llvm-6502/utils/TableGen/DAGISelEmitter.cpp
Dan Gohman f350b277f3 Move the point at which FastISel taps into the SelectionDAGISel
process up to a higher level. This allows FastISel to leverage
more of SelectionDAGISel's infastructure, such as updating Machine
PHI nodes.

Also, implement transitioning from SDISel back to FastISel in
the middle of a block, so it's now possible to go back and
forth. This allows FastISel to hand individual CallInsts and other
complicated things off to SDISel to handle, while handling the rest
of the block itself.

To help support this, reorganize the SelectionDAG class so that it
is allocated once and reused throughout a function, instead of
being completely reallocated for each block.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55219 91177308-0d34-0410-b5e6-96231b3b80d8
2008-08-23 02:25:05 +00:00

2088 lines
83 KiB
C++

//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a DAG instruction selector.
//
//===----------------------------------------------------------------------===//
#include "DAGISelEmitter.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Streams.h"
#include <algorithm>
#include <deque>
using namespace llvm;
//===----------------------------------------------------------------------===//
// DAGISelEmitter Helper methods
//
/// NodeIsComplexPattern - return true if N is a leaf node and a subclass of
/// ComplexPattern.
static bool NodeIsComplexPattern(TreePatternNode *N) {
return (N->isLeaf() &&
dynamic_cast<DefInit*>(N->getLeafValue()) &&
static_cast<DefInit*>(N->getLeafValue())->getDef()->
isSubClassOf("ComplexPattern"));
}
/// NodeGetComplexPattern - return the pointer to the ComplexPattern if N
/// is a leaf node and a subclass of ComplexPattern, else it returns NULL.
static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
CodeGenDAGPatterns &CGP) {
if (N->isLeaf() &&
dynamic_cast<DefInit*>(N->getLeafValue()) &&
static_cast<DefInit*>(N->getLeafValue())->getDef()->
isSubClassOf("ComplexPattern")) {
return &CGP.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
->getDef());
}
return NULL;
}
/// getPatternSize - Return the 'size' of this pattern. We want to match large
/// patterns before small ones. This is used to determine the size of a
/// pattern.
static unsigned getPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) {
assert((EMVT::isExtIntegerInVTs(P->getExtTypes()) ||
EMVT::isExtFloatingPointInVTs(P->getExtTypes()) ||
P->getExtTypeNum(0) == MVT::isVoid ||
P->getExtTypeNum(0) == MVT::Flag ||
P->getExtTypeNum(0) == MVT::iPTR ||
P->getExtTypeNum(0) == MVT::iPTRAny) &&
"Not a valid pattern node to size!");
unsigned Size = 3; // The node itself.
// If the root node is a ConstantSDNode, increases its size.
// e.g. (set R32:$dst, 0).
if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
Size += 2;
// FIXME: This is a hack to statically increase the priority of patterns
// which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
// Later we can allow complexity / cost for each pattern to be (optionally)
// specified. To get best possible pattern match we'll need to dynamically
// calculate the complexity of all patterns a dag can potentially map to.
const ComplexPattern *AM = NodeGetComplexPattern(P, CGP);
if (AM)
Size += AM->getNumOperands() * 3;
// If this node has some predicate function that must match, it adds to the
// complexity of this node.
if (!P->getPredicateFn().empty())
++Size;
// Count children in the count if they are also nodes.
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = P->getChild(i);
if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
Size += getPatternSize(Child, CGP);
else if (Child->isLeaf()) {
if (dynamic_cast<IntInit*>(Child->getLeafValue()))
Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
else if (NodeIsComplexPattern(Child))
Size += getPatternSize(Child, CGP);
else if (!Child->getPredicateFn().empty())
++Size;
}
}
return Size;
}
/// getResultPatternCost - Compute the number of instructions for this pattern.
/// This is a temporary hack. We should really include the instruction
/// latencies in this calculation.
static unsigned getResultPatternCost(TreePatternNode *P,
CodeGenDAGPatterns &CGP) {
if (P->isLeaf()) return 0;
unsigned Cost = 0;
Record *Op = P->getOperator();
if (Op->isSubClassOf("Instruction")) {
Cost++;
CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName());
if (II.usesCustomDAGSchedInserter)
Cost += 10;
}
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
Cost += getResultPatternCost(P->getChild(i), CGP);
return Cost;
}
/// getResultPatternCodeSize - Compute the code size of instructions for this
/// pattern.
static unsigned getResultPatternSize(TreePatternNode *P,
CodeGenDAGPatterns &CGP) {
if (P->isLeaf()) return 0;
unsigned Cost = 0;
Record *Op = P->getOperator();
if (Op->isSubClassOf("Instruction")) {
Cost += Op->getValueAsInt("CodeSize");
}
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
Cost += getResultPatternSize(P->getChild(i), CGP);
return Cost;
}
// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
// In particular, we want to match maximal patterns first and lowest cost within
// a particular complexity first.
struct PatternSortingPredicate {
PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {}
CodeGenDAGPatterns &CGP;
bool operator()(const PatternToMatch *LHS,
const PatternToMatch *RHS) {
unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), CGP);
unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), CGP);
LHSSize += LHS->getAddedComplexity();
RHSSize += RHS->getAddedComplexity();
if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
if (LHSSize < RHSSize) return false;
// If the patterns have equal complexity, compare generated instruction cost
unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP);
unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP);
if (LHSCost < RHSCost) return true;
if (LHSCost > RHSCost) return false;
return getResultPatternSize(LHS->getDstPattern(), CGP) <
getResultPatternSize(RHS->getDstPattern(), CGP);
}
};
/// getRegisterValueType - Look up and return the first ValueType of specified
/// RegisterClass record
static MVT::SimpleValueType getRegisterValueType(Record *R, const CodeGenTarget &T) {
if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R))
return RC->getValueTypeNum(0);
return MVT::Other;
}
/// RemoveAllTypes - A quick recursive walk over a pattern which removes all
/// type information from it.
static void RemoveAllTypes(TreePatternNode *N) {
N->removeTypes();
if (!N->isLeaf())
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
RemoveAllTypes(N->getChild(i));
}
/// NodeHasProperty - return true if TreePatternNode has the specified
/// property.
static bool NodeHasProperty(TreePatternNode *N, SDNP Property,
CodeGenDAGPatterns &CGP) {
if (N->isLeaf()) {
const ComplexPattern *CP = NodeGetComplexPattern(N, CGP);
if (CP)
return CP->hasProperty(Property);
return false;
}
Record *Operator = N->getOperator();
if (!Operator->isSubClassOf("SDNode")) return false;
return CGP.getSDNodeInfo(Operator).hasProperty(Property);
}
static bool PatternHasProperty(TreePatternNode *N, SDNP Property,
CodeGenDAGPatterns &CGP) {
if (NodeHasProperty(N, Property, CGP))
return true;
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = N->getChild(i);
if (PatternHasProperty(Child, Property, CGP))
return true;
}
return false;
}
static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
return CGP.getSDNodeInfo(Op).getEnumName();
}
static
bool DisablePatternForFastISel(TreePatternNode *N, CodeGenDAGPatterns &CGP) {
bool isStore = !N->isLeaf() &&
getOpcodeName(N->getOperator(), CGP) == "ISD::STORE";
if (!isStore && NodeHasProperty(N, SDNPHasChain, CGP))
return false;
bool HasChain = false;
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = N->getChild(i);
if (PatternHasProperty(Child, SDNPHasChain, CGP)) {
HasChain = true;
break;
}
}
return HasChain;
}
//===----------------------------------------------------------------------===//
// Node Transformation emitter implementation.
//
void DAGISelEmitter::EmitNodeTransforms(std::ostream &OS) {
// Walk the pattern fragments, adding them to a map, which sorts them by
// name.
typedef std::map<std::string, CodeGenDAGPatterns::NodeXForm> NXsByNameTy;
NXsByNameTy NXsByName;
for (CodeGenDAGPatterns::nx_iterator I = CGP.nx_begin(), E = CGP.nx_end();
I != E; ++I)
NXsByName.insert(std::make_pair(I->first->getName(), I->second));
OS << "\n// Node transformations.\n";
for (NXsByNameTy::iterator I = NXsByName.begin(), E = NXsByName.end();
I != E; ++I) {
Record *SDNode = I->second.first;
std::string Code = I->second.second;
if (Code.empty()) continue; // Empty code? Skip it.
std::string ClassName = CGP.getSDNodeInfo(SDNode).getSDClassName();
const char *C2 = ClassName == "SDNode" ? "N" : "inN";
OS << "inline SDValue Transform_" << I->first << "(SDNode *" << C2
<< ") {\n";
if (ClassName != "SDNode")
OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
OS << Code << "\n}\n";
}
}
//===----------------------------------------------------------------------===//
// Predicate emitter implementation.
//
void DAGISelEmitter::EmitPredicateFunctions(std::ostream &OS) {
OS << "\n// Predicate functions.\n";
// Walk the pattern fragments, adding them to a map, which sorts them by
// name.
typedef std::map<std::string, std::pair<Record*, TreePattern*> > PFsByNameTy;
PFsByNameTy PFsByName;
for (CodeGenDAGPatterns::pf_iterator I = CGP.pf_begin(), E = CGP.pf_end();
I != E; ++I)
PFsByName.insert(std::make_pair(I->first->getName(), *I));
for (PFsByNameTy::iterator I = PFsByName.begin(), E = PFsByName.end();
I != E; ++I) {
Record *PatFragRecord = I->second.first;// Record that derives from PatFrag.
