mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	"#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)" No functional change. Update r163344. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163679 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2623 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2623 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs global value numbering to eliminate fully redundant
 | |
| // instructions.  It also performs simple dead load elimination.
 | |
| //
 | |
| // Note that this pass does the value numbering itself; it does not use the
 | |
| // ValueNumbering analysis passes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "gvn"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/IRBuilder.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Metadata.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/Hashing.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | |
| #include "llvm/Analysis/PHITransAddr.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Support/Allocator.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/PatternMatch.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdater.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| STATISTIC(NumGVNInstr,  "Number of instructions deleted");
 | |
| STATISTIC(NumGVNLoad,   "Number of loads deleted");
 | |
| STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
 | |
| STATISTIC(NumGVNBlocks, "Number of blocks merged");
 | |
| STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
 | |
| STATISTIC(NumGVNEqProp, "Number of equalities propagated");
 | |
| STATISTIC(NumPRELoad,   "Number of loads PRE'd");
 | |
| 
 | |
| static cl::opt<bool> EnablePRE("enable-pre",
 | |
|                                cl::init(true), cl::Hidden);
 | |
| static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
 | |
| 
 | |
| // Maximum allowed recursion depth.
 | |
| static cl::opt<uint32_t>
 | |
| MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
 | |
|                 cl::desc("Max recurse depth (default = 1000)"));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         ValueTable Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// This class holds the mapping between values and value numbers.  It is used
 | |
| /// as an efficient mechanism to determine the expression-wise equivalence of
 | |
| /// two values.
 | |
| namespace {
 | |
|   struct Expression {
 | |
|     uint32_t opcode;
 | |
|     Type *type;
 | |
|     SmallVector<uint32_t, 4> varargs;
 | |
| 
 | |
|     Expression(uint32_t o = ~2U) : opcode(o) { }
 | |
| 
 | |
|     bool operator==(const Expression &other) const {
 | |
|       if (opcode != other.opcode)
 | |
|         return false;
 | |
|       if (opcode == ~0U || opcode == ~1U)
 | |
|         return true;
 | |
|       if (type != other.type)
 | |
|         return false;
 | |
|       if (varargs != other.varargs)
 | |
|         return false;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     friend hash_code hash_value(const Expression &Value) {
 | |
|       return hash_combine(Value.opcode, Value.type,
 | |
|                           hash_combine_range(Value.varargs.begin(),
 | |
|                                              Value.varargs.end()));
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   class ValueTable {
 | |
|     DenseMap<Value*, uint32_t> valueNumbering;
 | |
|     DenseMap<Expression, uint32_t> expressionNumbering;
 | |
|     AliasAnalysis *AA;
 | |
|     MemoryDependenceAnalysis *MD;
 | |
|     DominatorTree *DT;
 | |
| 
 | |
|     uint32_t nextValueNumber;
 | |
| 
 | |
|     Expression create_expression(Instruction* I);
 | |
|     Expression create_cmp_expression(unsigned Opcode,
 | |
|                                      CmpInst::Predicate Predicate,
 | |
|                                      Value *LHS, Value *RHS);
 | |
|     Expression create_extractvalue_expression(ExtractValueInst* EI);
 | |
|     uint32_t lookup_or_add_call(CallInst* C);
 | |
|   public:
 | |
|     ValueTable() : nextValueNumber(1) { }
 | |
|     uint32_t lookup_or_add(Value *V);
 | |
|     uint32_t lookup(Value *V) const;
 | |
|     uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
 | |
|                                Value *LHS, Value *RHS);
 | |
|     void add(Value *V, uint32_t num);
 | |
|     void clear();
 | |
|     void erase(Value *v);
 | |
|     void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
 | |
|     AliasAnalysis *getAliasAnalysis() const { return AA; }
 | |
|     void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
 | |
|     void setDomTree(DominatorTree* D) { DT = D; }
 | |
|     uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
 | |
|     void verifyRemoved(const Value *) const;
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| template <> struct DenseMapInfo<Expression> {
 | |
|   static inline Expression getEmptyKey() {
 | |
|     return ~0U;
 | |
|   }
 | |
| 
 | |
|   static inline Expression getTombstoneKey() {
 | |
|     return ~1U;
 | |
|   }
 | |
| 
 | |
|   static unsigned getHashValue(const Expression e) {
 | |
|     using llvm::hash_value;
 | |
|     return static_cast<unsigned>(hash_value(e));
 | |
|   }
 | |
|   static bool isEqual(const Expression &LHS, const Expression &RHS) {
 | |
|     return LHS == RHS;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     ValueTable Internal Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Expression ValueTable::create_expression(Instruction *I) {
 | |
|   Expression e;
 | |
|   e.type = I->getType();
 | |
|   e.opcode = I->getOpcode();
 | |
|   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
 | |
|        OI != OE; ++OI)
 | |
|     e.varargs.push_back(lookup_or_add(*OI));
 | |
|   if (I->isCommutative()) {
 | |
|     // Ensure that commutative instructions that only differ by a permutation
 | |
|     // of their operands get the same value number by sorting the operand value
 | |
|     // numbers.  Since all commutative instructions have two operands it is more
 | |
|     // efficient to sort by hand rather than using, say, std::sort.
 | |
|     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
 | |
|     if (e.varargs[0] > e.varargs[1])
 | |
|       std::swap(e.varargs[0], e.varargs[1]);
 | |
|   }
 | |
| 
 | |
|   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
 | |
|     // Sort the operand value numbers so x<y and y>x get the same value number.
 | |
|     CmpInst::Predicate Predicate = C->getPredicate();
 | |
|     if (e.varargs[0] > e.varargs[1]) {
 | |
|       std::swap(e.varargs[0], e.varargs[1]);
 | |
|       Predicate = CmpInst::getSwappedPredicate(Predicate);
 | |
|     }
 | |
|     e.opcode = (C->getOpcode() << 8) | Predicate;
 | |
|   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
 | |
|     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
 | |
|          II != IE; ++II)
 | |
|       e.varargs.push_back(*II);
 | |
|   }
 | |
| 
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_cmp_expression(unsigned Opcode,
 | |
|                                              CmpInst::Predicate Predicate,
 | |
|                                              Value *LHS, Value *RHS) {
 | |
|   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
 | |
|          "Not a comparison!");
 | |
|   Expression e;
 | |
|   e.type = CmpInst::makeCmpResultType(LHS->getType());
 | |
|   e.varargs.push_back(lookup_or_add(LHS));
 | |
|   e.varargs.push_back(lookup_or_add(RHS));
 | |
| 
 | |
|   // Sort the operand value numbers so x<y and y>x get the same value number.
 | |
|   if (e.varargs[0] > e.varargs[1]) {
 | |
|     std::swap(e.varargs[0], e.varargs[1]);
 | |
|     Predicate = CmpInst::getSwappedPredicate(Predicate);
 | |
|   }
 | |
|   e.opcode = (Opcode << 8) | Predicate;
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
 | |
|   assert(EI != 0 && "Not an ExtractValueInst?");
 | |
|   Expression e;
 | |
|   e.type = EI->getType();
 | |
|   e.opcode = 0;
 | |
| 
 | |
|   IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
 | |
|   if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
 | |
|     // EI might be an extract from one of our recognised intrinsics. If it
 | |
|     // is we'll synthesize a semantically equivalent expression instead on
 | |
|     // an extract value expression.
 | |
|     switch (I->getIntrinsicID()) {
 | |
|       case Intrinsic::sadd_with_overflow:
 | |
|       case Intrinsic::uadd_with_overflow:
 | |
|         e.opcode = Instruction::Add;
 | |
|         break;
 | |
|       case Intrinsic::ssub_with_overflow:
 | |
|       case Intrinsic::usub_with_overflow:
 | |
|         e.opcode = Instruction::Sub;
 | |
|         break;
 | |
|       case Intrinsic::smul_with_overflow:
 | |
|       case Intrinsic::umul_with_overflow:
 | |
|         e.opcode = Instruction::Mul;
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (e.opcode != 0) {
 | |
|       // Intrinsic recognized. Grab its args to finish building the expression.
 | |
|       assert(I->getNumArgOperands() == 2 &&
 | |
|              "Expect two args for recognised intrinsics.");
 | |
|       e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
 | |
|       e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
 | |
|       return e;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Not a recognised intrinsic. Fall back to producing an extract value
 | |
|   // expression.
 | |
|   e.opcode = EI->getOpcode();
 | |
|   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
 | |
|        OI != OE; ++OI)
 | |
|     e.varargs.push_back(lookup_or_add(*OI));
 | |
| 
 | |
|   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
 | |
|          II != IE; ++II)
 | |
|     e.varargs.push_back(*II);
 | |
| 
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     ValueTable External Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// add - Insert a value into the table with a specified value number.
 | |
| void ValueTable::add(Value *V, uint32_t num) {
 | |
|   valueNumbering.insert(std::make_pair(V, num));
 | |
| }
 | |
| 
 | |
| uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
 | |
|   if (AA->doesNotAccessMemory(C)) {
 | |
|     Expression exp = create_expression(C);
 | |
|     uint32_t &e = expressionNumbering[exp];
 | |
|     if (!e) e = nextValueNumber++;
 | |
|     valueNumbering[C] = e;
 | |
|     return e;
 | |
|   } else if (AA->onlyReadsMemory(C)) {
 | |
|     Expression exp = create_expression(C);
 | |
|     uint32_t &e = expressionNumbering[exp];
 | |
|     if (!e) {
 | |
|       e = nextValueNumber++;
 | |
|       valueNumbering[C] = e;
 | |
|       return e;
 | |
|     }
 | |
|     if (!MD) {
 | |
|       e = nextValueNumber++;
 | |
|       valueNumbering[C] = e;
 | |
|       return e;
 | |
|     }
 | |
| 
 | |
|     MemDepResult local_dep = MD->getDependency(C);
 | |
| 
 | |
|     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
 | |
|       valueNumbering[C] =  nextValueNumber;
 | |
|       return nextValueNumber++;
 | |
|     }
 | |
| 
 | |
|     if (local_dep.isDef()) {
 | |
|       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
 | |
| 
 | |
|       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
 | |
|         valueNumbering[C] = nextValueNumber;
 | |
|         return nextValueNumber++;
 | |
|       }
 | |
| 
 | |
|       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
 | |
|         uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
 | |
|         uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
 | |
|         if (c_vn != cd_vn) {
 | |
|           valueNumbering[C] = nextValueNumber;
 | |
|           return nextValueNumber++;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       uint32_t v = lookup_or_add(local_cdep);
 | |
|       valueNumbering[C] = v;
 | |
|       return v;
 | |
|     }
 | |
| 
 | |
|     // Non-local case.
 | |
|     const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
 | |
|       MD->getNonLocalCallDependency(CallSite(C));
 | |
|     // FIXME: Move the checking logic to MemDep!
 | |
|     CallInst* cdep = 0;
 | |
| 
 | |
|     // Check to see if we have a single dominating call instruction that is
 | |
|     // identical to C.
 | |
|     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
 | |
|       const NonLocalDepEntry *I = &deps[i];
 | |
|       if (I->getResult().isNonLocal())
 | |
|         continue;
 | |
| 
 | |
|       // We don't handle non-definitions.  If we already have a call, reject
 | |
|       // instruction dependencies.
 | |
|       if (!I->getResult().isDef() || cdep != 0) {
 | |
|         cdep = 0;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
 | |
|       // FIXME: All duplicated with non-local case.
 | |
|       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
 | |
|         cdep = NonLocalDepCall;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       cdep = 0;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (!cdep) {
 | |
|       valueNumbering[C] = nextValueNumber;
 | |
|       return nextValueNumber++;
 | |
|     }
 | |
| 
 | |
|     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
 | |
|       valueNumbering[C] = nextValueNumber;
 | |
|       return nextValueNumber++;
 | |
|     }
 | |
|     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
 | |
|       uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
 | |
|       uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
 | |
|       if (c_vn != cd_vn) {
 | |
|         valueNumbering[C] = nextValueNumber;
 | |
|         return nextValueNumber++;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     uint32_t v = lookup_or_add(cdep);
 | |
|     valueNumbering[C] = v;
 | |
|     return v;
 | |
| 
 | |
|   } else {
 | |
|     valueNumbering[C] = nextValueNumber;
 | |
|     return nextValueNumber++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// lookup_or_add - Returns the value number for the specified value, assigning
 | |
| /// it a new number if it did not have one before.
