mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	plus add. The shift can be folded into the add. This only effects codegen when the constant is 3. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210445 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			7936 lines
		
	
	
		
			304 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			7936 lines
		
	
	
		
			304 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation  ----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the AArch64TargetLowering class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AArch64ISelLowering.h"
 | |
| #include "AArch64PerfectShuffle.h"
 | |
| #include "AArch64Subtarget.h"
 | |
| #include "AArch64MachineFunctionInfo.h"
 | |
| #include "AArch64TargetMachine.h"
 | |
| #include "AArch64TargetObjectFile.h"
 | |
| #include "MCTargetDesc/AArch64AddressingModes.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "aarch64-lower"
 | |
| 
 | |
| STATISTIC(NumTailCalls, "Number of tail calls");
 | |
| STATISTIC(NumShiftInserts, "Number of vector shift inserts");
 | |
| 
 | |
| enum AlignMode {
 | |
|   StrictAlign,
 | |
|   NoStrictAlign
 | |
| };
 | |
| 
 | |
| static cl::opt<AlignMode>
 | |
| Align(cl::desc("Load/store alignment support"),
 | |
|       cl::Hidden, cl::init(NoStrictAlign),
 | |
|       cl::values(
 | |
|           clEnumValN(StrictAlign,   "aarch64-strict-align",
 | |
|                      "Disallow all unaligned memory accesses"),
 | |
|           clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
 | |
|                      "Allow unaligned memory accesses"),
 | |
|           clEnumValEnd));
 | |
| 
 | |
| // Place holder until extr generation is tested fully.
 | |
| static cl::opt<bool>
 | |
| EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
 | |
|                           cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
 | |
|                           cl::init(true));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
 | |
|                          cl::desc("Allow AArch64 SLI/SRI formation"),
 | |
|                          cl::init(false));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // AArch64 Lowering public interface.
 | |
| //===----------------------------------------------------------------------===//
 | |
| static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
 | |
|   if (TT.isOSBinFormatMachO())
 | |
|     return new AArch64_MachoTargetObjectFile();
 | |
| 
 | |
|   return new AArch64_ELFTargetObjectFile();
 | |
| }
 | |
| 
 | |
| AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
 | |
|     : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) {
 | |
|   Subtarget = &TM.getSubtarget<AArch64Subtarget>();
 | |
| 
 | |
|   // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
 | |
|   // we have to make something up. Arbitrarily, choose ZeroOrOne.
 | |
|   setBooleanContents(ZeroOrOneBooleanContent);
 | |
|   // When comparing vectors the result sets the different elements in the
 | |
|   // vector to all-one or all-zero.
 | |
|   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
 | |
| 
 | |
|   // Set up the register classes.
 | |
|   addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
 | |
|   addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
 | |
| 
 | |
|   if (Subtarget->hasFPARMv8()) {
 | |
|     addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
 | |
|     addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
 | |
|     addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
 | |
|     addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->hasNEON()) {
 | |
|     addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
 | |
|     addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
 | |
|     // Someone set us up the NEON.
 | |
|     addDRTypeForNEON(MVT::v2f32);
 | |
|     addDRTypeForNEON(MVT::v8i8);
 | |
|     addDRTypeForNEON(MVT::v4i16);
 | |
|     addDRTypeForNEON(MVT::v2i32);
 | |
|     addDRTypeForNEON(MVT::v1i64);
 | |
|     addDRTypeForNEON(MVT::v1f64);
 | |
| 
 | |
|     addQRTypeForNEON(MVT::v4f32);
 | |
|     addQRTypeForNEON(MVT::v2f64);
 | |
|     addQRTypeForNEON(MVT::v16i8);
 | |
|     addQRTypeForNEON(MVT::v8i16);
 | |
|     addQRTypeForNEON(MVT::v4i32);
 | |
|     addQRTypeForNEON(MVT::v2i64);
 | |
|   }
 | |
| 
 | |
|   // Compute derived properties from the register classes
 | |
|   computeRegisterProperties();
 | |
| 
 | |
|   // Provide all sorts of operation actions
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SETCC, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SETCC, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SETCC, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::SETCC, MVT::f64, Custom);
 | |
|   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::BR_CC, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::BR_CC, MVT::f64, Custom);
 | |
|   setOperationAction(ISD::SELECT, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SELECT, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SELECT, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::SELECT, MVT::f64, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
 | |
|   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::JumpTable, MVT::i64, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::FREM, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FREM, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FREM, MVT::f80, Expand);
 | |
| 
 | |
|   // Custom lowering hooks are needed for XOR
 | |
|   // to fold it into CSINC/CSINV.