TreePattern *P = I->second.second;
// If there is a code init for this fragment, emit the predicate code.
std::string Code = PatFragRecord->getValueAsCode("Predicate");
if (Code.empty()) continue;
if (P->getOnlyTree()->isLeaf())
OS << "inline bool Predicate_" << PatFragRecord->getName()
<< "(SDNode *N) {\n";
else {
std::string ClassName =
CGP.getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
const char *C2 = ClassName == "SDNode" ? "N" : "inN";
OS << "inline bool Predicate_" << PatFragRecord->getName()
<< "(SDNode *" << C2 << ") {\n";
if (ClassName != "SDNode")
OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
}
OS << Code << "\n}\n";
}
OS << "\n\n";
}
//===----------------------------------------------------------------------===//
// PatternCodeEmitter implementation.
//
class PatternCodeEmitter {
private:
CodeGenDAGPatterns &CGP;
// Predicates.
std::string PredicateCheck;
// Pattern cost.
unsigned Cost;
// Instruction selector pattern.
TreePatternNode *Pattern;
// Matched instruction.
TreePatternNode *Instruction;
// Node to name mapping
std::map<std::string, std::string> VariableMap;
// Node to operator mapping
std::map<std::string, Record*> OperatorMap;
// Name of the folded node which produces a flag.
std::pair<std::string, unsigned> FoldedFlag;
// Names of all the folded nodes which produce chains.
std::vector<std::pair<std::string, unsigned> > FoldedChains;
// Original input chain(s).
std::vector<std::pair<std::string, std::string> > OrigChains;
std::set<std::string> Duplicates;
/// LSI - Load/Store information.
/// Save loads/stores matched by a pattern, and generate a MemOperandSDNode
/// for each memory access. This facilitates the use of AliasAnalysis in
/// the backend.
std::vector<std::string> LSI;
/// GeneratedCode - This is the buffer that we emit code to. The first int
/// indicates whether this is an exit predicate (something that should be
/// tested, and if true, the match fails) [when 1], or normal code to emit
/// [when 0], or initialization code to emit [when 2].
std::vector<std::pair<unsigned, std::string> > &GeneratedCode;
/// GeneratedDecl - This is the set of all SDValue declarations needed for
/// the set of patterns for each top-level opcode.
std::set<std::string> &GeneratedDecl;
/// TargetOpcodes - The target specific opcodes used by the resulting
/// instructions.
std::vector<std::string> &TargetOpcodes;
std::vector<std::string> &TargetVTs;
/// OutputIsVariadic - Records whether the instruction output pattern uses
/// variable_ops. This requires that the Emit function be passed an
/// additional argument to indicate where the input varargs operands
/// begin.
bool &OutputIsVariadic;
/// NumInputRootOps - Records the number of operands the root node of the
/// input pattern has. This information is used in the generated code to
/// pass to Emit functions when variable_ops processing is needed.
unsigned &NumInputRootOps;
std::string ChainName;
unsigned TmpNo;
unsigned OpcNo;
unsigned VTNo;
void emitCheck(const std::string &S) {
if (!S.empty())
GeneratedCode.push_back(std::make_pair(1, S));
}
void emitCode(const std::string &S) {
if (!S.empty())
GeneratedCode.push_back(std::make_pair(0, S));
}
void emitInit(const std::string &S) {
if (!S.empty())
GeneratedCode.push_back(std::make_pair(2, S));
}
void emitDecl(const std::string &S) {
assert(!S.empty() && "Invalid declaration");
GeneratedDecl.insert(S);
}
void emitOpcode(const std::string &Opc) {
TargetOpcodes.push_back(Opc);
OpcNo++;
}
void emitVT(const std::string &VT) {
TargetVTs.push_back(VT);
VTNo++;
}
public:
PatternCodeEmitter(CodeGenDAGPatterns &cgp, std::string predcheck,
TreePatternNode *pattern, TreePatternNode *instr,
std::vector<std::pair<unsigned, std::string> > &gc,
std::set<std::string> &gd,
std::vector<std::string> &to,
std::vector<std::string> &tv,
bool &oiv,
unsigned &niro)
: CGP(cgp), PredicateCheck(predcheck), Pattern(pattern), Instruction(instr),
GeneratedCode(gc), GeneratedDecl(gd),
TargetOpcodes(to), TargetVTs(tv),
OutputIsVariadic(oiv), NumInputRootOps(niro),
TmpNo(0), OpcNo(0), VTNo(0) {}
/// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
/// if the match fails. At this point, we already know that the opcode for N
/// matches, and the SDNode for the result has the RootName specified name.
void EmitMatchCode(TreePatternNode *N, TreePatternNode *P,
const std::string &RootName, const std::string &ChainSuffix,
bool &FoundChain) {
// Save loads/stores matched by a pattern.
if (!N->isLeaf() && N->getName().empty()) {
if (NodeHasProperty(N, SDNPMemOperand, CGP))
LSI.push_back(RootName);
}
bool isRoot = (P == NULL);
// Emit instruction predicates. Each predicate is just a string for now.
if (isRoot) {
// Record input varargs info.
NumInputRootOps = N->getNumChildren();
if (DisablePatternForFastISel(N, CGP))
emitCheck("!Fast");
emitCheck(PredicateCheck);
}
if (N->isLeaf()) {
if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
emitCheck("cast<ConstantSDNode>(" + RootName +
")->getSignExtended() == " + itostr(II->getValue()));
return;
} else if (!NodeIsComplexPattern(N)) {
assert(0 && "Cannot match this as a leaf value!");
abort();
}
}
// If this node has a name associated with it, capture it in VariableMap. If
// we already saw this in the pattern, emit code to verify dagness.
if (!N->getName().empty()) {
std::string &VarMapEntry = VariableMap[N->getName()];
if (VarMapEntry.empty()) {
VarMapEntry = RootName;
} else {
// If we get here, this is a second reference to a specific name. Since
// we already have checked that the first reference is valid, we don't
// have to recursively match it, just check that it's the same as the
// previously named thing.
emitCheck(VarMapEntry + " == " + RootName);
return;
}
if (!N->isLeaf())
OperatorMap[N->getName()] = N->getOperator();
}
// Emit code to load the child nodes and match their contents recursively.
unsigned OpNo = 0;
bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, CGP);
bool HasChain = PatternHasProperty(N, SDNPHasChain, CGP);
bool EmittedUseCheck = false;
if (HasChain) {
if (NodeHasChain)
OpNo = 1;
if (!isRoot) {
// Multiple uses of actual result?
emitCheck(RootName + ".hasOneUse()");
EmittedUseCheck = true;
if (NodeHasChain) {
// If the immediate use can somehow reach this node through another
// path, then can't fold it either or it will create a cycle.
// e.g. In the following diagram, XX can reach ld through YY. If
// ld is folded into XX, then YY is both a predecessor and a successor
// of XX.
//
// [ld]
// ^ ^
// | |
// / \---
// / [YY]
// | ^
// [XX]-------|
bool NeedCheck = P != Pattern;
if (!NeedCheck) {
const SDNodeInfo &PInfo = CGP.getSDNodeInfo(P->getOperator());
NeedCheck =
P->getOperator() == CGP.get_intrinsic_void_sdnode() ||
P->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
P->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
PInfo.getNumOperands() > 1 ||
PInfo.hasProperty(SDNPHasChain) ||
PInfo.hasProperty(SDNPInFlag) ||
PInfo.hasProperty(SDNPOptInFlag);
}
if (NeedCheck) {
std::string ParentName(RootName.begin(), RootName.end()-1);
emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName +
".Val, N.Val)");
}
}
}
if (NodeHasChain) {
if (FoundChain) {
emitCheck("(" + ChainName + ".Val == " + RootName + ".Val || "
"IsChainCompatible(" + ChainName + ".Val, " +
RootName + ".Val))");
OrigChains.push_back(std::make_pair(ChainName, RootName));
} else
FoundChain = true;
ChainName = "Chain" + ChainSuffix;
emitInit("SDValue " + ChainName + " = " + RootName +
".getOperand(0);");
}
}
// Don't fold any node which reads or writes a flag and has multiple uses.
// FIXME: We really need to separate the concepts of flag and "glue". Those
// real flag results, e.g. X86CMP output, can have multiple uses.
