mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Luis Felipe Strano Moraes! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129558 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			610 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			610 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This simple pass provides alias and mod/ref information for global values
 | 
						|
// that do not have their address taken, and keeps track of whether functions
 | 
						|
// read or write memory (are "pure").  For this simple (but very common) case,
 | 
						|
// we can provide pretty accurate and useful information.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "globalsmodref-aa"
 | 
						|
#include "llvm/Analysis/Passes.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CallGraph.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/InstIterator.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/SCCIterator.h"
 | 
						|
#include <set>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumNonAddrTakenGlobalVars,
 | 
						|
          "Number of global vars without address taken");
 | 
						|
STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
 | 
						|
STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
 | 
						|
STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
 | 
						|
STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// FunctionRecord - One instance of this structure is stored for every
 | 
						|
  /// function in the program.  Later, the entries for these functions are
 | 
						|
  /// removed if the function is found to call an external function (in which
 | 
						|
  /// case we know nothing about it.
 | 
						|
  struct FunctionRecord {
 | 
						|
    /// GlobalInfo - Maintain mod/ref info for all of the globals without
 | 
						|
    /// addresses taken that are read or written (transitively) by this
 | 
						|
    /// function.
 | 
						|
    std::map<const GlobalValue*, unsigned> GlobalInfo;
 | 
						|
 | 
						|
    /// MayReadAnyGlobal - May read global variables, but it is not known which.
 | 
						|
    bool MayReadAnyGlobal;
 | 
						|
 | 
						|
    unsigned getInfoForGlobal(const GlobalValue *GV) const {
 | 
						|
      unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
 | 
						|
      std::map<const GlobalValue*, unsigned>::const_iterator I =
 | 
						|
        GlobalInfo.find(GV);
 | 
						|
      if (I != GlobalInfo.end())
 | 
						|
        Effect |= I->second;
 | 
						|
      return Effect;
 | 
						|
    }
 | 
						|
 | 
						|
    /// FunctionEffect - Capture whether or not this function reads or writes to
 | 
						|
    /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
 | 
						|
    unsigned FunctionEffect;
 | 
						|
 | 
						|
    FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
 | 
						|
  };
 | 
						|
 | 
						|
  /// GlobalsModRef - The actual analysis pass.
 | 
						|
  class GlobalsModRef : public ModulePass, public AliasAnalysis {
 | 
						|
    /// NonAddressTakenGlobals - The globals that do not have their addresses
 | 
						|
    /// taken.
 | 
						|
    std::set<const GlobalValue*> NonAddressTakenGlobals;
 | 
						|
 | 
						|
    /// IndirectGlobals - The memory pointed to by this global is known to be
 | 
						|
    /// 'owned' by the global.
 | 
						|
    std::set<const GlobalValue*> IndirectGlobals;
 | 
						|
 | 
						|
    /// AllocsForIndirectGlobals - If an instruction allocates memory for an
 | 
						|
    /// indirect global, this map indicates which one.
 | 
						|
    std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals;
 | 
						|
 | 
						|
    /// FunctionInfo - For each function, keep track of what globals are
 | 
						|
    /// modified or read.
 | 
						|
    std::map<const Function*, FunctionRecord> FunctionInfo;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    GlobalsModRef() : ModulePass(ID) {
 | 
						|
      initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnModule(Module &M) {
 | 
						|
      InitializeAliasAnalysis(this);                 // set up super class
 | 
						|
      AnalyzeGlobals(M);                          // find non-addr taken globals
 | 
						|
      AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AliasAnalysis::getAnalysisUsage(AU);
 | 
						|
      AU.addRequired<CallGraph>();
 | 
						|
      AU.setPreservesAll();                         // Does not transform code
 | 
						|
    }
 | 
						|
 | 
						|
    //------------------------------------------------
 | 
						|
    // Implement the AliasAnalysis API
 | 
						|
    //
 | 
						|
    AliasResult alias(const Location &LocA, const Location &LocB);
 | 
						|
    ModRefResult getModRefInfo(ImmutableCallSite CS,
 | 
						|
                               const Location &Loc);
 | 
						|
    ModRefResult getModRefInfo(ImmutableCallSite CS1,
 | 
						|
                               ImmutableCallSite CS2) {
 | 
						|
      return AliasAnalysis::getModRefInfo(CS1, CS2);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getModRefBehavior - Return the behavior of the specified function if
 | 
						|
    /// called from the specified call site.  The call site may be null in which
 | 
						|
    /// case the most generic behavior of this function should be returned.
