mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This fixes PR17872. This bug can lead to C++ destructors not being called when they should be, when an exception is thrown. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196711 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			919 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			919 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InlineFunction.cpp - Code to perform function inlining -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements inlining of a function into a call site, resolving
 | |
| // parameters and the return value as appropriate.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Analysis/CallGraph.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/DebugInfo.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
 | |
|                           bool InsertLifetime) {
 | |
|   return InlineFunction(CallSite(CI), IFI, InsertLifetime);
 | |
| }
 | |
| bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
 | |
|                           bool InsertLifetime) {
 | |
|   return InlineFunction(CallSite(II), IFI, InsertLifetime);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// A class for recording information about inlining through an invoke.
 | |
|   class InvokeInliningInfo {
 | |
|     BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
 | |
|     BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
 | |
|     LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
 | |
|     PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
 | |
|     SmallVector<Value*, 8> UnwindDestPHIValues;
 | |
| 
 | |
|   public:
 | |
|     InvokeInliningInfo(InvokeInst *II)
 | |
|       : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
 | |
|         CallerLPad(0), InnerEHValuesPHI(0) {
 | |
|       // If there are PHI nodes in the unwind destination block, we need to keep
 | |
|       // track of which values came into them from the invoke before removing
 | |
|       // the edge from this block.
 | |
|       llvm::BasicBlock *InvokeBB = II->getParent();
 | |
|       BasicBlock::iterator I = OuterResumeDest->begin();
 | |
|       for (; isa<PHINode>(I); ++I) {
 | |
|         // Save the value to use for this edge.
 | |
|         PHINode *PHI = cast<PHINode>(I);
 | |
|         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
 | |
|       }
 | |
| 
 | |
|       CallerLPad = cast<LandingPadInst>(I);
 | |
|     }
 | |
| 
 | |
|     /// getOuterResumeDest - The outer unwind destination is the target of
 | |
|     /// unwind edges introduced for calls within the inlined function.
 | |
|     BasicBlock *getOuterResumeDest() const {
 | |
|       return OuterResumeDest;
 | |
|     }
 | |
| 
 | |
|     BasicBlock *getInnerResumeDest();
 | |
| 
 | |
|     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
 | |
| 
 | |
|     /// forwardResume - Forward the 'resume' instruction to the caller's landing
 | |
|     /// pad block. When the landing pad block has only one predecessor, this is
 | |
|     /// a simple branch. When there is more than one predecessor, we need to
 | |
|     /// split the landing pad block after the landingpad instruction and jump
 | |
|     /// to there.
 | |
|     void forwardResume(ResumeInst *RI,
 | |
|                        SmallPtrSet<LandingPadInst*, 16> &InlinedLPads);
 | |
| 
 | |
|     /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
 | |
|     /// destination block for the given basic block, using the values for the
 | |
|     /// original invoke's source block.
 | |
|     void addIncomingPHIValuesFor(BasicBlock *BB) const {
 | |
|       addIncomingPHIValuesForInto(BB, OuterResumeDest);
 | |
|     }
 | |
| 
 | |
|     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
 | |
|       BasicBlock::iterator I = dest->begin();
 | |
|       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
 | |
|         PHINode *phi = cast<PHINode>(I);
 | |
|         phi->addIncoming(UnwindDestPHIValues[i], src);
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
 | |
| BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
 | |
|   if (InnerResumeDest) return InnerResumeDest;
 | |
| 
 | |
|   // Split the landing pad.
 | |
|   BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
 | |
|   InnerResumeDest =
 | |
|     OuterResumeDest->splitBasicBlock(SplitPoint,
 | |
|                                      OuterResumeDest->getName() + ".body");
 | |
| 
 | |
|   // The number of incoming edges we expect to the inner landing pad.
 | |
|   const unsigned PHICapacity = 2;
 | |
| 
 | |
|   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
 | |
|   BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
 | |
|   BasicBlock::iterator I = OuterResumeDest->begin();
 | |
|   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
 | |
|     PHINode *OuterPHI = cast<PHINode>(I);
 | |
|     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
 | |
|                                         OuterPHI->getName() + ".lpad-body",
 | |
|                                         InsertPoint);
 | |
|     OuterPHI->replaceAllUsesWith(InnerPHI);
 | |
|     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
 | |
|   }
 | |
| 
 | |
|   // Create a PHI for the exception values.
 | |
|   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
 | |
|                                      "eh.lpad-body", InsertPoint);
 | |
|   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
 | |
|   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
 | |
| 
 | |
|   // All done.
 | |
|   return InnerResumeDest;
 | |
| }
 | |
| 
 | |
| /// forwardResume - Forward the 'resume' instruction to the caller's landing pad
 | |
| /// block. When the landing pad block has only one predecessor, this is a simple
 | |
| /// branch. When there is more than one predecessor, we need to split the
 | |
| /// landing pad block after the landingpad instruction and jump to there.
