mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	MSVC8 won't compile lower_bound if one is missing. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164035 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2821 lines
		
	
	
		
			107 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2821 lines
		
	
	
		
			107 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This transformation implements the well known scalar replacement of
 | |
| /// aggregates transformation. It tries to identify promotable elements of an
 | |
| /// aggregate alloca, and promote them to registers. It will also try to
 | |
| /// convert uses of an element (or set of elements) of an alloca into a vector
 | |
| /// or bitfield-style integer scalar if appropriate.
 | |
| ///
 | |
| /// It works to do this with minimal slicing of the alloca so that regions
 | |
| /// which are merely transferred in and out of external memory remain unchanged
 | |
| /// and are not decomposed to scalar code.
 | |
| ///
 | |
| /// Because this also performs alloca promotion, it can be thought of as also
 | |
| /// serving the purpose of SSA formation. The algorithm iterates on the
 | |
| /// function until all opportunities for promotion have been realized.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "sroa"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DIBuilder.h"
 | |
| #include "llvm/DebugInfo.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/IRBuilder.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/TinyPtrVector.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdater.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
 | |
| STATISTIC(NumNewAllocas,      "Number of new, smaller allocas introduced");
 | |
| STATISTIC(NumPromoted,        "Number of allocas promoted to SSA values");
 | |
| STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
 | |
| STATISTIC(NumDeleted,         "Number of instructions deleted");
 | |
| STATISTIC(NumVectorized,      "Number of vectorized aggregates");
 | |
| 
 | |
| /// Hidden option to force the pass to not use DomTree and mem2reg, instead
 | |
| /// forming SSA values through the SSAUpdater infrastructure.
 | |
| static cl::opt<bool>
 | |
| ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
| /// \brief Alloca partitioning representation.
 | |
| ///
 | |
| /// This class represents a partitioning of an alloca into slices, and
 | |
| /// information about the nature of uses of each slice of the alloca. The goal
 | |
| /// is that this information is sufficient to decide if and how to split the
 | |
| /// alloca apart and replace slices with scalars. It is also intended that this
 | |
| /// structure can capture the relevant information needed both to decide about
 | |
| /// and to enact these transformations.
 | |
| class AllocaPartitioning {
 | |
| public:
 | |
|   /// \brief A common base class for representing a half-open byte range.
 | |
|   struct ByteRange {
 | |
|     /// \brief The beginning offset of the range.
 | |
|     uint64_t BeginOffset;
 | |
| 
 | |
|     /// \brief The ending offset, not included in the range.
 | |
|     uint64_t EndOffset;
 | |
| 
 | |
|     ByteRange() : BeginOffset(), EndOffset() {}
 | |
|     ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
 | |
|         : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
 | |
| 
 | |
|     /// \brief Support for ordering ranges.
 | |
|     ///
 | |
|     /// This provides an ordering over ranges such that start offsets are
 | |
|     /// always increasing, and within equal start offsets, the end offsets are
 | |
|     /// decreasing. Thus the spanning range comes first in a cluster with the
 | |
|     /// same start position.
 | |
|     bool operator<(const ByteRange &RHS) const {
 | |
|       if (BeginOffset < RHS.BeginOffset) return true;
 | |
|       if (BeginOffset > RHS.BeginOffset) return false;
 | |
|       if (EndOffset > RHS.EndOffset) return true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     /// \brief Support comparison with a single offset to allow binary searches.
 | |
|     friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
 | |
|       return LHS.BeginOffset < RHSOffset;
 | |
|     }
 | |
| 
 | |
|     friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
 | |
|                                                 const ByteRange &RHS) {
 | |
|       return LHSOffset < RHS.BeginOffset;
 | |
|     }
 | |
| 
 | |
|     bool operator==(const ByteRange &RHS) const {
 | |
|       return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
 | |
|     }
 | |
|     bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
 | |
|   };
 | |
| 
 | |
|   /// \brief A partition of an alloca.
 | |
|   ///
 | |
|   /// This structure represents a contiguous partition of the alloca. These are
 | |
|   /// formed by examining the uses of the alloca. During formation, they may
 | |
|   /// overlap but once an AllocaPartitioning is built, the Partitions within it
 | |
|   /// are all disjoint.
 | |
|   struct Partition : public ByteRange {
 | |
|     /// \brief Whether this partition is splittable into smaller partitions.
 | |
|     ///
 | |
|     /// We flag partitions as splittable when they are formed entirely due to
 | |
|     /// accesses by trivially splittable operations such as memset and memcpy.
 | |
|     ///
 | |
|     /// FIXME: At some point we should consider loads and stores of FCAs to be
 | |
|     /// splittable and eagerly split them into scalar values.
 | |
|     bool IsSplittable;
 | |
| 
 | |
|     Partition() : ByteRange(), IsSplittable() {}
 | |
|     Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
 | |
|         : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
 | |
|   };
 | |
| 
 | |
|   /// \brief A particular use of a partition of the alloca.
 | |
|   ///
 | |
|   /// This structure is used to associate uses of a partition with it. They
 | |
|   /// mark the range of bytes which are referenced by a particular instruction,
 | |
|   /// and includes a handle to the user itself and the pointer value in use.
 | |
|   /// The bounds of these uses are determined by intersecting the bounds of the
 | |
|   /// memory use itself with a particular partition. As a consequence there is
 | |
|   /// intentionally overlap between various uses of the same partition.
 | |
|   struct PartitionUse : public ByteRange {
 | |
|     /// \brief The user of this range of the alloca.
 | |
|     AssertingVH<Instruction> User;
 | |
| 
 | |
|     /// \brief The particular pointer value derived from this alloca in use.
 | |
|     AssertingVH<Instruction> Ptr;
 | |
| 
 | |
|     PartitionUse() : ByteRange(), User(), Ptr() {}
 | |
|     PartitionUse(uint64_t BeginOffset, uint64_t EndOffset,
 | |
|                  Instruction *User, Instruction *Ptr)
 | |
|         : ByteRange(BeginOffset, EndOffset), User(User), Ptr(Ptr) {}
 | |
|   };
 | |
| 
 | |
|   /// \brief Construct a partitioning of a particular alloca.
 | |
|   ///
 | |
|   /// Construction does most of the work for partitioning the alloca. This
 | |
|   /// performs the necessary walks of users and builds a partitioning from it.
 | |
|   AllocaPartitioning(const TargetData &TD, AllocaInst &AI);
 | |
| 
 | |
|   /// \brief Test whether a pointer to the allocation escapes our analysis.
 | |
|   ///
 | |
|   /// If this is true, the partitioning is never fully built and should be
 | |
|   /// ignored.
 | |
|   bool isEscaped() const { return PointerEscapingInstr; }
 | |
| 
 | |
|   /// \brief Support for iterating over the partitions.
 | |
|   /// @{
 | |
|   typedef SmallVectorImpl<Partition>::iterator iterator;
 | |
|   iterator begin() { return Partitions.begin(); }
 | |
|   iterator end() { return Partitions.end(); }
 | |
| 
 | |
|   typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
 | |
|   const_iterator begin() const { return Partitions.begin(); }
 | |
|   const_iterator end() const { return Partitions.end(); }
 | |
|   /// @}
 | |
| 
 | |
|   /// \brief Support for iterating over and manipulating a particular
 | |
|   /// partition's uses.
 | |
|   ///
 | |
|   /// The iteration support provided for uses is more limited, but also
 | |
|   /// includes some manipulation routines to support rewriting the uses of
 | |
|   /// partitions during SROA.
 | |
|   /// @{
 | |
|   typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
 | |
|   use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
 | |
|   use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
 | |
|   use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
 | |
|   use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
 | |
|   void use_insert(unsigned Idx, use_iterator UI, const PartitionUse &U) {
 | |
|     Uses[Idx].insert(UI, U);
 | |
|   }
 | |
|   void use_insert(const_iterator I, use_iterator UI, const PartitionUse &U) {
 | |
|     Uses[I - begin()].insert(UI, U);
 | |
|   }
 | |
|   void use_erase(unsigned Idx, use_iterator UI) { Uses[Idx].erase(UI); }
 | |
|   void use_erase(const_iterator I, use_iterator UI) {
 | |
|     Uses[I - begin()].erase(UI);
 | |
|   }
 | |
| 
 | |
|   typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
 | |
|   const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
 | |
|   const_use_iterator use_begin(const_iterator I) const {
 | |
|     return Uses[I - begin()].begin();
 | |
|   }
 | |
|   const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
 | |
|   const_use_iterator use_end(const_iterator I) const {
 | |
|     return Uses[I - begin()].end();
 | |
|   }
 | |
|   /// @}
 | |
| 
 | |
|   /// \brief Allow iterating the dead users for this alloca.
 | |
|   ///
 | |
|   /// These are instructions which will never actually use the alloca as they
 | |
|   /// are outside the allocated range. They are safe to replace with undef and
 | |
|   /// delete.
 | |
|   /// @{
 | |
|   typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
 | |
|   dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
 | |
|   dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
 | |
|   /// @}
 | |
| 
 | |
|   /// \brief Allow iterating the dead expressions referring to this alloca.
 | |
|   ///
 | |
|   /// These are operands which have cannot actually be used to refer to the
 | |
|   /// alloca as they are outside its range and the user doesn't correct for
 | |
|   /// that. These mostly consist of PHI node inputs and the like which we just
 | |
|   /// need to replace with undef.
 | |
|   /// @{
 | |
|   typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
 | |
|   dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
 | |
|   dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
 | |
|   /// @}
 | |
| 
 | |
|   /// \brief MemTransferInst auxiliary data.
 | |
|   /// This struct provides some auxiliary data about memory transfer
 | |
|   /// intrinsics such as memcpy and memmove. These intrinsics can use two
 | |
|   /// different ranges within the same alloca, and provide other challenges to
 | |
|   /// correctly represent. We stash extra data to help us untangle this
 | |
|   /// after the partitioning is complete.
 | |
|   struct MemTransferOffsets {
 | |
|     uint64_t DestBegin, DestEnd;
 | |
|     uint64_t SourceBegin, SourceEnd;
 | |
|     bool IsSplittable;
 | |
|   };
 | |
|   MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
 | |
|     return MemTransferInstData.lookup(&II);
 | |
|   }
 | |
| 
 | |
|   /// \brief Map from a PHI or select operand back to a partition.
 | |
|   ///
 | |
|   /// When manipulating PHI nodes or selects, they can use more than one
 | |
|   /// partition of an alloca. We store a special mapping to allow finding the
 | |
|   /// partition referenced by each of these operands, if any.
 | |
|   iterator findPartitionForPHIOrSelectOperand(Instruction &I, Value *Op) {
 | |
|     SmallDenseMap<std::pair<Instruction *, Value *>,
 | |
|                   std::pair<unsigned, unsigned> >::const_iterator MapIt
 | |
|       = PHIOrSelectOpMap.find(std::make_pair(&I, Op));
 | |
|     if (MapIt == PHIOrSelectOpMap.end())
 | |
|       return end();
 | |
| 
 | |
|     return begin() + MapIt->second.first;
 | |
|   }
 | |
| 
 | |
|   /// \brief Map from a PHI or select operand back to the specific use of
 | |
|   /// a partition.
 | |
|   ///
 | |
|   /// Similar to mapping these operands back to the partitions, this maps
 | |
|   /// directly to the use structure of that partition.
 | |
|   use_iterator findPartitionUseForPHIOrSelectOperand(Instruction &I,
 | |
|                                                      Value *Op) {
 | |
|     SmallDenseMap<std::pair<Instruction *, Value *>,
 | |
|                   std::pair<unsigned, unsigned> >::const_iterator MapIt
 | |
|       = PHIOrSelectOpMap.find(std::make_pair(&I, Op));
 | |
|     assert(MapIt != PHIOrSelectOpMap.end());
 | |
|     return Uses[MapIt->second.first].begin() + MapIt->second.second;
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute a common type among the uses of a particular partition.
 | |
|   ///
 | |
|   /// This routines walks all of the uses of a particular partition and tries
 | |
|   /// to find a common type between them. Untyped operations such as memset and
 | |
|   /// memcpy are ignored.
 | |
|   Type *getCommonType(iterator I) const;
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
 | |
|   void printUsers(raw_ostream &OS, const_iterator I,
 | |
|                   StringRef Indent = "  ") const;
 | |
|   void print(raw_ostream &OS) const;
 | |
|   void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
 | |
|   void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
 | |
| #endif
 | |
| 
 | |
| private:
 | |
|   template <typename DerivedT, typename RetT = void> class BuilderBase;
 | |
|   class PartitionBuilder;
 | |
|   friend class AllocaPartitioning::PartitionBuilder;
 | |
|   class UseBuilder;
 | |
|   friend class AllocaPartitioning::UseBuilder;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   /// \brief Handle to alloca instruction to simplify method interfaces.
 | |
|   AllocaInst &AI;
 | |
| #endif
 | |
| 
 | |
|   /// \brief The instruction responsible for this alloca having no partitioning.
 | |
|   ///
 | |
|   /// When an instruction (potentially) escapes the pointer to the alloca, we
 | |
|   /// store a pointer to that here and abort trying to partition the alloca.
 | |
|   /// This will be null if the alloca is partitioned successfully.
 | |
|   Instruction *PointerEscapingInstr;
 | |
| 
 | |
|   /// \brief The partitions of the alloca.
 | |
|   ///
 | |
|   /// We store a vector of the partitions over the alloca here. This vector is
 | |
|   /// sorted by increasing begin offset, and then by decreasing end offset. See
 | |
|   /// the Partition inner class for more details. Initially (during
 | |
|   /// construction) there are overlaps, but we form a disjoint sequence of
 | |
|   /// partitions while finishing construction and a fully constructed object is
 | |
|   /// expected to always have this as a disjoint space.
 | |
|   SmallVector<Partition, 8> Partitions;
 | |
| 
 | |
|   /// \brief The uses of the partitions.
 | |
|   ///
 | |
|   /// This is essentially a mapping from each partition to a list of uses of
 | |
|   /// that partition. The mapping is done with a Uses vector that has the exact
 | |
|   /// same number of entries as the partition vector. Each entry is itself
 | |
|   /// a vector of the uses.
 | |
|   SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
 | |
| 
 | |
|   /// \brief Instructions which will become dead if we rewrite the alloca.
 | |
|   ///
 | |
|   /// Note that these are not separated by partition. This is because we expect
 | |
|   /// a partitioned alloca to be completely rewritten or not rewritten at all.
 | |
|   /// If rewritten, all these instructions can simply be removed and replaced
 | |
|   /// with undef as they come from outside of the allocated space.
 | |
|   SmallVector<Instruction *, 8> DeadUsers;
 | |
| 
 | |
|   /// \brief Operands which will become dead if we rewrite the alloca.
 | |
|   ///
 | |
|   /// These are operands that in their particular use can be replaced with
 | |
|   /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
 | |
|   /// to PHI nodes and the like. They aren't entirely dead (there might be
 | |
|   /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
 | |
|   /// want to swap this particular input for undef to simplify the use lists of
 | |
|   /// the alloca.