// FIXME: If the optional incoming flag does not exist. Then it is ok to
// fold it.
if (!isRoot &&
(PatternHasProperty(N, SDNPInFlag, CGP) ||
PatternHasProperty(N, SDNPOptInFlag, CGP) ||
PatternHasProperty(N, SDNPOutFlag, CGP))) {
if (!EmittedUseCheck) {
// Multiple uses of actual result?
emitCheck(RootName + ".hasOneUse()");
}
}
// If there is a node predicate for this, emit the call.
if (!N->getPredicateFn().empty())
emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)");
// If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
// a constant without a predicate fn that has more that one bit set, handle
// this as a special case. This is usually for targets that have special
// handling of certain large constants (e.g. alpha with it's 8/16/32-bit
// handling stuff). Using these instructions is often far more efficient
// than materializing the constant. Unfortunately, both the instcombiner
// and the dag combiner can often infer that bits are dead, and thus drop
// them from the mask in the dag. For example, it might turn 'AND X, 255'
// into 'AND X, 254' if it knows the low bit is set. Emit code that checks
// to handle this.
if (!N->isLeaf() &&
(N->getOperator()->getName() == "and" ||
N->getOperator()->getName() == "or") &&
N->getChild(1)->isLeaf() &&
N->getChild(1)->getPredicateFn().empty()) {
if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
emitInit("SDValue " + RootName + "0" + " = " +
RootName + ".getOperand(" + utostr(0) + ");");
emitInit("SDValue " + RootName + "1" + " = " +
RootName + ".getOperand(" + utostr(1) + ");");
emitCheck("isa<ConstantSDNode>(" + RootName + "1)");
const char *MaskPredicate = N->getOperator()->getName() == "or"
? "CheckOrMask(" : "CheckAndMask(";
emitCheck(MaskPredicate + RootName + "0, cast<ConstantSDNode>(" +
RootName + "1), " + itostr(II->getValue()) + ")");
EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0), RootName,
ChainSuffix + utostr(0), FoundChain);
return;
}
}
}
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
emitInit("SDValue " + RootName + utostr(OpNo) + " = " +
RootName + ".getOperand(" +utostr(OpNo) + ");");
EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo), RootName,
ChainSuffix + utostr(OpNo), FoundChain);
}
// Handle cases when root is a complex pattern.
const ComplexPattern *CP;
if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) {
std::string Fn = CP->getSelectFunc();
unsigned NumOps = CP->getNumOperands();
for (unsigned i = 0; i < NumOps; ++i) {
emitDecl("CPTmp" + utostr(i));
emitCode("SDValue CPTmp" + utostr(i) + ";");
}
if (CP->hasProperty(SDNPHasChain)) {
emitDecl("CPInChain");
emitDecl("Chain" + ChainSuffix);
emitCode("SDValue CPInChain;");
emitCode("SDValue Chain" + ChainSuffix + ";");
}
std::string Code = Fn + "(" + RootName + ", " + RootName;
for (unsigned i = 0; i < NumOps; i++)
Code += ", CPTmp" + utostr(i);
if (CP->hasProperty(SDNPHasChain)) {
ChainName = "Chain" + ChainSuffix;
Code += ", CPInChain, Chain" + ChainSuffix;
}
emitCheck(Code + ")");
}
}
void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent,
const std::string &RootName,
const std::string &ParentRootName,
const std::string &ChainSuffix, bool &FoundChain) {
if (!Child->isLeaf()) {
// If it's not a leaf, recursively match.
const SDNodeInfo &CInfo = CGP.getSDNodeInfo(Child->getOperator());
emitCheck(RootName + ".getOpcode() == " +
CInfo.getEnumName());
EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain);
bool HasChain = false;
if (NodeHasProperty(Child, SDNPHasChain, CGP)) {
HasChain = true;
FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults()));
}
if (NodeHasProperty(Child, SDNPOutFlag, CGP)) {
assert(FoldedFlag.first == "" && FoldedFlag.second == 0 &&
"Pattern folded multiple nodes which produce flags?");
FoldedFlag = std::make_pair(RootName,
CInfo.getNumResults() + (unsigned)HasChain);
}
} else {
// If this child has a name associated with it, capture it in VarMap. If
// we already saw this in the pattern, emit code to verify dagness.
if (!Child->getName().empty()) {
std::string &VarMapEntry = VariableMap[Child->getName()];
if (VarMapEntry.empty()) {
VarMapEntry = RootName;
} else {
// If we get here, this is a second reference to a specific name.
// Since we already have checked that the first reference is valid,
// we don't have to recursively match it, just check that it's the
// same as the previously named thing.
emitCheck(VarMapEntry + " == " + RootName);
Duplicates.insert(RootName);
return;
}
}
// Handle leaves of various types.
if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
Record *LeafRec = DI->getDef();
if (LeafRec->isSubClassOf("RegisterClass") ||
LeafRec->getName() == "ptr_rc") {
// Handle register references. Nothing to do here.
} else if (LeafRec->isSubClassOf("Register")) {
// Handle register references.
} else if (LeafRec->isSubClassOf("ComplexPattern")) {
// Handle complex pattern.
const ComplexPattern *CP = NodeGetComplexPattern(Child, CGP);
std::string Fn = CP->getSelectFunc();
unsigned NumOps = CP->getNumOperands();
for (unsigned i = 0; i < NumOps; ++i) {
emitDecl("CPTmp" + utostr(i));
emitCode("SDValue CPTmp" + utostr(i) + ";");
}
if (CP->hasProperty(SDNPHasChain)) {
const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Parent->getOperator());
FoldedChains.push_back(std::make_pair("CPInChain",
PInfo.getNumResults()));
ChainName = "Chain" + ChainSuffix;
emitDecl("CPInChain");
emitDecl(ChainName);
emitCode("SDValue CPInChain;");
emitCode("SDValue " + ChainName + ";");
}
std::string Code = Fn + "(";
if (CP->hasAttribute(CPAttrParentAsRoot)) {
Code += ParentRootName + ", ";
} else {
Code += "N, ";
}
if (CP->hasProperty(SDNPHasChain)) {
std::string ParentName(RootName.begin(), RootName.end()-1);
Code += ParentName + ", ";
}
Code += RootName;
for (unsigned i = 0; i < NumOps; i++)
Code += ", CPTmp" + utostr(i);
if (CP->hasProperty(SDNPHasChain))
Code += ", CPInChain, Chain" + ChainSuffix;
emitCheck(Code + ")");
} else if (LeafRec->getName() == "srcvalue") {
// Place holder for SRCVALUE nodes. Nothing to do here.
} else if (LeafRec->isSubClassOf("ValueType")) {
// Make sure this is the specified value type.
emitCheck("cast<VTSDNode>(" + RootName +
")->getVT() == MVT::" + LeafRec->getName());
} else if (LeafRec->isSubClassOf("CondCode")) {
// Make sure this is the specified cond code.
emitCheck("cast<CondCodeSDNode>(" + RootName +
")->get() == ISD::" + LeafRec->getName());
} else {
#ifndef NDEBUG
Child->dump();
cerr << " ";
#endif
assert(0 && "Unknown leaf type!");
}
// If there is a node predicate for this, emit the call.
if (!Child->getPredicateFn().empty())
emitCheck(Child->getPredicateFn() + "(" + RootName +
".Val)");
} else if (IntInit *II =
dynamic_cast<IntInit*>(Child->getLeafValue())) {
emitCheck("isa<ConstantSDNode>(" + RootName + ")");
unsigned CTmp = TmpNo++;
emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+
RootName + ")->getSignExtended();");
emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue()));
} else {
#ifndef NDEBUG
Child->dump();
#endif
assert(0 && "Unknown leaf type!");
}
}
}
/// EmitResultCode - Emit the action for a pattern. Now that it has matched
/// we actually have to build a DAG!
std::vector<std::string>
EmitResultCode(TreePatternNode *N, std::vector<Record*> DstRegs,
bool InFlagDecled, bool ResNodeDecled,
bool LikeLeaf = false, bool isRoot = false) {
// List of arguments of getTargetNode() or SelectNodeTo().
std::vector<std::string> NodeOps;
// This is something selected from the pattern we matched.
if (!N->getName().empty()) {
const std::string &VarName = N->getName();
std::string Val = VariableMap[VarName];
bool ModifiedVal = false;
if (Val.empty()) {
cerr << "Variable '" << VarName << " referenced but not defined "
<< "and not caught earlier!\n";
abort();
}
if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
// Already selected this operand, just return the tmpval.
NodeOps.push_back(Val);
return NodeOps;
}
const ComplexPattern *CP;
unsigned ResNo = TmpNo++;
if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
std::string CastType;
std::string TmpVar = "Tmp" + utostr(ResNo);
switch (N->getTypeNum(0)) {
default:
cerr << "Cannot handle " << getEnumName(N->getTypeNum(0))
<< " type as an immediate constant. Aborting\n";
abort();
case MVT::i1: CastType = "bool"; break;
case MVT::i8: CastType = "unsigned char"; break;
case MVT::i16: CastType = "unsigned short"; break;
case MVT::i32: CastType = "unsigned"; break;
case MVT::i64: CastType = "uint64_t"; break;
}
emitCode("SDValue " + TmpVar +
" = CurDAG->getTargetConstant(((" + CastType +
") cast<ConstantSDNode>(" + Val + ")->getValue()), " +
getEnumName(N->getTypeNum(0)) + ");");
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
// value if used multiple times by this pattern result.
Val = TmpVar;
ModifiedVal = true;
NodeOps.push_back(Val);
} else if (!N->isLeaf() && N->getOperator()->getName() == "fpimm") {
assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
std::string TmpVar = "Tmp" + utostr(ResNo);
emitCode("SDValue " + TmpVar +
" = CurDAG->getTargetConstantFP(cast<ConstantFPSDNode>(" +
Val + ")->getValueAPF(), cast<ConstantFPSDNode>(" + Val +
")->getValueType(0));");
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
// value if used multiple times by this pattern result.
Val = TmpVar;
ModifiedVal = true;
NodeOps.push_back(Val);
} else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
Record *Op = OperatorMap[N->getName()];
// Transform ExternalSymbol to TargetExternalSymbol
if (Op && Op->getName() == "externalsym") {
std::string TmpVar = "Tmp"+utostr(ResNo);
emitCode("SDValue " + TmpVar + " = CurDAG->getTarget"
"ExternalSymbol(cast<ExternalSymbolSDNode>(" +
Val + ")->getSymbol(), " +
getEnumName(N->getTypeNum(0)) + ");");
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select
// this value if used multiple times by this pattern result.