 | |
|   setOperationAction(ISD::XOR, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::XOR, MVT::i64, Custom);
 | |
| 
 | |
|   // Virtually no operation on f128 is legal, but LLVM can't expand them when
 | |
|   // there's a valid register class, so we need custom operations in most cases.
 | |
|   setOperationAction(ISD::FABS, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FADD, MVT::f128, Custom);
 | |
|   setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FCOS, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FDIV, MVT::f128, Custom);
 | |
|   setOperationAction(ISD::FMA, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FMUL, MVT::f128, Custom);
 | |
|   setOperationAction(ISD::FNEG, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FPOW, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FREM, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FRINT, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FSIN, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FSQRT, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FSUB, MVT::f128, Custom);
 | |
|   setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::SETCC, MVT::f128, Custom);
 | |
|   setOperationAction(ISD::BR_CC, MVT::f128, Custom);
 | |
|   setOperationAction(ISD::SELECT, MVT::f128, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
 | |
|   setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
 | |
| 
 | |
|   // Lowering for many of the conversions is actually specified by the non-f128
 | |
|   // type. The LowerXXX function will be trivial when f128 isn't involved.
 | |
|   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
 | |
|   setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
 | |
|   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
 | |
|   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
 | |
|   setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
 | |
| 
 | |
|   // Variable arguments.
 | |
|   setOperationAction(ISD::VASTART, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VAARG, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VACOPY, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VAEND, MVT::Other, Expand);
 | |
| 
 | |
|   // Variable-sized objects.
 | |
|   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
 | |
| 
 | |
|   // Exception handling.
 | |
|   // FIXME: These are guesses. Has this been defined yet?
 | |
|   setExceptionPointerRegister(AArch64::X0);
 | |
|   setExceptionSelectorRegister(AArch64::X1);
 | |
| 
 | |
|   // Constant pool entries
 | |
|   setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
 | |
| 
 | |
|   // BlockAddress
 | |
|   setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
 | |
| 
 | |
|   // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
 | |
|   setOperationAction(ISD::ADDC, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ADDE, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SUBC, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SUBE, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ADDC, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::ADDE, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SUBC, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SUBE, MVT::i64, Custom);
 | |
| 
 | |
|   // AArch64 lacks both left-rotate and popcount instructions.
 | |
|   setOperationAction(ISD::ROTL, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::ROTL, MVT::i64, Expand);
 | |
| 
 | |
|   // AArch64 doesn't have {U|S}MUL_LOHI.
 | |
|   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
 | |
| 
 | |
| 
 | |
|   // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
 | |
|   // counterparts, which AArch64 supports directly.
 | |
|   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::CTPOP, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::CTPOP, MVT::i64, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SREM, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::UREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UREM, MVT::i64, Expand);
 | |
| 
 | |
|   // Custom lower Add/Sub/Mul with overflow.
 | |
|   setOperationAction(ISD::SADDO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SADDO, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::UADDO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::UADDO, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SSUBO, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::USUBO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::USUBO, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SMULO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SMULO, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::UMULO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::UMULO, MVT::i64, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::FSIN, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FSIN, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FCOS, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FCOS, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FPOW, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FPOW, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
 | |
|   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
 | |
| 
 | |
|   // AArch64 has implementations of a lot of rounding-like FP operations.
