mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	around everywhere, and also give it an InsertPt member, to enable isel to operate at an arbitrary position within a block, rather than just appending to a block. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107791 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1250 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1250 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the implementation of the FastISel class.
 | |
| //
 | |
| // "Fast" instruction selection is designed to emit very poor code quickly.
 | |
| // Also, it is not designed to be able to do much lowering, so most illegal
 | |
| // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
 | |
| // also not intended to be able to do much optimization, except in a few cases
 | |
| // where doing optimizations reduces overall compile time.  For example, folding
 | |
| // constants into immediate fields is often done, because it's cheap and it
 | |
| // reduces the number of instructions later phases have to examine.
 | |
| //
 | |
| // "Fast" instruction selection is able to fail gracefully and transfer
 | |
| // control to the SelectionDAG selector for operations that it doesn't
 | |
| // support.  In many cases, this allows us to avoid duplicating a lot of
 | |
| // the complicated lowering logic that SelectionDAG currently has.
 | |
| //
 | |
| // The intended use for "fast" instruction selection is "-O0" mode
 | |
| // compilation, where the quality of the generated code is irrelevant when
 | |
| // weighed against the speed at which the code can be generated.  Also,
 | |
| // at -O0, the LLVM optimizers are not running, and this makes the
 | |
| // compile time of codegen a much higher portion of the overall compile
 | |
| // time.  Despite its limitations, "fast" instruction selection is able to
 | |
| // handle enough code on its own to provide noticeable overall speedups
 | |
| // in -O0 compiles.
 | |
| //
 | |
| // Basic operations are supported in a target-independent way, by reading
 | |
| // the same instruction descriptions that the SelectionDAG selector reads,
 | |
| // and identifying simple arithmetic operations that can be directly selected
 | |
| // from simple operators.  More complicated operations currently require
 | |
| // target-specific code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/CodeGen/FastISel.h"
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Analysis/DebugInfo.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| bool FastISel::hasTrivialKill(const Value *V) const {
 | |
|   // Don't consider constants or arguments to have trivial kills.
 | |
|   const Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I)
 | |
|     return false;
 | |
| 
 | |
|   // No-op casts are trivially coalesced by fast-isel.
 | |
|   if (const CastInst *Cast = dyn_cast<CastInst>(I))
 | |
|     if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
 | |
|         !hasTrivialKill(Cast->getOperand(0)))
 | |
|       return false;
 | |
| 
 | |
|   // Only instructions with a single use in the same basic block are considered
 | |
|   // to have trivial kills.
 | |
|   return I->hasOneUse() &&
 | |
|          !(I->getOpcode() == Instruction::BitCast ||
 | |
|            I->getOpcode() == Instruction::PtrToInt ||
 | |
|            I->getOpcode() == Instruction::IntToPtr) &&
 | |
|          cast<Instruction>(I->use_begin())->getParent() == I->getParent();
 | |
| }
 | |
| 
 | |
| unsigned FastISel::getRegForValue(const Value *V) {
 | |
|   EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
 | |
|   // Don't handle non-simple values in FastISel.
 | |
|   if (!RealVT.isSimple())
 | |
|     return 0;
 | |
| 
 | |
|   // Ignore illegal types. We must do this before looking up the value
 | |
|   // in ValueMap because Arguments are given virtual registers regardless
 | |
|   // of whether FastISel can handle them.
 | |
|   MVT VT = RealVT.getSimpleVT();
 | |
|   if (!TLI.isTypeLegal(VT)) {
 | |
|     // Promote MVT::i1 to a legal type though, because it's common and easy.
 | |
|     if (VT == MVT::i1)
 | |
|       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
 | |
|     else
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // Look up the value to see if we already have a register for it. We
 | |
|   // cache values defined by Instructions across blocks, and other values
 | |
|   // only locally. This is because Instructions already have the SSA
 | |
|   // def-dominates-use requirement enforced.
 | |
|   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
 | |
|   if (I != FuncInfo.ValueMap.end())
 | |
|     return I->second;
 | |
|   unsigned Reg = LocalValueMap[V];
 | |
|   if (Reg != 0)
 | |
|     return Reg;
 | |
| 
 | |
|   // In bottom-up mode, just create the virtual register which will be used
 | |
|   // to hold the value. It will be materialized later.
 | |
|   if (IsBottomUp) {
 | |
|     Reg = createResultReg(TLI.getRegClassFor(VT));
 | |
|     if (isa<Instruction>(V))
 | |
|       FuncInfo.ValueMap[V] = Reg;
 | |
|     else
 | |
|       LocalValueMap[V] = Reg;
 | |
|     return Reg;
 | |
|   }
 | |
| 
 | |
|   return materializeRegForValue(V, VT);
 | |
| }
 | |
| 
 | |
| /// materializeRegForValue - Helper for getRegForVale. This function is
 | |
| /// called when the value isn't already available in a register and must
 | |
| /// be materialized with new instructions.
 | |
| unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
 | |
|   unsigned Reg = 0;
 | |
| 
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|     if (CI->getValue().getActiveBits() <= 64)
 | |
|       Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
 | |
|   } else if (isa<AllocaInst>(V)) {
 | |
|     Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
 | |
|   } else if (isa<ConstantPointerNull>(V)) {
 | |
|     // Translate this as an integer zero so that it can be
 | |
|     // local-CSE'd with actual integer zeros.
 | |
|     Reg =
 | |
|       getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
 | |
|   } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
 | |
|     // Try to emit the constant directly.