Val = TmpVar;
ModifiedVal = true;
}
NodeOps.push_back(Val);
} else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr"
|| N->getOperator()->getName() == "tglobaltlsaddr")) {
Record *Op = OperatorMap[N->getName()];
// Transform GlobalAddress to TargetGlobalAddress
if (Op && (Op->getName() == "globaladdr" ||
Op->getName() == "globaltlsaddr")) {
std::string TmpVar = "Tmp" + utostr(ResNo);
emitCode("SDValue " + TmpVar + " = CurDAG->getTarget"
"GlobalAddress(cast<GlobalAddressSDNode>(" + Val +
")->getGlobal(), " + getEnumName(N->getTypeNum(0)) +
");");
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select
// this value if used multiple times by this pattern result.
Val = TmpVar;
ModifiedVal = true;
}
NodeOps.push_back(Val);
} else if (!N->isLeaf()
&& (N->getOperator()->getName() == "texternalsym"
|| N->getOperator()->getName() == "tconstpool")) {
// Do not rewrite the variable name, since we don't generate a new
// temporary.
NodeOps.push_back(Val);
} else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) {
for (unsigned i = 0; i < CP->getNumOperands(); ++i) {
emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");");
NodeOps.push_back("CPTmp" + utostr(i));
}
} else {
// This node, probably wrapped in a SDNodeXForm, behaves like a leaf
// node even if it isn't one. Don't select it.
if (!LikeLeaf) {
emitCode("AddToISelQueue(" + Val + ");");
if (isRoot && N->isLeaf()) {
emitCode("ReplaceUses(N, " + Val + ");");
emitCode("return NULL;");
}
}
NodeOps.push_back(Val);
}
if (ModifiedVal) {
VariableMap[VarName] = Val;
}
return NodeOps;
}
if (N->isLeaf()) {
// If this is an explicit register reference, handle it.
if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
unsigned ResNo = TmpNo++;
if (DI->getDef()->isSubClassOf("Register")) {
emitCode("SDValue Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" +
getQualifiedName(DI->getDef()) + ", " +
getEnumName(N->getTypeNum(0)) + ");");
NodeOps.push_back("Tmp" + utostr(ResNo));
return NodeOps;
} else if (DI->getDef()->getName() == "zero_reg") {
emitCode("SDValue Tmp" + utostr(ResNo) +
" = CurDAG->getRegister(0, " +
getEnumName(N->getTypeNum(0)) + ");");
NodeOps.push_back("Tmp" + utostr(ResNo));
return NodeOps;
}
} else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
unsigned ResNo = TmpNo++;
assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
emitCode("SDValue Tmp" + utostr(ResNo) +
" = CurDAG->getTargetConstant(0x" + itohexstr(II->getValue()) +
"ULL, " + getEnumName(N->getTypeNum(0)) + ");");
NodeOps.push_back("Tmp" + utostr(ResNo));
return NodeOps;
}
#ifndef NDEBUG
N->dump();
#endif
assert(0 && "Unknown leaf type!");
return NodeOps;
}
Record *Op = N->getOperator();
if (Op->isSubClassOf("Instruction")) {
const CodeGenTarget &CGT = CGP.getTargetInfo();
CodeGenInstruction &II = CGT.getInstruction(Op->getName());
const DAGInstruction &Inst = CGP.getInstruction(Op);
const TreePattern *InstPat = Inst.getPattern();
// FIXME: Assume actual pattern comes before "implicit".
TreePatternNode *InstPatNode =
isRoot ? (InstPat ? InstPat->getTree(0) : Pattern)
: (InstPat ? InstPat->getTree(0) : NULL);
if (InstPatNode && InstPatNode->getOperator()->getName() == "set") {
InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
}
bool IsVariadic = isRoot && II.isVariadic;
// FIXME: fix how we deal with physical register operands.
bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0;
bool HasImpResults = isRoot && DstRegs.size() > 0;
bool NodeHasOptInFlag = isRoot &&
PatternHasProperty(Pattern, SDNPOptInFlag, CGP);
bool NodeHasInFlag = isRoot &&
PatternHasProperty(Pattern, SDNPInFlag, CGP);
bool NodeHasOutFlag = isRoot &&
PatternHasProperty(Pattern, SDNPOutFlag, CGP);
bool NodeHasChain = InstPatNode &&
PatternHasProperty(InstPatNode, SDNPHasChain, CGP);
bool InputHasChain = isRoot &&
NodeHasProperty(Pattern, SDNPHasChain, CGP);
unsigned NumResults = Inst.getNumResults();
unsigned NumDstRegs = HasImpResults ? DstRegs.size() : 0;
// Record output varargs info.
OutputIsVariadic = IsVariadic;
if (NodeHasOptInFlag) {
emitCode("bool HasInFlag = "
"(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);");
}
if (IsVariadic)
emitCode("SmallVector<SDValue, 8> Ops" + utostr(OpcNo) + ";");
// How many results is this pattern expected to produce?
unsigned NumPatResults = 0;
for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) {
MVT::SimpleValueType VT = Pattern->getTypeNum(i);
if (VT != MVT::isVoid && VT != MVT::Flag)
NumPatResults++;
}
if (OrigChains.size() > 0) {
// The original input chain is being ignored. If it is not just
// pointing to the op that's being folded, we should create a
// TokenFactor with it and the chain of the folded op as the new chain.
// We could potentially be doing multiple levels of folding, in that
// case, the TokenFactor can have more operands.
emitCode("SmallVector<SDValue, 8> InChains;");
for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) {
emitCode("if (" + OrigChains[i].first + ".Val != " +
OrigChains[i].second + ".Val) {");
emitCode(" AddToISelQueue(" + OrigChains[i].first + ");");
emitCode(" InChains.push_back(" + OrigChains[i].first + ");");
emitCode("}");
}
emitCode("AddToISelQueue(" + ChainName + ");");
emitCode("InChains.push_back(" + ChainName + ");");
emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, MVT::Other, "
"&InChains[0], InChains.size());");
}
// Loop over all of the operands of the instruction pattern, emitting code
// to fill them all in. The node 'N' usually has number children equal to
// the number of input operands of the instruction. However, in cases
// where there are predicate operands for an instruction, we need to fill
// in the 'execute always' values. Match up the node operands to the
// instruction operands to do this.
std::vector<std::string> AllOps;
for (unsigned ChildNo = 0, InstOpNo = NumResults;
InstOpNo != II.OperandList.size(); ++InstOpNo) {
std::vector<std::string> Ops;
// Determine what to emit for this operand.
Record *OperandNode = II.OperandList[InstOpNo].Rec;
if ((OperandNode->isSubClassOf("PredicateOperand") ||
OperandNode->isSubClassOf("OptionalDefOperand")) &&
!CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
// This is a predicate or optional def operand; emit the
// 'default ops' operands.
const DAGDefaultOperand &DefaultOp =
CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec);
for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) {
Ops = EmitResultCode(DefaultOp.DefaultOps[i], DstRegs,
InFlagDecled, ResNodeDecled);
AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
}
} else {
// Otherwise this is a normal operand or a predicate operand without
// 'execute always'; emit it.
Ops = EmitResultCode(N->getChild(ChildNo), DstRegs,
InFlagDecled, ResNodeDecled);
AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
++ChildNo;
}
}
// Emit all the chain and CopyToReg stuff.
bool ChainEmitted = NodeHasChain;
if (NodeHasChain)
emitCode("AddToISelQueue(" + ChainName + ");");
if (NodeHasInFlag || HasImpInputs)
EmitInFlagSelectCode(Pattern, "N", ChainEmitted,
InFlagDecled, ResNodeDecled, true);
if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) {
if (!InFlagDecled) {
emitCode("SDValue InFlag(0, 0);");
InFlagDecled = true;
}
if (NodeHasOptInFlag) {
emitCode("if (HasInFlag) {");
emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);");
emitCode(" AddToISelQueue(InFlag);");
emitCode("}");
}
}
unsigned ResNo = TmpNo++;
unsigned OpsNo = OpcNo;
std::string CodePrefix;
bool ChainAssignmentNeeded = NodeHasChain && !isRoot;
std::deque<std::string> After;
std::string NodeName;
if (!isRoot) {
NodeName = "Tmp" + utostr(ResNo);
CodePrefix = "SDValue " + NodeName + "(";
} else {
NodeName = "ResNode";
if (!ResNodeDecled) {
CodePrefix = "SDNode *" + NodeName + " = ";
ResNodeDecled = true;
} else
CodePrefix = NodeName + " = ";
}
std::string Code = "Opc" + utostr(OpcNo);
emitOpcode(II.Namespace + "::" + II.TheDef->getName());
// Output order: results, chain, flags
// Result types.
if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) {
Code += ", VT" + utostr(VTNo);
emitVT(getEnumName(N->getTypeNum(0)));
}
// Add types for implicit results in physical registers, scheduler will
// care of adding copyfromreg nodes.
for (unsigned i = 0; i < NumDstRegs; i++) {
Record *RR = DstRegs[i];
if (RR->isSubClassOf("Register")) {
MVT::SimpleValueType RVT = getRegisterValueType(RR, CGT);
Code += ", " + getEnumName(RVT);
}
}
if (NodeHasChain)
Code += ", MVT::Other";
if (NodeHasOutFlag)
Code += ", MVT::Flag";
// Inputs.