 | |
|   SmallVector<Use *, 8> DeadOperands;
 | |
| 
 | |
|   /// \brief The underlying storage for auxiliary memcpy and memset info.
 | |
|   SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
 | |
| 
 | |
|   /// \brief A side datastructure used when building up the partitions and uses.
 | |
|   ///
 | |
|   /// This mapping is only really used during the initial building of the
 | |
|   /// partitioning so that we can retain information about PHI and select nodes
 | |
|   /// processed.
 | |
|   SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
 | |
| 
 | |
|   /// \brief Auxiliary information for particular PHI or select operands.
 | |
|   SmallDenseMap<std::pair<Instruction *, Value *>,
 | |
|                 std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
 | |
| 
 | |
|   /// \brief A utility routine called from the constructor.
 | |
|   ///
 | |
|   /// This does what it says on the tin. It is the key of the alloca partition
 | |
|   /// splitting and merging. After it is called we have the desired disjoint
 | |
|   /// collection of partitions.
 | |
|   void splitAndMergePartitions();
 | |
| };
 | |
| }
 | |
| 
 | |
| template <typename DerivedT, typename RetT>
 | |
| class AllocaPartitioning::BuilderBase
 | |
|     : public InstVisitor<DerivedT, RetT> {
 | |
| public:
 | |
|   BuilderBase(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P)
 | |
|       : TD(TD),
 | |
|         AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
 | |
|         P(P) {
 | |
|     enqueueUsers(AI, 0);
 | |
|   }
 | |
| 
 | |
| protected:
 | |
|   const TargetData &TD;
 | |
|   const uint64_t AllocSize;
 | |
|   AllocaPartitioning &P;
 | |
| 
 | |
|   struct OffsetUse {
 | |
|     Use *U;
 | |
|     uint64_t Offset;
 | |
|   };
 | |
|   SmallVector<OffsetUse, 8> Queue;
 | |
| 
 | |
|   // The active offset and use while visiting.
 | |
|   Use *U;
 | |
|   uint64_t Offset;
 | |
| 
 | |
|   void enqueueUsers(Instruction &I, uint64_t UserOffset) {
 | |
|     SmallPtrSet<User *, 8> UserSet;
 | |
|     for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       if (!UserSet.insert(*UI))
 | |
|         continue;
 | |
| 
 | |
|       OffsetUse OU = { &UI.getUse(), UserOffset };
 | |
|       Queue.push_back(OU);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool computeConstantGEPOffset(GetElementPtrInst &GEPI, uint64_t &GEPOffset) {
 | |
|     GEPOffset = Offset;
 | |
|     for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI);
 | |
|          GTI != GTE; ++GTI) {
 | |
|       ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
 | |
|       if (!OpC)
 | |
|         return false;
 | |
|       if (OpC->isZero())
 | |
|         continue;
 | |
| 
 | |
|       // Handle a struct index, which adds its field offset to the pointer.
 | |
|       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|         unsigned ElementIdx = OpC->getZExtValue();
 | |
|         const StructLayout *SL = TD.getStructLayout(STy);
 | |
|         GEPOffset += SL->getElementOffset(ElementIdx);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       GEPOffset
 | |
|         += OpC->getZExtValue() * TD.getTypeAllocSize(GTI.getIndexedType());
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Value *foldSelectInst(SelectInst &SI) {
 | |
|     // If the condition being selected on is a constant or the same value is
 | |
|     // being selected between, fold the select. Yes this does (rarely) happen
 | |
|     // early on.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
 | |
|       return SI.getOperand(1+CI->isZero());
 | |
|     if (SI.getOperand(1) == SI.getOperand(2)) {
 | |
|       assert(*U == SI.getOperand(1));
 | |
|       return SI.getOperand(1);
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// \brief Builder for the alloca partitioning.
 | |
| ///
 | |
| /// This class builds an alloca partitioning by recursively visiting the uses
 | |
| /// of an alloca and splitting the partitions for each load and store at each
 | |
| /// offset.
 | |
| class AllocaPartitioning::PartitionBuilder
 | |
|     : public BuilderBase<PartitionBuilder, bool> {
 | |
|   friend class InstVisitor<PartitionBuilder, bool>;
 | |
| 
 | |
|   SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
 | |
| 
 | |
| public:
 | |
|   PartitionBuilder(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P)
 | |
|       : BuilderBase<PartitionBuilder, bool>(TD, AI, P) {}
 | |
| 
 | |
|   /// \brief Run the builder over the allocation.
 | |
|   bool operator()() {
 | |
|     // Note that we have to re-evaluate size on each trip through the loop as
 | |
|     // the queue grows at the tail.
 | |
|     for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
 | |
|       U = Queue[Idx].U;
 | |
|       Offset = Queue[Idx].Offset;
 | |
|       if (!visit(cast<Instruction>(U->getUser())))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   bool markAsEscaping(Instruction &I) {
 | |
|     P.PointerEscapingInstr = &I;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void insertUse(Instruction &I, uint64_t Offset, uint64_t Size,
 | |
|                  bool IsSplittable = false) {
 | |
|     uint64_t BeginOffset = Offset, EndOffset = Offset + Size;
 | |
| 
 | |
|     // Completely skip uses which start outside of the allocation.
 | |
|     if (BeginOffset >= AllocSize) {
 | |
|       DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
 | |
|                    << " which starts past the end of the " << AllocSize
 | |
|                    << " byte alloca:\n"
 | |
|                    << "    alloca: " << P.AI << "\n"
 | |
|                    << "       use: " << I << "\n");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Clamp the size to the allocation.
 | |
|     if (EndOffset > AllocSize) {
 | |
|       DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
 | |
|                    << " to remain within the " << AllocSize << " byte alloca:\n"
 | |
|                    << "    alloca: " << P.AI << "\n"
 | |
|                    << "       use: " << I << "\n");
 | |
|       EndOffset = AllocSize;
 | |
|     }
 | |
| 
 | |
|     // See if we can just add a user onto the last slot currently occupied.
 | |
|     if (!P.Partitions.empty() &&
 | |
|         P.Partitions.back().BeginOffset == BeginOffset &&
 | |
|         P.Partitions.back().EndOffset == EndOffset) {
 | |
|       P.Partitions.back().IsSplittable &= IsSplittable;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Partition New(BeginOffset, EndOffset, IsSplittable);
 | |
|     P.Partitions.push_back(New);
 | |
|   }
 | |
| 
 | |
|   bool handleLoadOrStore(Type *Ty, Instruction &I, uint64_t Offset) {
 | |
|     uint64_t Size = TD.getTypeStoreSize(Ty);
 | |
| 
 | |
|     // If this memory access can be shown to *statically* extend outside the
 | |
|     // bounds of of the allocation, it's behavior is undefined, so simply
 | |
|     // ignore it. Note that this is more strict than the generic clamping
 | |
|     // behavior of insertUse. We also try to handle cases which might run the
 | |
|     // risk of overflow.
 | |
|     // FIXME: We should instead consider the pointer to have escaped if this
 | |
|     // function is being instrumented for addressing bugs or race conditions.
 | |
|     if (Offset >= AllocSize || Size > AllocSize || Offset + Size > AllocSize) {
 | |
|       DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
 | |
|                    << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
 | |
|                    << " which extends past the end of the " << AllocSize
 | |
|                    << " byte alloca:\n"
 | |
|                    << "    alloca: " << P.AI << "\n"
 | |
|                    << "       use: " << I << "\n");
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     insertUse(I, Offset, Size);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitBitCastInst(BitCastInst &BC) {
 | |
|     enqueueUsers(BC, Offset);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
 | |
|     uint64_t GEPOffset;
 | |
|     if (!computeConstantGEPOffset(GEPI, GEPOffset))
 | |
|       return markAsEscaping(GEPI);
 | |
| 
 | |
|     enqueueUsers(GEPI, GEPOffset);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitLoadInst(LoadInst &LI) {
 | |
|     return handleLoadOrStore(LI.getType(), LI, Offset);
 | |
|   }
 | |
| 
 | |
|   bool visitStoreInst(StoreInst &SI) {
 | |
|     if (SI.getOperand(0) == *U)
 | |
|       return markAsEscaping(SI);
 | |
| 
 | |
|     return handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   bool visitMemSetInst(MemSetInst &II) {
 | |
|     assert(II.getRawDest() == *U && "Pointer use is not the destination?");
 | |
|     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
 | |
|     uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
 | |
|     insertUse(II, Offset, Size, Length);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitMemTransferInst(MemTransferInst &II) {
 | |
|     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
 | |
|     uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
 | |
|     if (!Size)
 | |
|       // Zero-length mem transfer intrinsics can be ignored entirely.
 | |
|       return true;
 | |
| 
 | |
|     MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
 | |
| 
 | |
|     // Only intrinsics with a constant length can be split.
 | |
|     Offsets.IsSplittable = Length;
 | |
| 
 | |
|     if (*U != II.getRawDest()) {
 | |
|       assert(*U == II.getRawSource());
 | |
|       Offsets.SourceBegin = Offset;
 | |
|       Offsets.SourceEnd = Offset + Size;
 | |
|     } else {
 | |
|       Offsets.DestBegin = Offset;
 | |
|       Offsets.DestEnd = Offset + Size;
 | |
|     }
 | |
| 
 | |
|     insertUse(II, Offset, Size, Offsets.IsSplittable);
 | |
|     unsigned NewIdx = P.Partitions.size() - 1;
 | |
| 
 | |
|     SmallDenseMap<Instruction *, unsigned>::const_iterator PMI;
 | |
|     bool Inserted = false;
 | |
|     llvm::tie(PMI, Inserted)
 | |
|       = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx));
 | |
|     if (!Inserted && Offsets.IsSplittable) {
 | |
|       // We've found a memory transfer intrinsic which refers to the alloca as
 | |
|       // both a source and dest. We refuse to split these to simplify splitting
 | |
|       // logic. If possible, SROA will still split them into separate allocas
 | |
|       // and then re-analyze.
 | |
|       Offsets.IsSplittable = false;
 | |
|       P.Partitions[PMI->second].IsSplittable = false;
 | |
|       P.Partitions[NewIdx].IsSplittable = false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Disable SRoA for any intrinsics except for lifetime invariants.
 | |
|   // FIXME: What about debug instrinsics? This matches old behavior, but
 | |
|   // doesn't make sense.
 | |
|   bool visitIntrinsicInst(IntrinsicInst &II) {
 | |
|     if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|         II.getIntrinsicID() == Intrinsic::lifetime_end) {
 | |
|       ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
 | |
|       uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue());
 | |
|       insertUse(II, Offset, Size, true);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return markAsEscaping(II);
 | |
|   }
 | |
| 
 | |
|   Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
 | |
|     // We consider any PHI or select that results in a direct load or store of
 | |
|     // the same offset to be a viable use for partitioning purposes. These uses
 | |
|     // are considered unsplittable and the size is the maximum loaded or stored
 | |
|     // size.
 | |
|     SmallPtrSet<Instruction *, 4> Visited;
 | |
|     SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
 | |
|     Visited.insert(Root);
 | |
|     Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
 | |
|     do {
 | |
|       Instruction *I, *UsedI;
 | |
|       llvm::tie(UsedI, I) = Uses.pop_back_val();
 | |
| 
 | |
|       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|         Size = std::max(Size, TD.getTypeStoreSize(LI->getType()));
 | |
|         continue;
 | |
|       }
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|         Value *Op = SI->getOperand(0);
 | |
|         if (Op == UsedI)
 | |
|           return SI;
 | |
|         Size = std::max(Size, TD.getTypeStoreSize(Op->getType()));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | |
|         if (!GEP->hasAllZeroIndices())
 | |
|           return GEP;
 | |
|       } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
 | |
|                  !isa<SelectInst>(I)) {
 | |
|         return I;
 | |
|       }
 | |
| 
 | |
|       for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
 | |
|            ++UI)
 | |
|         if (Visited.insert(cast<Instruction>(*UI)))
 | |
|           Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
 | |
|     } while (!Uses.empty());
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   bool visitPHINode(PHINode &PN) {
 | |
|     // See if we already have computed info on this node.
 | |
|     std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
 | |
|     if (PHIInfo.first) {
 | |
|       PHIInfo.second = true;
 | |
|       insertUse(PN, Offset, PHIInfo.first);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Check for an unsafe use of the PHI node.
 | |
|     if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
 | |
|       return markAsEscaping(*EscapingI);
 | |
| 
 | |
|     insertUse(PN, Offset, PHIInfo.first);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitSelectInst(SelectInst &SI) {
 | |
|     if (Value *Result = foldSelectInst(SI)) {
 | |
|       if (Result == *U)
 | |
|         // If the result of the constant fold will be the pointer, recurse
 | |
|         // through the select as if we had RAUW'ed it.
 | |
|         enqueueUsers(SI, Offset);
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // See if we already have computed info on this node.
 | |
|     std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
 | |
|     if (SelectInfo.first) {
 | |
|       SelectInfo.second = true;
 | |
|       insertUse(SI, Offset, SelectInfo.first);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Check for an unsafe use of the PHI node.
 | |
|     if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
 | |
|       return markAsEscaping(*EscapingI);
 | |
| 
 | |
|     insertUse(SI, Offset, SelectInfo.first);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// \brief Disable SROA entirely if there are unhandled users of the alloca.
 | |
|   bool visitInstruction(Instruction &I) { return markAsEscaping(I); }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// \brief Use adder for the alloca partitioning.
 | |
| ///
 | |
| /// This class adds the uses of an alloca to all of the partitions which they
 | |
| /// use. For splittable partitions, this can end up doing essentially a linear
 | |
| /// walk of the partitions, but the number of steps remains bounded by the
 | |
| /// total result instruction size:
 | |
| /// - The number of partitions is a result of the number unsplittable
 | |
| ///   instructions using the alloca.
 | |
| /// - The number of users of each partition is at worst the total number of
 | |
| ///   splittable instructions using the alloca.
 | |
| /// Thus we will produce N * M instructions in the end, where N are the number
 | |
| /// of unsplittable uses and M are the number of splittable. This visitor does
 | |
| /// the exact same number of updates to the partitioning.
 | |
| ///
 | |
| /// In the more common case, this visitor will leverage the fact that the
 | |
| /// partition space is pre-sorted, and do a logarithmic search for the
 | |
| /// partition needed, making the total visit a classical ((N + M) * log(N))
 | |
| /// complexity operation.
 | |
| class AllocaPartitioning::UseBuilder : public BuilderBase<UseBuilder> {
 | |
|   friend class InstVisitor<UseBuilder>;
 | |
| 
 | |
|   /// \brief Set to de-duplicate dead instructions found in the use walk.
 | |
|   SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
 | |
| 
 | |
| public:
 | |
|   UseBuilder(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P)
 | |
|       : BuilderBase<UseBuilder>(TD, AI, P) {}
 | |
| 
 | |
|   /// \brief Run the builder over the allocation.
 | |
|   void operator()() {
 | |
|     // Note that we have to re-evaluate size on each trip through the loop as
 | |
|     // the queue grows at the tail.