 | |
|     Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
 | |
| 
 | |
|     if (!Reg) {
 | |
|       // Try to emit the constant by using an integer constant with a cast.
 | |
|       const APFloat &Flt = CF->getValueAPF();
 | |
|       EVT IntVT = TLI.getPointerTy();
 | |
| 
 | |
|       uint64_t x[2];
 | |
|       uint32_t IntBitWidth = IntVT.getSizeInBits();
 | |
|       bool isExact;
 | |
|       (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
 | |
|                                 APFloat::rmTowardZero, &isExact);
 | |
|       if (isExact) {
 | |
|         APInt IntVal(IntBitWidth, 2, x);
 | |
| 
 | |
|         unsigned IntegerReg =
 | |
|           getRegForValue(ConstantInt::get(V->getContext(), IntVal));
 | |
|         if (IntegerReg != 0)
 | |
|           Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
 | |
|                            IntegerReg, /*Kill=*/false);
 | |
|       }
 | |
|     }
 | |
|   } else if (const Operator *Op = dyn_cast<Operator>(V)) {
 | |
|     if (!SelectOperator(Op, Op->getOpcode()))
 | |
|       if (!isa<Instruction>(Op) ||
 | |
|           !TargetSelectInstruction(cast<Instruction>(Op)))
 | |
|         return 0;
 | |
|     Reg = lookUpRegForValue(Op);
 | |
|   } else if (isa<UndefValue>(V)) {
 | |
|     Reg = createResultReg(TLI.getRegClassFor(VT));
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
 | |
|             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
 | |
|   }
 | |
|   
 | |
|   // If target-independent code couldn't handle the value, give target-specific
 | |
|   // code a try.
 | |
|   if (!Reg && isa<Constant>(V))
 | |
|     Reg = TargetMaterializeConstant(cast<Constant>(V));
 | |
|   
 | |
|   // Don't cache constant materializations in the general ValueMap.
 | |
|   // To do so would require tracking what uses they dominate.
 | |
|   if (Reg != 0)
 | |
|     LocalValueMap[V] = Reg;
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::lookUpRegForValue(const Value *V) {
 | |
|   // Look up the value to see if we already have a register for it. We
 | |
|   // cache values defined by Instructions across blocks, and other values
 | |
|   // only locally. This is because Instructions already have the SSA
 | |
|   // def-dominates-use requirement enforced.
 | |
|   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
 | |
|   if (I != FuncInfo.ValueMap.end())
 | |
|     return I->second;
 | |
|   return LocalValueMap[V];
 | |
| }
 | |
| 
 | |
| /// UpdateValueMap - Update the value map to include the new mapping for this
 | |
| /// instruction, or insert an extra copy to get the result in a previous
 | |
| /// determined register.
 | |
| /// NOTE: This is only necessary because we might select a block that uses
 | |
| /// a value before we select the block that defines the value.  It might be
 | |
| /// possible to fix this by selecting blocks in reverse postorder.
 | |
| unsigned FastISel::UpdateValueMap(const Value *I, unsigned Reg) {
 | |
|   if (!isa<Instruction>(I)) {
 | |
|     LocalValueMap[I] = Reg;
 | |
|     return Reg;
 | |
|   }
 | |
|   
 | |
|   unsigned &AssignedReg = FuncInfo.ValueMap[I];
 | |
|   if (AssignedReg == 0)
 | |
|     AssignedReg = Reg;
 | |
|   else if (Reg != AssignedReg) {
 | |
|     const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
 | |
|     TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt, AssignedReg,
 | |
|                      Reg, RegClass, RegClass, DL);
 | |
|   }
 | |
|   return AssignedReg;
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
 | |
|   unsigned IdxN = getRegForValue(Idx);
 | |
|   if (IdxN == 0)
 | |
|     // Unhandled operand. Halt "fast" selection and bail.
 | |
|     return std::pair<unsigned, bool>(0, false);
 | |
| 
 | |
|   bool IdxNIsKill = hasTrivialKill(Idx);
 | |
| 
 | |
|   // If the index is smaller or larger than intptr_t, truncate or extend it.
 | |
|   MVT PtrVT = TLI.getPointerTy();
 | |
|   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
 | |
|   if (IdxVT.bitsLT(PtrVT)) {
 | |
|     IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
 | |
|                       IdxN, IdxNIsKill);
 | |
|     IdxNIsKill = true;
 | |
|   }
 | |
|   else if (IdxVT.bitsGT(PtrVT)) {
 | |
|     IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
 | |
|                       IdxN, IdxNIsKill);
 | |
|     IdxNIsKill = true;
 | |
|   }
 | |
|   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
 | |
| }
 | |
| 
 | |
| /// SelectBinaryOp - Select and emit code for a binary operator instruction,
 | |
| /// which has an opcode which directly corresponds to the given ISD opcode.
 | |
| ///
 | |
| bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
 | |
|   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
 | |
|   if (VT == MVT::Other || !VT.isSimple())
 | |
|     // Unhandled type. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   // We only handle legal types. For example, on x86-32 the instruction
 | |
|   // selector contains all of the 64-bit instructions from x86-64,
 | |
|   // under the assumption that i64 won't be used if the target doesn't
 | |
|   // support it.
 | |
|   if (!TLI.isTypeLegal(VT)) {
 | |
|     // MVT::i1 is special. Allow AND, OR, or XOR because they
 | |
|     // don't require additional zeroing, which makes them easy.
