getType());
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
 | |
|     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
 | |
|       // Only do this if x/y have the same type, if at last one of them has a
 | |
|       // single use (so we don't increase the number of int->fp conversions),
 | |
|       // and if the integer add will not overflow.
 | |
|       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
 | |
|           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
 | |
|           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
 | |
|                                    RHSConv->getOperand(0))) {
 | |
|         // Insert the new integer add.
 | |
|         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 
 | |
|                                               RHSConv->getOperand(0),"addconv");
 | |
|         return new SIToFPInst(NewAdd, I.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Optimize pointer differences into the same array into a size.  Consider:
 | |
| ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
 | |
| /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
 | |
| ///
 | |
| Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
 | |
|                                                Type *Ty) {
 | |
|   assert(TD && "Must have target data info for this");
 | |
|   
 | |
|   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
 | |
|   // this.
 | |
|   bool Swapped = false;
 | |
|   GEPOperator *GEP1 = 0, *GEP2 = 0;
 | |
| 
 | |
|   // For now we require one side to be the base pointer "A" or a constant
 | |
|   // GEP derived from it.
 | |
|   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
 | |
|     // (gep X, ...) - X
 | |
|     if (LHSGEP->getOperand(0) == RHS) {
 | |
|       GEP1 = LHSGEP;
 | |
|       Swapped = false;
 | |
|     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
 | |
|       // (gep X, ...) - (gep X, ...)
 | |
|       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
 | |
|             RHSGEP->getOperand(0)->stripPointerCasts()) {
 | |
|         GEP2 = RHSGEP;
 | |
|         GEP1 = LHSGEP;
 | |
|         Swapped = false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
 | |
|     // X - (gep X, ...)
 | |
|     if (RHSGEP->getOperand(0) == LHS) {
 | |
|       GEP1 = RHSGEP;
 | |
|       Swapped = true;
 | |
|     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
 | |
|       // (gep X, ...) - (gep X, ...)
 | |
|       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
 | |
|             LHSGEP->getOperand(0)->stripPointerCasts()) {
 | |
|         GEP2 = LHSGEP;
 | |
|         GEP1 = RHSGEP;
 | |
|         Swapped = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
 | |
|   // multiple users.
 | |
|   if (GEP1 == 0 ||
 | |
|       (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
 | |
|     return 0;
 | |
|   
 | |
|   // Emit the offset of the GEP and an intptr_t.
 | |
|   Value *Result = EmitGEPOffset(GEP1);
 | |
|   
 | |
|   // If we had a constant expression GEP on the other side offsetting the
 | |
|   // pointer, subtract it from the offset we have.
 | |
|   if (GEP2) {
 | |
|     Value *Offset = EmitGEPOffset(GEP2);
 | |
|     Result = Builder->CreateSub(Result, Offset);
 | |
|   }
 | |
| 
 | |
|   // If we have p - gep(p, ...)  then we have to negate the result.
 | |
|   if (Swapped)
 | |
|     Result = Builder->CreateNeg(Result, "diff.neg");
 | |
| 
 | |
|   return Builder->CreateIntCast(Result, Ty, true);
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitSub(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
 | |
|                                  I.hasNoUnsignedWrap(), TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // (A*B)-(A*C) -> A*(B-C) etc
 | |
|   if (Value *V = SimplifyUsingDistributiveLaws(I))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // If this is a 'B = x-(-A)', change to B = x+A.  This preserves NSW/NUW.
 | |
|   if (Value *V = dyn_castNegVal(Op1)) {
 | |
|     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
 | |
|     Res->setHasNoSignedWrap(I.hasNoSignedWrap());
 | |
|     Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   if (I.getType()->isIntegerTy(1))
 | |
|     return BinaryOperator::CreateXor(Op0, Op1);
 | |
| 
 | |
|   // Replace (-1 - A) with (~A).
 | |
|   if (match(Op0, m_AllOnes()))
 | |
|     return BinaryOperator::CreateNot(Op1);
 | |
|   
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
 | |
|     // C - ~X == X + (1+C)
 | |
|     Value *X = 0;
 | |
|     if (match(Op1, m_Not(m_Value(X))))
 | |
|       return BinaryOperator::CreateAdd(X, AddOne(C));
 | |
| 
 | |
|     // -(X >>u 31) -> (X >>s 31)
 | |
|     // -(X >>s 31) -> (X >>u 31)
 | |
|     if (C->isZero()) {
 | |
|       Value *X; ConstantInt *CI;
 | |
|       if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
 | |
|           // Verify we are shifting out everything but the sign bit.