if (IsVariadic) {
for (unsigned i = 0, e = AllOps.size(); i != e; ++i)
emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");");
AllOps.clear();
// Figure out whether any operands at the end of the op list are not
// part of the variable section.
std::string EndAdjust;
if (NodeHasInFlag || HasImpInputs)
EndAdjust = "-1"; // Always has one flag.
else if (NodeHasOptInFlag)
EndAdjust = "-(HasInFlag?1:0)"; // May have a flag.
emitCode("for (unsigned i = NumInputRootOps + " + utostr(NodeHasChain) +
", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {");
emitCode(" AddToISelQueue(N.getOperand(i));");
emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));");
emitCode("}");
}
// Generate MemOperandSDNodes nodes for each memory accesses covered by
// this pattern.
if (II.isSimpleLoad | II.mayLoad | II.mayStore) {
std::vector<std::string>::const_iterator mi, mie;
for (mi = LSI.begin(), mie = LSI.end(); mi != mie; ++mi) {
emitCode("SDValue LSI_" + *mi + " = "
"CurDAG->getMemOperand(cast<MemSDNode>(" +
*mi + ")->getMemOperand());");
if (IsVariadic)
emitCode("Ops" + utostr(OpsNo) + ".push_back(LSI_" + *mi + ");");
else
AllOps.push_back("LSI_" + *mi);
}
}
if (NodeHasChain) {
if (IsVariadic)
emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");");
else
AllOps.push_back(ChainName);
}
if (IsVariadic) {
if (NodeHasInFlag || HasImpInputs)
emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);");
else if (NodeHasOptInFlag) {
emitCode("if (HasInFlag)");
emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);");
}
Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) +
".size()";
} else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
AllOps.push_back("InFlag");
unsigned NumOps = AllOps.size();
if (NumOps) {
if (!NodeHasOptInFlag && NumOps < 4) {
for (unsigned i = 0; i != NumOps; ++i)
Code += ", " + AllOps[i];
} else {
std::string OpsCode = "SDValue Ops" + utostr(OpsNo) + "[] = { ";
for (unsigned i = 0; i != NumOps; ++i) {
OpsCode += AllOps[i];
if (i != NumOps-1)
OpsCode += ", ";
}
emitCode(OpsCode + " };");
Code += ", Ops" + utostr(OpsNo) + ", ";
if (NodeHasOptInFlag) {
Code += "HasInFlag ? ";
Code += utostr(NumOps) + " : " + utostr(NumOps-1);
} else
Code += utostr(NumOps);
}
}
if (!isRoot)
Code += "), 0";
std::vector<std::string> ReplaceFroms;
std::vector<std::string> ReplaceTos;
if (!isRoot) {
NodeOps.push_back("Tmp" + utostr(ResNo));
} else {
if (NodeHasOutFlag) {
if (!InFlagDecled) {
After.push_back("SDValue InFlag(ResNode, " +
utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) +
");");
InFlagDecled = true;
} else
After.push_back("InFlag = SDValue(ResNode, " +
utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) +
");");
}
if (FoldedChains.size() > 0) {
std::string Code;
for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) {
ReplaceFroms.push_back("SDValue(" +
FoldedChains[j].first + ".Val, " +
utostr(FoldedChains[j].second) +
")");
ReplaceTos.push_back("SDValue(ResNode, " +
utostr(NumResults+NumDstRegs) + ")");
}
}
if (NodeHasOutFlag) {
if (FoldedFlag.first != "") {
ReplaceFroms.push_back("SDValue(" + FoldedFlag.first + ".Val, " +
utostr(FoldedFlag.second) + ")");
ReplaceTos.push_back("InFlag");
} else {
assert(NodeHasProperty(Pattern, SDNPOutFlag, CGP));
ReplaceFroms.push_back("SDValue(N.Val, " +
utostr(NumPatResults + (unsigned)InputHasChain)
+ ")");
ReplaceTos.push_back("InFlag");
}
}
if (!ReplaceFroms.empty() && InputHasChain) {
ReplaceFroms.push_back("SDValue(N.Val, " +
utostr(NumPatResults) + ")");
ReplaceTos.push_back("SDValue(" + ChainName + ".Val, " +
ChainName + ".ResNo" + ")");
ChainAssignmentNeeded |= NodeHasChain;
}
// User does not expect the instruction would produce a chain!
if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) {
;
} else if (InputHasChain && !NodeHasChain) {
// One of the inner node produces a chain.
if (NodeHasOutFlag) {
ReplaceFroms.push_back("SDValue(N.Val, " +
utostr(NumPatResults+1) +
")");
ReplaceTos.push_back("SDValue(ResNode, N.ResNo-1)");
}
ReplaceFroms.push_back("SDValue(N.Val, " +
utostr(NumPatResults) + ")");
ReplaceTos.push_back(ChainName);
}
}
if (ChainAssignmentNeeded) {
// Remember which op produces the chain.
std::string ChainAssign;
if (!isRoot)
ChainAssign = ChainName + " = SDValue(" + NodeName +
".Val, " + utostr(NumResults+NumDstRegs) + ");";
else
ChainAssign = ChainName + " = SDValue(" + NodeName +
", " + utostr(NumResults+NumDstRegs) + ");";
After.push_front(ChainAssign);
}
if (ReplaceFroms.size() == 1) {
After.push_back("ReplaceUses(" + ReplaceFroms[0] + ", " +
ReplaceTos[0] + ");");
} else if (!ReplaceFroms.empty()) {
After.push_back("const SDValue Froms[] = {");
for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i)
After.push_back(" " + ReplaceFroms[i] + (i + 1 != e ? "," : ""));
After.push_back("};");
After.push_back("const SDValue Tos[] = {");
for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i)
After.push_back(" " + ReplaceTos[i] + (i + 1 != e ? "," : ""));
After.push_back("};");
After.push_back("ReplaceUses(Froms, Tos, " +
itostr(ReplaceFroms.size()) + ");");
}
// We prefer to use SelectNodeTo since it avoids allocation when
// possible and it avoids CSE map recalculation for the node's
// users, however it's tricky to use in a non-root context.
//
// We also don't use if the pattern replacement is being used to
// jettison a chain result, since morphing the node in place
// would leave users of the chain dangling.
//
if (!isRoot || (InputHasChain && !NodeHasChain)) {
Code = "CurDAG->getTargetNode(" + Code;
} else {
Code = "CurDAG->SelectNodeTo(N.Val, " + Code;
}
if (isRoot) {
if (After.empty())
CodePrefix = "return ";
else
After.push_back("return ResNode;");
}
emitCode(CodePrefix + Code + ");");
for (unsigned i = 0, e = After.size(); i != e; ++i)
emitCode(After[i]);
return NodeOps;
} else if (Op->isSubClassOf("SDNodeXForm")) {
assert(N->getNumChildren() == 1 && "node xform should have one child!");
// PatLeaf node - the operand may or may not be a leaf node. But it should
// behave like one.
std::vector<std::string> Ops =
EmitResultCode(N->getChild(0), DstRegs, InFlagDecled,
ResNodeDecled, true);
unsigned ResNo = TmpNo++;
emitCode("SDValue Tmp" + utostr(ResNo) + " = Transform_" + Op->getName()
+ "(" + Ops.back() + ".Val);");
NodeOps.push_back("Tmp" + utostr(ResNo));
if (isRoot)
emitCode("return Tmp" + utostr(ResNo) + ".Val;");
return NodeOps;
} else {
N->dump();
cerr << "\n";
throw std::string("Unknown node in result pattern!");
}
}
/// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat'
/// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that
/// 'Pat' may be missing types. If we find an unresolved type to add a check
/// for, this returns true otherwise false if Pat has all types.
bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
const std::string &Prefix, bool isRoot = false) {
// Did we find one?
if (Pat->getExtTypes() != Other->getExtTypes()) {
// Move a type over from 'other' to 'pat'.
Pat->setTypes(Other->getExtTypes());
// The top level node type is checked outside of the select function.
if (!isRoot)
emitCheck(Prefix + ".Val->getValueType(0) == " +
getName(Pat->getTypeNum(0)));
return true;
}
unsigned OpNo =
(unsigned) NodeHasProperty(Pat, SDNPHasChain, CGP);
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
Prefix + utostr(OpNo)))
return true;
return false;
}
private:
/// EmitInFlagSelectCode - Emit the flag operands for the DAG that is
/// being built.
void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName,
bool &ChainEmitted, bool &InFlagDecled,
bool &ResNodeDecled, bool isRoot = false) {
const CodeGenTarget &T = CGP.getTargetInfo();
unsigned OpNo =
(unsigned) NodeHasProperty(N, SDNPHasChain, CGP);
bool HasInFlag = NodeHasProperty(N, SDNPInFlag, CGP);
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
TreePatternNode *Child = N->getChild(i);
if (!Child->isLeaf()) {
EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted,
InFlagDecled, ResNodeDecled);
} else {
if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
if (!Child->getName().empty()) {
std::string Name = RootName + utostr(OpNo);
if (Duplicates.find(Name) != Duplicates.end())
// A duplicate! Do not emit a copy for this node.