 | |
|     if (VT == MVT::i1 &&
 | |
|         (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
 | |
|          ISDOpcode == ISD::XOR))
 | |
|       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Op0 = getRegForValue(I->getOperand(0));
 | |
|   if (Op0 == 0)
 | |
|     // Unhandled operand. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
 | |
| 
 | |
|   // Check if the second operand is a constant and handle it appropriately.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|     unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
 | |
|                                      ISDOpcode, Op0, Op0IsKill,
 | |
|                                      CI->getZExtValue());
 | |
|     if (ResultReg != 0) {
 | |
|       // We successfully emitted code for the given LLVM Instruction.
 | |
|       UpdateValueMap(I, ResultReg);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check if the second operand is a constant float.
 | |
|   if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
 | |
|     unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
 | |
|                                      ISDOpcode, Op0, Op0IsKill, CF);
 | |
|     if (ResultReg != 0) {
 | |
|       // We successfully emitted code for the given LLVM Instruction.
 | |
|       UpdateValueMap(I, ResultReg);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned Op1 = getRegForValue(I->getOperand(1));
 | |
|   if (Op1 == 0)
 | |
|     // Unhandled operand. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
 | |
| 
 | |
|   // Now we have both operands in registers. Emit the instruction.
 | |
|   unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
 | |
|                                    ISDOpcode,
 | |
|                                    Op0, Op0IsKill,
 | |
|                                    Op1, Op1IsKill);
 | |
|   if (ResultReg == 0)
 | |
|     // Target-specific code wasn't able to find a machine opcode for
 | |
|     // the given ISD opcode and type. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   // We successfully emitted code for the given LLVM Instruction.
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool FastISel::SelectGetElementPtr(const User *I) {
 | |
|   unsigned N = getRegForValue(I->getOperand(0));
 | |
|   if (N == 0)
 | |
|     // Unhandled operand. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   bool NIsKill = hasTrivialKill(I->getOperand(0));
 | |
| 
 | |
|   const Type *Ty = I->getOperand(0)->getType();
 | |
|   MVT VT = TLI.getPointerTy();
 | |
|   for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
 | |
|        E = I->op_end(); OI != E; ++OI) {
 | |
|     const Value *Idx = *OI;
 | |
|     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
 | |
|       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
 | |
|       if (Field) {
 | |
|         // N = N + Offset
 | |
|         uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
 | |
|         // FIXME: This can be optimized by combining the add with a
 | |
|         // subsequent one.
 | |
|         N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
 | |
|         if (N == 0)
 | |
|           // Unhandled operand. Halt "fast" selection and bail.
 | |
|           return false;
 | |
|         NIsKill = true;
 | |
|       }
 | |
|       Ty = StTy->getElementType(Field);
 | |
|     } else {
 | |
|       Ty = cast<SequentialType>(Ty)->getElementType();
 | |
| 
 | |
|       // If this is a constant subscript, handle it quickly.
 | |
|       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
 | |
|         if (CI->isZero()) continue;
 | |
|         uint64_t Offs = 
 | |
|           TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
 | |
|         N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
 | |
|         if (N == 0)
 | |
|           // Unhandled operand. Halt "fast" selection and bail.
 | |
|           return false;
 | |
|         NIsKill = true;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // N = N + Idx * ElementSize;
 | |
|       uint64_t ElementSize = TD.getTypeAllocSize(Ty);
 | |
|       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
 | |
|       unsigned IdxN = Pair.first;
 | |
|       bool IdxNIsKill = Pair.second;
 | |
|       if (IdxN == 0)
 | |
|         // Unhandled operand. Halt "fast" selection and bail.
 | |
|         return false;
 | |
| 
 | |
|       if (ElementSize != 1) {
 | |
|         IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
 | |
|         if (IdxN == 0)
 | |
|           // Unhandled operand. Halt "fast" selection and bail.
 | |
|           return false;
 | |
|         IdxNIsKill = true;
 | |
|       }
 | |
|       N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
 | |
|       if (N == 0)
 | |
|         // Unhandled operand. Halt "fast" selection and bail.
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We successfully emitted code for the given LLVM Instruction.
 | |
|   UpdateValueMap(I, N);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool FastISel::SelectCall(const User *I) {
 | |
|   const Function *F = cast<CallInst>(I)->getCalledFunction();
 | |
|   if (!F) return false;
 | |
| 
 | |
|   // Handle selected intrinsic function calls.
 | |
|   unsigned IID = F->getIntrinsicID();
 | |
|   switch (IID) {
 | |
|   default: break;
 | |
|   case Intrinsic::dbg_declare: {
 | |
|     const DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
 | |
|     if (!DIVariable(DI->getVariable()).Verify() ||
 | |
|         !FuncInfo.MF->getMMI().hasDebugInfo())
 | |
|       return true;
 | |
| 
 | |
|     const Value *Address = DI->getAddress();
 | |
|     if (!Address)
 | |
|       return true;
 | |
|     if (isa<UndefValue>(Address))
 | |
|       return true;
 | |
|     const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
 | |
|     // Don't handle byval struct arguments or VLAs, for example.
 | |
|     // Note that if we have a byval struct argument, fast ISel is turned off;
 | |
|     // those are handled in SelectionDAGBuilder.
 | |
|     if (AI) {
 | |
|       DenseMap<const AllocaInst*, int>::iterator SI =
 | |
|         FuncInfo.StaticAllocaMap.find(AI);
 | |
|       if (SI == FuncInfo.StaticAllocaMap.end()) break; // VLAs.
 | |
|       int FI = SI->second;
 | |
|       if (!DI->getDebugLoc().isUnknown())
 | |
|         FuncInfo.MF->getMMI().setVariableDbgInfo(DI->getVariable(),
 | |
|                                                  FI, DI->getDebugLoc());
 | |
|     } else
 | |
|       // Building the map above is target independent.  Generating DBG_VALUE
 | |
|       // inline is target dependent; do this now.
 | |
|       (void)TargetSelectInstruction(cast<Instruction>(I));
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::dbg_value: {
 | |
|     // This form of DBG_VALUE is target-independent.
 | |
|     const DbgValueInst *DI = cast<DbgValueInst>(I);
 | |
|     const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
 | |
|     const Value *V = DI->getValue();
 | |
|     if (!V) {
 | |
|       // Currently the optimizer can produce this; insert an undef to
 | |
|       // help debugging.  Probably the optimizer should not do this.