 | |
| uint32_t ValueTable::lookup_or_add(Value *V) {
 | |
|   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
 | |
|   if (VI != valueNumbering.end())
 | |
|     return VI->second;
 | |
| 
 | |
|   if (!isa<Instruction>(V)) {
 | |
|     valueNumbering[V] = nextValueNumber;
 | |
|     return nextValueNumber++;
 | |
|   }
 | |
| 
 | |
|   Instruction* I = cast<Instruction>(V);
 | |
|   Expression exp;
 | |
|   switch (I->getOpcode()) {
 | |
|     case Instruction::Call:
 | |
|       return lookup_or_add_call(cast<CallInst>(I));
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::FCmp:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::BitCast:
 | |
|     case Instruction::Select:
 | |
|     case Instruction::ExtractElement:
 | |
|     case Instruction::InsertElement:
 | |
|     case Instruction::ShuffleVector:
 | |
|     case Instruction::InsertValue:
 | |
|     case Instruction::GetElementPtr:
 | |
|       exp = create_expression(I);
 | |
|       break;
 | |
|     case Instruction::ExtractValue:
 | |
|       exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
 | |
|       break;
 | |
|     default:
 | |
|       valueNumbering[V] = nextValueNumber;
 | |
|       return nextValueNumber++;
 | |
|   }
 | |
| 
 | |
|   uint32_t& e = expressionNumbering[exp];
 | |
|   if (!e) e = nextValueNumber++;
 | |
|   valueNumbering[V] = e;
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| /// lookup - Returns the value number of the specified value. Fails if
 | |
| /// the value has not yet been numbered.
 | |
| uint32_t ValueTable::lookup(Value *V) const {
 | |
|   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
 | |
|   assert(VI != valueNumbering.end() && "Value not numbered?");
 | |
|   return VI->second;
 | |
| }
 | |
| 
 | |
| /// lookup_or_add_cmp - Returns the value number of the given comparison,
 | |
| /// assigning it a new number if it did not have one before.  Useful when
 | |
| /// we deduced the result of a comparison, but don't immediately have an
 | |
| /// instruction realizing that comparison to hand.
 | |
| uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
 | |
|                                        CmpInst::Predicate Predicate,
 | |
|                                        Value *LHS, Value *RHS) {
 | |
|   Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
 | |
|   uint32_t& e = expressionNumbering[exp];
 | |
|   if (!e) e = nextValueNumber++;
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| /// clear - Remove all entries from the ValueTable.
 | |
| void ValueTable::clear() {
 | |
|   valueNumbering.clear();
 | |
|   expressionNumbering.clear();
 | |
|   nextValueNumber = 1;
 | |
| }
 | |
| 
 | |
| /// erase - Remove a value from the value numbering.
 | |
| void ValueTable::erase(Value *V) {
 | |
|   valueNumbering.erase(V);
 | |
| }
 | |
| 
 | |
| /// verifyRemoved - Verify that the value is removed from all internal data
 | |
| /// structures.
 | |
| void ValueTable::verifyRemoved(const Value *V) const {
 | |
|   for (DenseMap<Value*, uint32_t>::const_iterator
 | |
|          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
 | |
|     assert(I->first != V && "Inst still occurs in value numbering map!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                GVN Pass
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class GVN : public FunctionPass {
 | |
|     bool NoLoads;
 | |
|     MemoryDependenceAnalysis *MD;
 | |
|     DominatorTree *DT;
 | |
|     const TargetData *TD;
 | |
|     const TargetLibraryInfo *TLI;
 | |
| 
 | |
|     ValueTable VN;
 | |
| 
 | |
|     /// LeaderTable - A mapping from value numbers to lists of Value*'s that
 | |
|     /// have that value number.  Use findLeader to query it.
 | |
|     struct LeaderTableEntry {
 | |
|       Value *Val;
 | |
|       const BasicBlock *BB;
 | |
|       LeaderTableEntry *Next;
 | |
|     };
 | |
|     DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
 | |
|     BumpPtrAllocator TableAllocator;
 | |
| 
 | |
|     SmallVector<Instruction*, 8> InstrsToErase;
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     explicit GVN(bool noloads = false)
 | |
|         : FunctionPass(ID), NoLoads(noloads), MD(0) {
 | |
|       initializeGVNPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F);
 | |
| 
 | |
|     /// markInstructionForDeletion - This removes the specified instruction from
 | |
|     /// our various maps and marks it for deletion.
 | |
|     void markInstructionForDeletion(Instruction *I) {
 | |
|       VN.erase(I);
 | |
|       InstrsToErase.push_back(I);
 | |
|     }
 | |
| 
 | |
|     const TargetData *getTargetData() const { return TD; }
 | |
|     DominatorTree &getDominatorTree() const { return *DT; }
 | |
|     AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
 | |
|     MemoryDependenceAnalysis &getMemDep() const { return *MD; }
 | |
|   private:
 | |
|     /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
 | |
|     /// its value number.
 | |
|     void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
 | |
|       LeaderTableEntry &Curr = LeaderTable[N];
 | |
|       if (!Curr.Val) {
 | |
|         Curr.Val = V;
 | |
|         Curr.BB = BB;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
 | |
|       Node->Val = V;
 | |
|       Node->BB = BB;
 | |
|       Node->Next = Curr.Next;
 | |
|       Curr.Next = Node;
 | |
|     }
 | |
| 
 | |
|     /// removeFromLeaderTable - Scan the list of values corresponding to a given
 | |
|     /// value number, and remove the given instruction if encountered.
 | |
|     void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
 | |
|       LeaderTableEntry* Prev = 0;
 | |
|       LeaderTableEntry* Curr = &LeaderTable[N];
 | |
| 
 | |
|       while (Curr->Val != I || Curr->BB != BB) {
 | |
|         Prev = Curr;
 | |
|         Curr = Curr->Next;
 | |
|       }
 | |
| 
 | |
|       if (Prev) {
 | |
|         Prev->Next = Curr->Next;
 | |
|       } else {
 | |
|         if (!Curr->Next) {
 | |
|           Curr->Val = 0;
 | |
|           Curr->BB = 0;
 | |
|         } else {
 | |
|           LeaderTableEntry* Next = Curr->Next;
 | |
|           Curr->Val = Next->Val;
 | |
|           Curr->BB = Next->BB;
 | |
|           Curr->Next = Next->Next;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // List of critical edges to be split between iterations.
 | |
|     SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
 | |
| 
 | |
|     // This transformation requires dominator postdominator info
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<TargetLibraryInfo>();
 | |
|       if (!NoLoads)
 | |
|         AU.addRequired<MemoryDependenceAnalysis>();
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
| 
 | |
|       AU.addPreserved<DominatorTree>();
 | |
|       AU.addPreserved<AliasAnalysis>();
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Helper fuctions
 | |
|     // FIXME: eliminate or document these better
 | |
|     bool processLoad(LoadInst *L);
 | |
|     bool processInstruction(Instruction *I);
 | |
|     bool processNonLocalLoad(LoadInst *L);
 | |
|     bool processBlock(BasicBlock *BB);
 | |
|     void dump(DenseMap<uint32_t, Value*> &d);
 | |
|     bool iterateOnFunction(Function &F);
 | |
|     bool performPRE(Function &F);
 | |
|     Value *findLeader(const BasicBlock *BB, uint32_t num);
 | |
|     void cleanupGlobalSets();
 | |
|     void verifyRemoved(const Instruction *I) const;
 | |
|     bool splitCriticalEdges();
 | |
|     unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
 | |
|                                          const BasicBlockEdge &Root);
 | |
|     bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
 | |
|   };
 | |
| 
 | |
|   char GVN::ID = 0;
 | |
| }
 | |
| 
 | |
| // createGVNPass - The public interface to this file...
 | |
| FunctionPass *llvm::createGVNPass(bool NoLoads) {
 | |
|   return new GVN(NoLoads);
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void GVN::dump(DenseMap<uint32_t, Value*>& d) {
 | |
|   errs() << "{\n";
 | |
|   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
 | |
|        E = d.end(); I != E; ++I) {
 | |
|       errs() << I->first << "\n";
 | |
|       I->second->dump();
 | |
|   }
 | |
|   errs() << "}\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
 | |
| /// we're analyzing is fully available in the specified block.  As we go, keep
 | |
| /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
 | |
| /// map is actually a tri-state map with the following values:
 | |
| ///   0) we know the block *is not* fully available.
 | |
| ///   1) we know the block *is* fully available.
 | |
| ///   2) we do not know whether the block is fully available or not, but we are
 | |
| ///      currently speculating that it will be.
 | |
| ///   3) we are speculating for this block and have used that to speculate for
 | |
| ///      other blocks.
 | |
| static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
 | |
|                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
 | |
|                             uint32_t RecurseDepth) {
 | |
|   if (RecurseDepth > MaxRecurseDepth)
 | |
|     return false;
 | |
| 
 | |
|   // Optimistically assume that the block is fully available and check to see
 | |
|   // if we already know about this block in one lookup.
 | |
|   std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
 | |
|     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
 | |
| 
 | |
|   // If the entry already existed for this block, return the precomputed value.
 | |
|   if (!IV.second) {
 | |
|     // If this is a speculative "available" value, mark it as being used for
 | |
|     // speculation of other blocks.
 | |
|     if (IV.first->second == 2)
 | |
|       IV.first->second = 3;
 | |
|     return IV.first->second != 0;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, see if it is fully available in all predecessors.
 | |
|   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | |
| 
 | |
|   // If this block has no predecessors, it isn't live-in here.
 | |
|   if (PI == PE)
 | |
|     goto SpeculationFailure;
 | |
| 
 | |
|   for (; PI != PE; ++PI)
 | |
|     // If the value isn't fully available in one of our predecessors, then it
 | |
|     // isn't fully available in this block either.  Undo our previous
 | |
|     // optimistic assumption and bail out.
 | |
|     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
 | |
|       goto SpeculationFailure;
 | |
| 
 | |
|   return true;
 | |
| 
 | |
| // SpeculationFailure - If we get here, we found out that this is not, after
 | |
| // all, a fully-available block.  We have a problem if we speculated on this and
 | |
| // used the speculation to mark other blocks as available.
 | |
| SpeculationFailure:
 | |
|   char &BBVal = FullyAvailableBlocks[BB];
 | |
| 
 | |
|   // If we didn't speculate on this, just return with it set to false.
 | |
|   if (BBVal == 2) {
 | |
|     BBVal = 0;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If we did speculate on this value, we could have blocks set to 1 that are
 | |
|   // incorrect.  Walk the (transitive) successors of this block and mark them as
 | |
|   // 0 if set to one.
 | |
|   SmallVector<BasicBlock*, 32> BBWorklist;
 | |
|   BBWorklist.push_back(BB);
 | |
| 
 | |
|   do {
 | |
|     BasicBlock *Entry = BBWorklist.pop_back_val();
 | |
|     // Note that this sets blocks to 0 (unavailable) if they happen to not
 | |
|     // already be in FullyAvailableBlocks.  This is safe.
 | |
|     char &EntryVal = FullyAvailableBlocks[Entry];
 | |
|     if (EntryVal == 0) continue;  // Already unavailable.
 | |
| 
 | |
|     // Mark as unavailable.
 | |
|     EntryVal = 0;
 | |
| 
 | |
|     for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
 | |
|       BBWorklist.push_back(*I);
 | |
|   } while (!BBWorklist.empty());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CanCoerceMustAliasedValueToLoad - Return true if
 | |
| /// CoerceAvailableValueToLoadType will succeed.