 | |
|     for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
 | |
|       U = Queue[Idx].U;
 | |
|       Offset = Queue[Idx].Offset;
 | |
|       this->visit(cast<Instruction>(U->getUser()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void markAsDead(Instruction &I) {
 | |
|     if (VisitedDeadInsts.insert(&I))
 | |
|       P.DeadUsers.push_back(&I);
 | |
|   }
 | |
| 
 | |
|   void insertUse(Instruction &User, uint64_t Offset, uint64_t Size) {
 | |
|     uint64_t BeginOffset = Offset, EndOffset = Offset + Size;
 | |
| 
 | |
|     // If the use extends outside of the allocation, record it as a dead use
 | |
|     // for elimination later.
 | |
|     if (BeginOffset >= AllocSize || Size == 0)
 | |
|       return markAsDead(User);
 | |
| 
 | |
|     // Bound the use by the size of the allocation.
 | |
|     if (EndOffset > AllocSize)
 | |
|       EndOffset = AllocSize;
 | |
| 
 | |
|     // NB: This only works if we have zero overlapping partitions.
 | |
|     iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset);
 | |
|     if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset)
 | |
|       B = llvm::prior(B);
 | |
|     for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset;
 | |
|          ++I) {
 | |
|       PartitionUse NewUse(std::max(I->BeginOffset, BeginOffset),
 | |
|                           std::min(I->EndOffset, EndOffset),
 | |
|                           &User, cast<Instruction>(*U));
 | |
|       P.Uses[I - P.begin()].push_back(NewUse);
 | |
|       if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
 | |
|         P.PHIOrSelectOpMap[std::make_pair(&User, U->get())]
 | |
|           = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void handleLoadOrStore(Type *Ty, Instruction &I, uint64_t Offset) {
 | |
|     uint64_t Size = TD.getTypeStoreSize(Ty);
 | |
| 
 | |
|     // If this memory access can be shown to *statically* extend outside the
 | |
|     // bounds of of the allocation, it's behavior is undefined, so simply
 | |
|     // ignore it. Note that this is more strict than the generic clamping
 | |
|     // behavior of insertUse.
 | |
|     if (Offset >= AllocSize || Size > AllocSize || Offset + Size > AllocSize)
 | |
|       return markAsDead(I);
 | |
| 
 | |
|     insertUse(I, Offset, Size);
 | |
|   }
 | |
| 
 | |
|   void visitBitCastInst(BitCastInst &BC) {
 | |
|     if (BC.use_empty())
 | |
|       return markAsDead(BC);
 | |
| 
 | |
|     enqueueUsers(BC, Offset);
 | |
|   }
 | |
| 
 | |
|   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
 | |
|     if (GEPI.use_empty())
 | |
|       return markAsDead(GEPI);
 | |
| 
 | |
|     uint64_t GEPOffset;
 | |
|     if (!computeConstantGEPOffset(GEPI, GEPOffset))
 | |
|       llvm_unreachable("Unable to compute constant offset for use");
 | |
| 
 | |
|     enqueueUsers(GEPI, GEPOffset);
 | |
|   }
 | |
| 
 | |
|   void visitLoadInst(LoadInst &LI) {
 | |
|     handleLoadOrStore(LI.getType(), LI, Offset);
 | |
|   }
 | |
| 
 | |
|   void visitStoreInst(StoreInst &SI) {
 | |
|     handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
 | |
|   }
 | |
| 
 | |
|   void visitMemSetInst(MemSetInst &II) {
 | |
|     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
 | |
|     uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
 | |
|     insertUse(II, Offset, Size);
 | |
|   }
 | |
| 
 | |
|   void visitMemTransferInst(MemTransferInst &II) {
 | |
|     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
 | |
|     uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
 | |
|     insertUse(II, Offset, Size);
 | |
|   }
 | |
| 
 | |
|   void visitIntrinsicInst(IntrinsicInst &II) {
 | |
|     assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|            II.getIntrinsicID() == Intrinsic::lifetime_end);
 | |
| 
 | |
|     ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
 | |
|     insertUse(II, Offset,
 | |
|               std::min(AllocSize - Offset, Length->getLimitedValue()));
 | |
|   }
 | |
| 
 | |
|   void insertPHIOrSelect(Instruction &User, uint64_t Offset) {
 | |
|     uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
 | |
| 
 | |
|     // For PHI and select operands outside the alloca, we can't nuke the entire
 | |
|     // phi or select -- the other side might still be relevant, so we special
 | |
|     // case them here and use a separate structure to track the operands
 | |
|     // themselves which should be replaced with undef.
 | |
|     if (Offset >= AllocSize) {
 | |
|       P.DeadOperands.push_back(U);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     insertUse(User, Offset, Size);
 | |
|   }
 | |
|   void visitPHINode(PHINode &PN) {
 | |
|     if (PN.use_empty())
 | |
|       return markAsDead(PN);
 | |
| 
 | |
|     insertPHIOrSelect(PN, Offset);
 | |
|   }
 | |
|   void visitSelectInst(SelectInst &SI) {
 | |
|     if (SI.use_empty())
 | |
|       return markAsDead(SI);
 | |
| 
 | |
|     if (Value *Result = foldSelectInst(SI)) {
 | |
|       if (Result == *U)
 | |
|         // If the result of the constant fold will be the pointer, recurse
 | |
|         // through the select as if we had RAUW'ed it.
 | |
|         enqueueUsers(SI, Offset);
 | |
| 
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     insertPHIOrSelect(SI, Offset);
 | |
|   }
 | |
| 
 | |
|   /// \brief Unreachable, we've already visited the alloca once.
 | |
|   void visitInstruction(Instruction &I) {
 | |
|     llvm_unreachable("Unhandled instruction in use builder.");
 | |
|   }
 | |
| };
 | |
| 
 | |
| void AllocaPartitioning::splitAndMergePartitions() {
 | |
|   size_t NumDeadPartitions = 0;
 | |
| 
 | |
|   // Track the range of splittable partitions that we pass when accumulating
 | |
|   // overlapping unsplittable partitions.
 | |
|   uint64_t SplitEndOffset = 0ull;
 | |
| 
 | |
|   Partition New(0ull, 0ull, false);
 | |
| 
 | |
|   for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
 | |
|     ++j;
 | |
| 
 | |
|     if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
 | |
|       assert(New.BeginOffset == New.EndOffset);
 | |
|       New = Partitions[i];
 | |
|     } else {
 | |
|       assert(New.IsSplittable);
 | |
|       New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
 | |
|     }
 | |
|     assert(New.BeginOffset != New.EndOffset);
 | |
| 
 | |
|     // Scan the overlapping partitions.
 | |
|     while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
 | |
|       // If the new partition we are forming is splittable, stop at the first
 | |
|       // unsplittable partition.
 | |
|       if (New.IsSplittable && !Partitions[j].IsSplittable)
 | |
|         break;
 | |
| 
 | |
|       // Grow the new partition to include any equally splittable range. 'j' is
 | |
|       // always equally splittable when New is splittable, but when New is not
 | |
|       // splittable, we may subsume some (or part of some) splitable partition
 | |
|       // without growing the new one.
 | |
|       if (New.IsSplittable == Partitions[j].IsSplittable) {
 | |
|         New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
 | |
|       } else {
 | |
|         assert(!New.IsSplittable);
 | |
|         assert(Partitions[j].IsSplittable);
 | |
|         SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
 | |
|       }
 | |
| 
 | |
|       Partitions[j].BeginOffset = Partitions[j].EndOffset = UINT64_MAX;
 | |
|       ++NumDeadPartitions;
 | |
|       ++j;
 | |
|     }
 | |
| 
 | |
|     // If the new partition is splittable, chop off the end as soon as the
 | |
|     // unsplittable subsequent partition starts and ensure we eventually cover
 | |
|     // the splittable area.
 | |
|     if (j != e && New.IsSplittable) {
 | |
|       SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
 | |
|       New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
 | |
|     }
 | |
| 
 | |
|     // Add the new partition if it differs from the original one and is
 | |
|     // non-empty. We can end up with an empty partition here if it was
 | |
|     // splittable but there is an unsplittable one that starts at the same
 | |
|     // offset.
 | |
|     if (New != Partitions[i]) {
 | |
|       if (New.BeginOffset != New.EndOffset)
 | |
|         Partitions.push_back(New);
 | |
|       // Mark the old one for removal.
 | |
|       Partitions[i].BeginOffset = Partitions[i].EndOffset = UINT64_MAX;
 | |
|       ++NumDeadPartitions;
 | |
|     }
 | |
| 
 | |
|     New.BeginOffset = New.EndOffset;
 | |
|     if (!New.IsSplittable) {
 | |
|       New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
 | |
|       if (j != e && !Partitions[j].IsSplittable)
 | |
|         New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
 | |
|       New.IsSplittable = true;
 | |
|       // If there is a trailing splittable partition which won't be fused into
 | |
|       // the next splittable partition go ahead and add it onto the partitions
 | |
|       // list.
 | |
|       if (New.BeginOffset < New.EndOffset &&
 | |
|           (j == e || !Partitions[j].IsSplittable ||
 | |
|            New.EndOffset < Partitions[j].BeginOffset)) {
 | |
|         Partitions.push_back(New);
 | |
|         New.BeginOffset = New.EndOffset = 0ull;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Re-sort the partitions now that they have been split and merged into
 | |
|   // disjoint set of partitions. Also remove any of the dead partitions we've
 | |
|   // replaced in the process.
 | |
|   std::sort(Partitions.begin(), Partitions.end());
 | |
|   if (NumDeadPartitions) {
 | |
|     assert(Partitions.back().BeginOffset == UINT64_MAX);
 | |
|     assert(Partitions.back().EndOffset == UINT64_MAX);
 | |
|     assert((ptrdiff_t)NumDeadPartitions ==
 | |
|            std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
 | |
|   }
 | |
|   Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
 | |
| }
 | |
| 
 | |
| AllocaPartitioning::AllocaPartitioning(const TargetData &TD, AllocaInst &AI)
 | |
|     :
 | |
| #ifndef NDEBUG
 | |
|       AI(AI),
 | |
| #endif
 | |
|       PointerEscapingInstr(0) {
 | |
|   PartitionBuilder PB(TD, AI, *this);
 | |
|   if (!PB())
 | |
|     return;
 | |
| 
 | |
|   if (Partitions.size() > 1) {
 | |
|     // Sort the uses. This arranges for the offsets to be in ascending order,
 | |
|     // and the sizes to be in descending order.
 | |
|     std::sort(Partitions.begin(), Partitions.end());
 | |
| 
 | |
|     // Intersect splittability for all partitions with equal offsets and sizes.
 | |
|     // Then remove all but the first so that we have a sequence of non-equal but
 | |
|     // potentially overlapping partitions.
 | |
|     for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
 | |
|          I = J) {
 | |
|       ++J;
 | |
|       while (J != E && *I == *J) {
 | |
|         I->IsSplittable &= J->IsSplittable;
 | |
|         ++J;
 | |
|       }
 | |
|     }
 | |
|     Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
 | |
|                      Partitions.end());
 | |
| 
 | |
|     // Split splittable and merge unsplittable partitions into a disjoint set
 | |
|     // of partitions over the used space of the allocation.
 | |
|     splitAndMergePartitions();
 | |
|   }
 | |
| 
 | |
|   // Now build up the user lists for each of these disjoint partitions by
 | |
|   // re-walking the recursive users of the alloca.
 | |
|   Uses.resize(Partitions.size());
 | |
|   UseBuilder UB(TD, AI, *this);
 | |
|   UB();
 | |
|   for (iterator I = Partitions.begin(), E = Partitions.end(); I != E; ++I)
 | |
|     std::stable_sort(use_begin(I), use_end(I));
 | |
| }
 | |
| 
 | |
| Type *AllocaPartitioning::getCommonType(iterator I) const {
 | |
|   Type *Ty = 0;
 | |
|   for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
 | |
|     if (isa<MemIntrinsic>(*UI->User))
 | |
|       continue;
 | |
|     if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
 | |
|       break;
 | |
| 
 | |
|     Type *UserTy = 0;
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(&*UI->User)) {
 | |
|       UserTy = LI->getType();
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(&*UI->User)) {
 | |
|       UserTy = SI->getValueOperand()->getType();
 | |
|     } else if (SelectInst *SI = dyn_cast<SelectInst>(&*UI->User)) {
 | |
|       if (PointerType *PtrTy = dyn_cast<PointerType>(SI->getType()))
 | |
|         UserTy = PtrTy->getElementType();
 | |
|     } else if (PHINode *PN = dyn_cast<PHINode>(&*UI->User)) {
 | |
|       if (PointerType *PtrTy = dyn_cast<PointerType>(PN->getType()))
 | |
|         UserTy = PtrTy->getElementType();
 | |
|     }
 | |
| 
 | |
|     if (Ty && Ty != UserTy)
 | |
|       return 0;
 | |
| 
 | |
|     Ty = UserTy;
 | |
|   }
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| 
 | |
| void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
 | |
|                                StringRef Indent) const {
 | |
|   OS << Indent << "partition #" << (I - begin())
 | |
|      << " [" << I->BeginOffset << "," << I->EndOffset << ")"
 | |
|      << (I->IsSplittable ? " (splittable)" : "")
 | |
|      << (Uses[I - begin()].empty() ? " (zero uses)" : "")
 | |
|      << "\n";
 | |
| }
 | |
| 
 | |
| void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
 | |
|                                     StringRef Indent) const {
 | |
|   for (const_use_iterator UI = use_begin(I), UE = use_end(I);
 | |
|        UI != UE; ++UI) {
 | |
|     OS << Indent << "  [" << UI->BeginOffset << "," << UI->EndOffset << ") "
 | |
|        << "used by: " << *UI->User << "\n";
 | |
|     if (MemTransferInst *II = dyn_cast<MemTransferInst>(&*UI->User)) {
 | |
|       const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
 | |
|       bool IsDest;
 | |
|       if (!MTO.IsSplittable)
 | |
|         IsDest = UI->BeginOffset == MTO.DestBegin;
 | |
|       else
 | |
|         IsDest = MTO.DestBegin != 0u;
 | |
|       OS << Indent << "    (original " << (IsDest ? "dest" : "source") << ": "
 | |
|          << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
 | |
|          << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AllocaPartitioning::print(raw_ostream &OS) const {
 | |
|   if (PointerEscapingInstr) {
 | |
|     OS << "No partitioning for alloca: " << AI << "\n"
 | |
|        << "  A pointer to this alloca escaped by:\n"
 | |
|        << "  " << *PointerEscapingInstr << "\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   OS << "Partitioning of alloca: " << AI << "\n";
 | |
|   unsigned Num = 0;
 | |
|   for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) {
 | |
|     print(OS, I);
 | |
|     printUsers(OS, I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
 | |
| void AllocaPartitioning::dump() const { print(dbgs()); }
 | |
| 
 | |
| #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| /// \brief Implementation of LoadAndStorePromoter for promoting allocas.