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
 | |
|         .addReg(0U).addImm(DI->getOffset())
 | |
|         .addMetadata(DI->getVariable());
 | |
|     } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
 | |
|         .addImm(CI->getZExtValue()).addImm(DI->getOffset())
 | |
|         .addMetadata(DI->getVariable());
 | |
|     } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
 | |
|         .addFPImm(CF).addImm(DI->getOffset())
 | |
|         .addMetadata(DI->getVariable());
 | |
|     } else if (unsigned Reg = lookUpRegForValue(V)) {
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
 | |
|         .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
 | |
|         .addMetadata(DI->getVariable());
 | |
|     } else {
 | |
|       // We can't yet handle anything else here because it would require
 | |
|       // generating code, thus altering codegen because of debug info.
 | |
|       // Insert an undef so we can see what we dropped.
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
 | |
|         .addReg(0U).addImm(DI->getOffset())
 | |
|         .addMetadata(DI->getVariable());
 | |
|     }     
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::eh_exception: {
 | |
|     EVT VT = TLI.getValueType(I->getType());
 | |
|     switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
 | |
|     default: break;
 | |
|     case TargetLowering::Expand: {
 | |
|       assert(FuncInfo.MBB->isLandingPad() &&
 | |
|              "Call to eh.exception not in landing pad!");
 | |
|       unsigned Reg = TLI.getExceptionAddressRegister();
 | |
|       const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
 | |
|       unsigned ResultReg = createResultReg(RC);
 | |
|       bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                                            ResultReg, Reg, RC, RC, DL);
 | |
|       assert(InsertedCopy && "Can't copy address registers!");
 | |
|       InsertedCopy = InsertedCopy;
 | |
|       UpdateValueMap(I, ResultReg);
 | |
|       return true;
 | |
|     }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::eh_selector: {
 | |
|     EVT VT = TLI.getValueType(I->getType());
 | |
|     switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
 | |
|     default: break;
 | |
|     case TargetLowering::Expand: {
 | |
|       if (FuncInfo.MBB->isLandingPad())
 | |
|         AddCatchInfo(*cast<CallInst>(I), &FuncInfo.MF->getMMI(), FuncInfo.MBB);
 | |
|       else {
 | |
| #ifndef NDEBUG
 | |
|         FuncInfo.CatchInfoLost.insert(cast<CallInst>(I));
 | |
| #endif
 | |
|         // FIXME: Mark exception selector register as live in.  Hack for PR1508.
 | |
|         unsigned Reg = TLI.getExceptionSelectorRegister();
 | |
|         if (Reg) FuncInfo.MBB->addLiveIn(Reg);
 | |
|       }
 | |
| 
 | |
|       unsigned Reg = TLI.getExceptionSelectorRegister();
 | |
|       EVT SrcVT = TLI.getPointerTy();
 | |
|       const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
 | |
|       unsigned ResultReg = createResultReg(RC);
 | |
|       bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                                            ResultReg, Reg, RC, RC, DL);
 | |
|       assert(InsertedCopy && "Can't copy address registers!");
 | |
|       InsertedCopy = InsertedCopy;
 | |
| 
 | |
|       bool ResultRegIsKill = hasTrivialKill(I);
 | |
| 
 | |
|       // Cast the register to the type of the selector.
 | |
|       if (SrcVT.bitsGT(MVT::i32))
 | |
|         ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
 | |
|                                ResultReg, ResultRegIsKill);
 | |
|       else if (SrcVT.bitsLT(MVT::i32))
 | |
|         ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
 | |
|                                ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill);
 | |
|       if (ResultReg == 0)
 | |
|         // Unhandled operand. Halt "fast" selection and bail.
 | |
|         return false;
 | |
| 
 | |
|       UpdateValueMap(I, ResultReg);
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // An arbitrary call. Bail.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool FastISel::SelectCast(const User *I, unsigned Opcode) {
 | |
|   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | |
|   EVT DstVT = TLI.getValueType(I->getType());
 | |
|     
 | |
|   if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
 | |
|       DstVT == MVT::Other || !DstVT.isSimple())
 | |
|     // Unhandled type. Halt "fast" selection and bail.
 | |
|     return false;
 | |
|     
 | |
|   // Check if the destination type is legal. Or as a special case,
 | |
|   // it may be i1 if we're doing a truncate because that's
 | |
|   // easy and somewhat common.
 | |
|   if (!TLI.isTypeLegal(DstVT))
 | |
|     if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
 | |
|       // Unhandled type. Halt "fast" selection and bail.
 | |
|       return false;
 | |
| 
 | |
|   // Check if the source operand is legal. Or as a special case,
 | |
|   // it may be i1 if we're doing zero-extension because that's
 | |
|   // easy and somewhat common.
