mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-09 10:31:14 +00:00
d250f4294e
Next step is to start hacking functions up. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2044 91177308-0d34-0410-b5e6-96231b3b80d8
444 lines
16 KiB
C++
444 lines
16 KiB
C++
//===-- PoolAllocate.cpp - Pool Allocation Pass ---------------------------===//
|
|
//
|
|
// This transform changes programs so that disjoint data structures are
|
|
// allocated out of different pools of memory, increasing locality and shrinking
|
|
// pointer size.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/PoolAllocate.h"
|
|
#include "llvm/Analysis/DataStructure.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/ConstantVals.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "Support/STLExtras.h"
|
|
#include <algorithm>
|
|
|
|
|
|
// FIXME: This is dependant on the sparc backend layout conventions!!
|
|
static TargetData TargetData("test");
|
|
|
|
namespace {
|
|
// ScalarInfo - Information about an LLVM value that we know points to some
|
|
// datastructure we are processing.
|
|
//
|
|
struct ScalarInfo {
|
|
Value *Val; // Scalar value in Current Function
|
|
AllocDSNode *AllocNode; // Allocation node it points to
|
|
Value *PoolHandle; // PoolTy* LLVM value
|
|
|
|
ScalarInfo(Value *V, AllocDSNode *AN, Value *PH)
|
|
: Val(V), AllocNode(AN), PoolHandle(PH) {}
|
|
};
|
|
|
|
// TransformFunctionInfo - Information about how a function eeds to be
|
|
// transformed.
|
|
//
|
|
struct TransformFunctionInfo {
|
|
// ArgInfo - Maintain information about the arguments that need to be
|
|
// processed. Each pair corresponds to an argument (whose number is the
|
|
// first element) that needs to have a pool pointer (the second element)
|
|
// passed into the transformed function with it.
|
|
//
|
|
// As a special case, "argument" number -1 corresponds to the return value.
|
|
//
|
|
vector<pair<int, Value*> > ArgInfo;
|
|
|
|
// Func - The function to be transformed...
|
|
Function *Func;
|
|
|
|
// default ctor...
|
|
TransformFunctionInfo() : Func(0) {}
|
|
|
|
inline bool operator<(const TransformFunctionInfo &TFI) const {
|
|
return Func < TFI.Func || (Func == TFI.Func && ArgInfo < TFI.ArgInfo);
|
|
}
|
|
|
|
void finalizeConstruction() {
|
|
// Sort the vector so that the return value is first, followed by the
|
|
// argument records, in order.
|
|
sort(ArgInfo.begin(), ArgInfo.end());
|
|
}
|
|
};
|
|
|
|
|
|
// Define the pass class that we implement...
|
|
class PoolAllocate : public Pass {
|
|
// PoolTy - The type of a scalar value that contains a pool pointer.
|
|
PointerType *PoolTy;
|
|
public:
|
|
|
|
PoolAllocate() {
|
|
// Initialize the PoolTy instance variable, since the type never changes.
|
|
vector<const Type*> PoolElements;
|
|
PoolElements.push_back(PointerType::get(Type::SByteTy));
|
|
PoolElements.push_back(Type::UIntTy);
|
|
PoolTy = PointerType::get(StructType::get(PoolElements));
|
|
// PoolTy = { sbyte*, uint }*
|
|
|
|
CurModule = 0; DS = 0;
|
|
PoolInit = PoolDestroy = PoolAlloc = PoolFree = 0;
|
|
}
|
|
|
|
bool run(Module *M);
|
|
|
|
// getAnalysisUsageInfo - This function requires data structure information
|
|
// to be able to see what is pool allocatable.
|
|
//
|
|
virtual void getAnalysisUsageInfo(Pass::AnalysisSet &Required,
|
|
Pass::AnalysisSet &,Pass::AnalysisSet &) {
|
|
Required.push_back(DataStructure::ID);
|
|
}
|
|
|
|
private:
|
|
// CurModule - The module being processed.
|
|
Module *CurModule;
|
|
|
|
// DS - The data structure graph for the module being processed.
|
|
DataStructure *DS;
|
|
|
|
// Prototypes that we add to support pool allocation...
|
|
Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolFree;
|
|
|
|
// The map of already transformed functions...
|
|
map<TransformFunctionInfo, Function*> TransformedFunctions;
|
|
|
|
// getTransformedFunction - Get a transformed function, or return null if
|
|
// the function specified hasn't been transformed yet.