continue;
}
Record *RR = DI->getDef();
if (RR->isSubClassOf("Register")) {
MVT::SimpleValueType RVT = getRegisterValueType(RR, T);
if (RVT == MVT::Flag) {
if (!InFlagDecled) {
emitCode("SDValue InFlag = " + RootName + utostr(OpNo) + ";");
InFlagDecled = true;
} else
emitCode("InFlag = " + RootName + utostr(OpNo) + ";");
emitCode("AddToISelQueue(InFlag);");
} else {
if (!ChainEmitted) {
emitCode("SDValue Chain = CurDAG->getEntryNode();");
ChainName = "Chain";
ChainEmitted = true;
}
emitCode("AddToISelQueue(" + RootName + utostr(OpNo) + ");");
if (!InFlagDecled) {
emitCode("SDValue InFlag(0, 0);");
InFlagDecled = true;
}
std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName +
", " + getQualifiedName(RR) +
", " + RootName + utostr(OpNo) + ", InFlag).Val;");
ResNodeDecled = true;
emitCode(ChainName + " = SDValue(ResNode, 0);");
emitCode("InFlag = SDValue(ResNode, 1);");
}
}
}
}
}
if (HasInFlag) {
if (!InFlagDecled) {
emitCode("SDValue InFlag = " + RootName +
".getOperand(" + utostr(OpNo) + ");");
InFlagDecled = true;
} else
emitCode("InFlag = " + RootName +
".getOperand(" + utostr(OpNo) + ");");
emitCode("AddToISelQueue(InFlag);");
}
}
};
/// EmitCodeForPattern - Given a pattern to match, emit code to the specified
/// stream to match the pattern, and generate the code for the match if it
/// succeeds. Returns true if the pattern is not guaranteed to match.
void DAGISelEmitter::GenerateCodeForPattern(const PatternToMatch &Pattern,
std::vector<std::pair<unsigned, std::string> > &GeneratedCode,
std::set<std::string> &GeneratedDecl,
std::vector<std::string> &TargetOpcodes,
std::vector<std::string> &TargetVTs,
bool &OutputIsVariadic,
unsigned &NumInputRootOps) {
OutputIsVariadic = false;
NumInputRootOps = 0;
PatternCodeEmitter Emitter(CGP, Pattern.getPredicateCheck(),
Pattern.getSrcPattern(), Pattern.getDstPattern(),
GeneratedCode, GeneratedDecl,
TargetOpcodes, TargetVTs,
OutputIsVariadic, NumInputRootOps);
// Emit the matcher, capturing named arguments in VariableMap.
bool FoundChain = false;
Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain);
// TP - Get *SOME* tree pattern, we don't care which.
TreePattern &TP = *CGP.pf_begin()->second;
// At this point, we know that we structurally match the pattern, but the
// types of the nodes may not match. Figure out the fewest number of type
// comparisons we need to emit. For example, if there is only one integer
// type supported by a target, there should be no type comparisons at all for
// integer patterns!
//
// To figure out the fewest number of type checks needed, clone the pattern,
// remove the types, then perform type inference on the pattern as a whole.
// If there are unresolved types, emit an explicit check for those types,
// apply the type to the tree, then rerun type inference. Iterate until all
// types are resolved.
//
TreePatternNode *Pat = Pattern.getSrcPattern()->clone();
RemoveAllTypes(Pat);
do {
// Resolve/propagate as many types as possible.
try {
bool MadeChange = true;
while (MadeChange)
MadeChange = Pat->ApplyTypeConstraints(TP,
true/*Ignore reg constraints*/);
} catch (...) {
assert(0 && "Error: could not find consistent types for something we"
" already decided was ok!");
abort();
}
// Insert a check for an unresolved type and add it to the tree. If we find
// an unresolved type to add a check for, this returns true and we iterate,
// otherwise we are done.
} while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true));
Emitter.EmitResultCode(Pattern.getDstPattern(), Pattern.getDstRegs(),
false, false, false, true);
delete Pat;
}
/// EraseCodeLine - Erase one code line from all of the patterns. If removing
/// a line causes any of them to be empty, remove them and return true when
/// done.
static bool EraseCodeLine(std::vector<std::pair<const PatternToMatch*,
std::vector<std::pair<unsigned, std::string> > > >
&Patterns) {
bool ErasedPatterns = false;
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
Patterns[i].second.pop_back();
if (Patterns[i].second.empty()) {
Patterns.erase(Patterns.begin()+i);
--i; --e;
ErasedPatterns = true;
}
}
return ErasedPatterns;
}
/// EmitPatterns - Emit code for at least one pattern, but try to group common
/// code together between the patterns.
void DAGISelEmitter::EmitPatterns(std::vector<std::pair<const PatternToMatch*,
std::vector<std::pair<unsigned, std::string> > > >
&Patterns, unsigned Indent,
std::ostream &OS) {
typedef std::pair<unsigned, std::string> CodeLine;
typedef std::vector<CodeLine> CodeList;
typedef std::vector<std::pair<const PatternToMatch*, CodeList> > PatternList;
if (Patterns.empty()) return;
// Figure out how many patterns share the next code line. Explicitly copy
// FirstCodeLine so that we don't invalidate a reference when changing
// Patterns.
const CodeLine FirstCodeLine = Patterns.back().second.back();
unsigned LastMatch = Patterns.size()-1;
while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine)
--LastMatch;
// If not all patterns share this line, split the list into two pieces. The
// first chunk will use this line, the second chunk won't.
if (LastMatch != 0) {
PatternList Shared(Patterns.begin()+LastMatch, Patterns.end());
PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch);
// FIXME: Emit braces?
if (Shared.size() == 1) {
const PatternToMatch &Pattern = *Shared.back().first;
OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
Pattern.getSrcPattern()->print(OS);
OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
Pattern.getDstPattern()->print(OS);
OS << "\n";
unsigned AddedComplexity = Pattern.getAddedComplexity();
OS << std::string(Indent, ' ') << "// Pattern complexity = "
<< getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity
<< " cost = "
<< getResultPatternCost(Pattern.getDstPattern(), CGP)
<< " size = "
<< getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n";
}
if (FirstCodeLine.first != 1) {
OS << std::string(Indent, ' ') << "{\n";
Indent += 2;
}
EmitPatterns(Shared, Indent, OS);
if (FirstCodeLine.first != 1) {
Indent -= 2;
OS << std::string(Indent, ' ') << "}\n";
}
if (Other.size() == 1) {
const PatternToMatch &Pattern = *Other.back().first;
OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
Pattern.getSrcPattern()->print(OS);
OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
Pattern.getDstPattern()->print(OS);
OS << "\n";
unsigned AddedComplexity = Pattern.getAddedComplexity();
OS << std::string(Indent, ' ') << "// Pattern complexity = "
<< getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity
<< " cost = "
<< getResultPatternCost(Pattern.getDstPattern(), CGP)
<< " size = "
<< getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n";
}
EmitPatterns(Other, Indent, OS);
return;
}
// Remove this code from all of the patterns that share it.
bool ErasedPatterns = EraseCodeLine(Patterns);
bool isPredicate = FirstCodeLine.first == 1;
// Otherwise, every pattern in the list has this line. Emit it.
if (!isPredicate) {
// Normal code.
OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n";
} else {
OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second;
// If the next code line is another predicate, and if all of the pattern
// in this group share the same next line, emit it inline now. Do this
// until we run out of common predicates.
while (!ErasedPatterns && Patterns.back().second.back().first == 1) {
// Check that all of fhe patterns in Patterns end with the same predicate.
bool AllEndWithSamePredicate = true;
for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
if (Patterns[i].second.back() != Patterns.back().second.back()) {
AllEndWithSamePredicate = false;
break;
}
// If all of the predicates aren't the same, we can't share them.
if (!AllEndWithSamePredicate) break;
// Otherwise we can. Emit it shared now.
OS << " &&\n" << std::string(Indent+4, ' ')
<< Patterns.back().second.back().second;
ErasedPatterns = EraseCodeLine(Patterns);
}
OS << ") {\n";
Indent += 2;
}
EmitPatterns(Patterns, Indent, OS);
if (isPredicate)
OS << std::string(Indent-2, ' ') << "}\n";
}
static std::string getLegalCName(std::string OpName) {
std::string::size_type pos = OpName.find("::");
if (pos != std::string::npos)
OpName.replace(pos, 2, "_");
return OpName;
}
void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
const CodeGenTarget &Target = CGP.getTargetInfo();
// Get the namespace to insert instructions into.
std::string InstNS = Target.getInstNamespace();
if (!InstNS.empty()) InstNS += "::";
// Group the patterns by their top-level opcodes.
std::map<std::string, std::vector<const PatternToMatch*> > PatternsByOpcode;
// All unique target node emission functions.
std::map<std::string, unsigned> EmitFunctions;
for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
E = CGP.ptm_end(); I != E; ++I) {
const PatternToMatch &Pattern = *I;
TreePatternNode *Node = Pattern.getSrcPattern();
if (!Node->isLeaf()) {
PatternsByOpcode[getOpcodeName(Node->getOperator(), CGP)].
push_back(&Pattern);
} else {
const ComplexPattern *CP;
if (dynamic_cast<IntInit*>(Node->getLeafValue())) {
PatternsByOpcode[getOpcodeName(CGP.getSDNodeNamed("imm"), CGP)].