 | |
|   if (!TLI.isTypeLegal(SrcVT))
 | |
|     if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
 | |
|       // Unhandled type. Halt "fast" selection and bail.
 | |
|       return false;
 | |
| 
 | |
|   unsigned InputReg = getRegForValue(I->getOperand(0));
 | |
|   if (!InputReg)
 | |
|     // Unhandled operand.  Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
 | |
| 
 | |
|   // If the operand is i1, arrange for the high bits in the register to be zero.
 | |
|   if (SrcVT == MVT::i1) {
 | |
|    SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
 | |
|    InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg, InputRegIsKill);
 | |
|    if (!InputReg)
 | |
|      return false;
 | |
|    InputRegIsKill = true;
 | |
|   }
 | |
|   // If the result is i1, truncate to the target's type for i1 first.
 | |
|   if (DstVT == MVT::i1)
 | |
|     DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
 | |
| 
 | |
|   unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
 | |
|                                   DstVT.getSimpleVT(),
 | |
|                                   Opcode,
 | |
|                                   InputReg, InputRegIsKill);
 | |
|   if (!ResultReg)
 | |
|     return false;
 | |
|     
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool FastISel::SelectBitCast(const User *I) {
 | |
|   // If the bitcast doesn't change the type, just use the operand value.
 | |
|   if (I->getType() == I->getOperand(0)->getType()) {
 | |
|     unsigned Reg = getRegForValue(I->getOperand(0));
 | |
|     if (Reg == 0)
 | |
|       return false;
 | |
|     UpdateValueMap(I, Reg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
 | |
|   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | |
|   EVT DstVT = TLI.getValueType(I->getType());
 | |
|   
 | |
|   if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
 | |
|       DstVT == MVT::Other || !DstVT.isSimple() ||
 | |
|       !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
 | |
|     // Unhandled type. Halt "fast" selection and bail.
 | |
|     return false;
 | |
|   
 | |
|   unsigned Op0 = getRegForValue(I->getOperand(0));
 | |
|   if (Op0 == 0)
 | |
|     // Unhandled operand. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
 | |
|   
 | |
|   // First, try to perform the bitcast by inserting a reg-reg copy.
 | |
|   unsigned ResultReg = 0;
 | |
|   if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
 | |
|     TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
 | |
|     TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
 | |
|     ResultReg = createResultReg(DstClass);
 | |
|     
 | |
|     bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                                          ResultReg, Op0,
 | |
|                                          DstClass, SrcClass, DL);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
|   
 | |
|   // If the reg-reg copy failed, select a BIT_CONVERT opcode.
 | |
|   if (!ResultReg)
 | |
|     ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
 | |
|                            ISD::BIT_CONVERT, Op0, Op0IsKill);
 | |
|   
 | |
|   if (!ResultReg)
 | |
|     return false;
 | |
|   
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| FastISel::SelectInstruction(const Instruction *I) {
 | |
|   // Just before the terminator instruction, insert instructions to
 | |
|   // feed PHI nodes in successor blocks.
 | |
|   if (isa<TerminatorInst>(I))
 | |
|     if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
 | |
|       return false;
 | |
| 
 | |
|   DL = I->getDebugLoc();
 | |
| 
 | |
|   // First, try doing target-independent selection.
 | |
|   if (SelectOperator(I, I->getOpcode())) {
 | |
|     DL = DebugLoc();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Next, try calling the target to attempt to handle the instruction.
 | |
|   if (TargetSelectInstruction(I)) {
 | |
|     DL = DebugLoc();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   DL = DebugLoc();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FastEmitBranch - Emit an unconditional branch to the given block,
 | |
| /// unless it is the immediate (fall-through) successor, and update
 | |
| /// the CFG.
 | |
| void
 | |
| FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
 | |
|   if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
 | |
|     // The unconditional fall-through case, which needs no instructions.
 | |
|   } else {
 | |
|     // The unconditional branch case.
 | |
|     TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
 | |
|                      SmallVector<MachineOperand, 0>(), DL);
 | |
|   }
 | |
|   FuncInfo.MBB->addSuccessor(MSucc);
 | |
| }
 | |
| 
 | |
| /// SelectFNeg - Emit an FNeg operation.
 | |
| ///
 | |
| bool
 | |
| FastISel::SelectFNeg(const User *I) {
 | |
|   unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
 | |
|   if (OpReg == 0) return false;
 | |
| 
 | |
|   bool OpRegIsKill = hasTrivialKill(I);
 | |
| 
 | |
|   // If the target has ISD::FNEG, use it.
 | |
|   EVT VT = TLI.getValueType(I->getType());
 | |
|   unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
 | |
|                                   ISD::FNEG, OpReg, OpRegIsKill);
 | |
|   if (ResultReg != 0) {
 | |
|     UpdateValueMap(I, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Bitcast the value to integer, twiddle the sign bit with xor,
 | |
|   // and then bitcast it back to floating-point.
 | |
|   if (VT.getSizeInBits() > 64) return false;
 | |
|   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
 | |
|   if (!TLI.isTypeLegal(IntVT))
 | |
|     return false;
 | |
| 
 | |
|   unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
 | |
|                                ISD::BIT_CONVERT, OpReg, OpRegIsKill);
 | |
|   if (IntReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
 | |
|                                        IntReg, /*Kill=*/true,
 | |
|                                        UINT64_C(1) << (VT.getSizeInBits()-1),
 | |
|                                        IntVT.getSimpleVT());
 | |
|   if (IntResultReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
 | |
|                          ISD::BIT_CONVERT, IntResultReg, /*Kill=*/true);
 | |
|   if (ResultReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| FastISel::SelectLoad(const User *I) {
 | |
|   LoadInst *LI = const_cast<LoadInst *>(cast<LoadInst>(I));
 | |
| 
 | |
|   // For a load from an alloca, make a limited effort to find the value
 | |
|   // already available in a register, avoiding redundant loads.