|
|
//
|
|
Function *getTransformedFunction(TransformFunctionInfo &TFI) const {
|
|
map<TransformFunctionInfo, Function*>::const_iterator I =
|
|
TransformedFunctions.find(TFI);
|
|
if (I != TransformedFunctions.end()) return I->second;
|
|
return 0;
|
|
}
|
|
|
|
|
|
// addPoolPrototypes - Add prototypes for the pool methods to the specified
|
|
// module and update the Pool* instance variables to point to them.
|
|
//
|
|
void addPoolPrototypes(Module *M);
|
|
|
|
|
|
// CreatePools - Insert instructions into the function we are processing to
|
|
// create all of the memory pool objects themselves. This also inserts
|
|
// destruction code. Add an alloca for each pool that is allocated to the
|
|
// PoolDescriptors vector.
|
|
//
|
|
void CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
|
|
vector<AllocaInst*> &PoolDescriptors);
|
|
|
|
// processFunction - Convert a function to use pool allocation where
|
|
// available.
|
|
//
|
|
bool processFunction(Function *F);
|
|
|
|
|
|
void transformFunctionBody(Function *F, vector<ScalarInfo> &Scalars);
|
|
|
|
// transformFunction - Transform the specified function the specified way.
|
|
// It we have already transformed that function that way, don't do anything.
|
|
//
|
|
void transformFunction(TransformFunctionInfo &TFI);
|
|
|
|
};
|
|
}
|
|
|
|
|
|
|
|
// isNotPoolableAlloc - This is a predicate that returns true if the specified
|
|
// allocation node in a data structure graph is eligable for pool allocation.
|
|
//
|
|
static bool isNotPoolableAlloc(const AllocDSNode *DS) {
|
|
if (DS->isAllocaNode()) return true; // Do not pool allocate alloca's.
|
|
|
|
MallocInst *MI = cast<MallocInst>(DS->getAllocation());
|
|
if (MI->isArrayAllocation() && !isa<Constant>(MI->getArraySize()))
|
|
return true; // Do not allow variable size allocations...
|
|
|
|
return false;
|
|
}
|
|
|
|
// processFunction - Convert a function to use pool allocation where
|
|
// available.
|
|
//
|
|
bool PoolAllocate::processFunction(Function *F) {
|
|
// Get the closed datastructure graph for the current function... if there are
|
|
// any allocations in this graph that are not escaping, we need to pool
|
|
// allocate them here!
|
|
//
|
|
FunctionDSGraph &IPGraph = DS->getClosedDSGraph(F);
|
|
|
|
// Get all of the allocations that do not escape the current function. Since
|
|
// they are still live (they exist in the graph at all), this means we must
|
|
// have scalar references to these nodes, but the scalars are never returned.
|
|
//
|
|
vector<AllocDSNode*> Allocs;
|
|
IPGraph.getNonEscapingAllocations(Allocs);
|
|
|
|
// Filter out allocations that we cannot handle. Currently, this includes
|
|
// variable sized array allocations and alloca's (which we do not want to
|
|
// pool allocate)
|
|
//
|
|
Allocs.erase(remove_if(Allocs.begin(), Allocs.end(), isNotPoolableAlloc),
|
|
Allocs.end());
|
|
|
|
|
|
if (Allocs.empty()) return false; // Nothing to do.
|
|
|
|
// Insert instructions into the function we are processing to create all of
|
|
// the memory pool objects themselves. This also inserts destruction code.
|
|
// This fills in the PoolDescriptors vector to be a array parallel with
|
|
// Allocs, but containing the alloca instructions that allocate the pool ptr.
|
|
//
|
|
vector<AllocaInst*> PoolDescriptors;
|
|
CreatePools(F, Allocs, PoolDescriptors);
|
|
|
|
|
|
// Loop through the value map looking for scalars that refer to nonescaping
|
|
// allocations. Add them to the Scalars vector. Note that we may have
|
|
// multiple entries in the Scalars vector for each value if it points to more
|
|
// than one object.
|
|
//
|
|
map<Value*, PointerValSet> &ValMap = IPGraph.getValueMap();
|
|
vector<ScalarInfo> Scalars;
|
|
|
|
for (map<Value*, PointerValSet>::iterator I = ValMap.begin(),
|
|
E = ValMap.end(); I != E; ++I) {
|
|
const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
|
|
|
|
assert(PVS.size() == 1 &&
|
|
"Only handle scalars that point to one thing so far!");
|
|
|
|
// Check to see if the scalar points to anything that is an allocation...
|
|
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
|
|
if (AllocDSNode *Alloc = dyn_cast<AllocDSNode>(PVS[i].Node)) {
|
|
assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
|
|
|
|
// If the allocation is in the nonescaping set...