 | |
| void InvokeInliningInfo::forwardResume(ResumeInst *RI,
 | |
|                                SmallPtrSet<LandingPadInst*, 16> &InlinedLPads) {
 | |
|   BasicBlock *Dest = getInnerResumeDest();
 | |
|   BasicBlock *Src = RI->getParent();
 | |
| 
 | |
|   BranchInst::Create(Dest, Src);
 | |
| 
 | |
|   // Update the PHIs in the destination. They were inserted in an order which
 | |
|   // makes this work.
 | |
|   addIncomingPHIValuesForInto(Src, Dest);
 | |
| 
 | |
|   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
 | |
|   RI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
 | |
| /// an invoke, we have to turn all of the calls that can throw into
 | |
| /// invokes.  This function analyze BB to see if there are any calls, and if so,
 | |
| /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
 | |
| /// nodes in that block with the values specified in InvokeDestPHIValues.
 | |
| static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
 | |
|                                                    InvokeInliningInfo &Invoke) {
 | |
|   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
 | |
|     Instruction *I = BBI++;
 | |
| 
 | |
|     // We only need to check for function calls: inlined invoke
 | |
|     // instructions require no special handling.
 | |
|     CallInst *CI = dyn_cast<CallInst>(I);
 | |
| 
 | |
|     // If this call cannot unwind, don't convert it to an invoke.
 | |
|     // Inline asm calls cannot throw.
 | |
|     if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
 | |
|       continue;
 | |
| 
 | |
|     // Convert this function call into an invoke instruction.  First, split the
 | |
|     // basic block.
 | |
|     BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
 | |
| 
 | |
|     // Delete the unconditional branch inserted by splitBasicBlock
 | |
|     BB->getInstList().pop_back();
 | |
| 
 | |
|     // Create the new invoke instruction.
 | |
|     ImmutableCallSite CS(CI);
 | |
|     SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
 | |
|     InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
 | |
|                                         Invoke.getOuterResumeDest(),
 | |
|                                         InvokeArgs, CI->getName(), BB);
 | |
|     II->setCallingConv(CI->getCallingConv());
 | |
|     II->setAttributes(CI->getAttributes());
 | |
|     
 | |
|     // Make sure that anything using the call now uses the invoke!  This also
 | |
|     // updates the CallGraph if present, because it uses a WeakVH.
 | |
|     CI->replaceAllUsesWith(II);
 | |
| 
 | |
|     // Delete the original call
 | |
|     Split->getInstList().pop_front();
 | |
| 
 | |
|     // Update any PHI nodes in the exceptional block to indicate that there is
 | |
|     // now a new entry in them.
 | |
|     Invoke.addIncomingPHIValuesFor(BB);
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
 | |
| /// in the body of the inlined function into invokes.
 | |
| ///
 | |
| /// II is the invoke instruction being inlined.  FirstNewBlock is the first
 | |
| /// block of the inlined code (the last block is the end of the function),
 | |
| /// and InlineCodeInfo is information about the code that got inlined.
 | |
| static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
 | |
|                                 ClonedCodeInfo &InlinedCodeInfo) {
 | |
|   BasicBlock *InvokeDest = II->getUnwindDest();
 | |
| 
 | |
|   Function *Caller = FirstNewBlock->getParent();
 | |
| 
 | |
|   // The inlined code is currently at the end of the function, scan from the
 | |
|   // start of the inlined code to its end, checking for stuff we need to
 | |
|   // rewrite.
 | |
|   InvokeInliningInfo Invoke(II);
 | |
| 
 | |
|   // Get all of the inlined landing pad instructions.
 | |
|   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
 | |
|   for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
 | |
|       InlinedLPads.insert(II->getLandingPadInst());
 | |
| 
 | |
|   // Append the clauses from the outer landing pad instruction into the inlined
 | |
|   // landing pad instructions.
 | |
|   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
 | |
|   for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(),
 | |
|          E = InlinedLPads.end(); I != E; ++I) {
 | |
|     LandingPadInst *InlinedLPad = *I;
 | |
|     unsigned OuterNum = OuterLPad->getNumClauses();
 | |
|     InlinedLPad->reserveClauses(OuterNum);
 | |
|     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
 | |
|       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
 | |
|     if (OuterLPad->isCleanup())
 | |
|       InlinedLPad->setCleanup(true);
 | |
|   }
 | |
| 
 | |
|   for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
 | |
|     if (InlinedCodeInfo.ContainsCalls)
 | |
|       HandleCallsInBlockInlinedThroughInvoke(BB, Invoke);
 | |
| 
 | |
|     // Forward any resumes that are remaining here.
