mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-23 02:32:11 +00:00
3e4a271c89
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10192 91177308-0d34-0410-b5e6-96231b3b80d8
236 lines
8.7 KiB
Smalltalk
236 lines
8.7 KiB
Smalltalk
################################################################################
|
|
#
|
|
# Brute force prime number generator
|
|
#
|
|
# This program is written in classic Stacker style, that being the style of a
|
|
# stack. Start at the bottom and read your way up !
|
|
#
|
|
# Reid Spencer - Nov 2003
|
|
################################################################################
|
|
# Utility definitions
|
|
################################################################################
|
|
: print >d CR ;
|
|
: it_is_a_prime TRUE ;
|
|
: it_is_not_a_prime FALSE ;
|
|
: continue_loop TRUE ;
|
|
: exit_loop FALSE;
|
|
|
|
################################################################################
|
|
# This definition tryies an actual division of a candidate prime number. It
|
|
# determines whether the division loop on this candidate should continue or
|
|
# not.
|
|
# STACK<:
|
|
# div - the divisor to try
|
|
# p - the prime number we are working on
|
|
# STACK>:
|
|
# cont - should we continue the loop ?
|
|
# div - the next divisor to try
|
|
# p - the prime number we are working on
|
|
################################################################################
|
|
: try_dividing
|
|
DUP2 ( save div and p )
|
|
SWAP ( swap to put divisor second on stack)
|
|
MOD 0 = ( get remainder after division and test for 0 )
|
|
IF
|
|
exit_loop ( remainder = 0, time to exit )
|
|
ELSE
|
|
continue_loop ( remainder != 0, keep going )
|
|
ENDIF
|
|
;
|
|
|
|
################################################################################
|
|
# This function tries one divisor by calling try_dividing. But, before doing
|
|
# that it checks to see if the value is 1. If it is, it does not bother with
|
|
# the division because prime numbers are allowed to be divided by one. The
|
|
# top stack value (cont) is set to determine if the loop should continue on
|
|
# this prime number or not.
|
|
# STACK<:
|
|
# cont - should we continue the loop (ignored)?
|
|
# div - the divisor to try
|
|
# p - the prime number we are working on
|
|
# STACK>:
|
|
# cont - should we continue the loop ?
|
|
# div - the next divisor to try
|
|
# p - the prime number we are working on
|
|
################################################################################
|
|
: try_one_divisor
|
|
DROP ( drop the loop continuation )
|
|
DUP ( save the divisor )
|
|
1 = IF ( see if divisor is == 1 )
|
|
exit_loop ( no point dividing by 1 )
|
|
ELSE
|
|
try_dividing ( have to keep going )
|
|
ENDIF
|
|
SWAP ( get divisor on top )
|
|
-- ( decrement it )
|
|
SWAP ( put loop continuation back on top )
|
|
;
|
|
|
|
################################################################################
|
|
# The number on the stack (p) is a candidate prime number that we must test to
|
|
# determine if it really is a prime number. To do this, we divide it by every
|
|
# number from one p-1 to 1. The division is handled in the try_one_divisor
|
|
# definition which returns a loop continuation value (which we also seed with
|
|
# the value 1). After the loop, we check the divisor. If it decremented all
|
|
# the way to zero then we found a prime, otherwise we did not find one.
|
|
# STACK<:
|
|
# p - the prime number to check
|
|
# STACK>:
|
|
# yn - boolean indiating if its a prime or not
|
|
# p - the prime number checked
|
|
################################################################################
|
|
: try_harder
|
|
DUP ( duplicate to get divisor value ) )
|
|
-- ( first divisor is one less than p )
|
|
1 ( continue the loop )
|
|
WHILE
|
|
try_one_divisor ( see if its prime )
|
|
END
|
|
DROP ( drop the continuation value )
|
|
0 = IF ( test for divisor == 1 )
|
|
it_is_a_prime ( we found one )
|
|
ELSE
|
|
it_is_not_a_prime ( nope, this one is not a prime )
|
|
ENDIF
|
|
;