 | |
|           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
 | |
|         return BinaryOperator::CreateAShr(X, CI);
 | |
| 
 | |
|       if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
 | |
|           // Verify we are shifting out everything but the sign bit.
 | |
|           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
 | |
|         return BinaryOperator::CreateLShr(X, CI);
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant sub into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
| 
 | |
|     // C-(X+C2) --> (C-C2)-X
 | |
|     ConstantInt *C2;
 | |
|     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2))))
 | |
|       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
 | |
| 
 | |
|     if (SimplifyDemandedInstructionBits(I))
 | |
|       return &I;
 | |
|   }
 | |
| 
 | |
|   
 | |
|   { Value *Y;
 | |
|     // X-(X+Y) == -Y    X-(Y+X) == -Y
 | |
|     if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
 | |
|         match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
 | |
|       return BinaryOperator::CreateNeg(Y);
 | |
|     
 | |
|     // (X-Y)-X == -Y
 | |
|     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
 | |
|       return BinaryOperator::CreateNeg(Y);
 | |
|   }
 | |
|   
 | |
|   if (Op1->hasOneUse()) {
 | |
|     Value *X = 0, *Y = 0, *Z = 0;
 | |
|     Constant *C = 0;
 | |
|     ConstantInt *CI = 0;
 | |
| 
 | |
|     // (X - (Y - Z))  -->  (X + (Z - Y)).
 | |
|     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
 | |
|       return BinaryOperator::CreateAdd(Op0,
 | |
|                                       Builder->CreateSub(Z, Y, Op1->getName()));
 | |
| 
 | |
|     // (X - (X & Y))   -->   (X & ~Y)
 | |
|     //
 | |
|     if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
 | |
|         match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
 | |
|       return BinaryOperator::CreateAnd(Op0,
 | |
|                                   Builder->CreateNot(Y, Y->getName() + ".not"));
 | |
|     
 | |
|     // 0 - (X sdiv C)  -> (X sdiv -C)
 | |
|     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
 | |
|         match(Op0, m_Zero()))
 | |
|       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
 | |
| 
 | |
|     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
 | |
|     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
 | |
|       if (Value *XNeg = dyn_castNegVal(X))
 | |
|         return BinaryOperator::CreateShl(XNeg, Y);
 | |
| 
 | |
|     // X - X*C --> X * (1-C)
 | |
|     if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) {
 | |
|       Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
 | |
|       return BinaryOperator::CreateMul(Op0, CP1);
 | |
|     }
 | |
| 
 | |
|     // X - X<<C --> X * (1-(1<<C))
 | |
|     if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) {
 | |
|       Constant *One = ConstantInt::get(I.getType(), 1);
 | |
|       C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
 | |
|       return BinaryOperator::CreateMul(Op0, C);
 | |
|     }
 | |
|     
 | |
|     // X - A*-B -> X + A*B
 | |
|     // X - -A*B -> X + A*B
 | |
|     Value *A, *B;
 | |
|     if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
 | |
|         match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
 | |
|       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
 | |
|       
 | |
|     // X - A*CI -> X + A*-CI
 | |
|     // X - CI*A -> X + A*-CI
 | |
|     if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
 | |
|         match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) {
 | |
|       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
 | |
|       return BinaryOperator::CreateAdd(Op0, NewMul);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ConstantInt *C1;
 | |
|   if (Value *X = dyn_castFoldableMul(Op0, C1)) {
 | |
|     if (X == Op1)  // X*C - X --> X * (C-1)
 | |
|       return BinaryOperator::CreateMul(Op1, SubOne(C1));
 | |
| 
 | |
|     ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
 | |
|     if (X == dyn_castFoldableMul(Op1, C2))
 | |
|       return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
 | |
|   }
 | |
|   
 | |
|   // Optimize pointer differences into the same array into a size.  Consider:
 | |
|   //  &A[10] - &A[0]: we should compile this to "10".
 | |
|   if (TD) {
 | |
|     Value *LHSOp, *RHSOp;
 | |
|     if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
 | |
|         match(Op1, m_PtrToInt(m_Value(RHSOp))))
 | |
|       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
 | |
|         return ReplaceInstUsesWith(I, Res);
 | |
|     
 | |
|     // trunc(p)-trunc(q) -> trunc(p-q)
 | |
|     if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
 | |
|         match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
 | |
|       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
 | |
|         return ReplaceInstUsesWith(I, Res);
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // If this is a 'B = x-(-A)', change to B = x+A...
 | |
|   if (Value *V = dyn_castFNegVal(Op1))
 | |
|     return BinaryOperator::CreateFAdd(Op0, V);
 | |
| 
 | |
|   return 0;
 | |
| }
 |