 | |
|     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
 | |
|       Invoke.forwardResume(RI, InlinedLPads);
 | |
|   }
 | |
| 
 | |
|   // Now that everything is happy, we have one final detail.  The PHI nodes in
 | |
|   // the exception destination block still have entries due to the original
 | |
|   // invoke instruction. Eliminate these entries (which might even delete the
 | |
|   // PHI node) now.
 | |
|   InvokeDest->removePredecessor(II->getParent());
 | |
| }
 | |
| 
 | |
| /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
 | |
| /// into the caller, update the specified callgraph to reflect the changes we
 | |
| /// made.  Note that it's possible that not all code was copied over, so only
 | |
| /// some edges of the callgraph may remain.
 | |
| static void UpdateCallGraphAfterInlining(CallSite CS,
 | |
|                                          Function::iterator FirstNewBlock,
 | |
|                                          ValueToValueMapTy &VMap,
 | |
|                                          InlineFunctionInfo &IFI) {
 | |
|   CallGraph &CG = *IFI.CG;
 | |
|   const Function *Caller = CS.getInstruction()->getParent()->getParent();
 | |
|   const Function *Callee = CS.getCalledFunction();
 | |
|   CallGraphNode *CalleeNode = CG[Callee];
 | |
|   CallGraphNode *CallerNode = CG[Caller];
 | |
| 
 | |
|   // Since we inlined some uninlined call sites in the callee into the caller,
 | |
|   // add edges from the caller to all of the callees of the callee.
 | |
|   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
 | |
| 
 | |
|   // Consider the case where CalleeNode == CallerNode.
 | |
|   CallGraphNode::CalledFunctionsVector CallCache;
 | |
|   if (CalleeNode == CallerNode) {
 | |
|     CallCache.assign(I, E);
 | |
|     I = CallCache.begin();
 | |
|     E = CallCache.end();
 | |
|   }
 | |
| 
 | |
|   for (; I != E; ++I) {
 | |
|     const Value *OrigCall = I->first;
 | |
| 
 | |
|     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
 | |
|     // Only copy the edge if the call was inlined!
 | |
|     if (VMI == VMap.end() || VMI->second == 0)
 | |
|       continue;
 | |
|     
 | |
|     // If the call was inlined, but then constant folded, there is no edge to
 | |
|     // add.  Check for this case.
 | |
|     Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
 | |
|     if (NewCall == 0) continue;
 | |
| 
 | |
|     // Remember that this call site got inlined for the client of
 | |
|     // InlineFunction.
 | |
|     IFI.InlinedCalls.push_back(NewCall);
 | |
| 
 | |
|     // It's possible that inlining the callsite will cause it to go from an
 | |
|     // indirect to a direct call by resolving a function pointer.  If this
 | |
|     // happens, set the callee of the new call site to a more precise
 | |
|     // destination.  This can also happen if the call graph node of the caller
 | |
|     // was just unnecessarily imprecise.
 | |
|     if (I->second->getFunction() == 0)
 | |
|       if (Function *F = CallSite(NewCall).getCalledFunction()) {
 | |
|         // Indirect call site resolved to direct call.
 | |
|         CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|     CallerNode->addCalledFunction(CallSite(NewCall), I->second);
 | |
|   }
 | |
|   
 | |
|   // Update the call graph by deleting the edge from Callee to Caller.  We must
 | |
|   // do this after the loop above in case Caller and Callee are the same.
 | |
|   CallerNode->removeCallEdgeFor(CS);
 | |
| }
 | |
| 
 | |
| /// HandleByValArgument - When inlining a call site that has a byval argument,
 | |
| /// we have to make the implicit memcpy explicit by adding it.
 | |
| static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
 | |
|                                   const Function *CalledFunc,
 | |
|                                   InlineFunctionInfo &IFI,
 | |
|                                   unsigned ByValAlignment) {
 | |
|   Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
 | |
| 
 | |
|   // If the called function is readonly, then it could not mutate the caller's
 | |
|   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
 | |
|   // temporary.
 | |
|   if (CalledFunc->onlyReadsMemory()) {
 | |
|     // If the byval argument has a specified alignment that is greater than the
 | |
|     // passed in pointer, then we either have to round up the input pointer or
 | |
|     // give up on this transformation.
 | |
|     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
 | |
|       return Arg;
 | |
| 
 | |
|     // If the pointer is already known to be sufficiently aligned, or if we can
 | |
|     // round it up to a larger alignment, then we don't need a temporary.
 | |
|     if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
 | |
|                                    IFI.TD) >= ByValAlignment)
 | |
|       return Arg;
 | |
|     
 | |
|     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
 | |
|     // for code quality, but rarely happens and is required for correctness.