push_back(&Pattern);
} else if ((CP = NodeGetComplexPattern(Node, CGP))) {
std::vector<Record*> OpNodes = CP->getRootNodes();
for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)]
.insert(PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)].begin(),
&Pattern);
}
} else {
cerr << "Unrecognized opcode '";
Node->dump();
cerr << "' on tree pattern '";
cerr << Pattern.getDstPattern()->getOperator()->getName() << "'!\n";
exit(1);
}
}
}
// For each opcode, there might be multiple select functions, one per
// ValueType of the node (or its first operand if it doesn't produce a
// non-chain result.
std::map<std::string, std::vector<std::string> > OpcodeVTMap;
// Emit one Select_* method for each top-level opcode. We do this instead of
// emitting one giant switch statement to support compilers where this will
// result in the recursive functions taking less stack space.
for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator
PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
PBOI != E; ++PBOI) {
const std::string &OpName = PBOI->first;
std::vector<const PatternToMatch*> &PatternsOfOp = PBOI->second;
assert(!PatternsOfOp.empty() && "No patterns but map has entry?");
// We want to emit all of the matching code now. However, we want to emit
// the matches in order of minimal cost. Sort the patterns so the least
// cost one is at the start.
std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(),
PatternSortingPredicate(CGP));
// Split them into groups by type.
std::map<MVT::SimpleValueType,
std::vector<const PatternToMatch*> > PatternsByType;
for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) {
const PatternToMatch *Pat = PatternsOfOp[i];
TreePatternNode *SrcPat = Pat->getSrcPattern();
MVT::SimpleValueType VT = SrcPat->getTypeNum(0);
std::map<MVT::SimpleValueType,
std::vector<const PatternToMatch*> >::iterator TI =
PatternsByType.find(VT);
if (TI != PatternsByType.end())
TI->second.push_back(Pat);
else {
std::vector<const PatternToMatch*> PVec;
PVec.push_back(Pat);
PatternsByType.insert(std::make_pair(VT, PVec));
}
}
for (std::map<MVT::SimpleValueType,
std::vector<const PatternToMatch*> >::iterator
II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE;
++II) {
MVT::SimpleValueType OpVT = II->first;
std::vector<const PatternToMatch*> &Patterns = II->second;
typedef std::vector<std::pair<unsigned,std::string> > CodeList;
typedef std::vector<std::pair<unsigned,std::string> >::iterator CodeListI;
std::vector<std::pair<const PatternToMatch*, CodeList> > CodeForPatterns;
std::vector<std::vector<std::string> > PatternOpcodes;
std::vector<std::vector<std::string> > PatternVTs;
std::vector<std::set<std::string> > PatternDecls;
std::vector<bool> OutputIsVariadicFlags;
std::vector<unsigned> NumInputRootOpsCounts;
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
CodeList GeneratedCode;
std::set<std::string> GeneratedDecl;
std::vector<std::string> TargetOpcodes;
std::vector<std::string> TargetVTs;
bool OutputIsVariadic;
unsigned NumInputRootOps;
GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl,
TargetOpcodes, TargetVTs,
OutputIsVariadic, NumInputRootOps);
CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode));
PatternDecls.push_back(GeneratedDecl);
PatternOpcodes.push_back(TargetOpcodes);
PatternVTs.push_back(TargetVTs);
OutputIsVariadicFlags.push_back(OutputIsVariadic);
NumInputRootOpsCounts.push_back(NumInputRootOps);
}
// Scan the code to see if all of the patterns are reachable and if it is
// possible that the last one might not match.
bool mightNotMatch = true;
for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
CodeList &GeneratedCode = CodeForPatterns[i].second;
mightNotMatch = false;
for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) {
if (GeneratedCode[j].first == 1) { // predicate.
mightNotMatch = true;
break;
}
}
// If this pattern definitely matches, and if it isn't the last one, the
// patterns after it CANNOT ever match. Error out.
if (mightNotMatch == false && i != CodeForPatterns.size()-1) {
cerr << "Pattern '";
CodeForPatterns[i].first->getSrcPattern()->print(*cerr.stream());
cerr << "' is impossible to select!\n";
exit(1);
}
}
// Factor target node emission code (emitted by EmitResultCode) into
// separate functions. Uniquing and share them among all instruction
// selection routines.
for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
CodeList &GeneratedCode = CodeForPatterns[i].second;
std::vector<std::string> &TargetOpcodes = PatternOpcodes[i];
std::vector<std::string> &TargetVTs = PatternVTs[i];
std::set<std::string> Decls = PatternDecls[i];
bool OutputIsVariadic = OutputIsVariadicFlags[i];
unsigned NumInputRootOps = NumInputRootOpsCounts[i];
std::vector<std::string> AddedInits;
int CodeSize = (int)GeneratedCode.size();
int LastPred = -1;
for (int j = CodeSize-1; j >= 0; --j) {
if (LastPred == -1 && GeneratedCode[j].first == 1)
LastPred = j;
else if (LastPred != -1 && GeneratedCode[j].first == 2)
AddedInits.push_back(GeneratedCode[j].second);
}
std::string CalleeCode = "(const SDValue &N";
std::string CallerCode = "(N";
for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) {
CalleeCode += ", unsigned Opc" + utostr(j);
CallerCode += ", " + TargetOpcodes[j];
}
for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) {
CalleeCode += ", MVT VT" + utostr(j);
CallerCode += ", " + TargetVTs[j];
}
for (std::set<std::string>::iterator
I = Decls.begin(), E = Decls.end(); I != E; ++I) {
std::string Name = *I;
CalleeCode += ", SDValue &" + Name;
CallerCode += ", " + Name;
}
if (OutputIsVariadic) {
CalleeCode += ", unsigned NumInputRootOps";
CallerCode += ", " + utostr(NumInputRootOps);
}
CallerCode += ");";
CalleeCode += ") ";
// Prevent emission routines from being inlined to reduce selection
// routines stack frame sizes.
CalleeCode += "DISABLE_INLINE ";
CalleeCode += "{\n";
for (std::vector<std::string>::const_reverse_iterator
I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I)
CalleeCode += " " + *I + "\n";
for (int j = LastPred+1; j < CodeSize; ++j)
CalleeCode += " " + GeneratedCode[j].second + "\n";
for (int j = LastPred+1; j < CodeSize; ++j)
GeneratedCode.pop_back();
CalleeCode += "}\n";
// Uniquing the emission routines.
unsigned EmitFuncNum;
std::map<std::string, unsigned>::iterator EFI =
EmitFunctions.find(CalleeCode);
if (EFI != EmitFunctions.end()) {
EmitFuncNum = EFI->second;
} else {
EmitFuncNum = EmitFunctions.size();
EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum));
OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode;
}
// Replace the emission code within selection routines with calls to the
// emission functions.
CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode;
GeneratedCode.push_back(std::make_pair(false, CallerCode));
}
// Print function.
std::string OpVTStr;
if (OpVT == MVT::iPTR) {
OpVTStr = "_iPTR";
} else if (OpVT == MVT::iPTRAny) {
OpVTStr = "_iPTRAny";
} else if (OpVT == MVT::isVoid) {
// Nodes with a void result actually have a first result type of either
// Other (a chain) or Flag. Since there is no one-to-one mapping from
// void to this case, we handle it specially here.
} else {
OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::'
}
std::map<std::string, std::vector<std::string> >::iterator OpVTI =
OpcodeVTMap.find(OpName);
if (OpVTI == OpcodeVTMap.end()) {
std::vector<std::string> VTSet;
VTSet.push_back(OpVTStr);
OpcodeVTMap.insert(std::make_pair(OpName, VTSet));
} else
OpVTI->second.push_back(OpVTStr);
OS << "SDNode *Select_" << getLegalCName(OpName)
<< OpVTStr << "(const SDValue &N) {\n";
// Loop through and reverse all of the CodeList vectors, as we will be
// accessing them from their logical front, but accessing the end of a
// vector is more efficient.
for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
CodeList &GeneratedCode = CodeForPatterns[i].second;
std::reverse(GeneratedCode.begin(), GeneratedCode.end());
}
// Next, reverse the list of patterns itself for the same reason.
std::reverse(CodeForPatterns.begin(), CodeForPatterns.end());
// Emit all of the patterns now, grouped together to share code.
EmitPatterns(CodeForPatterns, 2, OS);
// If the last pattern has predicates (which could fail) emit code to
// catch the case where nothing handles a pattern.
if (mightNotMatch) {
OS << " cerr << \"Cannot yet select: \";\n";
if (OpName != "ISD::INTRINSIC_W_CHAIN" &&
OpName != "ISD::INTRINSIC_WO_CHAIN" &&
OpName != "ISD::INTRINSIC_VOID") {
OS << " N.Val->dump(CurDAG);\n";
} else {
OS << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
"N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
<< " cerr << \"intrinsic %\"<< "
"Intrinsic::getName((Intrinsic::ID)iid);\n";
}
OS << " cerr << '\\n';\n"
<< " abort();\n"
<< " return NULL;\n";
}
OS << "}\n\n";
}
}
// Emit boilerplate.