 | |
| static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
 | |
|                                             Type *LoadTy,
 | |
|                                             const TargetData &TD) {
 | |
|   // If the loaded or stored value is an first class array or struct, don't try
 | |
|   // to transform them.  We need to be able to bitcast to integer.
 | |
|   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
 | |
|       StoredVal->getType()->isStructTy() ||
 | |
|       StoredVal->getType()->isArrayTy())
 | |
|     return false;
 | |
| 
 | |
|   // The store has to be at least as big as the load.
 | |
|   if (TD.getTypeSizeInBits(StoredVal->getType()) <
 | |
|         TD.getTypeSizeInBits(LoadTy))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
 | |
| /// then a load from a must-aliased pointer of a different type, try to coerce
 | |
| /// the stored value.  LoadedTy is the type of the load we want to replace and
 | |
| /// InsertPt is the place to insert new instructions.
 | |
| ///
 | |
| /// If we can't do it, return null.
 | |
| static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
 | |
|                                              Type *LoadedTy,
 | |
|                                              Instruction *InsertPt,
 | |
|                                              const TargetData &TD) {
 | |
|   if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
 | |
|     return 0;
 | |
| 
 | |
|   // If this is already the right type, just return it.
 | |
|   Type *StoredValTy = StoredVal->getType();
 | |
| 
 | |
|   uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
 | |
|   uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
 | |
| 
 | |
|   // If the store and reload are the same size, we can always reuse it.
 | |
|   if (StoreSize == LoadSize) {
 | |
|     // Pointer to Pointer -> use bitcast.
 | |
|     if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
 | |
|       return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
 | |
| 
 | |
|     // Convert source pointers to integers, which can be bitcast.
 | |
|     if (StoredValTy->isPointerTy()) {
 | |
|       StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
 | |
|       StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
 | |
|     }
 | |
| 
 | |
|     Type *TypeToCastTo = LoadedTy;
 | |
|     if (TypeToCastTo->isPointerTy())
 | |
|       TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
 | |
| 
 | |
|     if (StoredValTy != TypeToCastTo)
 | |
|       StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
 | |
| 
 | |
|     // Cast to pointer if the load needs a pointer type.
 | |
|     if (LoadedTy->isPointerTy())
 | |
|       StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
 | |
| 
 | |
|     return StoredVal;
 | |
|   }
 | |
| 
 | |
|   // If the loaded value is smaller than the available value, then we can
 | |
|   // extract out a piece from it.  If the available value is too small, then we
 | |
|   // can't do anything.
 | |
|   assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
 | |
| 
 | |
|   // Convert source pointers to integers, which can be manipulated.
 | |
|   if (StoredValTy->isPointerTy()) {
 | |
|     StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
 | |
|     StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
 | |
|   }
 | |
| 
 | |
|   // Convert vectors and fp to integer, which can be manipulated.
 | |
|   if (!StoredValTy->isIntegerTy()) {
 | |
|     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
 | |
|     StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
 | |
|   }
 | |
| 
 | |
|   // If this is a big-endian system, we need to shift the value down to the low
 | |
|   // bits so that a truncate will work.
 | |
|   if (TD.isBigEndian()) {
 | |
|     Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
 | |
|     StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
 | |
|   }
 | |
| 
 | |
|   // Truncate the integer to the right size now.
 | |
|   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
 | |
|   StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
 | |
| 
 | |
|   if (LoadedTy == NewIntTy)
 | |
|     return StoredVal;
 | |
| 
 | |
|   // If the result is a pointer, inttoptr.
 | |
|   if (LoadedTy->isPointerTy())
 | |
|     return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
 | |
| 
 | |
|   // Otherwise, bitcast.
 | |
|   return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
 | |
| }
 | |
| 
 | |
| /// AnalyzeLoadFromClobberingWrite - This function is called when we have a
 | |
| /// memdep query of a load that ends up being a clobbering memory write (store,
 | |
| /// memset, memcpy, memmove).  This means that the write *may* provide bits used
 | |
| /// by the load but we can't be sure because the pointers don't mustalias.
 | |
| ///
 | |
| /// Check this case to see if there is anything more we can do before we give
 | |
| /// up.  This returns -1 if we have to give up, or a byte number in the stored
 | |
| /// value of the piece that feeds the load.
 | |
| static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
 | |
|                                           Value *WritePtr,
 | |
|                                           uint64_t WriteSizeInBits,
 | |
|                                           const TargetData &TD) {
 | |
|   // If the loaded or stored value is a first class array or struct, don't try
 | |
|   // to transform them.  We need to be able to bitcast to integer.
 | |
|   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
 | |
|     return -1;
 | |
| 
 | |
|   int64_t StoreOffset = 0, LoadOffset = 0;
 | |
|   Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
 | |
|   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
 | |
|   if (StoreBase != LoadBase)
 | |
|     return -1;
 | |
| 
 | |
|   // If the load and store are to the exact same address, they should have been
 | |
|   // a must alias.  AA must have gotten confused.
 | |
|   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
 | |
|   // to a load from the base of the memset.
 | |
| #if 0
 | |
|   if (LoadOffset == StoreOffset) {
 | |
|     dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
 | |
|     << "Base       = " << *StoreBase << "\n"
 | |
|     << "Store Ptr  = " << *WritePtr << "\n"
 | |
|     << "Store Offs = " << StoreOffset << "\n"
 | |
|     << "Load Ptr   = " << *LoadPtr << "\n";
 | |
|     abort();
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // If the load and store don't overlap at all, the store doesn't provide
 | |
|   // anything to the load.  In this case, they really don't alias at all, AA
 | |
|   // must have gotten confused.
 | |
|   uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
 | |
| 
 | |
|   if ((WriteSizeInBits & 7) | (LoadSize & 7))
 | |
|     return -1;
 | |
|   uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
 | |
|   LoadSize >>= 3;
 | |
| 
 | |
| 
 | |
|   bool isAAFailure = false;
 | |
|   if (StoreOffset < LoadOffset)
 | |
|     isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
 | |
|   else
 | |
|     isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
 | |
| 
 | |
|   if (isAAFailure) {
 | |
| #if 0
 | |
|     dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
 | |
|     << "Base       = " << *StoreBase << "\n"
 | |
|     << "Store Ptr  = " << *WritePtr << "\n"
 | |
|     << "Store Offs = " << StoreOffset << "\n"
 | |
|     << "Load Ptr   = " << *LoadPtr << "\n";
 | |
|     abort();
 | |
| #endif
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   // If the Load isn't completely contained within the stored bits, we don't
 | |
|   // have all the bits to feed it.  We could do something crazy in the future
 | |
|   // (issue a smaller load then merge the bits in) but this seems unlikely to be
 | |
|   // valuable.
 | |
|   if (StoreOffset > LoadOffset ||
 | |
|       StoreOffset+StoreSize < LoadOffset+LoadSize)
 | |
|     return -1;
 | |
| 
 | |
|   // Okay, we can do this transformation.  Return the number of bytes into the
 | |
|   // store that the load is.
 | |
|   return LoadOffset-StoreOffset;
 | |
| }
 | |
| 
 | |
| /// AnalyzeLoadFromClobberingStore - This function is called when we have a
 | |
| /// memdep query of a load that ends up being a clobbering store.
 | |
| static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
 | |
|                                           StoreInst *DepSI,
 | |
|                                           const TargetData &TD) {
 | |
|   // Cannot handle reading from store of first-class aggregate yet.
 | |
|   if (DepSI->getValueOperand()->getType()->isStructTy() ||
 | |
|       DepSI->getValueOperand()->getType()->isArrayTy())
 | |
|     return -1;
 | |
| 
 | |
|   Value *StorePtr = DepSI->getPointerOperand();
 | |
|   uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
 | |
|   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
 | |
|                                         StorePtr, StoreSize, TD);
 | |
| }
 | |
| 
 | |
| /// AnalyzeLoadFromClobberingLoad - This function is called when we have a
 | |
| /// memdep query of a load that ends up being clobbered by another load.  See if
 | |
| /// the other load can feed into the second load.
 | |
| static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
 | |
|                                          LoadInst *DepLI, const TargetData &TD){
 | |
|   // Cannot handle reading from store of first-class aggregate yet.
 | |
|   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
 | |
|     return -1;
 | |
| 
 | |
|   Value *DepPtr = DepLI->getPointerOperand();
 | |
|   uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
 | |
|   int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
 | |
|   if (R != -1) return R;
 | |
| 
 | |
|   // If we have a load/load clobber an DepLI can be widened to cover this load,
 | |
|   // then we should widen it!
 | |
|   int64_t LoadOffs = 0;
 | |
|   const Value *LoadBase =
 | |
|     GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
 | |
|   unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
 | |
| 
 | |
|   unsigned Size = MemoryDependenceAnalysis::
 | |
|     getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
 | |
|   if (Size == 0) return -1;
 | |
| 
 | |
|   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
 | |
|                                             MemIntrinsic *MI,
 | |
|                                             const TargetData &TD) {
 | |
|   // If the mem operation is a non-constant size, we can't handle it.
 | |
|   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
 | |
|   if (SizeCst == 0) return -1;
 | |
|   uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
 | |
| 
 | |
|   // If this is memset, we just need to see if the offset is valid in the size
 | |
|   // of the memset..
 | |
|   if (MI->getIntrinsicID() == Intrinsic::memset)
 | |
|     return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
 | |
|                                           MemSizeInBits, TD);
 | |
| 
 | |
|   // If we have a memcpy/memmove, the only case we can handle is if this is a
 | |
|   // copy from constant memory.  In that case, we can read directly from the
 | |
|   // constant memory.
 | |
|   MemTransferInst *MTI = cast<MemTransferInst>(MI);
 | |
| 
 | |
|   Constant *Src = dyn_cast<Constant>(MTI->getSource());
 | |
|   if (Src == 0) return -1;
 | |
| 
 | |
|   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
 | |
|   if (GV == 0 || !GV->isConstant()) return -1;
 | |
| 
 | |
|   // See if the access is within the bounds of the transfer.
 | |
|   int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
 | |
|                                               MI->getDest(), MemSizeInBits, TD);
 | |
|   if (Offset == -1)
 | |
|     return Offset;
 | |
| 
 | |
|   // Otherwise, see if we can constant fold a load from the constant with the
 | |
|   // offset applied as appropriate.
 | |
|   Src = ConstantExpr::getBitCast(Src,
 | |
|                                  llvm::Type::getInt8PtrTy(Src->getContext()));
 | |
|   Constant *OffsetCst =
 | |
|     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
 | |
|   Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
 | |
|   Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
 | |
|   if (ConstantFoldLoadFromConstPtr(Src, &TD))
 | |
|     return Offset;
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GetStoreValueForLoad - This function is called when we have a
 | |
| /// memdep query of a load that ends up being a clobbering store.  This means
 | |
| /// that the store provides bits used by the load but we the pointers don't
 | |
| /// mustalias.  Check this case to see if there is anything more we can do
 | |
| /// before we give up.
 | |
| static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
 | |
|                                    Type *LoadTy,
 | |
|                                    Instruction *InsertPt, const TargetData &TD){
 | |
|   LLVMContext &Ctx = SrcVal->getType()->getContext();
 | |
| 
 | |
|   uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
 | |
|   uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
 | |
| 
 | |
|   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
 | |
| 
 | |
|   // Compute which bits of the stored value are being used by the load.  Convert
 | |
|   // to an integer type to start with.
 | |
|   if (SrcVal->getType()->isPointerTy())
 | |
|     SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx));
 | |
|   if (!SrcVal->getType()->isIntegerTy())
 | |
|     SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
 | |
| 
 | |
|   // Shift the bits to the least significant depending on endianness.