 | |
|   }
 | |
|   
 | |
|   LLVMContext &Context = Arg->getContext();
 | |
| 
 | |
|   Type *VoidPtrTy = Type::getInt8PtrTy(Context);
 | |
|   
 | |
|   // Create the alloca.  If we have DataLayout, use nice alignment.
 | |
|   unsigned Align = 1;
 | |
|   if (IFI.TD)
 | |
|     Align = IFI.TD->getPrefTypeAlignment(AggTy);
 | |
|   
 | |
|   // If the byval had an alignment specified, we *must* use at least that
 | |
|   // alignment, as it is required by the byval argument (and uses of the
 | |
|   // pointer inside the callee).
 | |
|   Align = std::max(Align, ByValAlignment);
 | |
|   
 | |
|   Function *Caller = TheCall->getParent()->getParent(); 
 | |
|   
 | |
|   Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), 
 | |
|                                     &*Caller->begin()->begin());
 | |
|   // Emit a memcpy.
 | |
|   Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
 | |
|   Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
 | |
|                                                  Intrinsic::memcpy, 
 | |
|                                                  Tys);
 | |
|   Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
 | |
|   Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
 | |
|   
 | |
|   Value *Size;
 | |
|   if (IFI.TD == 0)
 | |
|     Size = ConstantExpr::getSizeOf(AggTy);
 | |
|   else
 | |
|     Size = ConstantInt::get(Type::getInt64Ty(Context),
 | |
|                             IFI.TD->getTypeStoreSize(AggTy));
 | |
|   
 | |
|   // Always generate a memcpy of alignment 1 here because we don't know
 | |
|   // the alignment of the src pointer.  Other optimizations can infer
 | |
|   // better alignment.
 | |
|   Value *CallArgs[] = {
 | |
|     DestCast, SrcCast, Size,
 | |
|     ConstantInt::get(Type::getInt32Ty(Context), 1),
 | |
|     ConstantInt::getFalse(Context) // isVolatile
 | |
|   };
 | |
|   IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
 | |
|   
 | |
|   // Uses of the argument in the function should use our new alloca
 | |
|   // instead.
 | |
|   return NewAlloca;
 | |
| }
 | |
| 
 | |
| // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
 | |
| // intrinsic.
 | |
| static bool isUsedByLifetimeMarker(Value *V) {
 | |
|   for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
 | |
|        ++UI) {
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
 | |
|       switch (II->getIntrinsicID()) {
 | |
|       default: break;
 | |
|       case Intrinsic::lifetime_start:
 | |
|       case Intrinsic::lifetime_end:
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // hasLifetimeMarkers - Check whether the given alloca already has
 | |
| // lifetime.start or lifetime.end intrinsics.
 | |
| static bool hasLifetimeMarkers(AllocaInst *AI) {
 | |
|   Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
 | |
|   if (AI->getType() == Int8PtrTy)
 | |
|     return isUsedByLifetimeMarker(AI);
 | |
| 
 | |
|   // Do a scan to find all the casts to i8*.
 | |
|   for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
 | |
|        ++I) {
 | |
|     if (I->getType() != Int8PtrTy) continue;
 | |
|     if (I->stripPointerCasts() != AI) continue;
 | |
|     if (isUsedByLifetimeMarker(*I))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
 | |
| /// recursively update InlinedAtEntry of a DebugLoc.
 | |
| static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 
 | |
|                                     const DebugLoc &InlinedAtDL,
 | |
|                                     LLVMContext &Ctx) {
 | |
|   if (MDNode *IA = DL.getInlinedAt(Ctx)) {
 | |
|     DebugLoc NewInlinedAtDL 
 | |
|       = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
 | |
|     return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
 | |
|                          NewInlinedAtDL.getAsMDNode(Ctx));
 | |
|   }
 | |
| 
 | |
|   return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
 | |
|                        InlinedAtDL.getAsMDNode(Ctx));
 | |
| }
 | |
| 
 | |
| /// fixupLineNumbers - Update inlined instructions' line numbers to 
 | |
| /// to encode location where these instructions are inlined.
 | |
| static void fixupLineNumbers(Function *Fn, Function::iterator FI,
 | |
|                              Instruction *TheCall) {
 | |
|   DebugLoc TheCallDL = TheCall->getDebugLoc();
 | |
|   if (TheCallDL.isUnknown())
 | |
|     return;
 | |
| 
 | |
|   for (; FI != Fn->end(); ++FI) {
 | |
|     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
 | |
|          BI != BE; ++BI) {
 | |
|       DebugLoc DL = BI->getDebugLoc();
 | |
|       if (!DL.isUnknown()) {
 | |
|         BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
 | |
|         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
 | |
|           LLVMContext &Ctx = BI->getContext();
 | |
|           MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
 | |
|           DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 
 | |
|                                                    InlinedAt, Ctx));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// InlineFunction - This function inlines the called function into the basic
 | |
| /// block of the caller.  This returns false if it is not possible to inline
 | |
| /// this call.  The program is still in a well defined state if this occurs
 | |
| /// though.
