Chris Lattner f57b845547 * Rename MethodPass class to FunctionPass
- Rename runOnMethod to runOnFunction
* Transform getAnalysisUsageInfo into getAnalysisUsage
  - Method is now const
  - It now takes one AnalysisUsage object to fill in instead of 3 vectors
    to fill in
  - Pass's now specify which other passes they _preserve_ not which ones
    they modify (be conservative!)
  - A pass can specify that it preserves all analyses (because it never
    modifies the underlying program)
* s/Method/Function/g in other random places as well


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2333 91177308-0d34-0410-b5e6-96231b3b80d8
2002-04-27 06:56:12 +00:00

367 lines
13 KiB
C++

//===- DCE.cpp - Code to perform dead code elimination --------------------===//
//
// This file implements dead code elimination and basic block merging.
//
// Specifically, this:
// * removes definitions with no uses
// * removes basic blocks with no predecessors
// * merges a basic block into its predecessor if there is only one and the
// predecessor only has one successor.
// * Eliminates PHI nodes for basic blocks with a single predecessor
// * Eliminates a basic block that only contains an unconditional branch
// * Eliminates function prototypes that are not referenced
//
// TODO: This should REALLY be worklist driven instead of iterative. Right now,
// we scan linearly through values, removing unused ones as we go. The problem
// is that this may cause other earlier values to become unused. To make sure
// that we get them all, we iterate until things stop changing. Instead, when
// removing a value, recheck all of its operands to see if they are now unused.
// Piece of cake, and more efficient as well.
//
// Note, this is not trivial, because we have to worry about invalidating
// iterators. :(
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/DCE.h"
#include "llvm/Module.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/ConstantVals.h"
#include "llvm/Support/CFG.h"
#include "llvm/Pass.h"
#include "Support/STLExtras.h"
#include <algorithm>
// dceInstruction - Inspect the instruction at *BBI and figure out if it's
// [trivially] dead. If so, remove the instruction and update the iterator
// to point to the instruction that immediately succeeded the original
// instruction.
//
bool dceInstruction(BasicBlock::InstListType &BBIL,
BasicBlock::iterator &BBI) {
// Look for un"used" definitions...
if ((*BBI)->use_empty() && !(*BBI)->hasSideEffects() &&
!isa<TerminatorInst>(*BBI)) {
delete BBIL.remove(BBI); // Bye bye
return true;
}
return false;
}
static inline bool RemoveUnusedDefs(BasicBlock::InstListType &Vals) {
bool Changed = false;
for (BasicBlock::InstListType::iterator DI = Vals.begin();
DI != Vals.end(); )
if (dceInstruction(Vals, DI))
Changed = true;
else
++DI;
return Changed;
}
struct DeadInstElimination : public BasicBlockPass {
virtual bool runOnBasicBlock(BasicBlock *BB) {
return RemoveUnusedDefs(BB->getInstList());
}
};
Pass *createDeadInstEliminationPass() {
return new DeadInstElimination();
}
// RemoveSingularPHIs - This removes PHI nodes from basic blocks that have only
// a single predecessor. This means that the PHI node must only have a single
// RHS value and can be eliminated.
//
// This routine is very simple because we know that PHI nodes must be the first
// things in a basic block, if they are present.
//
static bool RemoveSingularPHIs(BasicBlock *BB) {
pred_iterator PI(pred_begin(BB));
if (PI == pred_end(BB) || ++PI != pred_end(BB))
return false; // More than one predecessor...
Instruction *I = BB->front();
if (!isa<PHINode>(I)) return false; // No PHI nodes
//cerr << "Killing PHIs from " << BB;
//cerr << "Pred #0 = " << *pred_begin(BB);
//cerr << "Function == " << BB->getParent();
do {
PHINode *PN = cast<PHINode>(I);
assert(PN->getNumOperands() == 2 && "PHI node should only have one value!");
Value *V = PN->getOperand(0);
PN->replaceAllUsesWith(V); // Replace PHI node with its single value.
delete BB->getInstList().remove(BB->begin());
I = BB->front();
} while (isa<PHINode>(I));
return true; // Yes, we nuked at least one phi node
}
static void ReplaceUsesWithConstant(Instruction *I) {
// Make all users of this instruction reference the constant instead
I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
}
// PropogatePredecessors - This gets "Succ" ready to have the predecessors from
// "BB". This is a little tricky because "Succ" has PHI nodes, which need to
// have extra slots added to them to hold the merge edges from BB's
// predecessors. This function returns true (failure) if the Succ BB already
// has a predecessor that is a predecessor of BB.