 | |
| ///
 | |
| /// This subclass of LoadAndStorePromoter adds overrides to handle promoting
 | |
| /// the loads and stores of an alloca instruction, as well as updating its
 | |
| /// debug information. This is used when a domtree is unavailable and thus
 | |
| /// mem2reg in its full form can't be used to handle promotion of allocas to
 | |
| /// scalar values.
 | |
| class AllocaPromoter : public LoadAndStorePromoter {
 | |
|   AllocaInst &AI;
 | |
|   DIBuilder &DIB;
 | |
| 
 | |
|   SmallVector<DbgDeclareInst *, 4> DDIs;
 | |
|   SmallVector<DbgValueInst *, 4> DVIs;
 | |
| 
 | |
| public:
 | |
|   AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
 | |
|                  AllocaInst &AI, DIBuilder &DIB)
 | |
|     : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
 | |
| 
 | |
|   void run(const SmallVectorImpl<Instruction*> &Insts) {
 | |
|     // Remember which alloca we're promoting (for isInstInList).
 | |
|     if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
 | |
|       for (Value::use_iterator UI = DebugNode->use_begin(),
 | |
|                                UE = DebugNode->use_end();
 | |
|            UI != UE; ++UI)
 | |
|         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
 | |
|           DDIs.push_back(DDI);
 | |
|         else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
 | |
|           DVIs.push_back(DVI);
 | |
|     }
 | |
| 
 | |
|     LoadAndStorePromoter::run(Insts);
 | |
|     AI.eraseFromParent();
 | |
|     while (!DDIs.empty())
 | |
|       DDIs.pop_back_val()->eraseFromParent();
 | |
|     while (!DVIs.empty())
 | |
|       DVIs.pop_back_val()->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   virtual bool isInstInList(Instruction *I,
 | |
|                             const SmallVectorImpl<Instruction*> &Insts) const {
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|       return LI->getOperand(0) == &AI;
 | |
|     return cast<StoreInst>(I)->getPointerOperand() == &AI;
 | |
|   }
 | |
| 
 | |
|   virtual void updateDebugInfo(Instruction *Inst) const {
 | |
|     for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
 | |
|            E = DDIs.end(); I != E; ++I) {
 | |
|       DbgDeclareInst *DDI = *I;
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | |
|         ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
 | |
|       else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
 | |
|         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
 | |
|     }
 | |
|     for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
 | |
|            E = DVIs.end(); I != E; ++I) {
 | |
|       DbgValueInst *DVI = *I;
 | |
|       Value *Arg = NULL;
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | |
|         // If an argument is zero extended then use argument directly. The ZExt
 | |
|         // may be zapped by an optimization pass in future.
 | |
|         if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
 | |
|           Arg = dyn_cast<Argument>(ZExt->getOperand(0));
 | |
|         if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
 | |
|           Arg = dyn_cast<Argument>(SExt->getOperand(0));
 | |
|         if (!Arg)
 | |
|           Arg = SI->getOperand(0);
 | |
|       } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
 | |
|         Arg = LI->getOperand(0);
 | |
|       } else {
 | |
|         continue;
 | |
|       }
 | |
|       Instruction *DbgVal =
 | |
|         DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
 | |
|                                      Inst);
 | |
|       DbgVal->setDebugLoc(DVI->getDebugLoc());
 | |
|     }
 | |
|   }
 | |
| };
 | |
| } // end anon namespace
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| /// \brief An optimization pass providing Scalar Replacement of Aggregates.
 | |
| ///
 | |
| /// This pass takes allocations which can be completely analyzed (that is, they
 | |
| /// don't escape) and tries to turn them into scalar SSA values. There are
 | |
| /// a few steps to this process.
 | |
| ///
 | |
| /// 1) It takes allocations of aggregates and analyzes the ways in which they
 | |
| ///    are used to try to split them into smaller allocations, ideally of
 | |
| ///    a single scalar data type. It will split up memcpy and memset accesses
 | |
| ///    as necessary and try to isolate invidual scalar accesses.
 | |
| /// 2) It will transform accesses into forms which are suitable for SSA value
 | |
| ///    promotion. This can be replacing a memset with a scalar store of an
 | |
| ///    integer value, or it can involve speculating operations on a PHI or
 | |
| ///    select to be a PHI or select of the results.
 | |
| /// 3) Finally, this will try to detect a pattern of accesses which map cleanly
 | |
| ///    onto insert and extract operations on a vector value, and convert them to
 | |
| ///    this form. By doing so, it will enable promotion of vector aggregates to
 | |
| ///    SSA vector values.
 | |
| class SROA : public FunctionPass {
 | |
|   const bool RequiresDomTree;
 | |
| 
 | |
|   LLVMContext *C;
 | |
|   const TargetData *TD;
 | |
|   DominatorTree *DT;
 | |
| 
 | |
|   /// \brief Worklist of alloca instructions to simplify.
 | |
|   ///
 | |
|   /// Each alloca in the function is added to this. Each new alloca formed gets
 | |
|   /// added to it as well to recursively simplify unless that alloca can be
 | |
|   /// directly promoted. Finally, each time we rewrite a use of an alloca other
 | |
|   /// the one being actively rewritten, we add it back onto the list if not
 | |
|   /// already present to ensure it is re-visited.
 | |
|   SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
 | |
| 
 | |
|   /// \brief A collection of instructions to delete.
 | |
|   /// We try to batch deletions to simplify code and make things a bit more
 | |
|   /// efficient.
 | |
|   SmallVector<Instruction *, 8> DeadInsts;
 | |
| 
 | |
|   /// \brief A set to prevent repeatedly marking an instruction split into many
 | |
|   /// uses as dead. Only used to guard insertion into DeadInsts.
 | |
|   SmallPtrSet<Instruction *, 4> DeadSplitInsts;
 | |
| 
 | |
|   /// \brief A collection of alloca instructions we can directly promote.
 | |
|   std::vector<AllocaInst *> PromotableAllocas;
 | |
| 
 | |
| public:
 | |
|   SROA(bool RequiresDomTree = true)
 | |
|       : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
 | |
|         C(0), TD(0), DT(0) {
 | |
|     initializeSROAPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
|   bool runOnFunction(Function &F);
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
| 
 | |
|   const char *getPassName() const { return "SROA"; }
 | |
|   static char ID;
 | |
| 
 | |
| private:
 | |
|   friend class AllocaPartitionRewriter;
 | |
|   friend class AllocaPartitionVectorRewriter;
 | |
| 
 | |
|   bool rewriteAllocaPartition(AllocaInst &AI,
 | |
|                               AllocaPartitioning &P,
 | |
|                               AllocaPartitioning::iterator PI);
 | |
|   bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
 | |
|   bool runOnAlloca(AllocaInst &AI);
 | |
|   void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
 | |
|   bool promoteAllocas(Function &F);
 | |
| };
 | |
| }
 | |
| 
 | |
| char SROA::ID = 0;
 | |
| 
 | |
| FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
 | |
|   return new SROA(RequiresDomTree);
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | |
| INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
 | |
|                     false, false)
 | |
| 
 | |
| /// \brief Accumulate the constant offsets in a GEP into a single APInt offset.
 | |
| ///
 | |
| /// If the provided GEP is all-constant, the total byte offset formed by the
 | |
| /// GEP is computed and Offset is set to it. If the GEP has any non-constant
 | |
| /// operands, the function returns false and the value of Offset is unmodified.
 | |
| static bool accumulateGEPOffsets(const TargetData &TD, GEPOperator &GEP,
 | |
|                                  APInt &Offset) {
 | |
|   APInt GEPOffset(Offset.getBitWidth(), 0);
 | |
|   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
 | |
|        GTI != GTE; ++GTI) {
 | |
|     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
 | |
|     if (!OpC)
 | |
|       return false;
 | |
|     if (OpC->isZero()) continue;
 | |
| 
 | |
|     // Handle a struct index, which adds its field offset to the pointer.
 | |
|     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|       unsigned ElementIdx = OpC->getZExtValue();
 | |
|       const StructLayout *SL = TD.getStructLayout(STy);
 | |
|       GEPOffset += APInt(Offset.getBitWidth(),
 | |
|                          SL->getElementOffset(ElementIdx));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     APInt TypeSize(Offset.getBitWidth(),
 | |
|                    TD.getTypeAllocSize(GTI.getIndexedType()));
 | |
|     if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) {
 | |
|       assert((VTy->getScalarSizeInBits() % 8) == 0 &&
 | |
|              "vector element size is not a multiple of 8, cannot GEP over it");
 | |
|       TypeSize = VTy->getScalarSizeInBits() / 8;
 | |
|     }
 | |
| 
 | |
|     GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize;
 | |
|   }
 | |
|   Offset = GEPOffset;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Build a GEP out of a base pointer and indices.
 | |
| ///
 | |
| /// This will return the BasePtr if that is valid, or build a new GEP
 | |
| /// instruction using the IRBuilder if GEP-ing is needed.
 | |
| static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
 | |
|                        SmallVectorImpl<Value *> &Indices,
 | |
|                        const Twine &Prefix) {
 | |
|   if (Indices.empty())
 | |
|     return BasePtr;
 | |
| 
 | |
|   // A single zero index is a no-op, so check for this and avoid building a GEP
 | |
|   // in that case.
 | |
|   if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
 | |
|     return BasePtr;
 | |
| 
 | |
|   return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx");
 | |
| }
 | |
| 
 | |
| /// \brief Get a natural GEP off of the BasePtr walking through Ty toward
 | |
| /// TargetTy without changing the offset of the pointer.
 | |
| ///
 | |
| /// This routine assumes we've already established a properly offset GEP with
 | |
| /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
 | |
| /// zero-indices down through type layers until we find one the same as
 | |
| /// TargetTy. If we can't find one with the same type, we at least try to use
 | |
| /// one with the same size. If none of that works, we just produce the GEP as
 | |
| /// indicated by Indices to have the correct offset.
 | |
| static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const TargetData &TD,
 | |
|                                     Value *BasePtr, Type *Ty, Type *TargetTy,
 | |
|                                     SmallVectorImpl<Value *> &Indices,
 | |
|                                     const Twine &Prefix) {
 | |
|   if (Ty == TargetTy)
 | |
|     return buildGEP(IRB, BasePtr, Indices, Prefix);
 | |
| 
 | |
|   // See if we can descend into a struct and locate a field with the correct
 | |
|   // type.
 | |
|   unsigned NumLayers = 0;
 | |
|   Type *ElementTy = Ty;
 | |
|   do {
 | |
|     if (ElementTy->isPointerTy())
 | |
|       break;
 | |
|     if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
 | |
|       ElementTy = SeqTy->getElementType();
 | |
|       Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(), 0)));
 | |
|     } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
 | |
|       ElementTy = *STy->element_begin();
 | |
|       Indices.push_back(IRB.getInt32(0));
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|     ++NumLayers;
 | |
|   } while (ElementTy != TargetTy);
 | |
|   if (ElementTy != TargetTy)
 | |
|     Indices.erase(Indices.end() - NumLayers, Indices.end());
 | |
| 
 | |
|   return buildGEP(IRB, BasePtr, Indices, Prefix);
 | |
| }
 | |
| 
 | |
| /// \brief Recursively compute indices for a natural GEP.
 | |
| ///
 | |
| /// This is the recursive step for getNaturalGEPWithOffset that walks down the
 | |
| /// element types adding appropriate indices for the GEP.
 | |
| static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const TargetData &TD,
 | |
|                                        Value *Ptr, Type *Ty, APInt &Offset,
 | |
|                                        Type *TargetTy,
 | |
|                                        SmallVectorImpl<Value *> &Indices,
 | |
|                                        const Twine &Prefix) {
 | |
|   if (Offset == 0)
 | |
|     return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix);
 | |
| 
 | |
|   // We can't recurse through pointer types.
 | |
|   if (Ty->isPointerTy())
 | |
|     return 0;
 | |
| 
 | |
|   // We try to analyze GEPs over vectors here, but note that these GEPs are
 | |
|   // extremely poorly defined currently. The long-term goal is to remove GEPing
 | |
|   // over a vector from the IR completely.
 | |
|   if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
 | |
|     unsigned ElementSizeInBits = VecTy->getScalarSizeInBits();
 | |
|     if (ElementSizeInBits % 8)
 | |
|       return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
 | |
|     APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
 | |
|     APInt NumSkippedElements = Offset.udiv(ElementSize);
 | |
|     if (NumSkippedElements.ugt(VecTy->getNumElements()))
 | |
|       return 0;
 | |
|     Offset -= NumSkippedElements * ElementSize;
 | |
|     Indices.push_back(IRB.getInt(NumSkippedElements));
 | |
|     return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
 | |
|                                     Offset, TargetTy, Indices, Prefix);
 | |
|   }
 | |
| 
 | |
|   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
 | |
|     Type *ElementTy = ArrTy->getElementType();
 | |
|     APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
 | |
|     APInt NumSkippedElements = Offset.udiv(ElementSize);
 | |
|     if (NumSkippedElements.ugt(ArrTy->getNumElements()))
 | |
|       return 0;
 | |
| 
 | |
|     Offset -= NumSkippedElements * ElementSize;
 | |
|     Indices.push_back(IRB.getInt(NumSkippedElements));
 | |
|     return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
 | |
|                                     Indices, Prefix);
 | |
|   }
 | |
| 
 | |
|   StructType *STy = dyn_cast<StructType>(Ty);
 | |
|   if (!STy)
 | |
|     return 0;
 | |
| 
 | |
|   const StructLayout *SL = TD.getStructLayout(STy);
 | |
|   uint64_t StructOffset = Offset.getZExtValue();
 | |
|   if (StructOffset >= SL->getSizeInBytes())
 | |
|     return 0;
 | |
|   unsigned Index = SL->getElementContainingOffset(StructOffset);
 | |
|   Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
 | |
|   Type *ElementTy = STy->getElementType(Index);
 | |
|   if (Offset.uge(TD.getTypeAllocSize(ElementTy)))
 | |
|     return 0; // The offset points into alignment padding.
 | |
| 
 | |
|   Indices.push_back(IRB.getInt32(Index));
 | |
|   return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
 | |
|                                   Indices, Prefix);
 | |
| }
 | |
| 
 | |
| /// \brief Get a natural GEP from a base pointer to a particular offset and
 | |
| /// resulting in a particular type.
 | |
| ///
 | |
| /// The goal is to produce a "natural" looking GEP that works with the existing
 | |
| /// composite types to arrive at the appropriate offset and element type for
 | |
| /// a pointer. TargetTy is the element type the returned GEP should point-to if
 | |
| /// possible. We recurse by decreasing Offset, adding the appropriate index to
 | |
| /// Indices, and setting Ty to the result subtype.
 | |
| ///
 | |
| /// If no natural GEP can be constructed, this function returns null.
 | |
| static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const TargetData &TD,
 | |
|                                       Value *Ptr, APInt Offset, Type *TargetTy,
 | |
|                                       SmallVectorImpl<Value *> &Indices,
 | |
|                                       const Twine &Prefix) {
 | |
|   PointerType *Ty = cast<PointerType>(Ptr->getType());
 | |
| 
 | |
|   // Don't consider any GEPs through an i8* as natural unless the TargetTy is
 | |
|   // an i8.