 | |
|   unsigned ShiftAmt;
 | |
|   if (TD.isLittleEndian())
 | |
|     ShiftAmt = Offset*8;
 | |
|   else
 | |
|     ShiftAmt = (StoreSize-LoadSize-Offset)*8;
 | |
| 
 | |
|   if (ShiftAmt)
 | |
|     SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
 | |
| 
 | |
|   if (LoadSize != StoreSize)
 | |
|     SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
 | |
| 
 | |
|   return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
 | |
| }
 | |
| 
 | |
| /// GetLoadValueForLoad - This function is called when we have a
 | |
| /// memdep query of a load that ends up being a clobbering load.  This means
 | |
| /// that the load *may* provide bits used by the load but we can't be sure
 | |
| /// because the pointers don't mustalias.  Check this case to see if there is
 | |
| /// anything more we can do before we give up.
 | |
| static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
 | |
|                                   Type *LoadTy, Instruction *InsertPt,
 | |
|                                   GVN &gvn) {
 | |
|   const TargetData &TD = *gvn.getTargetData();
 | |
|   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
 | |
|   // widen SrcVal out to a larger load.
 | |
|   unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
 | |
|   unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
 | |
|   if (Offset+LoadSize > SrcValSize) {
 | |
|     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
 | |
|     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
 | |
|     // If we have a load/load clobber an DepLI can be widened to cover this
 | |
|     // load, then we should widen it to the next power of 2 size big enough!
 | |
|     unsigned NewLoadSize = Offset+LoadSize;
 | |
|     if (!isPowerOf2_32(NewLoadSize))
 | |
|       NewLoadSize = NextPowerOf2(NewLoadSize);
 | |
| 
 | |
|     Value *PtrVal = SrcVal->getPointerOperand();
 | |
| 
 | |
|     // Insert the new load after the old load.  This ensures that subsequent
 | |
|     // memdep queries will find the new load.  We can't easily remove the old
 | |
|     // load completely because it is already in the value numbering table.
 | |
|     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
 | |
|     Type *DestPTy =
 | |
|       IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
 | |
|     DestPTy = PointerType::get(DestPTy,
 | |
|                        cast<PointerType>(PtrVal->getType())->getAddressSpace());
 | |
|     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
 | |
|     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
 | |
|     LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
 | |
|     NewLoad->takeName(SrcVal);
 | |
|     NewLoad->setAlignment(SrcVal->getAlignment());
 | |
| 
 | |
|     DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
 | |
|     DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
 | |
| 
 | |
|     // Replace uses of the original load with the wider load.  On a big endian
 | |
|     // system, we need to shift down to get the relevant bits.
 | |
|     Value *RV = NewLoad;
 | |
|     if (TD.isBigEndian())
 | |
|       RV = Builder.CreateLShr(RV,
 | |
|                     NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
 | |
|     RV = Builder.CreateTrunc(RV, SrcVal->getType());
 | |
|     SrcVal->replaceAllUsesWith(RV);
 | |
| 
 | |
|     // We would like to use gvn.markInstructionForDeletion here, but we can't
 | |
|     // because the load is already memoized into the leader map table that GVN
 | |
|     // tracks.  It is potentially possible to remove the load from the table,
 | |
|     // but then there all of the operations based on it would need to be
 | |
|     // rehashed.  Just leave the dead load around.
 | |
|     gvn.getMemDep().removeInstruction(SrcVal);
 | |
|     SrcVal = NewLoad;
 | |
|   }
 | |
| 
 | |
|   return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GetMemInstValueForLoad - This function is called when we have a
 | |
| /// memdep query of a load that ends up being a clobbering mem intrinsic.
 | |
| static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
 | |
|                                      Type *LoadTy, Instruction *InsertPt,
 | |
|                                      const TargetData &TD){
 | |
|   LLVMContext &Ctx = LoadTy->getContext();
 | |
|   uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
 | |
| 
 | |
|   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
 | |
| 
 | |
|   // We know that this method is only called when the mem transfer fully
 | |
|   // provides the bits for the load.
 | |
|   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
 | |
|     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
 | |
|     // independently of what the offset is.
 | |
|     Value *Val = MSI->getValue();
 | |
|     if (LoadSize != 1)
 | |
|       Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
 | |
| 
 | |
|     Value *OneElt = Val;
 | |
| 
 | |
|     // Splat the value out to the right number of bits.
 | |
|     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
 | |
|       // If we can double the number of bytes set, do it.
 | |
|       if (NumBytesSet*2 <= LoadSize) {
 | |
|         Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
 | |
|         Val = Builder.CreateOr(Val, ShVal);
 | |
|         NumBytesSet <<= 1;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise insert one byte at a time.
 | |
|       Value *ShVal = Builder.CreateShl(Val, 1*8);
 | |
|       Val = Builder.CreateOr(OneElt, ShVal);
 | |
|       ++NumBytesSet;
 | |
|     }
 | |
| 
 | |
|     return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, this is a memcpy/memmove from a constant global.
 | |
|   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
 | |
|   Constant *Src = cast<Constant>(MTI->getSource());
 | |
| 
 | |
|   // Otherwise, see if we can constant fold a load from the constant with the
 | |
|   // offset applied as appropriate.
 | |
|   Src = ConstantExpr::getBitCast(Src,
 | |
|                                  llvm::Type::getInt8PtrTy(Src->getContext()));
 | |
|   Constant *OffsetCst =
 | |
|   ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
 | |
|   Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
 | |
|   Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
 | |
|   return ConstantFoldLoadFromConstPtr(Src, &TD);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct AvailableValueInBlock {
 | |
|   /// BB - The basic block in question.
 | |
|   BasicBlock *BB;
 | |
|   enum ValType {
 | |
|     SimpleVal,  // A simple offsetted value that is accessed.
 | |
|     LoadVal,    // A value produced by a load.
 | |
|     MemIntrin   // A memory intrinsic which is loaded from.
 | |
|   };
 | |
| 
 | |
|   /// V - The value that is live out of the block.
 | |
|   PointerIntPair<Value *, 2, ValType> Val;
 | |
| 
 | |
|   /// Offset - The byte offset in Val that is interesting for the load query.
 | |
|   unsigned Offset;
 | |
| 
 | |
|   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
 | |
|                                    unsigned Offset = 0) {
 | |
|     AvailableValueInBlock Res;
 | |
|     Res.BB = BB;
 | |
|     Res.Val.setPointer(V);
 | |
|     Res.Val.setInt(SimpleVal);
 | |
|     Res.Offset = Offset;
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
 | |
|                                      unsigned Offset = 0) {
 | |
|     AvailableValueInBlock Res;
 | |
|     Res.BB = BB;
 | |
|     Res.Val.setPointer(MI);
 | |
|     Res.Val.setInt(MemIntrin);
 | |
|     Res.Offset = Offset;
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
 | |
|                                        unsigned Offset = 0) {
 | |
|     AvailableValueInBlock Res;
 | |
|     Res.BB = BB;
 | |
|     Res.Val.setPointer(LI);
 | |
|     Res.Val.setInt(LoadVal);
 | |
|     Res.Offset = Offset;
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
 | |
|   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
 | |
|   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
 | |
| 
 | |
|   Value *getSimpleValue() const {
 | |
|     assert(isSimpleValue() && "Wrong accessor");
 | |
|     return Val.getPointer();
 | |
|   }
 | |
| 
 | |
|   LoadInst *getCoercedLoadValue() const {
 | |
|     assert(isCoercedLoadValue() && "Wrong accessor");
 | |
|     return cast<LoadInst>(Val.getPointer());
 | |
|   }
 | |
| 
 | |
|   MemIntrinsic *getMemIntrinValue() const {
 | |
|     assert(isMemIntrinValue() && "Wrong accessor");
 | |
|     return cast<MemIntrinsic>(Val.getPointer());
 | |
|   }
 | |
| 
 | |
|   /// MaterializeAdjustedValue - Emit code into this block to adjust the value
 | |
|   /// defined here to the specified type.  This handles various coercion cases.
 | |
|   Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
 | |
|     Value *Res;
 | |
|     if (isSimpleValue()) {
 | |
|       Res = getSimpleValue();
 | |
|       if (Res->getType() != LoadTy) {
 | |
|         const TargetData *TD = gvn.getTargetData();
 | |
|         assert(TD && "Need target data to handle type mismatch case");
 | |
|         Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
 | |
|                                    *TD);
 | |
| 
 | |
|         DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
 | |
|                      << *getSimpleValue() << '\n'
 | |
|                      << *Res << '\n' << "\n\n\n");
 | |
|       }
 | |
|     } else if (isCoercedLoadValue()) {
 | |
|       LoadInst *Load = getCoercedLoadValue();
 | |
|       if (Load->getType() == LoadTy && Offset == 0) {
 | |
|         Res = Load;
 | |
|       } else {
 | |
|         Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
 | |
|                                   gvn);
 | |
| 
 | |
|         DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
 | |
|                      << *getCoercedLoadValue() << '\n'
 | |
|                      << *Res << '\n' << "\n\n\n");
 | |
|       }
 | |
|     } else {
 | |
|       const TargetData *TD = gvn.getTargetData();
 | |
|       assert(TD && "Need target data to handle type mismatch case");
 | |
|       Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
 | |
|                                    LoadTy, BB->getTerminator(), *TD);
 | |
|       DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
 | |
|                    << "  " << *getMemIntrinValue() << '\n'
 | |
|                    << *Res << '\n' << "\n\n\n");
 | |
|     }
 | |
|     return Res;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
 | |
| /// construct SSA form, allowing us to eliminate LI.  This returns the value
 | |
| /// that should be used at LI's definition site.
 | |
| static Value *ConstructSSAForLoadSet(LoadInst *LI,
 | |
|                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
 | |
|                                      GVN &gvn) {
 | |
|   // Check for the fully redundant, dominating load case.  In this case, we can
 | |
|   // just use the dominating value directly.
 | |
|   if (ValuesPerBlock.size() == 1 &&
 | |
|       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
 | |
|                                                LI->getParent()))
 | |
|     return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
 | |
| 
 | |
|   // Otherwise, we have to construct SSA form.
 | |
|   SmallVector<PHINode*, 8> NewPHIs;
 | |
|   SSAUpdater SSAUpdate(&NewPHIs);
 | |
|   SSAUpdate.Initialize(LI->getType(), LI->getName());
 | |
| 
 | |
|   Type *LoadTy = LI->getType();
 | |
| 
 | |
|   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
 | |
|     const AvailableValueInBlock &AV = ValuesPerBlock[i];
 | |
|     BasicBlock *BB = AV.BB;
 | |
| 
 | |
|     if (SSAUpdate.HasValueForBlock(BB))
 | |
|       continue;
 | |
| 
 | |
|     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
 | |
|   }
 | |
| 
 | |
|   // Perform PHI construction.
 | |
|   Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
 | |
| 
 | |
|   // If new PHI nodes were created, notify alias analysis.
 | |
|   if (V->getType()->isPointerTy()) {
 | |
|     AliasAnalysis *AA = gvn.getAliasAnalysis();
 | |
| 
 | |
|     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
 | |
|       AA->copyValue(LI, NewPHIs[i]);
 | |
| 
 | |
|     // Now that we've copied information to the new PHIs, scan through
 | |
|     // them again and inform alias analysis that we've added potentially
 | |
|     // escaping uses to any values that are operands to these PHIs.
 | |
|     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
 | |
|       PHINode *P = NewPHIs[i];
 | |
|       for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
 | |
|         unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
 | |
|         AA->addEscapingUse(P->getOperandUse(jj));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| static bool isLifetimeStart(const Instruction *Inst) {
 | |
|   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
 | |
|     return II->getIntrinsicID() == Intrinsic::lifetime_start;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
 | |
| /// non-local by performing PHI construction.
 | |
| bool GVN::processNonLocalLoad(LoadInst *LI) {
 | |
|   // Find the non-local dependencies of the load.
 | |
|   SmallVector<NonLocalDepResult, 64> Deps;
 | |
|   AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
 | |
|   MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
 | |
|   //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
 | |
|   //             << Deps.size() << *LI << '\n');
 | |
| 
 | |
|   // If we had to process more than one hundred blocks to find the
 | |
|   // dependencies, this load isn't worth worrying about.  Optimizing
 | |
|   // it will be too expensive.