 | |
| ///
 | |
| /// Note that this only does one level of inlining.  For example, if the
 | |
| /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
 | |
| /// exists in the instruction stream.  Similarly this will inline a recursive
 | |
| /// function by one level.
 | |
| bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
 | |
|                           bool InsertLifetime) {
 | |
|   Instruction *TheCall = CS.getInstruction();
 | |
|   assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
 | |
|          "Instruction not in function!");
 | |
| 
 | |
|   // If IFI has any state in it, zap it before we fill it in.
 | |
|   IFI.reset();
 | |
|   
 | |
|   const Function *CalledFunc = CS.getCalledFunction();
 | |
|   if (CalledFunc == 0 ||          // Can't inline external function or indirect
 | |
|       CalledFunc->isDeclaration() || // call, or call to a vararg function!
 | |
|       CalledFunc->getFunctionType()->isVarArg()) return false;
 | |
| 
 | |
|   // If the call to the callee is not a tail call, we must clear the 'tail'
 | |
|   // flags on any calls that we inline.
 | |
|   bool MustClearTailCallFlags =
 | |
|     !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
 | |
| 
 | |
|   // If the call to the callee cannot throw, set the 'nounwind' flag on any
 | |
|   // calls that we inline.
 | |
|   bool MarkNoUnwind = CS.doesNotThrow();
 | |
| 
 | |
|   BasicBlock *OrigBB = TheCall->getParent();
 | |
|   Function *Caller = OrigBB->getParent();
 | |
| 
 | |
|   // GC poses two hazards to inlining, which only occur when the callee has GC:
 | |
|   //  1. If the caller has no GC, then the callee's GC must be propagated to the
 | |
|   //     caller.
 | |
|   //  2. If the caller has a differing GC, it is invalid to inline.
 | |
|   if (CalledFunc->hasGC()) {
 | |
|     if (!Caller->hasGC())
 | |
|       Caller->setGC(CalledFunc->getGC());
 | |
|     else if (CalledFunc->getGC() != Caller->getGC())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Get the personality function from the callee if it contains a landing pad.
 | |
|   Value *CalleePersonality = 0;
 | |
|   for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
 | |
|        I != E; ++I)
 | |
|     if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
 | |
|       const BasicBlock *BB = II->getUnwindDest();
 | |
|       const LandingPadInst *LP = BB->getLandingPadInst();
 | |
|       CalleePersonality = LP->getPersonalityFn();
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Find the personality function used by the landing pads of the caller. If it
 | |
|   // exists, then check to see that it matches the personality function used in
 | |
|   // the callee.
 | |
|   if (CalleePersonality) {
 | |
|     for (Function::const_iterator I = Caller->begin(), E = Caller->end();
 | |
|          I != E; ++I)
 | |
|       if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
 | |
|         const BasicBlock *BB = II->getUnwindDest();
 | |
|         const LandingPadInst *LP = BB->getLandingPadInst();
 | |
| 
 | |
|         // If the personality functions match, then we can perform the
 | |
|         // inlining. Otherwise, we can't inline.
 | |
|         // TODO: This isn't 100% true. Some personality functions are proper
 | |
|         //       supersets of others and can be used in place of the other.
 | |
|         if (LP->getPersonalityFn() != CalleePersonality)
 | |
|           return false;
 | |
| 
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Get an iterator to the last basic block in the function, which will have
 | |
|   // the new function inlined after it.
 | |
|   Function::iterator LastBlock = &Caller->back();
 | |
| 
 | |
|   // Make sure to capture all of the return instructions from the cloned
 | |
|   // function.
 | |
|   SmallVector<ReturnInst*, 8> Returns;
 | |
|   ClonedCodeInfo InlinedFunctionInfo;
 | |
|   Function::iterator FirstNewBlock;
 | |
| 
 | |
|   { // Scope to destroy VMap after cloning.
 | |
|     ValueToValueMapTy VMap;
 | |
| 
 | |
|     assert(CalledFunc->arg_size() == CS.arg_size() &&
 | |
|            "No varargs calls can be inlined!");
 | |
| 
 | |
|     // Calculate the vector of arguments to pass into the function cloner, which
 | |
|     // matches up the formal to the actual argument values.