//
// Assumption: Succ is the single successor for BB.
//
static bool PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
assert(isa<PHINode>(Succ->front()) && "Only works on PHId BBs!");
// If there is more than one predecessor, and there are PHI nodes in
// the successor, then we need to add incoming edges for the PHI nodes
//
const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
// Check to see if one of the predecessors of BB is already a predecessor of
// Succ. If so, we cannot do the transformation!
//
for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
PI != PE; ++PI) {
if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end())
return true;
}
BasicBlock::iterator I = Succ->begin();
do { // Loop over all of the PHI nodes in the successor BB
PHINode *PN = cast<PHINode>(*I);
Value *OldVal = PN->removeIncomingValue(BB);
assert(OldVal && "No entry in PHI for Pred BB!");
for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
End = BBPreds.end(); PredI != End; ++PredI) {
// Add an incoming value for each of the new incoming values...
PN->addIncoming(OldVal, *PredI);
}
++I;
} while (isa<PHINode>(*I));
return false;
}
// SimplifyCFG - This function is used to do simplification of a CFG. For
// example, it adjusts branches to branches to eliminate the extra hop, it
// eliminates unreachable basic blocks, and does other "peephole" optimization
// of the CFG. It returns true if a modification was made, and returns an
// iterator that designates the first element remaining after the block that
// was deleted.
//
// WARNING: The entry node of a function may not be simplified.
//
bool SimplifyCFG(Function::iterator &BBIt) {
BasicBlock *BB = *BBIt;
Function *M = BB->getParent();
assert(BB && BB->getParent() && "Block not embedded in function!");
assert(BB->getTerminator() && "Degenerate basic block encountered!");
assert(BB->getParent()->front() != BB && "Can't Simplify entry block!");
// Remove basic blocks that have no predecessors... which are unreachable.
if (pred_begin(BB) == pred_end(BB) &&
!BB->hasConstantReferences()) {
//cerr << "Removing BB: \n" << BB;
// Loop through all of our successors and make sure they know that one
// of their predecessors is going away.
for_each(succ_begin(BB), succ_end(BB),
std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
while (!BB->empty()) {
Instruction *I = BB->back();
// If this instruction is used, replace uses with an arbitrary
// constant value. Because control flow can't get here, we don't care
// what we replace the value with. Note that since this block is
// unreachable, and all values contained within it must dominate their
// uses, that all uses will eventually be removed.
if (!I->use_empty()) ReplaceUsesWithConstant(I);
// Remove the instruction from the basic block
delete BB->getInstList().pop_back();
}
delete M->getBasicBlocks().remove(BBIt);
return true;
}
// Check to see if this block has no instructions and only a single
// successor. If so, replace block references with successor.
succ_iterator SI(succ_begin(BB));
if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ?
if (BB->front()->isTerminator()) { // Terminator is the only instruction!
BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor
//cerr << "Killing Trivial BB: \n" << BB;
if (Succ != BB) { // Arg, don't hurt infinite loops!
// If our successor has PHI nodes, then we need to update them to
// include entries for BB's predecessors, not for BB itself.
// Be careful though, if this transformation fails (returns true) then
// we cannot do this transformation!
//
if (!isa<PHINode>(Succ->front()) ||
!PropogatePredecessorsForPHIs(BB, Succ)) {
BB->replaceAllUsesWith(Succ);
BB = M->getBasicBlocks().remove(BBIt);
if (BB->hasName() && !Succ->hasName()) // Transfer name if we can
Succ->setName(BB->getName());
delete BB; // Delete basic block
//cerr << "Function after removal: \n" << M;
return true;
}
}
}
}
// Merge basic blocks into their predecessor if there is only one pred,
// and if there is only one successor of the predecessor.
pred_iterator PI(pred_begin(BB));
if (PI != pred_end(BB) && *PI != BB && // Not empty? Not same BB?