 | 
						|
    ModRefBehavior getModRefBehavior(const Function *F) {
 | 
						|
      ModRefBehavior Min = UnknownModRefBehavior;
 | 
						|
 | 
						|
      if (FunctionRecord *FR = getFunctionInfo(F)) {
 | 
						|
        if (FR->FunctionEffect == 0)
 | 
						|
          Min = DoesNotAccessMemory;
 | 
						|
        else if ((FR->FunctionEffect & Mod) == 0)
 | 
						|
          Min = OnlyReadsMemory;
 | 
						|
      }
 | 
						|
 | 
						|
      return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// getModRefBehavior - Return the behavior of the specified function if
 | 
						|
    /// called from the specified call site.  The call site may be null in which
 | 
						|
    /// case the most generic behavior of this function should be returned.
 | 
						|
    ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
 | 
						|
      ModRefBehavior Min = UnknownModRefBehavior;
 | 
						|
 | 
						|
      if (const Function* F = CS.getCalledFunction())
 | 
						|
        if (FunctionRecord *FR = getFunctionInfo(F)) {
 | 
						|
          if (FR->FunctionEffect == 0)
 | 
						|
            Min = DoesNotAccessMemory;
 | 
						|
          else if ((FR->FunctionEffect & Mod) == 0)
 | 
						|
            Min = OnlyReadsMemory;
 | 
						|
        }
 | 
						|
 | 
						|
      return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void deleteValue(Value *V);
 | 
						|
    virtual void copyValue(Value *From, Value *To);
 | 
						|
    virtual void addEscapingUse(Use &U);
 | 
						|
 | 
						|
    /// getAdjustedAnalysisPointer - This method is used when a pass implements
 | 
						|
    /// an analysis interface through multiple inheritance.  If needed, it
 | 
						|
    /// should override this to adjust the this pointer as needed for the
 | 
						|
    /// specified pass info.
 | 
						|
    virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
 | 
						|
      if (PI == &AliasAnalysis::ID)
 | 
						|
        return (AliasAnalysis*)this;
 | 
						|
      return this;
 | 
						|
    }
 | 
						|
    
 | 
						|
  private:
 | 
						|
    /// getFunctionInfo - Return the function info for the function, or null if
 | 
						|
    /// we don't have anything useful to say about it.
 | 
						|
    FunctionRecord *getFunctionInfo(const Function *F) {
 | 
						|
      std::map<const Function*, FunctionRecord>::iterator I =
 | 
						|
        FunctionInfo.find(F);
 | 
						|
      if (I != FunctionInfo.end())
 | 
						|
        return &I->second;
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    void AnalyzeGlobals(Module &M);
 | 
						|
    void AnalyzeCallGraph(CallGraph &CG, Module &M);
 | 
						|
    bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
 | 
						|
                              std::vector<Function*> &Writers,
 | 
						|
                              GlobalValue *OkayStoreDest = 0);
 | 
						|
    bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char GlobalsModRef::ID = 0;
 | 
						|
INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis,
 | 
						|
                "globalsmodref-aa", "Simple mod/ref analysis for globals",    
 | 
						|
                false, true, false)
 | 
						|
INITIALIZE_AG_DEPENDENCY(CallGraph)
 | 
						|
INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis,
 | 
						|
                "globalsmodref-aa", "Simple mod/ref analysis for globals",    
 | 
						|
                false, true, false)
 | 
						|
 | 
						|
Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
 | 
						|
 | 
						|
/// AnalyzeGlobals - Scan through the users of all of the internal
 | 
						|
/// GlobalValue's in the program.  If none of them have their "address taken"
 | 
						|
/// (really, their address passed to something nontrivial), record this fact,
 | 
						|
/// and record the functions that they are used directly in.
 | 
						|
void GlobalsModRef::AnalyzeGlobals(Module &M) {
 | 
						|
  std::vector<Function*> Readers, Writers;
 | 
						|
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
 | 
						|
    if (I->hasLocalLinkage()) {
 | 
						|
      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
 | 
						|
        // Remember that we are tracking this global.