 | |
|     CallSite::arg_iterator AI = CS.arg_begin();
 | |
|     unsigned ArgNo = 0;
 | |
|     for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
 | |
|          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
 | |
|       Value *ActualArg = *AI;
 | |
| 
 | |
|       // When byval arguments actually inlined, we need to make the copy implied
 | |
|       // by them explicit.  However, we don't do this if the callee is readonly
 | |
|       // or readnone, because the copy would be unneeded: the callee doesn't
 | |
|       // modify the struct.
 | |
|       if (CS.isByValArgument(ArgNo)) {
 | |
|         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
 | |
|                                         CalledFunc->getParamAlignment(ArgNo+1));
 | |
|  
 | |
|         // Calls that we inline may use the new alloca, so we need to clear
 | |
|         // their 'tail' flags if HandleByValArgument introduced a new alloca and
 | |
|         // the callee has calls.
 | |
|         MustClearTailCallFlags |= ActualArg != *AI;
 | |
|       }
 | |
| 
 | |
|       VMap[I] = ActualArg;
 | |
|     }
 | |
| 
 | |
|     // We want the inliner to prune the code as it copies.  We would LOVE to
 | |
|     // have no dead or constant instructions leftover after inlining occurs
 | |
|     // (which can happen, e.g., because an argument was constant), but we'll be
 | |
|     // happy with whatever the cloner can do.
 | |
|     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 
 | |
|                               /*ModuleLevelChanges=*/false, Returns, ".i",
 | |
|                               &InlinedFunctionInfo, IFI.TD, TheCall);
 | |
| 
 | |
|     // Remember the first block that is newly cloned over.
 | |
|     FirstNewBlock = LastBlock; ++FirstNewBlock;
 | |
| 
 | |
|     // Update the callgraph if requested.
 | |
|     if (IFI.CG)
 | |
|       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
 | |
| 
 | |
|     // Update inlined instructions' line number information.
 | |
|     fixupLineNumbers(Caller, FirstNewBlock, TheCall);
 | |
|   }
 | |
| 
 | |
|   // If there are any alloca instructions in the block that used to be the entry
 | |
|   // block for the callee, move them to the entry block of the caller.  First
 | |
|   // calculate which instruction they should be inserted before.  We insert the
 | |
|   // instructions at the end of the current alloca list.
 | |
|   {
 | |
|     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
 | |
|     for (BasicBlock::iterator I = FirstNewBlock->begin(),
 | |
|          E = FirstNewBlock->end(); I != E; ) {
 | |
|       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
 | |
|       if (AI == 0) continue;
 | |
|       
 | |
|       // If the alloca is now dead, remove it.  This often occurs due to code
 | |
|       // specialization.
 | |
|       if (AI->use_empty()) {
 | |
|         AI->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (!isa<Constant>(AI->getArraySize()))
 | |
|         continue;
 | |
|       
 | |
|       // Keep track of the static allocas that we inline into the caller.
 | |
|       IFI.StaticAllocas.push_back(AI);
 | |
|       
 | |
|       // Scan for the block of allocas that we can move over, and move them
 | |
|       // all at once.
 | |
|       while (isa<AllocaInst>(I) &&
 | |
|              isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
 | |
|         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
 | |
|         ++I;
 | |
|       }
 | |
| 
 | |
|       // Transfer all of the allocas over in a block.  Using splice means
 | |
|       // that the instructions aren't removed from the symbol table, then
 | |
|       // reinserted.
 | |
|       Caller->getEntryBlock().getInstList().splice(InsertPoint,
 | |
|                                                    FirstNewBlock->getInstList(),
 | |
|                                                    AI, I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Leave lifetime markers for the static alloca's, scoping them to the
 | |
|   // function we just inlined.
 | |
|   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
 | |
|     IRBuilder<> builder(FirstNewBlock->begin());
 | |
|     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
 | |
|       AllocaInst *AI = IFI.StaticAllocas[ai];
 | |
| 
 | |
|       // If the alloca is already scoped to something smaller than the whole
 | |
|       // function then there's no need to add redundant, less accurate markers.
 | |
|       if (hasLifetimeMarkers(AI))
 | |
|         continue;
 | |
| 
 | |
|       // Try to determine the size of the allocation.
 | |
|       ConstantInt *AllocaSize = 0;
 | |
|       if (ConstantInt *AIArraySize =
 | |
|           dyn_cast<ConstantInt>(AI->getArraySize())) {
 | |
|         if (IFI.TD) {
 | |
|           Type *AllocaType = AI->getAllocatedType();
 | |
|           uint64_t AllocaTypeSize = IFI.TD->getTypeAllocSize(AllocaType);
 | |
|           uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
 | |
|           assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
 | |
|           // Check that array size doesn't saturate uint64_t and doesn't
 | |
|           // overflow when it's multiplied by type size.