 | |
|   if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
 | |
|     return 0;
 | |
| 
 | |
|   Type *ElementTy = Ty->getElementType();
 | |
|   APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
 | |
|   if (ElementSize == 0)
 | |
|     return 0; // Zero-length arrays can't help us build a natural GEP.
 | |
|   APInt NumSkippedElements = Offset.udiv(ElementSize);
 | |
| 
 | |
|   Offset -= NumSkippedElements * ElementSize;
 | |
|   Indices.push_back(IRB.getInt(NumSkippedElements));
 | |
|   return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
 | |
|                                   Indices, Prefix);
 | |
| }
 | |
| 
 | |
| /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
 | |
| /// resulting pointer has PointerTy.
 | |
| ///
 | |
| /// This tries very hard to compute a "natural" GEP which arrives at the offset
 | |
| /// and produces the pointer type desired. Where it cannot, it will try to use
 | |
| /// the natural GEP to arrive at the offset and bitcast to the type. Where that
 | |
| /// fails, it will try to use an existing i8* and GEP to the byte offset and
 | |
| /// bitcast to the type.
 | |
| ///
 | |
| /// The strategy for finding the more natural GEPs is to peel off layers of the
 | |
| /// pointer, walking back through bit casts and GEPs, searching for a base
 | |
| /// pointer from which we can compute a natural GEP with the desired
 | |
| /// properities. The algorithm tries to fold as many constant indices into
 | |
| /// a single GEP as possible, thus making each GEP more independent of the
 | |
| /// surrounding code.
 | |
| static Value *getAdjustedPtr(IRBuilder<> &IRB, const TargetData &TD,
 | |
|                              Value *Ptr, APInt Offset, Type *PointerTy,
 | |
|                              const Twine &Prefix) {
 | |
|   // Even though we don't look through PHI nodes, we could be called on an
 | |
|   // instruction in an unreachable block, which may be on a cycle.
 | |
|   SmallPtrSet<Value *, 4> Visited;
 | |
|   Visited.insert(Ptr);
 | |
|   SmallVector<Value *, 4> Indices;
 | |
| 
 | |
|   // We may end up computing an offset pointer that has the wrong type. If we
 | |
|   // never are able to compute one directly that has the correct type, we'll
 | |
|   // fall back to it, so keep it around here.
 | |
|   Value *OffsetPtr = 0;
 | |
| 
 | |
|   // Remember any i8 pointer we come across to re-use if we need to do a raw
 | |
|   // byte offset.
 | |
|   Value *Int8Ptr = 0;
 | |
|   APInt Int8PtrOffset(Offset.getBitWidth(), 0);
 | |
| 
 | |
|   Type *TargetTy = PointerTy->getPointerElementType();
 | |
| 
 | |
|   do {
 | |
|     // First fold any existing GEPs into the offset.
 | |
|     while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
 | |
|       APInt GEPOffset(Offset.getBitWidth(), 0);
 | |
|       if (!accumulateGEPOffsets(TD, *GEP, GEPOffset))
 | |
|         break;
 | |
|       Offset += GEPOffset;
 | |
|       Ptr = GEP->getPointerOperand();
 | |
|       if (!Visited.insert(Ptr))
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // See if we can perform a natural GEP here.
 | |
|     Indices.clear();
 | |
|     if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
 | |
|                                            Indices, Prefix)) {
 | |
|       if (P->getType() == PointerTy) {
 | |
|         // Zap any offset pointer that we ended up computing in previous rounds.
 | |
|         if (OffsetPtr && OffsetPtr->use_empty())
 | |
|           if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
 | |
|             I->eraseFromParent();
 | |
|         return P;
 | |
|       }
 | |
|       if (!OffsetPtr) {
 | |
|         OffsetPtr = P;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Stash this pointer if we've found an i8*.
 | |
|     if (Ptr->getType()->isIntegerTy(8)) {
 | |
|       Int8Ptr = Ptr;
 | |
|       Int8PtrOffset = Offset;
 | |
|     }
 | |
| 
 | |
|     // Peel off a layer of the pointer and update the offset appropriately.
 | |
|     if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
 | |
|       Ptr = cast<Operator>(Ptr)->getOperand(0);
 | |
|     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
 | |
|       if (GA->mayBeOverridden())
 | |
|         break;
 | |
|       Ptr = GA->getAliasee();
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|     assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
 | |
|   } while (Visited.insert(Ptr));
 | |
| 
 | |
|   if (!OffsetPtr) {
 | |
|     if (!Int8Ptr) {
 | |
|       Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
 | |
|                                   Prefix + ".raw_cast");
 | |
|       Int8PtrOffset = Offset;
 | |
|     }
 | |
| 
 | |
|     OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
 | |
|       IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
 | |
|                             Prefix + ".raw_idx");
 | |
|   }
 | |
|   Ptr = OffsetPtr;
 | |
| 
 | |
|   // On the off chance we were targeting i8*, guard the bitcast here.
 | |
|   if (Ptr->getType() != PointerTy)
 | |
|     Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast");
 | |
| 
 | |
|   return Ptr;
 | |
| }
 | |
| 
 | |
| /// \brief Test whether the given alloca partition can be promoted to a vector.
 | |
| ///
 | |
| /// This is a quick test to check whether we can rewrite a particular alloca
 | |
| /// partition (and its newly formed alloca) into a vector alloca with only
 | |
| /// whole-vector loads and stores such that it could be promoted to a vector
 | |
| /// SSA value. We only can ensure this for a limited set of operations, and we
 | |
| /// don't want to do the rewrites unless we are confident that the result will
 | |
| /// be promotable, so we have an early test here.
 | |
| static bool isVectorPromotionViable(const TargetData &TD,
 | |
|                                     Type *AllocaTy,
 | |
|                                     AllocaPartitioning &P,
 | |
|                                     uint64_t PartitionBeginOffset,
 | |
|                                     uint64_t PartitionEndOffset,
 | |
|                                     AllocaPartitioning::const_use_iterator I,
 | |
|                                     AllocaPartitioning::const_use_iterator E) {
 | |
|   VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
 | |
|   if (!Ty)
 | |
|     return false;
 | |
| 
 | |
|   uint64_t VecSize = TD.getTypeSizeInBits(Ty);
 | |
|   uint64_t ElementSize = Ty->getScalarSizeInBits();
 | |
| 
 | |
|   // While the definition of LLVM vectors is bitpacked, we don't support sizes
 | |
|   // that aren't byte sized.
 | |
|   if (ElementSize % 8)
 | |
|     return false;
 | |
|   assert((VecSize % 8) == 0 && "vector size not a multiple of element size?");
 | |
|   VecSize /= 8;
 | |
|   ElementSize /= 8;
 | |
| 
 | |
|   for (; I != E; ++I) {
 | |
|     uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
 | |
|     uint64_t BeginIndex = BeginOffset / ElementSize;
 | |
|     if (BeginIndex * ElementSize != BeginOffset ||
 | |
|         BeginIndex >= Ty->getNumElements())
 | |
|       return false;
 | |
|     uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
 | |
|     uint64_t EndIndex = EndOffset / ElementSize;
 | |
|     if (EndIndex * ElementSize != EndOffset ||
 | |
|         EndIndex > Ty->getNumElements())
 | |
|       return false;
 | |
| 
 | |
|     // FIXME: We should build shuffle vector instructions to handle
 | |
|     // non-element-sized accesses.
 | |
|     if ((EndOffset - BeginOffset) != ElementSize &&
 | |
|         (EndOffset - BeginOffset) != VecSize)
 | |
|       return false;
 | |
| 
 | |
|     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&*I->User)) {
 | |
|       if (MI->isVolatile())
 | |
|         return false;
 | |
|       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(&*I->User)) {
 | |
|         const AllocaPartitioning::MemTransferOffsets &MTO
 | |
|           = P.getMemTransferOffsets(*MTI);
 | |
|         if (!MTO.IsSplittable)
 | |
|           return false;
 | |
|       }
 | |
|     } else if (I->Ptr->getType()->getPointerElementType()->isStructTy()) {
 | |
|       // Disable vector promotion when there are loads or stores of an FCA.
 | |
|       return false;
 | |
|     } else if (!isa<LoadInst>(*I->User) && !isa<StoreInst>(*I->User)) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief Visitor to rewrite instructions using a partition of an alloca to
 | |
| /// use a new alloca.
 | |
| ///
 | |
| /// Also implements the rewriting to vector-based accesses when the partition
 | |
| /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
 | |
| /// lives here.
 | |
| class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
 | |
|                                                    bool> {
 | |
|   // Befriend the base class so it can delegate to private visit methods.
 | |
|   friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
 | |
| 
 | |
|   const TargetData &TD;
 | |
|   AllocaPartitioning &P;
 | |
|   SROA &Pass;
 | |
|   AllocaInst &OldAI, &NewAI;
 | |
|   const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
 | |
| 
 | |
|   // If we are rewriting an alloca partition which can be written as pure
 | |
|   // vector operations, we stash extra information here. When VecTy is
 | |
|   // non-null, we have some strict guarantees about the rewriten alloca:
 | |
|   //   - The new alloca is exactly the size of the vector type here.
 | |
|   //   - The accesses all either map to the entire vector or to a single
 | |
|   //     element.
 | |
|   //   - The set of accessing instructions is only one of those handled above
 | |
|   //     in isVectorPromotionViable. Generally these are the same access kinds
 | |
|   //     which are promotable via mem2reg.
 | |
|   VectorType *VecTy;
 | |
|   Type *ElementTy;
 | |
|   uint64_t ElementSize;
 | |
| 
 | |
|   // The offset of the partition user currently being rewritten.
 | |
|   uint64_t BeginOffset, EndOffset;
 | |
|   Instruction *OldPtr;
 | |
| 
 | |
|   // The name prefix to use when rewriting instructions for this alloca.
 | |
|   std::string NamePrefix;
 | |
| 
 | |
| public:
 | |
|   AllocaPartitionRewriter(const TargetData &TD, AllocaPartitioning &P,
 | |
|                           AllocaPartitioning::iterator PI,
 | |
|                           SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
 | |
|                           uint64_t NewBeginOffset, uint64_t NewEndOffset)
 | |
|     : TD(TD), P(P), Pass(Pass),
 | |
|       OldAI(OldAI), NewAI(NewAI),
 | |
|       NewAllocaBeginOffset(NewBeginOffset),
 | |
|       NewAllocaEndOffset(NewEndOffset),
 | |
|       VecTy(), ElementTy(), ElementSize(),
 | |
|       BeginOffset(), EndOffset() {
 | |
|   }
 | |
| 
 | |
|   /// \brief Visit the users of the alloca partition and rewrite them.
 | |
|   bool visitUsers(AllocaPartitioning::const_use_iterator I,
 | |
|                   AllocaPartitioning::const_use_iterator E) {
 | |
|     if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
 | |
|                                 NewAllocaBeginOffset, NewAllocaEndOffset,
 | |
|                                 I, E)) {
 | |
|       ++NumVectorized;
 | |
|       VecTy = cast<VectorType>(NewAI.getAllocatedType());
 | |
|       ElementTy = VecTy->getElementType();
 | |
|       assert((VecTy->getScalarSizeInBits() % 8) == 0 &&
 | |
|              "Only multiple-of-8 sized vector elements are viable");
 | |
|       ElementSize = VecTy->getScalarSizeInBits() / 8;
 | |
|     }
 | |
|     bool CanSROA = true;
 | |
|     for (; I != E; ++I) {
 | |
|       BeginOffset = I->BeginOffset;
 | |
|       EndOffset = I->EndOffset;
 | |
|       OldPtr = I->Ptr;
 | |
|       NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str();
 | |
|       CanSROA &= visit(I->User);
 | |
|     }
 | |
|     if (VecTy) {
 | |
|       assert(CanSROA);
 | |
|       VecTy = 0;
 | |
|       ElementTy = 0;
 | |
|       ElementSize = 0;
 | |
|     }
 | |
|     return CanSROA;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   // Every instruction which can end up as a user must have a rewrite rule.