 | 
						|
        NonAddressTakenGlobals.insert(I);
 | 
						|
        ++NumNonAddrTakenFunctions;
 | 
						|
      }
 | 
						|
      Readers.clear(); Writers.clear();
 | 
						|
    }
 | 
						|
 | 
						|
  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (I->hasLocalLinkage()) {
 | 
						|
      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
 | 
						|
        // Remember that we are tracking this global, and the mod/ref fns
 | 
						|
        NonAddressTakenGlobals.insert(I);
 | 
						|
 | 
						|
        for (unsigned i = 0, e = Readers.size(); i != e; ++i)
 | 
						|
          FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
 | 
						|
 | 
						|
        if (!I->isConstant())  // No need to keep track of writers to constants
 | 
						|
          for (unsigned i = 0, e = Writers.size(); i != e; ++i)
 | 
						|
            FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
 | 
						|
        ++NumNonAddrTakenGlobalVars;
 | 
						|
 | 
						|
        // If this global holds a pointer type, see if it is an indirect global.
 | 
						|
        if (I->getType()->getElementType()->isPointerTy() &&
 | 
						|
            AnalyzeIndirectGlobalMemory(I))
 | 
						|
          ++NumIndirectGlobalVars;
 | 
						|
      }
 | 
						|
      Readers.clear(); Writers.clear();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
 | 
						|
/// If this is used by anything complex (i.e., the address escapes), return
 | 
						|
/// true.  Also, while we are at it, keep track of those functions that read and
 | 
						|
/// write to the value.
 | 
						|
///
 | 
						|
/// If OkayStoreDest is non-null, stores into this global are allowed.
 | 
						|
bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
 | 
						|
                                         std::vector<Function*> &Readers,
 | 
						|
                                         std::vector<Function*> &Writers,
 | 
						|
                                         GlobalValue *OkayStoreDest) {
 | 
						|
  if (!V->getType()->isPointerTy()) return true;
 | 
						|
 | 
						|
  for (Value::use_iterator UI = V->use_begin(), E=V->use_end(); UI != E; ++UI) {
 | 
						|
    User *U = *UI;
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | 
						|
      Readers.push_back(LI->getParent()->getParent());
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | 
						|
      if (V == SI->getOperand(1)) {
 | 
						|
        Writers.push_back(SI->getParent()->getParent());
 | 
						|
      } else if (SI->getOperand(1) != OkayStoreDest) {
 | 
						|
        return true;  // Storing the pointer
 | 
						|
      }
 | 
						|
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
 | 
						|
      if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
 | 
						|
    } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
 | 
						|
      if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
 | 
						|
        return true;
 | 
						|
    } else if (isFreeCall(U)) {
 | 
						|
      Writers.push_back(cast<Instruction>(U)->getParent()->getParent());
 | 
						|
    } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
 | 
						|
      // Make sure that this is just the function being called, not that it is
 | 
						|
      // passing into the function.
 | 
						|
      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
 | 
						|
        if (CI->getArgOperand(i) == V) return true;
 | 
						|
    } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
 | 
						|
      // Make sure that this is just the function being called, not that it is
 | 
						|
      // passing into the function.
 | 
						|
      for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i)
 | 
						|
        if (II->getArgOperand(i) == V) return true;
 | 
						|
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
 | 
						|
      if (CE->getOpcode() == Instruction::GetElementPtr ||
 | 
						|
          CE->getOpcode() == Instruction::BitCast) {
 | 
						|
        if (AnalyzeUsesOfPointer(CE, Readers, Writers))
 | 
						|
          return true;
 | 
						|
      } else {
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
 | 
						|
      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
 | 
						|
        return true;  // Allow comparison against null.
 | 
						|
    } else {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
 | 
						|
/// which holds a pointer type.  See if the global always points to non-aliased
 | 
						|
/// heap memory: that is, all initializers of the globals are allocations, and
 | 
						|
/// those allocations have no use other than initialization of the global.
 | 
						|
/// Further, all loads out of GV must directly use the memory, not store the
 | 
						|
/// pointer somewhere.  If this is true, we consider the memory pointed to by
 | 
						|
/// GV to be owned by GV and can disambiguate other pointers from it.
 | 
						|
bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
 | 
						|
  // Keep track of values related to the allocation of the memory, f.e. the
 | 
						|
  // value produced by the malloc call and any casts.
 | 
						|
  std::vector<Value*> AllocRelatedValues;
 | 
						|
 | 
						|
  // Walk the user list of the global.  If we find anything other than a direct
 | 
						|
  // load or store, bail out.
 | 
						|
  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
 | 
						|
    User *U = *I;
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | 
						|
      // The pointer loaded from the global can only be used in simple ways:
 | 
						|
      // we allow addressing of it and loading storing to it.  We do *not* allow
 | 
						|
      // storing the loaded pointer somewhere else or passing to a function.
 | 
						|
      std::vector<Function*> ReadersWriters;
 | 
						|
      if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
 | 
						|
        return false;  // Loaded pointer escapes.
 | 
						|
      // TODO: Could try some IP mod/ref of the loaded pointer.