 | |
|   if (!LI->isVolatile() && isa<AllocaInst>(LI->getPointerOperand())) {
 | |
|     BasicBlock::iterator ScanFrom = LI;
 | |
|     if (const Value *V = FindAvailableLoadedValue(LI->getPointerOperand(),
 | |
|                                                   LI->getParent(), ScanFrom)) {
 | |
|       unsigned ResultReg = getRegForValue(V);
 | |
|       if (ResultReg != 0) {
 | |
|         UpdateValueMap(I, ResultReg);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool
 | |
| FastISel::SelectOperator(const User *I, unsigned Opcode) {
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Load:
 | |
|     return SelectLoad(I);
 | |
|   case Instruction::Add:
 | |
|     return SelectBinaryOp(I, ISD::ADD);
 | |
|   case Instruction::FAdd:
 | |
|     return SelectBinaryOp(I, ISD::FADD);
 | |
|   case Instruction::Sub:
 | |
|     return SelectBinaryOp(I, ISD::SUB);
 | |
|   case Instruction::FSub:
 | |
|     // FNeg is currently represented in LLVM IR as a special case of FSub.
 | |
|     if (BinaryOperator::isFNeg(I))
 | |
|       return SelectFNeg(I);
 | |
|     return SelectBinaryOp(I, ISD::FSUB);
 | |
|   case Instruction::Mul:
 | |
|     return SelectBinaryOp(I, ISD::MUL);
 | |
|   case Instruction::FMul:
 | |
|     return SelectBinaryOp(I, ISD::FMUL);
 | |
|   case Instruction::SDiv:
 | |
|     return SelectBinaryOp(I, ISD::SDIV);
 | |
|   case Instruction::UDiv:
 | |
|     return SelectBinaryOp(I, ISD::UDIV);
 | |
|   case Instruction::FDiv:
 | |
|     return SelectBinaryOp(I, ISD::FDIV);
 | |
|   case Instruction::SRem:
 | |
|     return SelectBinaryOp(I, ISD::SREM);
 | |
|   case Instruction::URem:
 | |
|     return SelectBinaryOp(I, ISD::UREM);
 | |
|   case Instruction::FRem:
 | |
|     return SelectBinaryOp(I, ISD::FREM);
 | |
|   case Instruction::Shl:
 | |
|     return SelectBinaryOp(I, ISD::SHL);
 | |
|   case Instruction::LShr:
 | |
|     return SelectBinaryOp(I, ISD::SRL);
 | |
|   case Instruction::AShr:
 | |
|     return SelectBinaryOp(I, ISD::SRA);
 | |
|   case Instruction::And:
 | |
|     return SelectBinaryOp(I, ISD::AND);
 | |
|   case Instruction::Or:
 | |
|     return SelectBinaryOp(I, ISD::OR);
 | |
|   case Instruction::Xor:
 | |
|     return SelectBinaryOp(I, ISD::XOR);
 | |
| 
 | |
|   case Instruction::GetElementPtr:
 | |
|     return SelectGetElementPtr(I);
 | |
| 
 | |
|   case Instruction::Br: {
 | |
|     const BranchInst *BI = cast<BranchInst>(I);
 | |
| 
 | |
|     if (BI->isUnconditional()) {
 | |
|       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
 | |
|       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
 | |
|       FastEmitBranch(MSucc, BI->getDebugLoc());
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Conditional branches are not handed yet.
 | |
|     // Halt "fast" selection and bail.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case Instruction::Unreachable:
 | |
|     // Nothing to emit.
 | |
|     return true;
 | |
| 
 | |
|   case Instruction::Alloca:
 | |
|     // FunctionLowering has the static-sized case covered.
 | |
|     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
 | |
|       return true;
 | |
| 
 | |
|     // Dynamic-sized alloca is not handled yet.
 | |
|     return false;
 | |
|     
 | |
|   case Instruction::Call:
 | |
|     return SelectCall(I);
 | |
|   
 | |
|   case Instruction::BitCast:
 | |
|     return SelectBitCast(I);
 | |
| 
 | |
|   case Instruction::FPToSI:
 | |
|     return SelectCast(I, ISD::FP_TO_SINT);
 | |
|   case Instruction::ZExt:
 | |
|     return SelectCast(I, ISD::ZERO_EXTEND);
 | |
|   case Instruction::SExt:
 | |
|     return SelectCast(I, ISD::SIGN_EXTEND);
 | |
|   case Instruction::Trunc:
 | |
|     return SelectCast(I, ISD::TRUNCATE);
 | |
|   case Instruction::SIToFP:
 | |
|     return SelectCast(I, ISD::SINT_TO_FP);
 | |
| 
 | |
|   case Instruction::IntToPtr: // Deliberate fall-through.
 | |
|   case Instruction::PtrToInt: {
 | |
|     EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | |
|     EVT DstVT = TLI.getValueType(I->getType());
 | |
|     if (DstVT.bitsGT(SrcVT))
 | |
|       return SelectCast(I, ISD::ZERO_EXTEND);
 | |
|     if (DstVT.bitsLT(SrcVT))
 | |
|       return SelectCast(I, ISD::TRUNCATE);
 | |
|     unsigned Reg = getRegForValue(I->getOperand(0));
 | |
|     if (Reg == 0) return false;
 | |
|     UpdateValueMap(I, Reg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case Instruction::PHI:
 | |
|     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
 | |
| 
 | |
|   default:
 | |
|     // Unhandled instruction. Halt "fast" selection and bail.