++PI == pred_end(BB) && !BB->hasConstantReferences()) {
BasicBlock *Pred = *pred_begin(BB);
TerminatorInst *Term = Pred->getTerminator();
assert(Term != 0 && "malformed basic block without terminator!");
// Does the predecessor block only have a single successor?
succ_iterator SI(succ_begin(Pred));
if (++SI == succ_end(Pred)) {
//cerr << "Merging: " << BB << "into: " << Pred;
// Delete the unconditianal branch from the predecessor...
BasicBlock::iterator DI = Pred->end();
assert(Pred->getTerminator() &&
"Degenerate basic block encountered!"); // Empty bb???
delete Pred->getInstList().remove(--DI); // Destroy uncond branch
// Move all definitions in the succecessor to the predecessor...
while (!BB->empty()) {
DI = BB->begin();
Instruction *Def = BB->getInstList().remove(DI); // Remove from front
Pred->getInstList().push_back(Def); // Add to end...
}
// Remove basic block from the function... and advance iterator to the
// next valid block...
BB = M->getBasicBlocks().remove(BBIt);
// Make all PHI nodes that refered to BB now refer to Pred as their
// source...
BB->replaceAllUsesWith(Pred);
// Inherit predecessors name if it exists...
if (BB->hasName() && !Pred->hasName()) Pred->setName(BB->getName());
delete BB; // You ARE the weakest link... goodbye
return true;
}
}
return false;
}
static bool DoDCEPass(Function *F) {
Function::iterator BBIt, BBEnd = F->end();
if (F->begin() == BBEnd) return false; // Nothing to do
bool Changed = false;
// Loop through now and remove instructions that have no uses...
for (BBIt = F->begin(); BBIt != BBEnd; ++BBIt) {
Changed |= RemoveUnusedDefs((*BBIt)->getInstList());
Changed |= RemoveSingularPHIs(*BBIt);
}
// Loop over all of the basic blocks (except the first one) and remove them
// if they are unneeded...
//
for (BBIt = F->begin(), ++BBIt; BBIt != F->end(); ) {
if (SimplifyCFG(BBIt)) {
Changed = true;
} else {
++BBIt;
}
}
return Changed;
}
// Remove unused global values - This removes unused global values of no
// possible value. This currently includes unused function prototypes and
// unitialized global variables.
//
static bool RemoveUnusedGlobalValues(Module *Mod) {
bool Changed = false;
for (Module::iterator MI = Mod->begin(); MI != Mod->end(); ) {
Function *Meth = *MI;
if (Meth->isExternal() && Meth->use_size() == 0) {
// No references to prototype?
//cerr << "Removing function proto: " << Meth->getName() << endl;
delete Mod->getFunctionList().remove(MI); // Remove prototype
// Remove moves iterator to point to the next one automatically
Changed = true;
} else {
++MI; // Skip prototype in use.
}
}
for (Module::giterator GI = Mod->gbegin(); GI != Mod->gend(); ) {
GlobalVariable *GV = *GI;
if (!GV->hasInitializer() && GV->use_size() == 0) {
// No references to uninitialized global variable?
//cerr << "Removing global var: " << GV->getName() << endl;
delete Mod->getGlobalList().remove(GI);
// Remove moves iterator to point to the next one automatically
Changed = true;
} else {
++GI;
}
}
return Changed;
}
namespace {
struct DeadCodeElimination : public FunctionPass {
// Pass Interface...
virtual bool doInitialization(Module *M) {
return RemoveUnusedGlobalValues(M);
}
// It is possible that we may require multiple passes over the code to fully
// eliminate dead code. Iterate until we are done.
//
virtual bool runOnFunction(Function *F) {
bool Changed = false;
while (DoDCEPass(F)) Changed = true;
return Changed;
}
virtual bool doFinalization(Module *M) {
return RemoveUnusedGlobalValues(M);
}
};
}
Pass *createDeadCodeEliminationPass() {
return new DeadCodeElimination();
}