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | 
						|
      // Storing the global itself.
 | 
						|
      if (SI->getOperand(0) == GV) return false;
 | 
						|
 | 
						|
      // If storing the null pointer, ignore it.
 | 
						|
      if (isa<ConstantPointerNull>(SI->getOperand(0)))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Check the value being stored.
 | 
						|
      Value *Ptr = GetUnderlyingObject(SI->getOperand(0));
 | 
						|
 | 
						|
      if (isMalloc(Ptr)) {
 | 
						|
        // Okay, easy case.
 | 
						|
      } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
 | 
						|
        Function *F = CI->getCalledFunction();
 | 
						|
        if (!F || !F->isDeclaration()) return false;     // Too hard to analyze.
 | 
						|
        if (F->getName() != "calloc") return false;   // Not calloc.
 | 
						|
      } else {
 | 
						|
        return false;  // Too hard to analyze.
 | 
						|
      }
 | 
						|
 | 
						|
      // Analyze all uses of the allocation.  If any of them are used in a
 | 
						|
      // non-simple way (e.g. stored to another global) bail out.
 | 
						|
      std::vector<Function*> ReadersWriters;
 | 
						|
      if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
 | 
						|
        return false;  // Loaded pointer escapes.
 | 
						|
 | 
						|
      // Remember that this allocation is related to the indirect global.
 | 
						|
      AllocRelatedValues.push_back(Ptr);
 | 
						|
    } else {
 | 
						|
      // Something complex, bail out.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, this is an indirect global.  Remember all of the allocations for
 | 
						|
  // this global in AllocsForIndirectGlobals.
 | 
						|
  while (!AllocRelatedValues.empty()) {
 | 
						|
    AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
 | 
						|
    AllocRelatedValues.pop_back();
 | 
						|
  }
 | 
						|
  IndirectGlobals.insert(GV);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// AnalyzeCallGraph - At this point, we know the functions where globals are
 | 
						|
/// immediately stored to and read from.  Propagate this information up the call
 | 
						|
/// graph to all callers and compute the mod/ref info for all memory for each
 | 
						|
/// function.
 | 
						|
void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
 | 
						|
  // We do a bottom-up SCC traversal of the call graph.  In other words, we
 | 
						|
  // visit all callees before callers (leaf-first).
 | 
						|
  for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
 | 
						|
       ++I) {
 | 
						|
    std::vector<CallGraphNode *> &SCC = *I;
 | 
						|
    assert(!SCC.empty() && "SCC with no functions?");
 | 
						|
 | 
						|
    if (!SCC[0]->getFunction()) {
 | 
						|
      // Calls externally - can't say anything useful.  Remove any existing
 | 
						|
      // function records (may have been created when scanning globals).
 | 
						|
      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
 | 
						|
        FunctionInfo.erase(SCC[i]->getFunction());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
 | 
						|
 | 
						|
    bool KnowNothing = false;
 | 
						|
    unsigned FunctionEffect = 0;
 | 
						|
 | 
						|
    // Collect the mod/ref properties due to called functions.  We only compute
 | 
						|
    // one mod-ref set.
 | 
						|
    for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
 | 
						|
      Function *F = SCC[i]->getFunction();
 | 
						|
      if (!F) {
 | 
						|
        KnowNothing = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (F->isDeclaration()) {
 | 
						|
        // Try to get mod/ref behaviour from function attributes.
 | 
						|
        if (F->doesNotAccessMemory()) {
 | 
						|
          // Can't do better than that!
 | 
						|
        } else if (F->onlyReadsMemory()) {
 | 
						|
          FunctionEffect |= Ref;
 | 
						|
          if (!F->isIntrinsic())
 | 
						|
            // This function might call back into the module and read a global -
 | 
						|
            // consider every global as possibly being read by this function.
 | 
						|
            FR.MayReadAnyGlobal = true;
 | 
						|
        } else {
 | 
						|
          FunctionEffect |= ModRef;
 | 
						|
          // Can't say anything useful unless it's an intrinsic - they don't
 | 
						|
          // read or write global variables of the kind considered here.