OS << "SDNode *Select_INLINEASM(SDValue N) {\n"
<< " std::vector<SDValue> Ops(N.Val->op_begin(), N.Val->op_end());\n"
<< " SelectInlineAsmMemoryOperands(Ops);\n\n"
<< " // Ensure that the asm operands are themselves selected.\n"
<< " for (unsigned j = 0, e = Ops.size(); j != e; ++j)\n"
<< " AddToISelQueue(Ops[j]);\n\n"
<< " std::vector<MVT> VTs;\n"
<< " VTs.push_back(MVT::Other);\n"
<< " VTs.push_back(MVT::Flag);\n"
<< " SDValue New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], "
"Ops.size());\n"
<< " return New.Val;\n"
<< "}\n\n";
OS << "SDNode *Select_UNDEF(const SDValue &N) {\n"
<< " return CurDAG->SelectNodeTo(N.Val, TargetInstrInfo::IMPLICIT_DEF,\n"
<< " N.getValueType());\n"
<< "}\n\n";
OS << "SDNode *Select_DBG_LABEL(const SDValue &N) {\n"
<< " SDValue Chain = N.getOperand(0);\n"
<< " unsigned C = cast<LabelSDNode>(N)->getLabelID();\n"
<< " SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
<< " AddToISelQueue(Chain);\n"
<< " return CurDAG->SelectNodeTo(N.Val, TargetInstrInfo::DBG_LABEL,\n"
<< " MVT::Other, Tmp, Chain);\n"
<< "}\n\n";
OS << "SDNode *Select_EH_LABEL(const SDValue &N) {\n"
<< " SDValue Chain = N.getOperand(0);\n"
<< " unsigned C = cast<LabelSDNode>(N)->getLabelID();\n"
<< " SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
<< " AddToISelQueue(Chain);\n"
<< " return CurDAG->SelectNodeTo(N.Val, TargetInstrInfo::EH_LABEL,\n"
<< " MVT::Other, Tmp, Chain);\n"
<< "}\n\n";
OS << "SDNode *Select_DECLARE(const SDValue &N) {\n"
<< " SDValue Chain = N.getOperand(0);\n"
<< " SDValue N1 = N.getOperand(1);\n"
<< " SDValue N2 = N.getOperand(2);\n"
<< " if (!isa<FrameIndexSDNode>(N1) || !isa<GlobalAddressSDNode>(N2)) {\n"
<< " cerr << \"Cannot yet select llvm.dbg.declare: \";\n"
<< " N.Val->dump(CurDAG);\n"
<< " abort();\n"
<< " }\n"
<< " int FI = cast<FrameIndexSDNode>(N1)->getIndex();\n"
<< " GlobalValue *GV = cast<GlobalAddressSDNode>(N2)->getGlobal();\n"
<< " SDValue Tmp1 = "
<< "CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());\n"
<< " SDValue Tmp2 = "
<< "CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy());\n"
<< " AddToISelQueue(Chain);\n"
<< " return CurDAG->SelectNodeTo(N.Val, TargetInstrInfo::DECLARE,\n"
<< " MVT::Other, Tmp1, Tmp2, Chain);\n"
<< "}\n\n";
OS << "SDNode *Select_EXTRACT_SUBREG(const SDValue &N) {\n"
<< " SDValue N0 = N.getOperand(0);\n"
<< " SDValue N1 = N.getOperand(1);\n"
<< " unsigned C = cast<ConstantSDNode>(N1)->getValue();\n"
<< " SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
<< " AddToISelQueue(N0);\n"
<< " return CurDAG->SelectNodeTo(N.Val, TargetInstrInfo::EXTRACT_SUBREG,\n"
<< " N.getValueType(), N0, Tmp);\n"
<< "}\n\n";
OS << "SDNode *Select_INSERT_SUBREG(const SDValue &N) {\n"
<< " SDValue N0 = N.getOperand(0);\n"
<< " SDValue N1 = N.getOperand(1);\n"
<< " SDValue N2 = N.getOperand(2);\n"
<< " unsigned C = cast<ConstantSDNode>(N2)->getValue();\n"
<< " SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
<< " AddToISelQueue(N1);\n"
<< " AddToISelQueue(N0);\n"
<< " return CurDAG->SelectNodeTo(N.Val, TargetInstrInfo::INSERT_SUBREG,\n"
<< " N.getValueType(), N0, N1, Tmp);\n"
<< "}\n\n";
OS << "// The main instruction selector code.\n"
<< "SDNode *SelectCode(SDValue N) {\n"
<< " if (N.isMachineOpcode()) {\n"
<< " return NULL; // Already selected.\n"
<< " }\n\n"
<< " MVT::SimpleValueType NVT = N.Val->getValueType(0).getSimpleVT();\n"
<< " switch (N.getOpcode()) {\n"
<< " default: break;\n"
<< " case ISD::EntryToken: // These leaves remain the same.\n"
<< " case ISD::BasicBlock:\n"
<< " case ISD::Register:\n"
<< " case ISD::HANDLENODE:\n"
<< " case ISD::TargetConstant:\n"
<< " case ISD::TargetConstantFP:\n"
<< " case ISD::TargetConstantPool:\n"
<< " case ISD::TargetFrameIndex:\n"
<< " case ISD::TargetExternalSymbol:\n"
<< " case ISD::TargetJumpTable:\n"
<< " case ISD::TargetGlobalTLSAddress:\n"
<< " case ISD::TargetGlobalAddress: {\n"
<< " return NULL;\n"
<< " }\n"
<< " case ISD::AssertSext:\n"
<< " case ISD::AssertZext: {\n"
<< " AddToISelQueue(N.getOperand(0));\n"
<< " ReplaceUses(N, N.getOperand(0));\n"
<< " return NULL;\n"
<< " }\n"
<< " case ISD::TokenFactor:\n"
<< " case ISD::CopyFromReg:\n"
<< " case ISD::CopyToReg: {\n"
<< " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n"
<< " AddToISelQueue(N.getOperand(i));\n"
<< " return NULL;\n"
<< " }\n"
<< " case ISD::INLINEASM: return Select_INLINEASM(N);\n"
<< " case ISD::DBG_LABEL: return Select_DBG_LABEL(N);\n"
<< " case ISD::EH_LABEL: return Select_EH_LABEL(N);\n"
<< " case ISD::DECLARE: return Select_DECLARE(N);\n"
<< " case ISD::EXTRACT_SUBREG: return Select_EXTRACT_SUBREG(N);\n"
<< " case ISD::INSERT_SUBREG: return Select_INSERT_SUBREG(N);\n"
<< " case ISD::UNDEF: return Select_UNDEF(N);\n";
// Loop over all of the case statements, emiting a call to each method we
// emitted above.
for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator
PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
PBOI != E; ++PBOI) {
const std::string &OpName = PBOI->first;
// Potentially multiple versions of select for this opcode. One for each
// ValueType of the node (or its first true operand if it doesn't produce a
// result.
std::map<std::string, std::vector<std::string> >::iterator OpVTI =
OpcodeVTMap.find(OpName);
std::vector<std::string> &OpVTs = OpVTI->second;
OS << " case " << OpName << ": {\n";
// Keep track of whether we see a pattern that has an iPtr result.
bool HasPtrPattern = false;
bool HasDefaultPattern = false;
OS << " switch (NVT) {\n";
for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) {
std::string &VTStr = OpVTs[i];
if (VTStr.empty()) {
HasDefaultPattern = true;
continue;
}
// If this is a match on iPTR: don't emit it directly, we need special
// code.
if (VTStr == "_iPTR") {
HasPtrPattern = true;
continue;
}
OS << " case MVT::" << VTStr.substr(1) << ":\n"
<< " return Select_" << getLegalCName(OpName)
<< VTStr << "(N);\n";
}
OS << " default:\n";
// If there is an iPTR result version of this pattern, emit it here.
if (HasPtrPattern) {
OS << " if (TLI.getPointerTy() == NVT)\n";
OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n";
}
if (HasDefaultPattern) {
OS << " return Select_" << getLegalCName(OpName) << "(N);\n";
}
OS << " break;\n";
OS << " }\n";
OS << " break;\n";
OS << " }\n";
}
OS << " } // end of big switch.\n\n"
<< " cerr << \"Cannot yet select: \";\n"
<< " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n"
<< " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n"
<< " N.getOpcode() != ISD::INTRINSIC_VOID) {\n"
<< " N.Val->dump(CurDAG);\n"
<< " } else {\n"
<< " unsigned iid = cast<ConstantSDNode>(N.getOperand("
"N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
<< " cerr << \"intrinsic %\"<< "
"Intrinsic::getName((Intrinsic::ID)iid);\n"
<< " }\n"
<< " cerr << '\\n';\n"
<< " abort();\n"
<< " return NULL;\n"
<< "}\n";
}
void DAGISelEmitter::run(std::ostream &OS) {
EmitSourceFileHeader("DAG Instruction Selector for the " +
CGP.getTargetInfo().getName() + " target", OS);
OS << "// *** NOTE: This file is #included into the middle of the target\n"
<< "// *** instruction selector class. These functions are really "
<< "methods.\n\n";
OS << "// Include standard, target-independent definitions and methods used\n"
<< "// by the instruction selector.\n";
OS << "#include <llvm/CodeGen/DAGISelHeader.h>\n\n";
EmitNodeTransforms(OS);
EmitPredicateFunctions(OS);
DOUT << "\n\nALL PATTERNS TO MATCH:\n\n";
for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end();
I != E; ++I) {
DOUT << "PATTERN: "; DEBUG(I->getSrcPattern()->dump());
DOUT << "\nRESULT: "; DEBUG(I->getDstPattern()->dump());
DOUT << "\n";
}
// At this point, we have full information about the 'Patterns' we need to
// parse, both implicitly from instructions as well as from explicit pattern
// definitions. Emit the resultant instruction selector.
EmitInstructionSelector(OS);
}