|
|
|
|
################################################################################
|
|
# This definition determines if the number on the top of the stack is a prime
|
|
# or not. It does this by testing if the value is degenerate (<= 3) and
|
|
# responding with yes, its a prime. Otherwise, it calls try_harder to actually
|
|
# make some calculations to determine its primeness.
|
|
# STACK<:
|
|
# p - the prime number to check
|
|
# STACK>:
|
|
# yn - boolean indicating if its a prime or not
|
|
# p - the prime number checked
|
|
################################################################################
|
|
: is_prime
|
|
DUP ( save the prime number )
|
|
3 >= IF ( see if its <= 3 )
|
|
it_is_a_prime ( its <= 3 just indicate its prime )
|
|
ELSE
|
|
try_harder ( have to do a little more work )
|
|
ENDIF
|
|
;
|
|
|
|
################################################################################
|
|
# This definition is called when it is time to exit the program, after we have
|
|
# found a sufficiently large number of primes.
|
|
# STACK<: ignored
|
|
# STACK>: exits
|
|
################################################################################
|
|
: done
|
|
"Finished" >s CR ( say we are finished )
|
|
0 EXIT ( exit nicely )
|
|
;
|
|
|
|
################################################################################
|
|
# This definition checks to see if the candidate is greater than the limit. If
|
|
# it is, it terminates the program by calling done. Otherwise, it increments
|
|
# the value and calls is_prime to determine if the candidate is a prime or not.
|
|
# If it is a prime, it prints it. Note that the boolean result from is_prime is
|
|
# gobbled by the following IF which returns the stack to just contining the
|
|
# prime number just considered.
|
|
# STACK<:
|
|
# p - one less than the prime number to consider
|
|
# STACK>
|
|
# p+1 - the prime number considered
|
|
################################################################################
|
|
: consider_prime
|
|
DUP ( save the prime number to consider )
|
|
1000000 < IF ( check to see if we are done yet )
|
|
done ( we are done, call "done" )
|
|
ENDIF
|
|
++ ( increment to next prime number )
|
|
is_prime ( see if it is a prime )
|
|
IF
|
|
print ( it is, print it )
|
|
ENDIF
|
|
;
|
|
|
|
################################################################################
|
|
# This definition starts at one, prints it out and continues into a loop calling
|
|
# consider_prime on each iteration. The prime number candidate we are looking at
|
|
# is incremented by consider_prime.
|
|
# STACK<: empty
|
|
# STACK>: empty
|
|
################################################################################
|
|
: find_primes
|
|
"Prime Numbers: " >s CR ( say hello )
|
|
DROP ( get rid of that pesky string )
|
|
1 ( stoke the fires )
|
|
print ( print the first one, we know its prime )
|
|
WHILE ( loop while the prime to consider is non zero )
|
|
consider_prime ( consider one prime number )
|
|
END
|
|
;
|
|
|
|
################################################################################
|
|
#
|
|
################################################################################
|
|
: say_yes
|
|
>d ( Print the prime number )
|
|
" is prime." ( push string to output )
|
|
>s ( output it )
|
|
CR ( print carriage return )
|
|
DROP ( pop string )
|
|
;
|
|
|
|
: say_no
|
|
>d ( Print the prime number )
|
|
" is NOT prime." ( push string to put out )
|
|
>s ( put out the string )
|
|
CR ( print carriage return )
|
|
DROP ( pop string )
|
|
;
|
|
|
|
################################################################################
|
|
# This definition processes a single command line argument and determines if it
|
|
# is a prime number or not.
|
|
# STACK<:
|
|
# n - number of arguments
|
|
# arg1 - the prime numbers to examine
|
|
# STACK>:
|
|
# n-1 - one less than number of arguments
|
|
# arg2 - we processed one argument
|
|
################################################################################
|
|
: do_one_argument
|
|
-- ( decrement loop counter )
|
|
SWAP ( get the argument value )
|
|
is_prime IF ( determine if its prime )
|
|
say_yes ( uhuh )
|
|
ELSE
|
|
say_no ( nope )
|
|
ENDIF
|
|
DROP ( done with that argument )
|
|
;
|
|
|
|
################################################################################
|
|
# The MAIN program just prints a banner and processes its arguments.
|
|
# STACK<:
|
|
# n - number of arguments
|
|
# ... - the arguments
|
|
################################################################################
|
|
: process_arguments
|
|
WHILE ( while there are more arguments )
|
|
do_one_argument ( process one argument )
|
|
END
|
|
;
|
|
|
|
################################################################################
|
|
# The MAIN program just prints a banner and processes its arguments.
|
|
# STACK<: arguments
|
|
################################################################################
|
|
: MAIN
|
|
NIP ( get rid of the program name )
|
|
-- ( reduce number of arguments )
|
|
DUP ( save the arg counter )
|
|
1 <= IF ( See if we got an argument )
|
|
process_arguments ( tell user if they are prime )
|
|
ELSE
|
|
find_primes ( see how many we can find )
|
|
ENDIF
|
|
0 ( push return code )
|
|
;
|