 | 
						|
          KnowNothing = !F->isIntrinsic();
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
 | 
						|
           CI != E && !KnowNothing; ++CI)
 | 
						|
        if (Function *Callee = CI->second->getFunction()) {
 | 
						|
          if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
 | 
						|
            // Propagate function effect up.
 | 
						|
            FunctionEffect |= CalleeFR->FunctionEffect;
 | 
						|
 | 
						|
            // Incorporate callee's effects on globals into our info.
 | 
						|
            for (std::map<const GlobalValue*, unsigned>::iterator GI =
 | 
						|
                   CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
 | 
						|
                 GI != E; ++GI)
 | 
						|
              FR.GlobalInfo[GI->first] |= GI->second;
 | 
						|
            FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
 | 
						|
          } else {
 | 
						|
            // Can't say anything about it.  However, if it is inside our SCC,
 | 
						|
            // then nothing needs to be done.
 | 
						|
            CallGraphNode *CalleeNode = CG[Callee];
 | 
						|
            if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
 | 
						|
              KnowNothing = true;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          KnowNothing = true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we can't say anything useful about this SCC, remove all SCC functions
 | 
						|
    // from the FunctionInfo map.
 | 
						|
    if (KnowNothing) {
 | 
						|
      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
 | 
						|
        FunctionInfo.erase(SCC[i]->getFunction());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Scan the function bodies for explicit loads or stores.
 | 
						|
    for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
 | 
						|
      for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
 | 
						|
             E = inst_end(SCC[i]->getFunction());
 | 
						|
           II != E && FunctionEffect != ModRef; ++II)
 | 
						|
        if (isa<LoadInst>(*II)) {
 | 
						|
          FunctionEffect |= Ref;
 | 
						|
          if (cast<LoadInst>(*II).isVolatile())
 | 
						|
            // Volatile loads may have side-effects, so mark them as writing
 | 
						|
            // memory (for example, a flag inside the processor).
 | 
						|
            FunctionEffect |= Mod;
 | 
						|
        } else if (isa<StoreInst>(*II)) {
 | 
						|
          FunctionEffect |= Mod;
 | 
						|
          if (cast<StoreInst>(*II).isVolatile())
 | 
						|
            // Treat volatile stores as reading memory somewhere.
 | 
						|
            FunctionEffect |= Ref;
 | 
						|
        } else if (isMalloc(&cast<Instruction>(*II)) ||
 | 
						|
                   isFreeCall(&cast<Instruction>(*II))) {
 | 
						|
          FunctionEffect |= ModRef;
 | 
						|
        }
 | 
						|
 | 
						|
    if ((FunctionEffect & Mod) == 0)
 | 
						|
      ++NumReadMemFunctions;
 | 
						|
    if (FunctionEffect == 0)
 | 
						|
      ++NumNoMemFunctions;
 | 
						|
    FR.FunctionEffect = FunctionEffect;
 | 
						|
 | 
						|
    // Finally, now that we know the full effect on this SCC, clone the
 | 
						|
    // information to each function in the SCC.
 | 
						|
    for (unsigned i = 1, e = SCC.size(); i != e; ++i)
 | 
						|
      FunctionInfo[SCC[i]->getFunction()] = FR;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// alias - If one of the pointers is to a global that we are tracking, and the
 | 
						|
/// other is some random pointer, we know there cannot be an alias, because the
 | 
						|
/// address of the global isn't taken.
 | 
						|
AliasAnalysis::AliasResult
 | 
						|
GlobalsModRef::alias(const Location &LocA,
 | 
						|
                     const Location &LocB) {
 | 
						|
  // Get the base object these pointers point to.
 | 
						|
  const Value *UV1 = GetUnderlyingObject(LocA.Ptr);
 | 
						|
  const Value *UV2 = GetUnderlyingObject(LocB.Ptr);
 | 
						|
 | 
						|
  // If either of the underlying values is a global, they may be non-addr-taken
 | 
						|
  // globals, which we can answer queries about.
 | 
						|
  const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
 | 
						|
  const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
 | 
						|
  if (GV1 || GV2) {
 | 
						|
    // If the global's address is taken, pretend we don't know it's a pointer to
 | 
						|
    // the global.
 | 
						|
    if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
 | 
						|
    if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
 | 
						|
 | 
						|
    // If the two pointers are derived from two different non-addr-taken
 | 
						|
    // globals, or if one is and the other isn't, we know these can't alias.
 | 
						|
    if ((GV1 || GV2) && GV1 != GV2)
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    // Otherwise if they are both derived from the same addr-taken global, we
 | 
						|
    // can't know the two accesses don't overlap.