 | |
|   unsigned NumDeps = Deps.size();
 | |
|   if (NumDeps > 100)
 | |
|     return false;
 | |
| 
 | |
|   // If we had a phi translation failure, we'll have a single entry which is a
 | |
|   // clobber in the current block.  Reject this early.
 | |
|   if (NumDeps == 1 &&
 | |
|       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
 | |
|     DEBUG(
 | |
|       dbgs() << "GVN: non-local load ";
 | |
|       WriteAsOperand(dbgs(), LI);
 | |
|       dbgs() << " has unknown dependencies\n";
 | |
|     );
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Filter out useless results (non-locals, etc).  Keep track of the blocks
 | |
|   // where we have a value available in repl, also keep track of whether we see
 | |
|   // dependencies that produce an unknown value for the load (such as a call
 | |
|   // that could potentially clobber the load).
 | |
|   SmallVector<AvailableValueInBlock, 64> ValuesPerBlock;
 | |
|   SmallVector<BasicBlock*, 64> UnavailableBlocks;
 | |
| 
 | |
|   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
 | |
|     BasicBlock *DepBB = Deps[i].getBB();
 | |
|     MemDepResult DepInfo = Deps[i].getResult();
 | |
| 
 | |
|     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
 | |
|       UnavailableBlocks.push_back(DepBB);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (DepInfo.isClobber()) {
 | |
|       // The address being loaded in this non-local block may not be the same as
 | |
|       // the pointer operand of the load if PHI translation occurs.  Make sure
 | |
|       // to consider the right address.
 | |
|       Value *Address = Deps[i].getAddress();
 | |
| 
 | |
|       // If the dependence is to a store that writes to a superset of the bits
 | |
|       // read by the load, we can extract the bits we need for the load from the
 | |
|       // stored value.
 | |
|       if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
 | |
|         if (TD && Address) {
 | |
|           int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
 | |
|                                                       DepSI, *TD);
 | |
|           if (Offset != -1) {
 | |
|             ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
 | |
|                                                        DepSI->getValueOperand(),
 | |
|                                                                 Offset));
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Check to see if we have something like this:
 | |
|       //    load i32* P
 | |
|       //    load i8* (P+1)
 | |
|       // if we have this, replace the later with an extraction from the former.
 | |
|       if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
 | |
|         // If this is a clobber and L is the first instruction in its block, then
 | |
|         // we have the first instruction in the entry block.
 | |
|         if (DepLI != LI && Address && TD) {
 | |
|           int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
 | |
|                                                      LI->getPointerOperand(),
 | |
|                                                      DepLI, *TD);
 | |
| 
 | |
|           if (Offset != -1) {
 | |
|             ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
 | |
|                                                                     Offset));
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If the clobbering value is a memset/memcpy/memmove, see if we can
 | |
|       // forward a value on from it.
 | |
|       if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
 | |
|         if (TD && Address) {
 | |
|           int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
 | |
|                                                         DepMI, *TD);
 | |
|           if (Offset != -1) {
 | |
|             ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
 | |
|                                                                   Offset));
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       UnavailableBlocks.push_back(DepBB);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // DepInfo.isDef() here
 | |
| 
 | |
|     Instruction *DepInst = DepInfo.getInst();
 | |
| 
 | |
|     // Loading the allocation -> undef.
 | |
|     if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
 | |
|         // Loading immediately after lifetime begin -> undef.
 | |
|         isLifetimeStart(DepInst)) {
 | |
|       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
 | |
|                                              UndefValue::get(LI->getType())));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
 | |
|       // Reject loads and stores that are to the same address but are of
 | |
|       // different types if we have to.
 | |
|       if (S->getValueOperand()->getType() != LI->getType()) {
 | |
|         // If the stored value is larger or equal to the loaded value, we can
 | |
|         // reuse it.
 | |
|         if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
 | |
|                                                         LI->getType(), *TD)) {
 | |
|           UnavailableBlocks.push_back(DepBB);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
 | |
|                                                          S->getValueOperand()));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
 | |
|       // If the types mismatch and we can't handle it, reject reuse of the load.
 | |
|       if (LD->getType() != LI->getType()) {
 | |
|         // If the stored value is larger or equal to the loaded value, we can
 | |
|         // reuse it.
 | |
|         if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
 | |
|           UnavailableBlocks.push_back(DepBB);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     UnavailableBlocks.push_back(DepBB);
 | |
|     continue;
 | |
|   }
 | |
| 
 | |
|   // If we have no predecessors that produce a known value for this load, exit
 | |
|   // early.
 | |
|   if (ValuesPerBlock.empty()) return false;
 | |
| 
 | |
|   // If all of the instructions we depend on produce a known value for this
 | |
|   // load, then it is fully redundant and we can use PHI insertion to compute
 | |
|   // its value.  Insert PHIs and remove the fully redundant value now.
 | |
|   if (UnavailableBlocks.empty()) {
 | |
|     DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
 | |
| 
 | |
|     // Perform PHI construction.
 | |
|     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
 | |
|     LI->replaceAllUsesWith(V);
 | |
| 
 | |
|     if (isa<PHINode>(V))
 | |
|       V->takeName(LI);
 | |
|     if (V->getType()->isPointerTy())
 | |
|       MD->invalidateCachedPointerInfo(V);
 | |
|     markInstructionForDeletion(LI);
 | |
|     ++NumGVNLoad;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!EnablePRE || !EnableLoadPRE)
 | |
|     return false;
 | |
| 
 | |
|   // Okay, we have *some* definitions of the value.  This means that the value
 | |
|   // is available in some of our (transitive) predecessors.  Lets think about
 | |
|   // doing PRE of this load.  This will involve inserting a new load into the
 | |
|   // predecessor when it's not available.  We could do this in general, but
 | |
|   // prefer to not increase code size.  As such, we only do this when we know
 | |
|   // that we only have to insert *one* load (which means we're basically moving
 | |
|   // the load, not inserting a new one).
 | |
| 
 | |
|   SmallPtrSet<BasicBlock *, 4> Blockers;
 | |
|   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
 | |
|     Blockers.insert(UnavailableBlocks[i]);
 | |
| 
 | |
|   // Let's find the first basic block with more than one predecessor.  Walk
 | |
|   // backwards through predecessors if needed.
 | |
|   BasicBlock *LoadBB = LI->getParent();
 | |
|   BasicBlock *TmpBB = LoadBB;
 | |
| 
 | |
|   bool isSinglePred = false;
 | |
|   bool allSingleSucc = true;
 | |
|   while (TmpBB->getSinglePredecessor()) {
 | |
|     isSinglePred = true;
 | |
|     TmpBB = TmpBB->getSinglePredecessor();
 | |
|     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
 | |
|       return false;
 | |
|     if (Blockers.count(TmpBB))
 | |
|       return false;
 | |
| 
 | |
|     // If any of these blocks has more than one successor (i.e. if the edge we
 | |
|     // just traversed was critical), then there are other paths through this
 | |
|     // block along which the load may not be anticipated.  Hoisting the load
 | |
|     // above this block would be adding the load to execution paths along
 | |
|     // which it was not previously executed.
 | |
|     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   assert(TmpBB);
 | |
|   LoadBB = TmpBB;
 | |
| 
 | |
|   // FIXME: It is extremely unclear what this loop is doing, other than
 | |
|   // artificially restricting loadpre.
 | |
|   if (isSinglePred) {
 | |
|     bool isHot = false;
 | |
|     for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
 | |
|       const AvailableValueInBlock &AV = ValuesPerBlock[i];
 | |
|       if (AV.isSimpleValue())
 | |
|         // "Hot" Instruction is in some loop (because it dominates its dep.
 | |
|         // instruction).
 | |
|         if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
 | |
|           if (DT->dominates(LI, I)) {
 | |
|             isHot = true;
 | |
|             break;
 | |
|           }
 | |
|     }
 | |
| 
 | |
|     // We are interested only in "hot" instructions. We don't want to do any
 | |
|     // mis-optimizations here.
 | |
|     if (!isHot)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Check to see how many predecessors have the loaded value fully
 | |
|   // available.
 | |
|   DenseMap<BasicBlock*, Value*> PredLoads;
 | |
|   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
 | |
|   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
 | |
|     FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
 | |
|   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
 | |
|     FullyAvailableBlocks[UnavailableBlocks[i]] = false;
 | |
| 
 | |
|   SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
 | |
|   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
 | |
|        PI != E; ++PI) {
 | |
|     BasicBlock *Pred = *PI;
 | |
|     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
 | |
|       continue;
 | |
|     }
 | |
|     PredLoads[Pred] = 0;
 | |
| 
 | |
|     if (Pred->getTerminator()->getNumSuccessors() != 1) {
 | |
|       if (isa<IndirectBrInst>(Pred->getTerminator())) {
 | |
|         DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
 | |
|               << Pred->getName() << "': " << *LI << '\n');
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       if (LoadBB->isLandingPad()) {
 | |
|         DEBUG(dbgs()
 | |
|               << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
 | |
|               << Pred->getName() << "': " << *LI << '\n');
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
 | |
|       NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!NeedToSplit.empty()) {
 | |
|     toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Decide whether PRE is profitable for this load.
 | |
|   unsigned NumUnavailablePreds = PredLoads.size();
 | |
|   assert(NumUnavailablePreds != 0 &&
 | |
|          "Fully available value should be eliminated above!");
 | |
| 
 | |
|   // If this load is unavailable in multiple predecessors, reject it.
 | |
|   // FIXME: If we could restructure the CFG, we could make a common pred with
 | |
|   // all the preds that don't have an available LI and insert a new load into
 | |
|   // that one block.
 | |
|   if (NumUnavailablePreds != 1)
 | |
|       return false;
 | |
| 
 | |
|   // Check if the load can safely be moved to all the unavailable predecessors.
 | |
|   bool CanDoPRE = true;
 | |
|   SmallVector<Instruction*, 8> NewInsts;
 | |
|   for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
 | |
|          E = PredLoads.end(); I != E; ++I) {
 | |
|     BasicBlock *UnavailablePred = I->first;
 | |
| 
 | |
|     // Do PHI translation to get its value in the predecessor if necessary.  The
 | |
|     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
 | |
| 
 | |
|     // If all preds have a single successor, then we know it is safe to insert
 | |
|     // the load on the pred (?!?), so we can insert code to materialize the
 | |
|     // pointer if it is not available.
 | |
|     PHITransAddr Address(LI->getPointerOperand(), TD);
 | |
|     Value *LoadPtr = 0;
 | |
|     if (allSingleSucc) {
 | |
|       LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
 | |
|                                                   *DT, NewInsts);
 | |
|     } else {
 | |
|       Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
 | |
|       LoadPtr = Address.getAddr();
 | |
|     }
 | |
| 
 | |
|     // If we couldn't find or insert a computation of this phi translated value,
 | |
|     // we fail PRE.
 | |
|     if (LoadPtr == 0) {
 | |
|       DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
 | |
|             << *LI->getPointerOperand() << "\n");
 | |
|       CanDoPRE = false;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Make sure it is valid to move this load here.  We have to watch out for:
 | |
|     //  @1 = getelementptr (i8* p, ...
 | |
|     //  test p and branch if == 0
 | |
|     //  load @1
 | |
|     // It is valid to have the getelementptr before the test, even if p can
 | |
|     // be 0, as getelementptr only does address arithmetic.
 | |
|     // If we are not pushing the value through any multiple-successor blocks
 | |
|     // we do not have this case.  Otherwise, check that the load is safe to
 | |
|     // put anywhere; this can be improved, but should be conservatively safe.
 | |
|     if (!allSingleSucc &&
 | |
|         // FIXME: REEVALUTE THIS.
 | |
|         !isSafeToLoadUnconditionally(LoadPtr,
 | |
|                                      UnavailablePred->getTerminator(),
 | |
|                                      LI->getAlignment(), TD)) {
 | |
|       CanDoPRE = false;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     I->second = LoadPtr;
 | |
|   }
 | |
| 
 | |
|   if (!CanDoPRE) {
 | |
|     while (!NewInsts.empty()) {
 | |
|       Instruction *I = NewInsts.pop_back_val();
 | |
|       if (MD) MD->removeInstruction(I);
 | |
|       I->eraseFromParent();
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Okay, we can eliminate this load by inserting a reload in the predecessor
 | |
|   // and using PHI construction to get the value in the other predecessors, do
 | |
|   // it.