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| FastISel::FastISel(FunctionLoweringInfo &funcInfo)
 | |
|   : FuncInfo(funcInfo),
 | |
|     MRI(FuncInfo.MF->getRegInfo()),
 | |
|     MFI(*FuncInfo.MF->getFrameInfo()),
 | |
|     MCP(*FuncInfo.MF->getConstantPool()),
 | |
|     TM(FuncInfo.MF->getTarget()),
 | |
|     TD(*TM.getTargetData()),
 | |
|     TII(*TM.getInstrInfo()),
 | |
|     TLI(*TM.getTargetLowering()),
 | |
|     TRI(*TM.getRegisterInfo()),
 | |
|     IsBottomUp(false) {
 | |
| }
 | |
| 
 | |
| FastISel::~FastISel() {}
 | |
| 
 | |
| unsigned FastISel::FastEmit_(MVT, MVT,
 | |
|                              unsigned) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_r(MVT, MVT,
 | |
|                               unsigned,
 | |
|                               unsigned /*Op0*/, bool /*Op0IsKill*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_rr(MVT, MVT, 
 | |
|                                unsigned,
 | |
|                                unsigned /*Op0*/, bool /*Op0IsKill*/,
 | |
|                                unsigned /*Op1*/, bool /*Op1IsKill*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_f(MVT, MVT,
 | |
|                               unsigned, const ConstantFP * /*FPImm*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_ri(MVT, MVT,
 | |
|                                unsigned,
 | |
|                                unsigned /*Op0*/, bool /*Op0IsKill*/,
 | |
|                                uint64_t /*Imm*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_rf(MVT, MVT,
 | |
|                                unsigned,
 | |
|                                unsigned /*Op0*/, bool /*Op0IsKill*/,
 | |
|                                const ConstantFP * /*FPImm*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_rri(MVT, MVT,
 | |
|                                 unsigned,
 | |
|                                 unsigned /*Op0*/, bool /*Op0IsKill*/,
 | |
|                                 unsigned /*Op1*/, bool /*Op1IsKill*/,
 | |
|                                 uint64_t /*Imm*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
 | |
| /// to emit an instruction with an immediate operand using FastEmit_ri.
 | |
| /// If that fails, it materializes the immediate into a register and try
 | |
| /// FastEmit_rr instead.
 | |
| unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
 | |
|                                 unsigned Op0, bool Op0IsKill,
 | |
|                                 uint64_t Imm, MVT ImmType) {
 | |
|   // First check if immediate type is legal. If not, we can't use the ri form.
 | |
|   unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
 | |
|   if (ResultReg != 0)
 | |
|     return ResultReg;
 | |
|   unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
 | |
|   if (MaterialReg == 0)
 | |
|     return 0;
 | |
|   return FastEmit_rr(VT, VT, Opcode,
 | |
|                      Op0, Op0IsKill,
 | |
|                      MaterialReg, /*Kill=*/true);
 | |
| }
 | |
| 
 | |
| /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
 | |
| /// to emit an instruction with a floating-point immediate operand using
 | |
| /// FastEmit_rf. If that fails, it materializes the immediate into a register
 | |
| /// and try FastEmit_rr instead.
 | |
| unsigned FastISel::FastEmit_rf_(MVT VT, unsigned Opcode,
 | |
|                                 unsigned Op0, bool Op0IsKill,
 | |
|                                 const ConstantFP *FPImm, MVT ImmType) {
 | |
|   // First check if immediate type is legal. If not, we can't use the rf form.
 | |
|   unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, Op0IsKill, FPImm);
 | |
|   if (ResultReg != 0)
 | |
|     return ResultReg;
 | |
| 
 | |
|   // Materialize the constant in a register.
 | |
|   unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
 | |
|   if (MaterialReg == 0) {
 | |
|     // If the target doesn't have a way to directly enter a floating-point
 | |
|     // value into a register, use an alternate approach.
 | |
|     // TODO: The current approach only supports floating-point constants
 | |
|     // that can be constructed by conversion from integer values. This should
 | |
|     // be replaced by code that creates a load from a constant-pool entry,
 | |
|     // which will require some target-specific work.