 | 
						|
  }
 | 
						|
 | 
						|
  // These pointers may be based on the memory owned by an indirect global.  If
 | 
						|
  // so, we may be able to handle this.  First check to see if the base pointer
 | 
						|
  // is a direct load from an indirect global.
 | 
						|
  GV1 = GV2 = 0;
 | 
						|
  if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
 | 
						|
    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
 | 
						|
      if (IndirectGlobals.count(GV))
 | 
						|
        GV1 = GV;
 | 
						|
  if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
 | 
						|
    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
 | 
						|
      if (IndirectGlobals.count(GV))
 | 
						|
        GV2 = GV;
 | 
						|
 | 
						|
  // These pointers may also be from an allocation for the indirect global.  If
 | 
						|
  // so, also handle them.
 | 
						|
  if (AllocsForIndirectGlobals.count(UV1))
 | 
						|
    GV1 = AllocsForIndirectGlobals[UV1];
 | 
						|
  if (AllocsForIndirectGlobals.count(UV2))
 | 
						|
    GV2 = AllocsForIndirectGlobals[UV2];
 | 
						|
 | 
						|
  // Now that we know whether the two pointers are related to indirect globals,
 | 
						|
  // use this to disambiguate the pointers.  If either pointer is based on an
 | 
						|
  // indirect global and if they are not both based on the same indirect global,
 | 
						|
  // they cannot alias.
 | 
						|
  if ((GV1 || GV2) && GV1 != GV2)
 | 
						|
    return NoAlias;
 | 
						|
 | 
						|
  return AliasAnalysis::alias(LocA, LocB);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
 | 
						|
                             const Location &Loc) {
 | 
						|
  unsigned Known = ModRef;
 | 
						|
 | 
						|
  // If we are asking for mod/ref info of a direct call with a pointer to a
 | 
						|
  // global we are tracking, return information if we have it.
 | 
						|
  if (const GlobalValue *GV =
 | 
						|
        dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr)))
 | 
						|
    if (GV->hasLocalLinkage())
 | 
						|
      if (const Function *F = CS.getCalledFunction())
 | 
						|
        if (NonAddressTakenGlobals.count(GV))
 | 
						|
          if (const FunctionRecord *FR = getFunctionInfo(F))
 | 
						|
            Known = FR->getInfoForGlobal(GV);
 | 
						|
 | 
						|
  if (Known == NoModRef)
 | 
						|
    return NoModRef; // No need to query other mod/ref analyses
 | 
						|
  return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Methods to update the analysis as a result of the client transformation.
 | 
						|
//
 | 
						|
void GlobalsModRef::deleteValue(Value *V) {
 | 
						|
  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
    if (NonAddressTakenGlobals.erase(GV)) {
 | 
						|
      // This global might be an indirect global.  If so, remove it and remove
 | 
						|
      // any AllocRelatedValues for it.
 | 
						|
      if (IndirectGlobals.erase(GV)) {
 | 
						|
        // Remove any entries in AllocsForIndirectGlobals for this global.
 | 
						|
        for (std::map<const Value*, const GlobalValue*>::iterator
 | 
						|
             I = AllocsForIndirectGlobals.begin(),
 | 
						|
             E = AllocsForIndirectGlobals.end(); I != E; ) {
 | 
						|
          if (I->second == GV) {
 | 
						|
            AllocsForIndirectGlobals.erase(I++);
 | 
						|
          } else {
 | 
						|
            ++I;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if this is an allocation related to an indirect global, remove
 | 
						|
  // it.
 | 
						|
  AllocsForIndirectGlobals.erase(V);
 | 
						|
 | 
						|
  AliasAnalysis::deleteValue(V);
 | 
						|
}
 | 
						|
 | 
						|
void GlobalsModRef::copyValue(Value *From, Value *To) {
 | 
						|
  AliasAnalysis::copyValue(From, To);
 | 
						|
}
 | 
						|
 | 
						|
void GlobalsModRef::addEscapingUse(Use &U) {
 | 
						|
  // For the purposes of this analysis, it is conservatively correct to treat
 | 
						|
  // a newly escaping value equivalently to a deleted one.  We could perhaps
 | 
						|
  // be more precise by processing the new use and attempting to update our
 | 
						|
  // saved analysis results to accommodate it.
 | 
						|
  deleteValue(U);
 | 
						|
  
 | 
						|
  AliasAnalysis::addEscapingUse(U);
 | 
						|
}
 |