|
|
vector<AllocDSNode*>::iterator AI =
|
|
find(Allocs.begin(), Allocs.end(), Alloc);
|
|
if (AI != Allocs.end()) {
|
|
unsigned IDX = AI-Allocs.begin();
|
|
// Add it to the list of scalars we have
|
|
Scalars.push_back(ScalarInfo(I->first, Alloc, PoolDescriptors[IDX]));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now we need to figure out what called methods we need to transform, and
|
|
// how. To do this, we look at all of the scalars, seeing which functions are
|
|
// either used as a scalar value (so they return a data structure), or are
|
|
// passed one of our scalar values.
|
|
//
|
|
transformFunctionBody(F, Scalars);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void addCallInfo(TransformFunctionInfo &TFI, CallInst *CI, int Arg,
|
|
Value *PoolHandle) {
|
|
assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!");
|
|
TFI.ArgInfo.push_back(make_pair(Arg, PoolHandle));
|
|
|
|
assert(TFI.Func == 0 || TFI.Func == CI->getCalledFunction() &&
|
|
"Function call record should always call the same function!");
|
|
TFI.Func = CI->getCalledFunction();
|
|
}
|
|
|
|
void PoolAllocate::transformFunctionBody(Function *F,
|
|
vector<ScalarInfo> &Scalars) {
|
|
cerr << "In '" << F->getName()
|
|
<< "': Found the following values that point to poolable nodes:\n";
|
|
|
|
for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
|
|
Scalars[i].Val->dump();
|
|
|
|
// CallMap - Contain an entry for every call instruction that needs to be
|
|
// transformed. Each entry in the map contains information about what we need
|
|
// to do to each call site to change it to work.
|
|
//
|
|
map<CallInst*, TransformFunctionInfo> CallMap;
|
|
|
|
// Now we need to figure out what called methods we need to transform, and
|
|
// how. To do this, we look at all of the scalars, seeing which functions are
|
|
// either used as a scalar value (so they return a data structure), or are
|
|
// passed one of our scalar values.
|
|
//
|
|
for (unsigned i = 0, e = Scalars.size(); i != e; ++i) {
|
|
Value *ScalarVal = Scalars[i].Val;
|
|
|
|
// Check to see if the scalar _IS_ a call...
|
|
if (CallInst *CI = dyn_cast<CallInst>(ScalarVal))
|
|
// If so, add information about the pool it will be returning...
|
|
addCallInfo(CallMap[CI], CI, -1, Scalars[i].PoolHandle);
|
|
|
|
// Check to see if the scalar is an operand to a call...
|
|
for (Value::use_iterator UI = ScalarVal->use_begin(),
|
|
UE = ScalarVal->use_end(); UI != UE; ++UI) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
|
|
// Find out which operand this is to the call instruction...
|
|
User::op_iterator OI = find(CI->op_begin(), CI->op_end(), ScalarVal);
|
|
assert(OI != CI->op_end() && "Call on use list but not an operand!?");
|
|
assert(OI != CI->op_begin() && "Pointer operand is call destination?");
|
|
|
|
// FIXME: This is broken if the same pointer is passed to a call more
|
|
// than once! It will get multiple entries for the first pointer.
|
|
|
|
// Add the operand number and pool handle to the call table...
|
|
addCallInfo(CallMap[CI], CI, OI-CI->op_begin(), Scalars[i].PoolHandle);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Print out call map...
|
|
for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin();
|
|
I != CallMap.end(); ++I) {
|
|
cerr << "\nFor call: ";
|
|
I->first->dump();
|
|
I->second.finalizeConstruction();
|
|
cerr << " must pass pool pointer for arg #";
|
|
for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i)
|
|
cerr << I->second.ArgInfo[i].first << " ";
|
|
cerr << "\n";
|
|
}
|
|
|
|
// Loop through all of the call nodes, recursively creating the new functions
|
|
// that we want to call... This uses a map to prevent infinite recursion and
|
|
// to avoid duplicating functions unneccesarily.
|
|
//
|
|
for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin(),
|
|
E = CallMap.end(); I != E; ++I) {
|
|
// Make sure the entries are sorted.
|
|
I->second.finalizeConstruction();
|
|
transformFunction(I->second);
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
// transformFunction - Transform the specified function the specified way.
|
|
// It we have already transformed that function that way, don't do anything.
|
|
//
|
|
void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) {
|
|
if (getTransformedFunction(TFI)) return; // Function xformation already done?