 | |
|   bool visitInstruction(Instruction &I) {
 | |
|     DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
 | |
|     llvm_unreachable("No rewrite rule for this instruction!");
 | |
|   }
 | |
| 
 | |
|   Twine getName(const Twine &Suffix) {
 | |
|     return NamePrefix + Suffix;
 | |
|   }
 | |
| 
 | |
|   Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) {
 | |
|     assert(BeginOffset >= NewAllocaBeginOffset);
 | |
|     APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset);
 | |
|     return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName(""));
 | |
|   }
 | |
| 
 | |
|   ConstantInt *getIndex(IRBuilder<> &IRB, uint64_t Offset) {
 | |
|     assert(VecTy && "Can only call getIndex when rewriting a vector");
 | |
|     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
 | |
|     assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
 | |
|     uint32_t Index = RelOffset / ElementSize;
 | |
|     assert(Index * ElementSize == RelOffset);
 | |
|     return IRB.getInt32(Index);
 | |
|   }
 | |
| 
 | |
|   void deleteIfTriviallyDead(Value *V) {
 | |
|     Instruction *I = cast<Instruction>(V);
 | |
|     if (isInstructionTriviallyDead(I))
 | |
|       Pass.DeadInsts.push_back(I);
 | |
|   }
 | |
| 
 | |
|   Value *getValueCast(IRBuilder<> &IRB, Value *V, Type *Ty) {
 | |
|     if (V->getType()->isIntegerTy() && Ty->isPointerTy())
 | |
|       return IRB.CreateIntToPtr(V, Ty);
 | |
|     if (V->getType()->isPointerTy() && Ty->isIntegerTy())
 | |
|       return IRB.CreatePtrToInt(V, Ty);
 | |
| 
 | |
|     return IRB.CreateBitCast(V, Ty);
 | |
|   }
 | |
| 
 | |
|   bool rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) {
 | |
|     Value *Result;
 | |
|     if (LI.getType() == VecTy->getElementType() ||
 | |
|         BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
 | |
|       Result
 | |
|         = IRB.CreateExtractElement(IRB.CreateLoad(&NewAI, getName(".load")),
 | |
|                                    getIndex(IRB, BeginOffset),
 | |
|                                    getName(".extract"));
 | |
|     } else {
 | |
|       Result = IRB.CreateLoad(&NewAI, getName(".load"));
 | |
|     }
 | |
|     if (Result->getType() != LI.getType())
 | |
|       Result = getValueCast(IRB, Result, LI.getType());
 | |
|     LI.replaceAllUsesWith(Result);
 | |
|     Pass.DeadInsts.push_back(&LI);
 | |
| 
 | |
|     DEBUG(dbgs() << "          to: " << *Result << "\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitLoadInst(LoadInst &LI) {
 | |
|     DEBUG(dbgs() << "    original: " << LI << "\n");
 | |
|     Value *OldOp = LI.getOperand(0);
 | |
|     assert(OldOp == OldPtr);
 | |
|     IRBuilder<> IRB(&LI);
 | |
| 
 | |
|     if (VecTy)
 | |
|       return rewriteVectorizedLoadInst(IRB, LI, OldOp);
 | |
| 
 | |
|     Value *NewPtr = getAdjustedAllocaPtr(IRB,
 | |
|                                          LI.getPointerOperand()->getType());
 | |
|     LI.setOperand(0, NewPtr);
 | |
|     DEBUG(dbgs() << "          to: " << LI << "\n");
 | |
| 
 | |
|     deleteIfTriviallyDead(OldOp);
 | |
|     return NewPtr == &NewAI && !LI.isVolatile();
 | |
|   }
 | |
| 
 | |
|   bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, StoreInst &SI,
 | |
|                                   Value *OldOp) {
 | |
|     Value *V = SI.getValueOperand();
 | |
|     if (V->getType() == ElementTy ||
 | |
|         BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
 | |
|       if (V->getType() != ElementTy)
 | |
|         V = getValueCast(IRB, V, ElementTy);
 | |
|       V = IRB.CreateInsertElement(IRB.CreateLoad(&NewAI, getName(".load")), V,
 | |
|                                   getIndex(IRB, BeginOffset),
 | |
|                                   getName(".insert"));
 | |
|     } else if (V->getType() != VecTy) {
 | |
|       V = getValueCast(IRB, V, VecTy);
 | |
|     }
 | |
|     StoreInst *Store = IRB.CreateStore(V, &NewAI);
 | |
|     Pass.DeadInsts.push_back(&SI);
 | |
| 
 | |
|     (void)Store;
 | |
|     DEBUG(dbgs() << "          to: " << *Store << "\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitStoreInst(StoreInst &SI) {
 | |
|     DEBUG(dbgs() << "    original: " << SI << "\n");
 | |
|     Value *OldOp = SI.getOperand(1);
 | |
|     assert(OldOp == OldPtr);
 | |
|     IRBuilder<> IRB(&SI);
 | |
| 
 | |
|     if (VecTy)
 | |
|       return rewriteVectorizedStoreInst(IRB, SI, OldOp);
 | |
| 
 | |
|     Value *NewPtr = getAdjustedAllocaPtr(IRB,
 | |
|                                          SI.getPointerOperand()->getType());
 | |
|     SI.setOperand(1, NewPtr);
 | |
|     DEBUG(dbgs() << "          to: " << SI << "\n");
 | |
| 
 | |
|     deleteIfTriviallyDead(OldOp);
 | |
|     return NewPtr == &NewAI && !SI.isVolatile();
 | |
|   }
 | |
| 
 | |
|   bool visitMemSetInst(MemSetInst &II) {
 | |
|     DEBUG(dbgs() << "    original: " << II << "\n");
 | |
|     IRBuilder<> IRB(&II);
 | |
|     assert(II.getRawDest() == OldPtr);
 | |
| 
 | |
|     // If the memset has a variable size, it cannot be split, just adjust the
 | |
|     // pointer to the new alloca.
 | |
|     if (!isa<Constant>(II.getLength())) {
 | |
|       II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
 | |
|       deleteIfTriviallyDead(OldPtr);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Record this instruction for deletion.
 | |
|     if (Pass.DeadSplitInsts.insert(&II))
 | |
|       Pass.DeadInsts.push_back(&II);
 | |
| 
 | |
|     Type *AllocaTy = NewAI.getAllocatedType();
 | |
|     Type *ScalarTy = AllocaTy->getScalarType();
 | |
| 
 | |
|     // If this doesn't map cleanly onto the alloca type, and that type isn't
 | |
|     // a single value type, just emit a memset.
 | |
|     if (!VecTy && (BeginOffset != NewAllocaBeginOffset ||
 | |
|                    EndOffset != NewAllocaEndOffset ||
 | |
|                    !AllocaTy->isSingleValueType() ||
 | |
|                    !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) {
 | |
|       Type *SizeTy = II.getLength()->getType();
 | |
|       Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
 | |
| 
 | |
|       CallInst *New
 | |
|         = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
 | |
|                                                 II.getRawDest()->getType()),
 | |
|                            II.getValue(), Size, II.getAlignment(),
 | |
|                            II.isVolatile());
 | |
|       (void)New;
 | |
|       DEBUG(dbgs() << "          to: " << *New << "\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // If we can represent this as a simple value, we have to build the actual
 | |
|     // value to store, which requires expanding the byte present in memset to
 | |
|     // a sensible representation for the alloca type. This is essentially
 | |
|     // splatting the byte to a sufficiently wide integer, bitcasting to the
 | |
|     // desired scalar type, and splatting it across any desired vector type.
 | |
|     Value *V = II.getValue();
 | |
|     IntegerType *VTy = cast<IntegerType>(V->getType());
 | |
|     Type *IntTy = Type::getIntNTy(VTy->getContext(),
 | |
|                                   TD.getTypeSizeInBits(ScalarTy));
 | |
|     if (TD.getTypeSizeInBits(ScalarTy) > VTy->getBitWidth())
 | |
|       V = IRB.CreateMul(IRB.CreateZExt(V, IntTy, getName(".zext")),
 | |
|                         ConstantExpr::getUDiv(
 | |
|                           Constant::getAllOnesValue(IntTy),
 | |
|                           ConstantExpr::getZExt(
 | |
|                             Constant::getAllOnesValue(V->getType()),
 | |
|                             IntTy)),
 | |
|                         getName(".isplat"));
 | |
|     if (V->getType() != ScalarTy) {
 | |
|       if (ScalarTy->isPointerTy())
 | |
|         V = IRB.CreateIntToPtr(V, ScalarTy);
 | |
|       else if (ScalarTy->isPrimitiveType() || ScalarTy->isVectorTy())
 | |
|         V = IRB.CreateBitCast(V, ScalarTy);
 | |
|       else if (ScalarTy->isIntegerTy())
 | |
|         llvm_unreachable("Computed different integer types with equal widths");
 | |
|       else
 | |
|         llvm_unreachable("Invalid scalar type");
 | |
|     }
 | |
| 
 | |
|     // If this is an element-wide memset of a vectorizable alloca, insert it.
 | |
|     if (VecTy && (BeginOffset > NewAllocaBeginOffset ||
 | |
|                   EndOffset < NewAllocaEndOffset)) {
 | |
|       StoreInst *Store = IRB.CreateStore(
 | |
|         IRB.CreateInsertElement(IRB.CreateLoad(&NewAI, getName(".load")), V,
 | |
|                                 getIndex(IRB, BeginOffset),
 | |
|                                 getName(".insert")),
 | |
|         &NewAI);
 | |
|       (void)Store;
 | |
|       DEBUG(dbgs() << "          to: " << *Store << "\n");
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Splat to a vector if needed.
 | |
|     if (VectorType *VecTy = dyn_cast<VectorType>(AllocaTy)) {
 | |
|       VectorType *SplatSourceTy = VectorType::get(V->getType(), 1);
 | |
|       V = IRB.CreateShuffleVector(
 | |
|         IRB.CreateInsertElement(UndefValue::get(SplatSourceTy), V,
 | |
|                                 IRB.getInt32(0), getName(".vsplat.insert")),
 | |
|         UndefValue::get(SplatSourceTy),
 | |
|         ConstantVector::getSplat(VecTy->getNumElements(), IRB.getInt32(0)),
 | |
|         getName(".vsplat.shuffle"));
 | |
|       assert(V->getType() == VecTy);
 | |
|     }
 | |
| 
 | |
|     Value *New = IRB.CreateStore(V, &NewAI, II.isVolatile());
 | |
|     (void)New;
 | |
|     DEBUG(dbgs() << "          to: " << *New << "\n");
 | |
|     return !II.isVolatile();
 | |
|   }
 | |
| 
 | |
|   bool visitMemTransferInst(MemTransferInst &II) {
 | |
|     // Rewriting of memory transfer instructions can be a bit tricky. We break
 | |
|     // them into two categories: split intrinsics and unsplit intrinsics.
 | |
| 
 | |
|     DEBUG(dbgs() << "    original: " << II << "\n");
 | |
|     IRBuilder<> IRB(&II);
 | |
| 
 | |
|     assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
 | |
|     bool IsDest = II.getRawDest() == OldPtr;
 | |
| 
 | |
|     const AllocaPartitioning::MemTransferOffsets &MTO
 | |
|       = P.getMemTransferOffsets(II);
 | |
| 
 | |
|     // For unsplit intrinsics, we simply modify the source and destination
 | |
|     // pointers in place. This isn't just an optimization, it is a matter of
 | |
|     // correctness. With unsplit intrinsics we may be dealing with transfers
 | |
|     // within a single alloca before SROA ran, or with transfers that have
 | |
|     // a variable length. We may also be dealing with memmove instead of
 | |
|     // memcpy, and so simply updating the pointers is the necessary for us to
 | |
|     // update both source and dest of a single call.
 | |
|     if (!MTO.IsSplittable) {
 | |
|       Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
 | |
|       if (IsDest)
 | |
|         II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
 | |
|       else
 | |
|         II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
 | |
| 
 | |
|       DEBUG(dbgs() << "          to: " << II << "\n");
 | |
|       deleteIfTriviallyDead(OldOp);
 | |
|       return false;
 | |
|     }
 | |
|     // For split transfer intrinsics we have an incredibly useful assurance:
 | |
|     // the source and destination do not reside within the same alloca, and at
 | |
|     // least one of them does not escape. This means that we can replace
 | |
|     // memmove with memcpy, and we don't need to worry about all manner of
 | |
|     // downsides to splitting and transforming the operations.
 | |
| 
 | |
|     // Compute the relative offset within the transfer.
 | |
|     unsigned IntPtrWidth = TD.getPointerSizeInBits();
 | |
|     APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
 | |
|                                                        : MTO.SourceBegin));
 | |
| 
 | |
|     // If this doesn't map cleanly onto the alloca type, and that type isn't
 | |
|     // a single value type, just emit a memcpy.
 | |
|     bool EmitMemCpy
 | |
|       = !VecTy && (BeginOffset != NewAllocaBeginOffset ||
 | |
|                    EndOffset != NewAllocaEndOffset ||
 | |
|                    !NewAI.getAllocatedType()->isSingleValueType());
 | |
| 
 | |
|     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
 | |
|     // size hasn't been shrunk based on analysis of the viable range, this is
 | |
|     // a no-op.
 | |
|     if (EmitMemCpy && &OldAI == &NewAI) {
 | |
|       uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
 | |
|       uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
 | |
|       // Ensure the start lines up.
 | |
|       assert(BeginOffset == OrigBegin);
 | |
|       (void)OrigBegin;
 | |
| 
 | |
|       // Rewrite the size as needed.
 | |
|       if (EndOffset != OrigEnd)
 | |
|         II.setLength(ConstantInt::get(II.getLength()->getType(),
 | |
|                                       EndOffset - BeginOffset));
 | |
|       return false;
 | |
|     }
 | |
|     // Record this instruction for deletion.
 | |
|     if (Pass.DeadSplitInsts.insert(&II))
 | |
|       Pass.DeadInsts.push_back(&II);
 | |
| 
 | |
|     bool IsVectorElement = VecTy && (BeginOffset > NewAllocaBeginOffset ||
 | |
|                                      EndOffset < NewAllocaEndOffset);
 | |
| 
 | |
|     Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
 | |
|                               : II.getRawDest()->getType();
 | |
|     if (!EmitMemCpy)
 | |
|       OtherPtrTy = IsVectorElement ? VecTy->getElementType()->getPointerTo()
 | |
|                                    : NewAI.getType();
 | |
| 
 | |
|     // Compute the other pointer, folding as much as possible to produce
 | |
|     // a single, simple GEP in most cases.
 | |
|     Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
 | |
|     OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
 | |
|                               getName("." + OtherPtr->getName()));
 | |
| 
 | |
|     // Strip all inbounds GEPs and pointer casts to try to dig out any root
 | |
|     // alloca that should be re-examined after rewriting this instruction.
 | |
|     if (AllocaInst *AI
 | |
|           = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
 | |
|       Pass.Worklist.insert(AI);
 | |
| 
 | |
|     if (EmitMemCpy) {
 | |
|       Value *OurPtr
 | |
|         = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
 | |
|                                            : II.getRawSource()->getType());
 | |
|       Type *SizeTy = II.getLength()->getType();
 | |
|       Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
 | |
| 
 | |
|       CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
 | |
|                                        IsDest ? OtherPtr : OurPtr,
 | |
|                                        Size, II.getAlignment(),
 | |
|                                        II.isVolatile());
 | |
|       (void)New;
 | |
|       DEBUG(dbgs() << "          to: " << *New << "\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Value *SrcPtr = OtherPtr;
 | |
|     Value *DstPtr = &NewAI;
 | |
|     if (!IsDest)
 | |
|       std::swap(SrcPtr, DstPtr);
 | |
| 
 | |
|     Value *Src;
 | |
|     if (IsVectorElement && !IsDest) {
 | |
|       // We have to extract rather than load.
 | |
|       Src = IRB.CreateExtractElement(IRB.CreateLoad(SrcPtr,
 | |
|                                                     getName(".copyload")),
 | |
|                                      getIndex(IRB, BeginOffset),
 | |
|                                      getName(".copyextract"));
 | |
|     } else {
 | |
|       Src = IRB.CreateLoad(SrcPtr, II.isVolatile(), getName(".copyload"));
 | |
|     }
 | |
| 
 | |
|     if (IsVectorElement && IsDest) {
 | |
|       // We have to insert into a loaded copy before storing.
 | |
|       Src = IRB.CreateInsertElement(IRB.CreateLoad(&NewAI, getName(".load")),
 | |
|                                     Src, getIndex(IRB, BeginOffset),
 | |
|                                     getName(".insert"));
 | |
|     }
 | |
| 
 | |
|     Value *Store = IRB.CreateStore(Src, DstPtr, II.isVolatile());
 | |
|     (void)Store;
 | |
|     DEBUG(dbgs() << "          to: " << *Store << "\n");
 | |
|     return !II.isVolatile();
 | |
|   }
 | |
| 
 | |
|   bool visitIntrinsicInst(IntrinsicInst &II) {
 | |
|     assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|            II.getIntrinsicID() == Intrinsic::lifetime_end);
 | |
|     DEBUG(dbgs() << "    original: " << II << "\n");
 | |
|     IRBuilder<> IRB(&II);
 | |
|     assert(II.getArgOperand(1) == OldPtr);
 | |
| 
 | |
|     // Record this instruction for deletion.
 | |
|     if (Pass.DeadSplitInsts.insert(&II))
 | |
|       Pass.DeadInsts.push_back(&II);
 | |
| 
 | |
|     ConstantInt *Size
 | |
|       = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
 | |
|                          EndOffset - BeginOffset);
 | |
|     Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
 | |
|     Value *New;
 | |
|     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
 | |
|       New = IRB.CreateLifetimeStart(Ptr, Size);
 | |
|     else
 | |
|       New = IRB.CreateLifetimeEnd(Ptr, Size);
 | |
| 
 | |
|     DEBUG(dbgs() << "          to: " << *New << "\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// PHI instructions that use an alloca and are subsequently loaded can be
 | |
|   /// rewritten to load both input pointers in the pred blocks and then PHI the
 | |
|   /// results, allowing the load of the alloca to be promoted.