 | |
|   DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
 | |
|   DEBUG(if (!NewInsts.empty())
 | |
|           dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
 | |
|                  << *NewInsts.back() << '\n');
 | |
| 
 | |
|   // Assign value numbers to the new instructions.
 | |
|   for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
 | |
|     // FIXME: We really _ought_ to insert these value numbers into their
 | |
|     // parent's availability map.  However, in doing so, we risk getting into
 | |
|     // ordering issues.  If a block hasn't been processed yet, we would be
 | |
|     // marking a value as AVAIL-IN, which isn't what we intend.
 | |
|     VN.lookup_or_add(NewInsts[i]);
 | |
|   }
 | |
| 
 | |
|   for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
 | |
|          E = PredLoads.end(); I != E; ++I) {
 | |
|     BasicBlock *UnavailablePred = I->first;
 | |
|     Value *LoadPtr = I->second;
 | |
| 
 | |
|     Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
 | |
|                                         LI->getAlignment(),
 | |
|                                         UnavailablePred->getTerminator());
 | |
| 
 | |
|     // Transfer the old load's TBAA tag to the new load.
 | |
|     if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
 | |
|       NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
 | |
| 
 | |
|     // Transfer DebugLoc.
 | |
|     NewLoad->setDebugLoc(LI->getDebugLoc());
 | |
| 
 | |
|     // Add the newly created load.
 | |
|     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
 | |
|                                                         NewLoad));
 | |
|     MD->invalidateCachedPointerInfo(LoadPtr);
 | |
|     DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
 | |
|   }
 | |
| 
 | |
|   // Perform PHI construction.
 | |
|   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
 | |
|   LI->replaceAllUsesWith(V);
 | |
|   if (isa<PHINode>(V))
 | |
|     V->takeName(LI);
 | |
|   if (V->getType()->isPointerTy())
 | |
|     MD->invalidateCachedPointerInfo(V);
 | |
|   markInstructionForDeletion(LI);
 | |
|   ++NumPRELoad;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void patchReplacementInstruction(Value *Repl, Instruction *I) {
 | |
|   // Patch the replacement so that it is not more restrictive than the value
 | |
|   // being replaced.
 | |
|   BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
 | |
|   BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
 | |
|   if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
 | |
|       isa<OverflowingBinaryOperator>(ReplOp)) {
 | |
|     if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
 | |
|       ReplOp->setHasNoSignedWrap(false);
 | |
|     if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
 | |
|       ReplOp->setHasNoUnsignedWrap(false);
 | |
|   }
 | |
|   if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
 | |
|     SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
 | |
|     ReplInst->getAllMetadataOtherThanDebugLoc(Metadata);
 | |
|     for (int i = 0, n = Metadata.size(); i < n; ++i) {
 | |
|       unsigned Kind = Metadata[i].first;
 | |
|       MDNode *IMD = I->getMetadata(Kind);
 | |
|       MDNode *ReplMD = Metadata[i].second;
 | |
|       switch(Kind) {
 | |
|       default:
 | |
|         ReplInst->setMetadata(Kind, NULL); // Remove unknown metadata
 | |
|         break;
 | |
|       case LLVMContext::MD_dbg:
 | |
|         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
 | |
|       case LLVMContext::MD_tbaa:
 | |
|         ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD));
 | |
|         break;
 | |
|       case LLVMContext::MD_range:
 | |
|         ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD));
 | |
|         break;
 | |
|       case LLVMContext::MD_prof:
 | |
|         llvm_unreachable("MD_prof in a non terminator instruction");
 | |
|         break;
 | |
|       case LLVMContext::MD_fpmath:
 | |
|         ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD));
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void patchAndReplaceAllUsesWith(Value *Repl, Instruction *I) {
 | |
|   patchReplacementInstruction(Repl, I);
 | |
|   I->replaceAllUsesWith(Repl);
 | |
| }
 | |
| 
 | |
| /// processLoad - Attempt to eliminate a load, first by eliminating it
 | |
| /// locally, and then attempting non-local elimination if that fails.
 | |
| bool GVN::processLoad(LoadInst *L) {
 | |
|   if (!MD)
 | |
|     return false;
 | |
| 
 | |
|   if (!L->isSimple())
 | |
|     return false;
 | |
| 
 | |
|   if (L->use_empty()) {
 | |
|     markInstructionForDeletion(L);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // ... to a pointer that has been loaded from before...
 | |
|   MemDepResult Dep = MD->getDependency(L);
 | |
| 
 | |
|   // If we have a clobber and target data is around, see if this is a clobber
 | |
|   // that we can fix up through code synthesis.
 | |
|   if (Dep.isClobber() && TD) {
 | |
|     // Check to see if we have something like this:
 | |
|     //   store i32 123, i32* %P
 | |
|     //   %A = bitcast i32* %P to i8*
 | |
|     //   %B = gep i8* %A, i32 1
 | |
|     //   %C = load i8* %B
 | |
|     //
 | |
|     // We could do that by recognizing if the clobber instructions are obviously
 | |
|     // a common base + constant offset, and if the previous store (or memset)
 | |
|     // completely covers this load.  This sort of thing can happen in bitfield
 | |
|     // access code.
 | |
|     Value *AvailVal = 0;
 | |
|     if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
 | |
|       int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
 | |
|                                                   L->getPointerOperand(),
 | |
|                                                   DepSI, *TD);
 | |
|       if (Offset != -1)
 | |
|         AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
 | |
|                                         L->getType(), L, *TD);
 | |
|     }
 | |
| 
 | |
|     // Check to see if we have something like this:
 | |
|     //    load i32* P
 | |
|     //    load i8* (P+1)
 | |
|     // if we have this, replace the later with an extraction from the former.
 | |
|     if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
 | |
|       // If this is a clobber and L is the first instruction in its block, then
 | |
|       // we have the first instruction in the entry block.
 | |
|       if (DepLI == L)
 | |
|         return false;
 | |
| 
 | |
|       int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
 | |
|                                                  L->getPointerOperand(),
 | |
|                                                  DepLI, *TD);
 | |
|       if (Offset != -1)
 | |
|         AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
 | |
|     }
 | |
| 
 | |
|     // If the clobbering value is a memset/memcpy/memmove, see if we can forward
 | |
|     // a value on from it.
 | |
|     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
 | |
|       int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
 | |
|                                                     L->getPointerOperand(),
 | |
|                                                     DepMI, *TD);
 | |
|       if (Offset != -1)
 | |
|         AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
 | |
|     }
 | |
| 
 | |
|     if (AvailVal) {
 | |
|       DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
 | |
|             << *AvailVal << '\n' << *L << "\n\n\n");
 | |
| 
 | |
|       // Replace the load!
 | |
|       L->replaceAllUsesWith(AvailVal);
 | |
|       if (AvailVal->getType()->isPointerTy())
 | |
|         MD->invalidateCachedPointerInfo(AvailVal);
 | |
|       markInstructionForDeletion(L);
 | |
|       ++NumGVNLoad;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the value isn't available, don't do anything!
 | |
|   if (Dep.isClobber()) {
 | |
|     DEBUG(
 | |
|       // fast print dep, using operator<< on instruction is too slow.
 | |
|       dbgs() << "GVN: load ";
 | |
|       WriteAsOperand(dbgs(), L);
 | |
|       Instruction *I = Dep.getInst();
 | |
|       dbgs() << " is clobbered by " << *I << '\n';
 | |
|     );
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If it is defined in another block, try harder.
 | |
|   if (Dep.isNonLocal())
 | |
|     return processNonLocalLoad(L);
 | |
| 
 | |
|   if (!Dep.isDef()) {
 | |
|     DEBUG(
 | |
|       // fast print dep, using operator<< on instruction is too slow.
 | |
|       dbgs() << "GVN: load ";
 | |
|       WriteAsOperand(dbgs(), L);
 | |
|       dbgs() << " has unknown dependence\n";
 | |
|     );
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Instruction *DepInst = Dep.getInst();
 | |
|   if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
 | |
|     Value *StoredVal = DepSI->getValueOperand();
 | |
| 
 | |
|     // The store and load are to a must-aliased pointer, but they may not
 | |
|     // actually have the same type.  See if we know how to reuse the stored
 | |
|     // value (depending on its type).
 | |
|     if (StoredVal->getType() != L->getType()) {
 | |
|       if (TD) {
 | |
|         StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
 | |
|                                                    L, *TD);
 | |
|         if (StoredVal == 0)
 | |
|           return false;
 | |
| 
 | |
|         DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
 | |
|                      << '\n' << *L << "\n\n\n");
 | |
|       }
 | |
|       else
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Remove it!
 | |
|     L->replaceAllUsesWith(StoredVal);
 | |
|     if (StoredVal->getType()->isPointerTy())
 | |
|       MD->invalidateCachedPointerInfo(StoredVal);
 | |
|     markInstructionForDeletion(L);
 | |
|     ++NumGVNLoad;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
 | |
|     Value *AvailableVal = DepLI;
 | |
| 
 | |
|     // The loads are of a must-aliased pointer, but they may not actually have
 | |
|     // the same type.  See if we know how to reuse the previously loaded value
 | |
|     // (depending on its type).
 | |
|     if (DepLI->getType() != L->getType()) {
 | |
|       if (TD) {
 | |
|         AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
 | |
|                                                       L, *TD);
 | |
|         if (AvailableVal == 0)
 | |
|           return false;
 | |
| 
 | |
|         DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
 | |
|                      << "\n" << *L << "\n\n\n");
 | |
|       }
 | |
|       else
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Remove it!
 | |
|     patchAndReplaceAllUsesWith(AvailableVal, L);
 | |
|     if (DepLI->getType()->isPointerTy())
 | |
|       MD->invalidateCachedPointerInfo(DepLI);
 | |
|     markInstructionForDeletion(L);
 | |
|     ++NumGVNLoad;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If this load really doesn't depend on anything, then we must be loading an
 | |
|   // undef value.  This can happen when loading for a fresh allocation with no
 | |
|   // intervening stores, for example.
 | |
|   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
 | |
|     L->replaceAllUsesWith(UndefValue::get(L->getType()));
 | |
|     markInstructionForDeletion(L);
 | |
|     ++NumGVNLoad;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If this load occurs either right after a lifetime begin,
 | |
|   // then the loaded value is undefined.