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
// CreatePools - Insert instructions into the function we are processing to
|
|
// create all of the memory pool objects themselves. This also inserts
|
|
// destruction code. Add an alloca for each pool that is allocated to the
|
|
// PoolDescriptors vector.
|
|
//
|
|
void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
|
|
vector<AllocaInst*> &PoolDescriptors) {
|
|
// FIXME: This should use an IP version of the UnifyAllExits pass!
|
|
vector<BasicBlock*> ReturnNodes;
|
|
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
|
|
if (isa<ReturnInst>((*I)->getTerminator()))
|
|
ReturnNodes.push_back(*I);
|
|
|
|
|
|
// Create the code that goes in the entry and exit nodes for the method...
|
|
vector<Instruction*> EntryNodeInsts;
|
|
for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
|
|
// Add an allocation and a free for each pool...
|
|
AllocaInst *PoolAlloc = new AllocaInst(PoolTy, 0, "pool");
|
|
EntryNodeInsts.push_back(PoolAlloc);
|
|
PoolDescriptors.push_back(PoolAlloc); // Keep track of pool allocas
|
|
AllocationInst *AI = Allocs[i]->getAllocation();
|
|
|
|
// Initialize the pool. We need to know how big each allocation is. For
|
|
// our purposes here, we assume we are allocating a scalar, or array of
|
|
// constant size.
|
|
//
|
|
unsigned ElSize = TargetData.getTypeSize(AI->getAllocatedType());
|
|
ElSize *= cast<ConstantUInt>(AI->getArraySize())->getValue();
|
|
|
|
vector<Value*> Args;
|
|
Args.push_back(PoolAlloc); // Pool to initialize
|
|
Args.push_back(ConstantUInt::get(Type::UIntTy, ElSize));
|
|
EntryNodeInsts.push_back(new CallInst(PoolInit, Args));
|
|
|
|
// Destroy the pool...
|
|
Args.pop_back();
|
|
|
|
for (unsigned EN = 0, ENE = ReturnNodes.size(); EN != ENE; ++EN) {
|
|
Instruction *Destroy = new CallInst(PoolDestroy, Args);
|
|
|
|
// Insert it before the return instruction...
|
|
BasicBlock *RetNode = ReturnNodes[EN];
|
|
RetNode->getInstList().insert(RetNode->end()-1, Destroy);
|
|
}
|
|
}
|
|
|
|
// Insert the entry node code into the entry block...
|
|
F->getEntryNode()->getInstList().insert(F->getEntryNode()->begin()+1,
|
|
EntryNodeInsts.begin(),
|
|
EntryNodeInsts.end());
|
|
}
|
|
|
|
|
|
// addPoolPrototypes - Add prototypes for the pool methods to the specified
|
|
// module and update the Pool* instance variables to point to them.
|
|
//
|
|
void PoolAllocate::addPoolPrototypes(Module *M) {
|
|
// Get PoolInit function...
|
|
vector<const Type*> Args;
|
|
Args.push_back(PoolTy); // Pool to initialize
|
|
Args.push_back(Type::UIntTy); // Num bytes per element
|
|
FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, false);
|
|
PoolInit = M->getOrInsertFunction("poolinit", PoolInitTy);
|
|
|
|
// Get pooldestroy function...
|
|
Args.pop_back(); // Only takes a pool...
|
|
FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, false);
|
|
PoolDestroy = M->getOrInsertFunction("pooldestroy", PoolDestroyTy);
|
|
|
|
const Type *PtrVoid = PointerType::get(Type::SByteTy);
|
|
|
|
// Get the poolalloc function...
|
|
FunctionType *PoolAllocTy = FunctionType::get(PtrVoid, Args, false);
|
|
PoolAlloc = M->getOrInsertFunction("poolalloc", PoolAllocTy);
|
|
|
|
// Get the poolfree function...
|
|
Args.push_back(PtrVoid);
|
|
FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, false);
|
|
PoolFree = M->getOrInsertFunction("poolfree", PoolFreeTy);
|
|
|
|
// Add the %PoolTy type to the symbol table of the module...
|
|
M->addTypeName("PoolTy", PoolTy->getElementType());
|
|
}
|
|
|
|
|
|
bool PoolAllocate::run(Module *M) {
|
|
addPoolPrototypes(M);
|
|
CurModule = M;
|
|
|
|
DS = &getAnalysis<DataStructure>();
|
|
bool Changed = false;
|
|
for (Module::iterator I = M->begin(); I != M->end(); ++I)
|
|
if (!(*I)->isExternal())
|
|
Changed |= processFunction(*I);
|
|
|
|
CurModule = 0;
|
|
DS = 0;
|
|
return false;
|
|
}
|
|
|
|
|
|
// createPoolAllocatePass - Global function to access the functionality of this
|
|
// pass...
|
|
//
|
|
Pass *createPoolAllocatePass() { return new PoolAllocate(); }
|