 | |
|     const APFloat &Flt = FPImm->getValueAPF();
 | |
|     EVT IntVT = TLI.getPointerTy();
 | |
| 
 | |
|     uint64_t x[2];
 | |
|     uint32_t IntBitWidth = IntVT.getSizeInBits();
 | |
|     bool isExact;
 | |
|     (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
 | |
|                              APFloat::rmTowardZero, &isExact);
 | |
|     if (!isExact)
 | |
|       return 0;
 | |
|     APInt IntVal(IntBitWidth, 2, x);
 | |
| 
 | |
|     unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
 | |
|                                      ISD::Constant, IntVal.getZExtValue());
 | |
|     if (IntegerReg == 0)
 | |
|       return 0;
 | |
|     MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
 | |
|                              ISD::SINT_TO_FP, IntegerReg, /*Kill=*/true);
 | |
|     if (MaterialReg == 0)
 | |
|       return 0;
 | |
|   }
 | |
|   return FastEmit_rr(VT, VT, Opcode,
 | |
|                      Op0, Op0IsKill,
 | |
|                      MaterialReg, /*Kill=*/true);
 | |
| }
 | |
| 
 | |
| unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
 | |
|   return MRI.createVirtualRegister(RC);
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
 | |
|                                  const TargetRegisterClass* RC) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   unsigned Op0, bool Op0IsKill) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill);
 | |
|     bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                                          ResultReg, II.ImplicitDefs[0],
 | |
|                                          RC, RC, DL);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
| 
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    unsigned Op0, bool Op0IsKill,
 | |
|                                    unsigned Op1, bool Op1IsKill) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addReg(Op1, Op1IsKill * RegState::Kill);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addReg(Op1, Op1IsKill * RegState::Kill);
 | |
|     bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                                          ResultReg, II.ImplicitDefs[0],
 | |
|                                          RC, RC, DL);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    unsigned Op0, bool Op0IsKill,
 | |
|                                    uint64_t Imm) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addImm(Imm);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addImm(Imm);
 | |
|     bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                                          ResultReg, II.ImplicitDefs[0],
 | |
|                                          RC, RC, DL);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    unsigned Op0, bool Op0IsKill,
 | |
|                                    const ConstantFP *FPImm) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addFPImm(FPImm);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addFPImm(FPImm);
 | |
|     bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                                          ResultReg, II.ImplicitDefs[0],
 | |
|                                          RC, RC, DL);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
 | |
|                                     const TargetRegisterClass *RC,
 | |
|                                     unsigned Op0, bool Op0IsKill,
 | |
|                                     unsigned Op1, bool Op1IsKill,
 | |
|                                     uint64_t Imm) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addReg(Op1, Op1IsKill * RegState::Kill)
 | |
|       .addImm(Imm);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addReg(Op1, Op1IsKill * RegState::Kill)
 | |
|       .addImm(Imm);
 | |
|     bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                                          ResultReg, II.ImplicitDefs[0],
 | |
|                                          RC, RC, DL);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   uint64_t Imm) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | |
|   
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
 | |
|     bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                                          ResultReg, II.ImplicitDefs[0],
 | |
|                                          RC, RC, DL);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
 | |
|                                               unsigned Op0, bool Op0IsKill,
 | |
|                                               uint32_t Idx) {
 | |
|   const TargetRegisterClass* RC = MRI.getRegClass(Op0);
 | |
|   
 | |
|   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
 | |
|   const TargetInstrDesc &II = TII.get(TargetOpcode::EXTRACT_SUBREG);
 | |
|   
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addImm(Idx);
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
 | |
|       .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|       .addImm(Idx);
 | |
|     bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                                          ResultReg, II.ImplicitDefs[0],
 | |
|                                          RC, RC, DL);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
 | |
| /// with all but the least significant bit set to zero.
 | |
| unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
 | |
|   return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
 | |
| }
 | |
| 
 | |
| /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
 | |
| /// Emit code to ensure constants are copied into registers when needed.
 | |
| /// Remember the virtual registers that need to be added to the Machine PHI
 | |
| /// nodes as input.  We cannot just directly add them, because expansion
 | |
| /// might result in multiple MBB's for one BB.  As such, the start of the
 | |
| /// BB might correspond to a different MBB than the end.
 | |
| bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
 | |
|   const TerminatorInst *TI = LLVMBB->getTerminator();
 | |
| 
 | |
|   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
 | |
|   unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
 | |
| 
 | |
|   // Check successor nodes' PHI nodes that expect a constant to be available
 | |
|   // from this block.
 | |
|   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
 | |
|     const BasicBlock *SuccBB = TI->getSuccessor(succ);
 | |
|     if (!isa<PHINode>(SuccBB->begin())) continue;
 | |
|     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
 | |
| 
 | |
|     // If this terminator has multiple identical successors (common for
 | |
|     // switches), only handle each succ once.
 | |
|     if (!SuccsHandled.insert(SuccMBB)) continue;
 | |
| 
 | |
|     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
 | |
| 
 | |
|     // At this point we know that there is a 1-1 correspondence between LLVM PHI
 | |
|     // nodes and Machine PHI nodes, but the incoming operands have not been
 | |
|     // emitted yet.
 | |
|     for (BasicBlock::const_iterator I = SuccBB->begin();
 | |
|          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
| 
 | |
|       // Ignore dead phi's.
 | |
|       if (PN->use_empty()) continue;
 | |
| 
 | |
|       // Only handle legal types. Two interesting things to note here. First,
 | |
|       // by bailing out early, we may leave behind some dead instructions,
 | |
|       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
 | |
|       // own moves. Second, this check is necessary becuase FastISel doesn't
 | |
|       // use CreateRegs to create registers, so it always creates
 | |
|       // exactly one register for each non-void instruction.
 | |
|       EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
 | |
|       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
 | |
|         // Promote MVT::i1.
 | |
|         if (VT == MVT::i1)
 | |
|           VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
 | |
|         else {
 | |
|           FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
 | |
| 
 | |
|       // Set the DebugLoc for the copy. Prefer the location of the operand
 | |
|       // if there is one; use the location of the PHI otherwise.
 | |
|       DL = PN->getDebugLoc();
 | |
|       if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
 | |
|         DL = Inst->getDebugLoc();
 | |
| 
 | |
|       unsigned Reg = getRegForValue(PHIOp);
 | |
|       if (Reg == 0) {
 | |
|         FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
 | |
|         return false;
 | |
|       }
 | |
|       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
 | |
|       DL = DebugLoc();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 |