 | |
|   /// From this:
 | |
|   ///   %P2 = phi [i32* %Alloca, i32* %Other]
 | |
|   ///   %V = load i32* %P2
 | |
|   /// to:
 | |
|   ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
 | |
|   ///   ...
 | |
|   ///   %V2 = load i32* %Other
 | |
|   ///   ...
 | |
|   ///   %V = phi [i32 %V1, i32 %V2]
 | |
|   ///
 | |
|   /// We can do this to a select if its only uses are loads and if the operand
 | |
|   /// to the select can be loaded unconditionally.
 | |
|   ///
 | |
|   /// FIXME: This should be hoisted into a generic utility, likely in
 | |
|   /// Transforms/Util/Local.h
 | |
|   bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
 | |
|     // For now, we can only do this promotion if the load is in the same block
 | |
|     // as the PHI, and if there are no stores between the phi and load.
 | |
|     // TODO: Allow recursive phi users.
 | |
|     // TODO: Allow stores.
 | |
|     BasicBlock *BB = PN.getParent();
 | |
|     unsigned MaxAlign = 0;
 | |
|     for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       LoadInst *LI = dyn_cast<LoadInst>(*UI);
 | |
|       if (LI == 0 || !LI->isSimple()) return false;
 | |
| 
 | |
|       // For now we only allow loads in the same block as the PHI.  This is
 | |
|       // a common case that happens when instcombine merges two loads through
 | |
|       // a PHI.
 | |
|       if (LI->getParent() != BB) return false;
 | |
| 
 | |
|       // Ensure that there are no instructions between the PHI and the load that
 | |
|       // could store.
 | |
|       for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
 | |
|         if (BBI->mayWriteToMemory())
 | |
|           return false;
 | |
| 
 | |
|       MaxAlign = std::max(MaxAlign, LI->getAlignment());
 | |
|       Loads.push_back(LI);
 | |
|     }
 | |
| 
 | |
|     // We can only transform this if it is safe to push the loads into the
 | |
|     // predecessor blocks. The only thing to watch out for is that we can't put
 | |
|     // a possibly trapping load in the predecessor if it is a critical edge.
 | |
|     for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num;
 | |
|          ++Idx) {
 | |
|       TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
 | |
|       Value *InVal = PN.getIncomingValue(Idx);
 | |
| 
 | |
|       // If the value is produced by the terminator of the predecessor (an
 | |
|       // invoke) or it has side-effects, there is no valid place to put a load
 | |
|       // in the predecessor.
 | |
|       if (TI == InVal || TI->mayHaveSideEffects())
 | |
|         return false;
 | |
| 
 | |
|       // If the predecessor has a single successor, then the edge isn't
 | |
|       // critical.
 | |
|       if (TI->getNumSuccessors() == 1)
 | |
|         continue;
 | |
| 
 | |
|       // If this pointer is always safe to load, or if we can prove that there
 | |
|       // is already a load in the block, then we can move the load to the pred
 | |
|       // block.
 | |
|       if (InVal->isDereferenceablePointer() ||
 | |
|           isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
 | |
|         continue;
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitPHINode(PHINode &PN) {
 | |
|     DEBUG(dbgs() << "    original: " << PN << "\n");
 | |
|     // We would like to compute a new pointer in only one place, but have it be
 | |
|     // as local as possible to the PHI. To do that, we re-use the location of
 | |
|     // the old pointer, which necessarily must be in the right position to
 | |
|     // dominate the PHI.
 | |
|     IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr));
 | |
| 
 | |
|     SmallVector<LoadInst *, 4> Loads;
 | |
|     if (!isSafePHIToSpeculate(PN, Loads)) {
 | |
|       Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
 | |
|       // Replace the operands which were using the old pointer.
 | |
|       User::op_iterator OI = PN.op_begin(), OE = PN.op_end();
 | |
|       for (; OI != OE; ++OI)
 | |
|         if (*OI == OldPtr)
 | |
|           *OI = NewPtr;
 | |
| 
 | |
|       DEBUG(dbgs() << "          to: " << PN << "\n");
 | |
|       deleteIfTriviallyDead(OldPtr);
 | |
|       return false;
 | |
|     }
 | |
|     assert(!Loads.empty());
 | |
| 
 | |
|     Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
 | |
|     IRBuilder<> PHIBuilder(&PN);
 | |
|     PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues());
 | |
|     NewPN->takeName(&PN);
 | |
| 
 | |
|     // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
 | |
|     // matter which one we get and if any differ, it doesn't matter.
 | |
|     LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
 | |
|     MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
 | |
|     unsigned Align = SomeLoad->getAlignment();
 | |
|     Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
 | |
| 
 | |
|     // Rewrite all loads of the PN to use the new PHI.
 | |
|     do {
 | |
|       LoadInst *LI = Loads.pop_back_val();
 | |
|       LI->replaceAllUsesWith(NewPN);
 | |
|       Pass.DeadInsts.push_back(LI);
 | |
|     } while (!Loads.empty());
 | |
| 
 | |
|     // Inject loads into all of the pred blocks.
 | |
|     for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
 | |
|       BasicBlock *Pred = PN.getIncomingBlock(Idx);
 | |
|       TerminatorInst *TI = Pred->getTerminator();
 | |
|       Value *InVal = PN.getIncomingValue(Idx);
 | |
|       IRBuilder<> PredBuilder(TI);
 | |
| 
 | |
|       // Map the value to the new alloca pointer if this was the old alloca
 | |
|       // pointer.
 | |
|       bool ThisOperand = InVal == OldPtr;
 | |
|       if (ThisOperand)
 | |
|         InVal = NewPtr;
 | |
| 
 | |
|       LoadInst *Load
 | |
|         = PredBuilder.CreateLoad(InVal, getName(".sroa.speculate." +
 | |
|                                                 Pred->getName()));
 | |
|       ++NumLoadsSpeculated;
 | |
|       Load->setAlignment(Align);
 | |
|       if (TBAATag)
 | |
|         Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
 | |
|       NewPN->addIncoming(Load, Pred);
 | |
| 
 | |
|       if (ThisOperand)
 | |
|         continue;
 | |
|       Instruction *OtherPtr = dyn_cast<Instruction>(InVal);
 | |
|       if (!OtherPtr)
 | |
|         // No uses to rewrite.
 | |
|         continue;
 | |
| 
 | |
|       // Try to lookup and rewrite any partition uses corresponding to this phi
 | |
|       // input.
 | |
|       AllocaPartitioning::iterator PI
 | |
|         = P.findPartitionForPHIOrSelectOperand(PN, OtherPtr);
 | |
|       if (PI != P.end()) {
 | |
|         // If the other pointer is within the partitioning, replace the PHI in
 | |
|         // its uses with the load we just speculated, or add another load for
 | |
|         // it to rewrite if we've already replaced the PHI.
 | |
|         AllocaPartitioning::use_iterator UI
 | |
|           = P.findPartitionUseForPHIOrSelectOperand(PN, OtherPtr);
 | |
|         if (isa<PHINode>(*UI->User))
 | |
|           UI->User = Load;
 | |
|         else {
 | |
|           AllocaPartitioning::PartitionUse OtherUse = *UI;
 | |
|           OtherUse.User = Load;
 | |
|           P.use_insert(PI, std::upper_bound(UI, P.use_end(PI), OtherUse),
 | |
|                        OtherUse);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
 | |
|     return NewPtr == &NewAI;
 | |
|   }
 | |
| 
 | |
|   /// Select instructions that use an alloca and are subsequently loaded can be
 | |
|   /// rewritten to load both input pointers and then select between the result,
 | |
|   /// allowing the load of the alloca to be promoted.
 | |
|   /// From this:
 | |
|   ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
 | |
|   ///   %V = load i32* %P2
 | |
|   /// to:
 | |
|   ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
 | |
|   ///   %V2 = load i32* %Other
 | |
|   ///   %V = select i1 %cond, i32 %V1, i32 %V2
 | |
|   ///
 | |
|   /// We can do this to a select if its only uses are loads and if the operand
 | |
|   /// to the select can be loaded unconditionally.
 | |
|   bool isSafeSelectToSpeculate(SelectInst &SI,
 | |
|                                SmallVectorImpl<LoadInst *> &Loads) {
 | |
|     Value *TValue = SI.getTrueValue();
 | |
|     Value *FValue = SI.getFalseValue();
 | |
|     bool TDerefable = TValue->isDereferenceablePointer();
 | |
|     bool FDerefable = FValue->isDereferenceablePointer();
 | |
| 
 | |
|     for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       LoadInst *LI = dyn_cast<LoadInst>(*UI);
 | |
|       if (LI == 0 || !LI->isSimple()) return false;
 | |
| 
 | |
|       // Both operands to the select need to be dereferencable, either
 | |
|       // absolutely (e.g. allocas) or at this point because we can see other
 | |
|       // accesses to it.
 | |
|       if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
 | |
|                                                       LI->getAlignment(), &TD))
 | |
|         return false;
 | |
|       if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
 | |
|                                                       LI->getAlignment(), &TD))
 | |
|         return false;
 | |
|       Loads.push_back(LI);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitSelectInst(SelectInst &SI) {
 | |
|     DEBUG(dbgs() << "    original: " << SI << "\n");
 | |
|     IRBuilder<> IRB(&SI);
 | |
| 
 | |
|     // Find the operand we need to rewrite here.
 | |
|     bool IsTrueVal = SI.getTrueValue() == OldPtr;
 | |
|     if (IsTrueVal)
 | |
|       assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!");
 | |
|     else
 | |
|       assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!");
 | |
|     Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
 | |
| 
 | |
|     // If the select isn't safe to speculate, just use simple logic to emit it.
 | |
|     SmallVector<LoadInst *, 4> Loads;
 | |
|     if (!isSafeSelectToSpeculate(SI, Loads)) {
 | |
|       SI.setOperand(IsTrueVal ? 1 : 2, NewPtr);
 | |
|       DEBUG(dbgs() << "          to: " << SI << "\n");
 | |
|       deleteIfTriviallyDead(OldPtr);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Value *OtherPtr = IsTrueVal ? SI.getFalseValue() : SI.getTrueValue();
 | |
|     AllocaPartitioning::iterator PI
 | |
|       = P.findPartitionForPHIOrSelectOperand(SI, OtherPtr);
 | |
|     AllocaPartitioning::PartitionUse OtherUse;
 | |
|     if (PI != P.end()) {
 | |
|       // If the other pointer is within the partitioning, remove the select
 | |
|       // from its uses. We'll add in the new loads below.
 | |
|       AllocaPartitioning::use_iterator UI
 | |
|         = P.findPartitionUseForPHIOrSelectOperand(SI, OtherPtr);
 | |
|       OtherUse = *UI;
 | |
|       P.use_erase(PI, UI);
 | |
|     }
 | |
| 
 | |
|     Value *TV = IsTrueVal ? NewPtr : SI.getTrueValue();
 | |
|     Value *FV = IsTrueVal ? SI.getFalseValue() : NewPtr;
 | |
|     // Replace the loads of the select with a select of two loads.
 | |
|     while (!Loads.empty()) {
 | |
|       LoadInst *LI = Loads.pop_back_val();
 | |
| 
 | |
|       IRB.SetInsertPoint(LI);
 | |
|       LoadInst *TL =
 | |
|         IRB.CreateLoad(TV, getName("." + LI->getName() + ".true"));
 | |
|       LoadInst *FL =
 | |
|         IRB.CreateLoad(FV, getName("." + LI->getName() + ".false"));
 | |
|       NumLoadsSpeculated += 2;
 | |
|       if (PI != P.end()) {
 | |
|         LoadInst *OtherLoad = IsTrueVal ? FL : TL;
 | |
|         assert(OtherUse.Ptr == OtherLoad->getOperand(0));
 | |
|         OtherUse.User = OtherLoad;
 | |
|         P.use_insert(PI, P.use_end(PI), OtherUse);
 | |
|       }
 | |
| 
 | |
|       // Transfer alignment and TBAA info if present.
 | |
|       TL->setAlignment(LI->getAlignment());
 | |
|       FL->setAlignment(LI->getAlignment());
 | |
|       if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
 | |
|         TL->setMetadata(LLVMContext::MD_tbaa, Tag);
 | |
|         FL->setMetadata(LLVMContext::MD_tbaa, Tag);
 | |
|       }
 | |
| 
 | |
|       Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL);
 | |
|       V->takeName(LI);
 | |
|       DEBUG(dbgs() << "          speculated to: " << *V << "\n");
 | |
|       LI->replaceAllUsesWith(V);
 | |
|       Pass.DeadInsts.push_back(LI);
 | |
|     }
 | |
|     if (PI != P.end())
 | |
|       std::stable_sort(P.use_begin(PI), P.use_end(PI));
 | |
| 
 | |
|     deleteIfTriviallyDead(OldPtr);
 | |
|     return NewPtr == &NewAI;
 | |
|   }
 | |
| 
 | |
| };
 | |
| }
 | |
| 
 | |
| /// \brief Try to find a partition of the aggregate type passed in for a given
 | |
| /// offset and size.
 | |
| ///
 | |
| /// This recurses through the aggregate type and tries to compute a subtype
 | |
| /// based on the offset and size. When the offset and size span a sub-section
 | |
| /// of an array, it will even compute a new array type for that sub-section,
 | |
| /// and the same for structs.
 | |
| ///
 | |
| /// Note that this routine is very strict and tries to find a partition of the
 | |
| /// type which produces the *exact* right offset and size. It is not forgiving
 | |
| /// when the size or offset cause either end of type-based partition to be off.
 | |
| /// Also, this is a best-effort routine. It is reasonable to give up and not
 | |
| /// return a type if necessary.
 | |
| static Type *getTypePartition(const TargetData &TD, Type *Ty,
 | |
|                               uint64_t Offset, uint64_t Size) {
 | |
|   if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size)
 | |
|     return Ty;
 | |
| 
 | |
|   if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
 | |
|     // We can't partition pointers...
 | |
|     if (SeqTy->isPointerTy())
 | |
|       return 0;
 | |
| 
 | |
|     Type *ElementTy = SeqTy->getElementType();
 | |
|     uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
 | |
|     uint64_t NumSkippedElements = Offset / ElementSize;
 | |
|     if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy))
 | |
|       if (NumSkippedElements >= ArrTy->getNumElements())
 | |
|         return 0;
 | |
|     if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy))
 | |
|       if (NumSkippedElements >= VecTy->getNumElements())
 | |
|         return 0;
 | |
|     Offset -= NumSkippedElements * ElementSize;
 | |
| 
 | |
|     // First check if we need to recurse.
 | |
|     if (Offset > 0 || Size < ElementSize) {
 | |
|       // Bail if the partition ends in a different array element.
 | |
|       if ((Offset + Size) > ElementSize)
 | |
|         return 0;
 | |
|       // Recurse through the element type trying to peel off offset bytes.