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
 | |
|     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
 | |
|       L->replaceAllUsesWith(UndefValue::get(L->getType()));
 | |
|       markInstructionForDeletion(L);
 | |
|       ++NumGVNLoad;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // findLeader - In order to find a leader for a given value number at a
 | |
| // specific basic block, we first obtain the list of all Values for that number,
 | |
| // and then scan the list to find one whose block dominates the block in
 | |
| // question.  This is fast because dominator tree queries consist of only
 | |
| // a few comparisons of DFS numbers.
 | |
| Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
 | |
|   LeaderTableEntry Vals = LeaderTable[num];
 | |
|   if (!Vals.Val) return 0;
 | |
| 
 | |
|   Value *Val = 0;
 | |
|   if (DT->dominates(Vals.BB, BB)) {
 | |
|     Val = Vals.Val;
 | |
|     if (isa<Constant>(Val)) return Val;
 | |
|   }
 | |
| 
 | |
|   LeaderTableEntry* Next = Vals.Next;
 | |
|   while (Next) {
 | |
|     if (DT->dominates(Next->BB, BB)) {
 | |
|       if (isa<Constant>(Next->Val)) return Next->Val;
 | |
|       if (!Val) Val = Next->Val;
 | |
|     }
 | |
| 
 | |
|     Next = Next->Next;
 | |
|   }
 | |
| 
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| /// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
 | |
| /// use is dominated by the given basic block.  Returns the number of uses that
 | |
| /// were replaced.
 | |
| unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
 | |
|                                           const BasicBlockEdge &Root) {
 | |
|   unsigned Count = 0;
 | |
|   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
 | |
|        UI != UE; ) {
 | |
|     Use &U = (UI++).getUse();
 | |
| 
 | |
|     if (DT->dominates(Root, U)) {
 | |
|       U.set(To);
 | |
|       ++Count;
 | |
|     }
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| /// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
 | |
| /// true if every path from the entry block to 'Dst' passes via this edge.  In
 | |
| /// particular 'Dst' must not be reachable via another edge from 'Src'.
 | |
| static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
 | |
|                                        DominatorTree *DT) {
 | |
|   // While in theory it is interesting to consider the case in which Dst has
 | |
|   // more than one predecessor, because Dst might be part of a loop which is
 | |
|   // only reachable from Src, in practice it is pointless since at the time
 | |
|   // GVN runs all such loops have preheaders, which means that Dst will have
 | |
|   // been changed to have only one predecessor, namely Src.
 | |
|   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
 | |
|   const BasicBlock *Src = E.getStart();
 | |
|   assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
 | |
|   (void)Src;
 | |
|   return Pred != 0;
 | |
| }
 | |
| 
 | |
| /// propagateEquality - The given values are known to be equal in every block
 | |
| /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
 | |
| /// 'RHS' everywhere in the scope.  Returns whether a change was made.
 | |
| bool GVN::propagateEquality(Value *LHS, Value *RHS,
 | |
|                             const BasicBlockEdge &Root) {
 | |
|   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
 | |
|   Worklist.push_back(std::make_pair(LHS, RHS));
 | |
|   bool Changed = false;
 | |
|   // For speed, compute a conservative fast approximation to
 | |
|   // DT->dominates(Root, Root.getEnd());
 | |
|   bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
 | |
| 
 | |
|   while (!Worklist.empty()) {
 | |
|     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
 | |
|     LHS = Item.first; RHS = Item.second;
 | |
| 
 | |
|     if (LHS == RHS) continue;
 | |
|     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
 | |
| 
 | |
|     // Don't try to propagate equalities between constants.
 | |
|     if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
 | |
| 
 | |
|     // Prefer a constant on the right-hand side, or an Argument if no constants.
 | |
|     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
 | |
|       std::swap(LHS, RHS);
 | |
|     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
 | |
| 
 | |
|     // If there is no obvious reason to prefer the left-hand side over the right-
 | |
|     // hand side, ensure the longest lived term is on the right-hand side, so the
 | |
|     // shortest lived term will be replaced by the longest lived.  This tends to
 | |
|     // expose more simplifications.
 | |
|     uint32_t LVN = VN.lookup_or_add(LHS);
 | |
|     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
 | |
|         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
 | |
|       // Move the 'oldest' value to the right-hand side, using the value number as
 | |
|       // a proxy for age.
 | |
|       uint32_t RVN = VN.lookup_or_add(RHS);
 | |
|       if (LVN < RVN) {
 | |
|         std::swap(LHS, RHS);
 | |
|         LVN = RVN;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If value numbering later sees that an instruction in the scope is equal
 | |
|     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
 | |
|     // the invariant that instructions only occur in the leader table for their
 | |
|     // own value number (this is used by removeFromLeaderTable), do not do this
 | |
|     // if RHS is an instruction (if an instruction in the scope is morphed into
 | |
|     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
 | |
|     // using the leader table is about compiling faster, not optimizing better).
 | |
|     // The leader table only tracks basic blocks, not edges. Only add to if we
 | |
|     // have the simple case where the edge dominates the end.
 | |
|     if (RootDominatesEnd && !isa<Instruction>(RHS))
 | |
|       addToLeaderTable(LVN, RHS, Root.getEnd());
 | |
| 
 | |
|     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
 | |
|     // LHS always has at least one use that is not dominated by Root, this will
 | |
|     // never do anything if LHS has only one use.
 | |
|     if (!LHS->hasOneUse()) {
 | |
|       unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
 | |
|       Changed |= NumReplacements > 0;
 | |
|       NumGVNEqProp += NumReplacements;
 | |
|     }
 | |
| 
 | |
|     // Now try to deduce additional equalities from this one.  For example, if the
 | |
|     // known equality was "(A != B)" == "false" then it follows that A and B are
 | |
|     // equal in the scope.  Only boolean equalities with an explicit true or false
 | |
|     // RHS are currently supported.
 | |
|     if (!RHS->getType()->isIntegerTy(1))
 | |
|       // Not a boolean equality - bail out.
 | |
|       continue;
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
 | |
|     if (!CI)
 | |
|       // RHS neither 'true' nor 'false' - bail out.
 | |
|       continue;
 | |
|     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
 | |
|     bool isKnownTrue = CI->isAllOnesValue();
 | |
|     bool isKnownFalse = !isKnownTrue;
 | |
| 
 | |
|     // If "A && B" is known true then both A and B are known true.  If "A || B"
 | |
|     // is known false then both A and B are known false.
 | |
|     Value *A, *B;
 | |
|     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
 | |
|         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
 | |
|       Worklist.push_back(std::make_pair(A, RHS));
 | |
|       Worklist.push_back(std::make_pair(B, RHS));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If we are propagating an equality like "(A == B)" == "true" then also
 | |
|     // propagate the equality A == B.  When propagating a comparison such as
 | |
|     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
 | |
|     if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
 | |
|       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
 | |
| 
 | |
|       // If "A == B" is known true, or "A != B" is known false, then replace
 | |
|       // A with B everywhere in the scope.
 | |
|       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
 | |
|           (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
 | |
|         Worklist.push_back(std::make_pair(Op0, Op1));
 | |
| 
 | |
|       // If "A >= B" is known true, replace "A < B" with false everywhere.
 | |
|       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
 | |
|       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
 | |
|       // Since we don't have the instruction "A < B" immediately to hand, work out
 | |
|       // the value number that it would have and use that to find an appropriate
 | |
|       // instruction (if any).
 | |
|       uint32_t NextNum = VN.getNextUnusedValueNumber();
 | |
|       uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
 | |
|       // If the number we were assigned was brand new then there is no point in
 | |
|       // looking for an instruction realizing it: there cannot be one!
 | |
|       if (Num < NextNum) {
 | |
|         Value *NotCmp = findLeader(Root.getEnd(), Num);
 | |
|         if (NotCmp && isa<Instruction>(NotCmp)) {
 | |
|           unsigned NumReplacements =
 | |
|             replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
 | |
|           Changed |= NumReplacements > 0;
 | |
|           NumGVNEqProp += NumReplacements;
 | |
|         }
 | |
|       }
 | |
|       // Ensure that any instruction in scope that gets the "A < B" value number
 | |
|       // is replaced with false.
 | |
|       // The leader table only tracks basic blocks, not edges. Only add to if we
 | |
|       // have the simple case where the edge dominates the end.
 | |
|       if (RootDominatesEnd)
 | |
|         addToLeaderTable(Num, NotVal, Root.getEnd());
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// processInstruction - When calculating availability, handle an instruction
 | |
| /// by inserting it into the appropriate sets
 | |
| bool GVN::processInstruction(Instruction *I) {
 | |
|   // Ignore dbg info intrinsics.
 | |
|   if (isa<DbgInfoIntrinsic>(I))
 | |
|     return false;
 | |
| 
 | |
|   // If the instruction can be easily simplified then do so now in preference
 | |
|   // to value numbering it.  Value numbering often exposes redundancies, for
 | |
|   // example if it determines that %y is equal to %x then the instruction
 | |
|   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
 | |
|   if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
 | |
|     I->replaceAllUsesWith(V);
 | |
|     if (MD && V->getType()->isPointerTy())
 | |
|       MD->invalidateCachedPointerInfo(V);
 | |
|     markInstructionForDeletion(I);
 | |
|     ++NumGVNSimpl;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|     if (processLoad(LI))
 | |
|       return true;
 | |
| 
 | |
|     unsigned Num = VN.lookup_or_add(LI);
 | |
|     addToLeaderTable(Num, LI, LI->getParent());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // For conditional branches, we can perform simple conditional propagation on
 | |
|   // the condition value itself.
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
 | |
|     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
 | |
|       return false;
 | |
| 
 | |
|     Value *BranchCond = BI->getCondition();
 | |
| 
 | |
|     BasicBlock *TrueSucc = BI->getSuccessor(0);
 | |
|     BasicBlock *FalseSucc = BI->getSuccessor(1);
 | |
|     // Avoid multiple edges early.
 | |
|     if (TrueSucc == FalseSucc)
 | |
|       return false;
 | |
| 
 | |
|     BasicBlock *Parent = BI->getParent();
 | |
|     bool Changed = false;
 | |
| 
 | |
|     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
 | |
|     BasicBlockEdge TrueE(Parent, TrueSucc);
 | |
|     Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
 | |
| 
 | |
|     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
 | |
|     BasicBlockEdge FalseE(Parent, FalseSucc);
 | |
|     Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
 | |
| 
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   // For switches, propagate the case values into the case destinations.
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
 | |
|     Value *SwitchCond = SI->getCondition();
 | |
|     BasicBlock *Parent = SI->getParent();
 | |
|     bool Changed = false;
 | |
| 
 | |
|     // Remember how many outgoing edges there are to every successor.
 | |
|     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
 | |
|     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
 | |
|       ++SwitchEdges[SI->getSuccessor(i)];
 | |
| 
 | |
|     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
 | |
|          i != e; ++i) {
 | |
|       BasicBlock *Dst = i.getCaseSuccessor();
 | |
|       // If there is only a single edge, propagate the case value into it.
 | |
|       if (SwitchEdges.lookup(Dst) == 1) {
 | |
|         BasicBlockEdge E(Parent, Dst);
 | |
|         Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
 | |
|       }
 | |
|     }
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   // Instructions with void type don't return a value, so there's
 | |
|   // no point in trying to find redundancies in them.
 | |
|   if (I->getType()->isVoidTy()) return false;
 | |
| 
 | |
|   uint32_t NextNum = VN.getNextUnusedValueNumber();
 | |
|   unsigned Num = VN.lookup_or_add(I);
 | |
| 
 | |
|   // Allocations are always uniquely numbered, so we can save time and memory
 | |
|   // by fast failing them.
 | |
|   if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
 | |
|     addToLeaderTable(Num, I, I->getParent());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If the number we were assigned was a brand new VN, then we don't
 | |
|   // need to do a lookup to see if the number already exists
 | |
|   // somewhere in the domtree: it can't!
 | |
|   if (Num >= NextNum) {
 | |
|     addToLeaderTable(Num, I, I->getParent());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Perform fast-path value-number based elimination of values inherited from
 | |
|   // dominators.
 | |
|   Value *repl = findLeader(I->getParent(), Num);
 | |
|   if (repl == 0) {
 | |
|     // Failure, just remember this instance for future use.
 | |
|     addToLeaderTable(Num, I, I->getParent());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Remove it!
 | |
|   patchAndReplaceAllUsesWith(repl, I);
 | |
|   if (MD && repl->getType()->isPointerTy())
 | |
|     MD->invalidateCachedPointerInfo(repl);
 | |
|   markInstructionForDeletion(I);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// runOnFunction - This is the main transformation entry point for a function.
 | |
| bool GVN::runOnFunction(Function& F) {
 | |
|   if (!NoLoads)
 | |
|     MD = &getAnalysis<MemoryDependenceAnalysis>();
 | |
|   DT = &getAnalysis<DominatorTree>();
 | |
|   TD = getAnalysisIfAvailable<TargetData>();
 | |
|   TLI = &getAnalysis<TargetLibraryInfo>();
 | |
|   VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
 | |
|   VN.setMemDep(MD);
 | |
|   VN.setDomTree(DT);
 | |
| 
 | |
|   bool Changed = false;
 | |
|   bool ShouldContinue = true;
 | |
| 
 | |
|   // Merge unconditional branches, allowing PRE to catch more
 | |
|   // optimization opportunities.