 | |
|           if (AllocaArraySize != ~0ULL &&
 | |
|               UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
 | |
|             AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
 | |
|                                           AllocaArraySize * AllocaTypeSize);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       builder.CreateLifetimeStart(AI, AllocaSize);
 | |
|       for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
 | |
|         IRBuilder<> builder(Returns[ri]);
 | |
|         builder.CreateLifetimeEnd(AI, AllocaSize);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the inlined code contained dynamic alloca instructions, wrap the inlined
 | |
|   // code with llvm.stacksave/llvm.stackrestore intrinsics.
 | |
|   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
 | |
|     Module *M = Caller->getParent();
 | |
|     // Get the two intrinsics we care about.
 | |
|     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
 | |
|     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
 | |
| 
 | |
|     // Insert the llvm.stacksave.
 | |
|     CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
 | |
|       .CreateCall(StackSave, "savedstack");
 | |
| 
 | |
|     // Insert a call to llvm.stackrestore before any return instructions in the
 | |
|     // inlined function.
 | |
|     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | |
|       IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we are inlining tail call instruction through a call site that isn't
 | |
|   // marked 'tail', we must remove the tail marker for any calls in the inlined
 | |
|   // code.  Also, calls inlined through a 'nounwind' call site should be marked
 | |
|   // 'nounwind'.
 | |
|   if (InlinedFunctionInfo.ContainsCalls &&
 | |
|       (MustClearTailCallFlags || MarkNoUnwind)) {
 | |
|     for (Function::iterator BB = FirstNewBlock, E = Caller->end();
 | |
|          BB != E; ++BB)
 | |
|       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|         if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | |
|           if (MustClearTailCallFlags)
 | |
|             CI->setTailCall(false);
 | |
|           if (MarkNoUnwind)
 | |
|             CI->setDoesNotThrow();
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   // If we are inlining for an invoke instruction, we must make sure to rewrite
 | |
|   // any call instructions into invoke instructions.
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
 | |
|     HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
 | |
| 
 | |
|   // If we cloned in _exactly one_ basic block, and if that block ends in a
 | |
|   // return instruction, we splice the body of the inlined callee directly into
 | |
|   // the calling basic block.
 | |
|   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
 | |
|     // Move all of the instructions right before the call.
 | |
|     OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
 | |
|                                  FirstNewBlock->begin(), FirstNewBlock->end());
 | |
|     // Remove the cloned basic block.
 | |
|     Caller->getBasicBlockList().pop_back();
 | |
| 
 | |
|     // If the call site was an invoke instruction, add a branch to the normal
 | |
|     // destination.
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
 | |
|       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
 | |
|       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
 | |
|     }
 | |
| 
 | |
|     // If the return instruction returned a value, replace uses of the call with
 | |
|     // uses of the returned value.
 | |
|     if (!TheCall->use_empty()) {
 | |
|       ReturnInst *R = Returns[0];
 | |
|       if (TheCall == R->getReturnValue())
 | |
|         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | |
|       else
 | |
|         TheCall->replaceAllUsesWith(R->getReturnValue());
 | |
|     }
 | |
|     // Since we are now done with the Call/Invoke, we can delete it.
 | |
|     TheCall->eraseFromParent();
 | |
| 
 | |
|     // Since we are now done with the return instruction, delete it also.
 | |
|     Returns[0]->eraseFromParent();
 | |
| 
 | |
|     // We are now done with the inlining.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have the normal case, of more than one block to inline or
 | |
|   // multiple return sites.
 | |
| 
 | |
|   // We want to clone the entire callee function into the hole between the
 | |
|   // "starter" and "ender" blocks.  How we accomplish this depends on whether
 | |
|   // this is an invoke instruction or a call instruction.
 | |
|   BasicBlock *AfterCallBB;
 | |
|   BranchInst *CreatedBranchToNormalDest = NULL;
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
 | |
| 
 | |
|     // Add an unconditional branch to make this look like the CallInst case...
 | |
|     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
 | |
| 
 | |
|     // Split the basic block.  This guarantees that no PHI nodes will have to be
 | |
|     // updated due to new incoming edges, and make the invoke case more
 | |
|     // symmetric to the call case.
 | |
|     AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest,
 | |
|                                           CalledFunc->getName()+".exit");
 | |
| 
 | |
|   } else {  // It's a call
 | |
|     // If this is a call instruction, we need to split the basic block that
 | |
|     // the call lives in.
 | |
|     //
 | |
|     AfterCallBB = OrigBB->splitBasicBlock(TheCall,
 | |
|                                           CalledFunc->getName()+".exit");
 | |
|   }
 | |
| 
 | |
|   // Change the branch that used to go to AfterCallBB to branch to the first
 | |
|   // basic block of the inlined function.