 | |
|       return getTypePartition(TD, ElementTy, Offset, Size);
 | |
|     }
 | |
|     assert(Offset == 0);
 | |
| 
 | |
|     if (Size == ElementSize)
 | |
|       return ElementTy;
 | |
|     assert(Size > ElementSize);
 | |
|     uint64_t NumElements = Size / ElementSize;
 | |
|     if (NumElements * ElementSize != Size)
 | |
|       return 0;
 | |
|     return ArrayType::get(ElementTy, NumElements);
 | |
|   }
 | |
| 
 | |
|   StructType *STy = dyn_cast<StructType>(Ty);
 | |
|   if (!STy)
 | |
|     return 0;
 | |
| 
 | |
|   const StructLayout *SL = TD.getStructLayout(STy);
 | |
|   if (Offset >= SL->getSizeInBytes())
 | |
|     return 0;
 | |
|   uint64_t EndOffset = Offset + Size;
 | |
|   if (EndOffset > SL->getSizeInBytes())
 | |
|     return 0;
 | |
| 
 | |
|   unsigned Index = SL->getElementContainingOffset(Offset);
 | |
|   Offset -= SL->getElementOffset(Index);
 | |
| 
 | |
|   Type *ElementTy = STy->getElementType(Index);
 | |
|   uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
 | |
|   if (Offset >= ElementSize)
 | |
|     return 0; // The offset points into alignment padding.
 | |
| 
 | |
|   // See if any partition must be contained by the element.
 | |
|   if (Offset > 0 || Size < ElementSize) {
 | |
|     if ((Offset + Size) > ElementSize)
 | |
|       return 0;
 | |
|     return getTypePartition(TD, ElementTy, Offset, Size);
 | |
|   }
 | |
|   assert(Offset == 0);
 | |
| 
 | |
|   if (Size == ElementSize)
 | |
|     return ElementTy;
 | |
| 
 | |
|   StructType::element_iterator EI = STy->element_begin() + Index,
 | |
|                                EE = STy->element_end();
 | |
|   if (EndOffset < SL->getSizeInBytes()) {
 | |
|     unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
 | |
|     if (Index == EndIndex)
 | |
|       return 0; // Within a single element and its padding.
 | |
| 
 | |
|     // Don't try to form "natural" types if the elements don't line up with the
 | |
|     // expected size.
 | |
|     // FIXME: We could potentially recurse down through the last element in the
 | |
|     // sub-struct to find a natural end point.
 | |
|     if (SL->getElementOffset(EndIndex) != EndOffset)
 | |
|       return 0;
 | |
| 
 | |
|     assert(Index < EndIndex);
 | |
|     EE = STy->element_begin() + EndIndex;
 | |
|   }
 | |
| 
 | |
|   // Try to build up a sub-structure.
 | |
|   SmallVector<Type *, 4> ElementTys;
 | |
|   do {
 | |
|     ElementTys.push_back(*EI++);
 | |
|   } while (EI != EE);
 | |
|   StructType *SubTy = StructType::get(STy->getContext(), ElementTys,
 | |
|                                       STy->isPacked());
 | |
|   const StructLayout *SubSL = TD.getStructLayout(SubTy);
 | |
|   if (Size != SubSL->getSizeInBytes())
 | |
|     return 0; // The sub-struct doesn't have quite the size needed.
 | |
| 
 | |
|   return SubTy;
 | |
| }
 | |
| 
 | |
| /// \brief Rewrite an alloca partition's users.
 | |
| ///
 | |
| /// This routine drives both of the rewriting goals of the SROA pass. It tries
 | |
| /// to rewrite uses of an alloca partition to be conducive for SSA value
 | |
| /// promotion. If the partition needs a new, more refined alloca, this will
 | |
| /// build that new alloca, preserving as much type information as possible, and
 | |
| /// rewrite the uses of the old alloca to point at the new one and have the
 | |
| /// appropriate new offsets. It also evaluates how successful the rewrite was
 | |
| /// at enabling promotion and if it was successful queues the alloca to be
 | |
| /// promoted.
 | |
| bool SROA::rewriteAllocaPartition(AllocaInst &AI,
 | |
|                                   AllocaPartitioning &P,
 | |
|                                   AllocaPartitioning::iterator PI) {
 | |
|   uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
 | |
|   if (P.use_begin(PI) == P.use_end(PI))
 | |
|     return false; // No live uses left of this partition.
 | |
| 
 | |
|   // Try to compute a friendly type for this partition of the alloca. This
 | |
|   // won't always succeed, in which case we fall back to a legal integer type
 | |
|   // or an i8 array of an appropriate size.
 | |
|   Type *AllocaTy = 0;
 | |
|   if (Type *PartitionTy = P.getCommonType(PI))
 | |
|     if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
 | |
|       AllocaTy = PartitionTy;
 | |
|   if (!AllocaTy)
 | |
|     if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
 | |
|                                              PI->BeginOffset, AllocaSize))
 | |
|       AllocaTy = PartitionTy;
 | |
|   if ((!AllocaTy ||
 | |
|        (AllocaTy->isArrayTy() &&
 | |
|         AllocaTy->getArrayElementType()->isIntegerTy())) &&
 | |
|       TD->isLegalInteger(AllocaSize * 8))
 | |
|     AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
 | |
|   if (!AllocaTy)
 | |
|     AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
 | |
|   assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
 | |
| 
 | |
|   // Check for the case where we're going to rewrite to a new alloca of the
 | |
|   // exact same type as the original, and with the same access offsets. In that
 | |
|   // case, re-use the existing alloca, but still run through the rewriter to
 | |
|   // performe phi and select speculation.
 | |
|   AllocaInst *NewAI;
 | |
|   if (AllocaTy == AI.getAllocatedType()) {
 | |
|     assert(PI->BeginOffset == 0 &&
 | |
|            "Non-zero begin offset but same alloca type");
 | |
|     assert(PI == P.begin() && "Begin offset is zero on later partition");
 | |
|     NewAI = &AI;
 | |
|   } else {
 | |
|     // FIXME: The alignment here is overly conservative -- we could in many
 | |
|     // cases get away with much weaker alignment constraints.
 | |
|     NewAI = new AllocaInst(AllocaTy, 0, AI.getAlignment(),
 | |
|                            AI.getName() + ".sroa." + Twine(PI - P.begin()),
 | |
|                            &AI);
 | |
|     ++NumNewAllocas;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Rewriting alloca partition "
 | |
|                << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
 | |
|                << *NewAI << "\n");
 | |
| 
 | |
|   AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
 | |
|                                    PI->BeginOffset, PI->EndOffset);
 | |
|   DEBUG(dbgs() << "  rewriting ");
 | |
|   DEBUG(P.print(dbgs(), PI, ""));
 | |
|   if (Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI))) {
 | |
|     DEBUG(dbgs() << "  and queuing for promotion\n");
 | |
|     PromotableAllocas.push_back(NewAI);
 | |
|   } else if (NewAI != &AI) {
 | |
|     // If we can't promote the alloca, iterate on it to check for new
 | |
|     // refinements exposed by splitting the current alloca. Don't iterate on an
 | |
|     // alloca which didn't actually change and didn't get promoted.
 | |
|     Worklist.insert(NewAI);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Walks the partitioning of an alloca rewriting uses of each partition.
 | |
| bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
 | |
|   bool Changed = false;
 | |
|   for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
 | |
|        ++PI)
 | |
|     Changed |= rewriteAllocaPartition(AI, P, PI);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// \brief Analyze an alloca for SROA.
 | |
| ///
 | |
| /// This analyzes the alloca to ensure we can reason about it, builds
 | |
| /// a partitioning of the alloca, and then hands it off to be split and
 | |
| /// rewritten as needed.
 | |
| bool SROA::runOnAlloca(AllocaInst &AI) {
 | |
|   DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
 | |
|   ++NumAllocasAnalyzed;
 | |
| 
 | |
|   // Special case dead allocas, as they're trivial.
 | |
|   if (AI.use_empty()) {
 | |
|     AI.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Skip alloca forms that this analysis can't handle.
 | |
|   if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
 | |
|       TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
 | |
|     return false;
 | |
| 
 | |
|   // First check if this is a non-aggregate type that we should simply promote.
 | |
|   if (!AI.getAllocatedType()->isAggregateType() && isAllocaPromotable(&AI)) {
 | |
|     DEBUG(dbgs() << "  Trivially scalar type, queuing for promotion...\n");
 | |
|     PromotableAllocas.push_back(&AI);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Build the partition set using a recursive instruction-visiting builder.
 | |
|   AllocaPartitioning P(*TD, AI);
 | |
|   DEBUG(P.print(dbgs()));
 | |
|   if (P.isEscaped())
 | |
|     return false;
 | |
| 
 | |
|   // No partitions to split. Leave the dead alloca for a later pass to clean up.
 | |
|   if (P.begin() == P.end())
 | |
|     return false;
 | |
| 
 | |
|   // Delete all the dead users of this alloca before splitting and rewriting it.
 | |
|   bool Changed = false;
 | |
|   for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
 | |
|                                               DE = P.dead_user_end();
 | |
|        DI != DE; ++DI) {
 | |
|     Changed = true;
 | |
|     (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
 | |
|     DeadInsts.push_back(*DI);
 | |
|   }
 | |
|   for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
 | |
|                                             DE = P.dead_op_end();
 | |
|        DO != DE; ++DO) {
 | |
|     Value *OldV = **DO;
 | |
|     // Clobber the use with an undef value.
 | |
|     **DO = UndefValue::get(OldV->getType());
 | |
|     if (Instruction *OldI = dyn_cast<Instruction>(OldV))
 | |
|       if (isInstructionTriviallyDead(OldI)) {
 | |
|         Changed = true;
 | |
|         DeadInsts.push_back(OldI);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return splitAlloca(AI, P) || Changed;
 | |
| }
 | |
| 
 | |
| /// \brief Delete the dead instructions accumulated in this run.
 | |
| ///
 | |
| /// Recursively deletes the dead instructions we've accumulated. This is done
 | |
| /// at the very end to maximize locality of the recursive delete and to
 | |
| /// minimize the problems of invalidated instruction pointers as such pointers
 | |
| /// are used heavily in the intermediate stages of the algorithm.
 | |
| ///
 | |
| /// We also record the alloca instructions deleted here so that they aren't
 | |
| /// subsequently handed to mem2reg to promote.
 | |
| void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
 | |
|   DeadSplitInsts.clear();
 | |
|   while (!DeadInsts.empty()) {
 | |
|     Instruction *I = DeadInsts.pop_back_val();
 | |
|     DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
 | |
| 
 | |
|     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
 | |
|       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
 | |
|         // Zero out the operand and see if it becomes trivially dead.
 | |
|         *OI = 0;
 | |
|         if (isInstructionTriviallyDead(U))
 | |
|           DeadInsts.push_back(U);
 | |
|       }
 | |
| 
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | |
|       DeletedAllocas.insert(AI);
 | |
| 
 | |
|     ++NumDeleted;
 | |
|     I->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Promote the allocas, using the best available technique.
 | |
| ///
 | |
| /// This attempts to promote whatever allocas have been identified as viable in
 | |
| /// the PromotableAllocas list. If that list is empty, there is nothing to do.
 | |
| /// If there is a domtree available, we attempt to promote using the full power
 | |
| /// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
 | |
| /// based on the SSAUpdater utilities. This function returns whether any
 | |
| /// promotion occured.
 | |
| bool SROA::promoteAllocas(Function &F) {
 | |
|   if (PromotableAllocas.empty())
 | |
|     return false;
 | |
| 
 | |
|   NumPromoted += PromotableAllocas.size();
 | |
| 
 | |
|   if (DT && !ForceSSAUpdater) {
 | |
|     DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
 | |
|     PromoteMemToReg(PromotableAllocas, *DT);
 | |
|     PromotableAllocas.clear();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
 | |
|   SSAUpdater SSA;
 | |
|   DIBuilder DIB(*F.getParent());
 | |
|   SmallVector<Instruction*, 64> Insts;
 | |
| 
 | |
|   for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
 | |
|     AllocaInst *AI = PromotableAllocas[Idx];
 | |
|     for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
 | |
|          UI != UE;) {
 | |
|       Instruction *I = cast<Instruction>(*UI++);
 | |
|       // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
 | |
|       // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
 | |
|       // leading to them) here. Eventually it should use them to optimize the
 | |
|       // scalar values produced.
 | |
|       if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
 | |
|         assert(onlyUsedByLifetimeMarkers(I) &&
 | |
|                "Found a bitcast used outside of a lifetime marker.");
 | |
|         while (!I->use_empty())
 | |
|           cast<Instruction>(*I->use_begin())->eraseFromParent();
 | |
|         I->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
|       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|         assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|                II->getIntrinsicID() == Intrinsic::lifetime_end);
 | |
|         II->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Insts.push_back(I);
 | |
|     }
 | |
|     AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
 | |
|     Insts.clear();
 | |
|   }
 | |
| 
 | |
|   PromotableAllocas.clear();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// \brief A predicate to test whether an alloca belongs to a set.
 | |
|   class IsAllocaInSet {
 | |
|     typedef SmallPtrSet<AllocaInst *, 4> SetType;
 | |
|     const SetType &Set;
 | |
| 
 | |
|   public:
 | |
|     IsAllocaInSet(const SetType &Set) : Set(Set) {}
 | |
|     bool operator()(AllocaInst *AI) { return Set.count(AI); }
 | |
|   };
 | |
| }
 | |
| 
 | |
| bool SROA::runOnFunction(Function &F) {
 | |
|   DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
 | |
|   C = &F.getContext();
 | |
|   TD = getAnalysisIfAvailable<TargetData>();
 | |
|   if (!TD) {
 | |
|     DEBUG(dbgs() << "  Skipping SROA -- no target data!\n");
 | |
|     return false;
 | |
|   }
 | |
|   DT = getAnalysisIfAvailable<DominatorTree>();
 | |
| 
 | |
|   BasicBlock &EntryBB = F.getEntryBlock();
 | |
|   for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
 | |
|        I != E; ++I)
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | |
|       Worklist.insert(AI);
 | |
| 
 | |
|   bool Changed = false;
 | |
|   // A set of deleted alloca instruction pointers which should be removed from
 | |
|   // the list of promotable allocas.
 | |
|   SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
 | |
| 
 | |
|   while (!Worklist.empty()) {
 | |
|     Changed |= runOnAlloca(*Worklist.pop_back_val());
 | |
|     deleteDeadInstructions(DeletedAllocas);
 | |
|     if (!DeletedAllocas.empty()) {
 | |
|       PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
 | |
|                                              PromotableAllocas.end(),
 | |
|                                              IsAllocaInSet(DeletedAllocas)),
 | |
|                               PromotableAllocas.end());
 | |
|       DeletedAllocas.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Changed |= promoteAllocas(F);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   if (RequiresDomTree)
 | |
|     AU.addRequired<DominatorTree>();
 | |
|   AU.setPreservesCFG();
 | |
| }
 |