 | |
|   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
 | |
|     BasicBlock *BB = FI++;
 | |
| 
 | |
|     bool removedBlock = MergeBlockIntoPredecessor(BB, this);
 | |
|     if (removedBlock) ++NumGVNBlocks;
 | |
| 
 | |
|     Changed |= removedBlock;
 | |
|   }
 | |
| 
 | |
|   unsigned Iteration = 0;
 | |
|   while (ShouldContinue) {
 | |
|     DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
 | |
|     ShouldContinue = iterateOnFunction(F);
 | |
|     if (splitCriticalEdges())
 | |
|       ShouldContinue = true;
 | |
|     Changed |= ShouldContinue;
 | |
|     ++Iteration;
 | |
|   }
 | |
| 
 | |
|   if (EnablePRE) {
 | |
|     bool PREChanged = true;
 | |
|     while (PREChanged) {
 | |
|       PREChanged = performPRE(F);
 | |
|       Changed |= PREChanged;
 | |
|     }
 | |
|   }
 | |
|   // FIXME: Should perform GVN again after PRE does something.  PRE can move
 | |
|   // computations into blocks where they become fully redundant.  Note that
 | |
|   // we can't do this until PRE's critical edge splitting updates memdep.
 | |
|   // Actually, when this happens, we should just fully integrate PRE into GVN.
 | |
| 
 | |
|   cleanupGlobalSets();
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool GVN::processBlock(BasicBlock *BB) {
 | |
|   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
 | |
|   // (and incrementing BI before processing an instruction).
 | |
|   assert(InstrsToErase.empty() &&
 | |
|          "We expect InstrsToErase to be empty across iterations");
 | |
|   bool ChangedFunction = false;
 | |
| 
 | |
|   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
 | |
|        BI != BE;) {
 | |
|     ChangedFunction |= processInstruction(BI);
 | |
|     if (InstrsToErase.empty()) {
 | |
|       ++BI;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If we need some instructions deleted, do it now.
 | |
|     NumGVNInstr += InstrsToErase.size();
 | |
| 
 | |
|     // Avoid iterator invalidation.
 | |
|     bool AtStart = BI == BB->begin();
 | |
|     if (!AtStart)
 | |
|       --BI;
 | |
| 
 | |
|     for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
 | |
|          E = InstrsToErase.end(); I != E; ++I) {
 | |
|       DEBUG(dbgs() << "GVN removed: " << **I << '\n');
 | |
|       if (MD) MD->removeInstruction(*I);
 | |
|       (*I)->eraseFromParent();
 | |
|       DEBUG(verifyRemoved(*I));
 | |
|     }
 | |
|     InstrsToErase.clear();
 | |
| 
 | |
|     if (AtStart)
 | |
|       BI = BB->begin();
 | |
|     else
 | |
|       ++BI;
 | |
|   }
 | |
| 
 | |
|   return ChangedFunction;
 | |
| }
 | |
| 
 | |
| /// performPRE - Perform a purely local form of PRE that looks for diamond
 | |
| /// control flow patterns and attempts to perform simple PRE at the join point.
 | |
| bool GVN::performPRE(Function &F) {
 | |
|   bool Changed = false;
 | |
|   DenseMap<BasicBlock*, Value*> predMap;
 | |
|   for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
 | |
|        DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
 | |
|     BasicBlock *CurrentBlock = *DI;
 | |
| 
 | |
|     // Nothing to PRE in the entry block.
 | |
|     if (CurrentBlock == &F.getEntryBlock()) continue;
 | |
| 
 | |
|     // Don't perform PRE on a landing pad.
 | |
|     if (CurrentBlock->isLandingPad()) continue;
 | |
| 
 | |
|     for (BasicBlock::iterator BI = CurrentBlock->begin(),
 | |
|          BE = CurrentBlock->end(); BI != BE; ) {
 | |
|       Instruction *CurInst = BI++;
 | |
| 
 | |
|       if (isa<AllocaInst>(CurInst) ||
 | |
|           isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
 | |
|           CurInst->getType()->isVoidTy() ||
 | |
|           CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
 | |
|           isa<DbgInfoIntrinsic>(CurInst))
 | |
|         continue;
 | |
| 
 | |
|       // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
 | |
|       // sinking the compare again, and it would force the code generator to
 | |
|       // move the i1 from processor flags or predicate registers into a general
 | |
|       // purpose register.
 | |
|       if (isa<CmpInst>(CurInst))
 | |
|         continue;
 | |
| 
 | |
|       // We don't currently value number ANY inline asm calls.
 | |
|       if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
 | |
|         if (CallI->isInlineAsm())
 | |
|           continue;
 | |
| 
 | |
|       uint32_t ValNo = VN.lookup(CurInst);
 | |
| 
 | |
|       // Look for the predecessors for PRE opportunities.  We're
 | |
|       // only trying to solve the basic diamond case, where
 | |
|       // a value is computed in the successor and one predecessor,
 | |
|       // but not the other.  We also explicitly disallow cases
 | |
|       // where the successor is its own predecessor, because they're
 | |
|       // more complicated to get right.
 | |
|       unsigned NumWith = 0;
 | |
|       unsigned NumWithout = 0;
 | |
|       BasicBlock *PREPred = 0;
 | |
|       predMap.clear();
 | |
| 
 | |
|       for (pred_iterator PI = pred_begin(CurrentBlock),
 | |
|            PE = pred_end(CurrentBlock); PI != PE; ++PI) {
 | |
|         BasicBlock *P = *PI;
 | |
|         // We're not interested in PRE where the block is its
 | |
|         // own predecessor, or in blocks with predecessors
 | |
|         // that are not reachable.
 | |
|         if (P == CurrentBlock) {
 | |
|           NumWithout = 2;
 | |
|           break;
 | |
|         } else if (!DT->dominates(&F.getEntryBlock(), P))  {
 | |
|           NumWithout = 2;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         Value* predV = findLeader(P, ValNo);
 | |
|         if (predV == 0) {
 | |
|           PREPred = P;
 | |
|           ++NumWithout;
 | |
|         } else if (predV == CurInst) {
 | |
|           NumWithout = 2;
 | |
|         } else {
 | |
|           predMap[P] = predV;
 | |
|           ++NumWith;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Don't do PRE when it might increase code size, i.e. when
 | |
|       // we would need to insert instructions in more than one pred.
 | |
|       if (NumWithout != 1 || NumWith == 0)
 | |
|         continue;
 | |
| 
 | |
|       // Don't do PRE across indirect branch.
 | |
|       if (isa<IndirectBrInst>(PREPred->getTerminator()))
 | |
|         continue;
 | |
| 
 | |
|       // We can't do PRE safely on a critical edge, so instead we schedule
 | |
|       // the edge to be split and perform the PRE the next time we iterate
 | |
|       // on the function.
 | |
|       unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
 | |
|       if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
 | |
|         toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Instantiate the expression in the predecessor that lacked it.
 | |
|       // Because we are going top-down through the block, all value numbers
 | |
|       // will be available in the predecessor by the time we need them.  Any
 | |
|       // that weren't originally present will have been instantiated earlier
 | |
|       // in this loop.
 | |
|       Instruction *PREInstr = CurInst->clone();
 | |
|       bool success = true;
 | |
|       for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
 | |
|         Value *Op = PREInstr->getOperand(i);
 | |
|         if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
 | |
|           continue;
 | |
| 
 | |
|         if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
 | |
|           PREInstr->setOperand(i, V);
 | |
|         } else {
 | |
|           success = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Fail out if we encounter an operand that is not available in
 | |
|       // the PRE predecessor.  This is typically because of loads which
 | |
|       // are not value numbered precisely.
 | |
|       if (!success) {
 | |
|         delete PREInstr;
 | |
|         DEBUG(verifyRemoved(PREInstr));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       PREInstr->insertBefore(PREPred->getTerminator());
 | |
|       PREInstr->setName(CurInst->getName() + ".pre");
 | |
|       PREInstr->setDebugLoc(CurInst->getDebugLoc());
 | |
|       predMap[PREPred] = PREInstr;
 | |
|       VN.add(PREInstr, ValNo);
 | |
|       ++NumGVNPRE;
 | |
| 
 | |
|       // Update the availability map to include the new instruction.
 | |
|       addToLeaderTable(ValNo, PREInstr, PREPred);
 | |
| 
 | |
|       // Create a PHI to make the value available in this block.
 | |
|       pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
 | |
|       PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
 | |
|                                      CurInst->getName() + ".pre-phi",
 | |
|                                      CurrentBlock->begin());
 | |
|       for (pred_iterator PI = PB; PI != PE; ++PI) {
 | |
|         BasicBlock *P = *PI;
 | |
|         Phi->addIncoming(predMap[P], P);
 | |
|       }
 | |
| 
 | |
|       VN.add(Phi, ValNo);
 | |
|       addToLeaderTable(ValNo, Phi, CurrentBlock);
 | |
|       Phi->setDebugLoc(CurInst->getDebugLoc());
 | |
|       CurInst->replaceAllUsesWith(Phi);
 | |
|       if (Phi->getType()->isPointerTy()) {
 | |
|         // Because we have added a PHI-use of the pointer value, it has now
 | |
|         // "escaped" from alias analysis' perspective.  We need to inform
 | |
|         // AA of this.
 | |
|         for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
 | |
|              ++ii) {
 | |
|           unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
 | |
|           VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
 | |
|         }
 | |
| 
 | |
|         if (MD)
 | |
|           MD->invalidateCachedPointerInfo(Phi);
 | |
|       }
 | |
|       VN.erase(CurInst);
 | |
|       removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
 | |
| 
 | |
|       DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
 | |
|       if (MD) MD->removeInstruction(CurInst);
 | |
|       CurInst->eraseFromParent();
 | |
|       DEBUG(verifyRemoved(CurInst));
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (splitCriticalEdges())
 | |
|     Changed = true;
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// splitCriticalEdges - Split critical edges found during the previous
 | |
| /// iteration that may enable further optimization.
 | |
| bool GVN::splitCriticalEdges() {
 | |
|   if (toSplit.empty())
 | |
|     return false;
 | |
|   do {
 | |
|     std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
 | |
|     SplitCriticalEdge(Edge.first, Edge.second, this);
 | |
|   } while (!toSplit.empty());
 | |
|   if (MD) MD->invalidateCachedPredecessors();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// iterateOnFunction - Executes one iteration of GVN
 | |
| bool GVN::iterateOnFunction(Function &F) {
 | |
|   cleanupGlobalSets();
 | |
| 
 | |
|   // Top-down walk of the dominator tree
 | |
|   bool Changed = false;
 | |
| #if 0
 | |
|   // Needed for value numbering with phi construction to work.
 | |
|   ReversePostOrderTraversal<Function*> RPOT(&F);
 | |
|   for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
 | |
|        RE = RPOT.end(); RI != RE; ++RI)
 | |
|     Changed |= processBlock(*RI);
 | |
| #else
 | |
|   for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
 | |
|        DE = df_end(DT->getRootNode()); DI != DE; ++DI)
 | |
|     Changed |= processBlock(DI->getBlock());
 | |
| #endif
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void GVN::cleanupGlobalSets() {
 | |
|   VN.clear();
 | |
|   LeaderTable.clear();
 | |
|   TableAllocator.Reset();
 | |
| }
 | |
| 
 | |
| /// verifyRemoved - Verify that the specified instruction does not occur in our
 | |
| /// internal data structures.
 | |
| void GVN::verifyRemoved(const Instruction *Inst) const {
 | |
|   VN.verifyRemoved(Inst);
 | |
| 
 | |
|   // Walk through the value number scope to make sure the instruction isn't
 | |
|   // ferreted away in it.
 | |
|   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
 | |
|        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
 | |
|     const LeaderTableEntry *Node = &I->second;
 | |
|     assert(Node->Val != Inst && "Inst still in value numbering scope!");
 | |
| 
 | |
|     while (Node->Next) {
 | |
|       Node = Node->Next;
 | |
|       assert(Node->Val != Inst && "Inst still in value numbering scope!");
 | |
|     }
 | |
|   }
 | |
| }
 |