 | |
|   //
 | |
|   TerminatorInst *Br = OrigBB->getTerminator();
 | |
|   assert(Br && Br->getOpcode() == Instruction::Br &&
 | |
|          "splitBasicBlock broken!");
 | |
|   Br->setOperand(0, FirstNewBlock);
 | |
| 
 | |
| 
 | |
|   // Now that the function is correct, make it a little bit nicer.  In
 | |
|   // particular, move the basic blocks inserted from the end of the function
 | |
|   // into the space made by splitting the source basic block.
 | |
|   Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
 | |
|                                      FirstNewBlock, Caller->end());
 | |
| 
 | |
|   // Handle all of the return instructions that we just cloned in, and eliminate
 | |
|   // any users of the original call/invoke instruction.
 | |
|   Type *RTy = CalledFunc->getReturnType();
 | |
| 
 | |
|   PHINode *PHI = 0;
 | |
|   if (Returns.size() > 1) {
 | |
|     // The PHI node should go at the front of the new basic block to merge all
 | |
|     // possible incoming values.
 | |
|     if (!TheCall->use_empty()) {
 | |
|       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
 | |
|                             AfterCallBB->begin());
 | |
|       // Anything that used the result of the function call should now use the
 | |
|       // PHI node as their operand.
 | |
|       TheCall->replaceAllUsesWith(PHI);
 | |
|     }
 | |
| 
 | |
|     // Loop over all of the return instructions adding entries to the PHI node
 | |
|     // as appropriate.
 | |
|     if (PHI) {
 | |
|       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | |
|         ReturnInst *RI = Returns[i];
 | |
|         assert(RI->getReturnValue()->getType() == PHI->getType() &&
 | |
|                "Ret value not consistent in function!");
 | |
|         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Add a branch to the merge points and remove return instructions.
 | |
|     DebugLoc Loc;
 | |
|     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | |
|       ReturnInst *RI = Returns[i];
 | |
|       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
 | |
|       Loc = RI->getDebugLoc();
 | |
|       BI->setDebugLoc(Loc);
 | |
|       RI->eraseFromParent();
 | |
|     }
 | |
|     // We need to set the debug location to *somewhere* inside the
 | |
|     // inlined function. The line number may be nonsensical, but the
 | |
|     // instruction will at least be associated with the right
 | |
|     // function.
 | |
|     if (CreatedBranchToNormalDest)
 | |
|       CreatedBranchToNormalDest->setDebugLoc(Loc);
 | |
|   } else if (!Returns.empty()) {
 | |
|     // Otherwise, if there is exactly one return value, just replace anything
 | |
|     // using the return value of the call with the computed value.
 | |
|     if (!TheCall->use_empty()) {
 | |
|       if (TheCall == Returns[0]->getReturnValue())
 | |
|         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | |
|       else
 | |
|         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
 | |
|     }
 | |
| 
 | |
|     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
 | |
|     BasicBlock *ReturnBB = Returns[0]->getParent();
 | |
|     ReturnBB->replaceAllUsesWith(AfterCallBB);
 | |
| 
 | |
|     // Splice the code from the return block into the block that it will return
 | |
|     // to, which contains the code that was after the call.
 | |
|     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
 | |
|                                       ReturnBB->getInstList());
 | |
| 
 | |
|     if (CreatedBranchToNormalDest)
 | |
|       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
 | |
| 
 | |
|     // Delete the return instruction now and empty ReturnBB now.
 | |
|     Returns[0]->eraseFromParent();
 | |
|     ReturnBB->eraseFromParent();
 | |
|   } else if (!TheCall->use_empty()) {
 | |
|     // No returns, but something is using the return value of the call.  Just
 | |
|     // nuke the result.
 | |
|     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | |
|   }
 | |
| 
 | |
|   // Since we are now done with the Call/Invoke, we can delete it.
 | |
|   TheCall->eraseFromParent();
 | |
| 
 | |
|   // We should always be able to fold the entry block of the function into the
 | |
|   // single predecessor of the block...
 | |
|   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
 | |
|   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
 | |
| 
 | |
|   // Splice the code entry block into calling block, right before the
 | |
|   // unconditional branch.
 | |
|   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
 | |
|   OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
 | |
| 
 | |
|   // Remove the unconditional branch.
 | |
|   OrigBB->getInstList().erase(Br);
 | |
| 
 | |
|   // Now we can remove the CalleeEntry block, which is now empty.
 | |
|   Caller->getBasicBlockList().erase(CalleeEntry);
 | |
| 
 | |
|   // If we inserted a phi node, check to see if it has a single value (e.g. all
 | |
|   // the entries are the same or undef).  If so, remove the PHI so it doesn't
 | |
|   // block other optimizations.
 | |
|   if (PHI) {
 | |
|     if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
 | |
|       PHI->replaceAllUsesWith(V);
 | |
|       PHI->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 |