 | |
|   static MVT RoundingTypes[] = { MVT::f32, MVT::f64};
 | |
|   for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
 | |
|     MVT Ty = RoundingTypes[I];
 | |
|     setOperationAction(ISD::FFLOOR, Ty, Legal);
 | |
|     setOperationAction(ISD::FNEARBYINT, Ty, Legal);
 | |
|     setOperationAction(ISD::FCEIL, Ty, Legal);
 | |
|     setOperationAction(ISD::FRINT, Ty, Legal);
 | |
|     setOperationAction(ISD::FTRUNC, Ty, Legal);
 | |
|     setOperationAction(ISD::FROUND, Ty, Legal);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
 | |
| 
 | |
|   if (Subtarget->isTargetMachO()) {
 | |
|     // For iOS, we don't want to the normal expansion of a libcall to
 | |
|     // sincos. We want to issue a libcall to __sincos_stret to avoid memory
 | |
|     // traffic.
 | |
|     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
 | |
|   } else {
 | |
|     setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
 | |
|   }
 | |
| 
 | |
|   // AArch64 does not have floating-point extending loads, i1 sign-extending
 | |
|   // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
 | |
|   setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
 | |
|   setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
 | |
|   setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
 | |
|   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
 | |
|   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
 | |
|   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
|   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
 | |
|   setTruncStoreAction(MVT::f128, MVT::f80, Expand);
 | |
|   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
 | |
|   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
 | |
|   setTruncStoreAction(MVT::f128, MVT::f16, Expand);
 | |
|   // Indexed loads and stores are supported.
 | |
|   for (unsigned im = (unsigned)ISD::PRE_INC;
 | |
|        im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
 | |
|     setIndexedLoadAction(im, MVT::i8, Legal);
 | |
|     setIndexedLoadAction(im, MVT::i16, Legal);
 | |
|     setIndexedLoadAction(im, MVT::i32, Legal);
 | |
|     setIndexedLoadAction(im, MVT::i64, Legal);
 | |
|     setIndexedLoadAction(im, MVT::f64, Legal);
 | |
|     setIndexedLoadAction(im, MVT::f32, Legal);
 | |
|     setIndexedStoreAction(im, MVT::i8, Legal);
 | |
|     setIndexedStoreAction(im, MVT::i16, Legal);
 | |
|     setIndexedStoreAction(im, MVT::i32, Legal);
 | |
|     setIndexedStoreAction(im, MVT::i64, Legal);
 | |
|     setIndexedStoreAction(im, MVT::f64, Legal);
 | |
|     setIndexedStoreAction(im, MVT::f32, Legal);
 | |
|   }
 | |
| 
 | |
|   // Trap.
 | |
|   setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | |
| 
 | |
|   // We combine OR nodes for bitfield operations.
 | |
|   setTargetDAGCombine(ISD::OR);
 | |
| 
 | |
|   // Vector add and sub nodes may conceal a high-half opportunity.
 | |
|   // Also, try to fold ADD into CSINC/CSINV..
 | |
|   setTargetDAGCombine(ISD::ADD);
 | |
|   setTargetDAGCombine(ISD::SUB);
 | |
| 
 | |
|   setTargetDAGCombine(ISD::XOR);
 | |
|   setTargetDAGCombine(ISD::SINT_TO_FP);
 | |
|   setTargetDAGCombine(ISD::UINT_TO_FP);
 | |
| 
 | |
|   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
 | |
| 
 | |
|   setTargetDAGCombine(ISD::ANY_EXTEND);
 | |
|   setTargetDAGCombine(ISD::ZERO_EXTEND);
 | |
|   setTargetDAGCombine(ISD::SIGN_EXTEND);
 | |
|   setTargetDAGCombine(ISD::BITCAST);
 | |
|   setTargetDAGCombine(ISD::CONCAT_VECTORS);
 | |
|   setTargetDAGCombine(ISD::STORE);
 | |
| 
 | |
|   setTargetDAGCombine(ISD::MUL);
 | |
| 
 | |
|   setTargetDAGCombine(ISD::SELECT);
 | |
|   setTargetDAGCombine(ISD::VSELECT);
 | |
| 
 | |
|   setTargetDAGCombine(ISD::INTRINSIC_VOID);
 | |
|   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
 | |
|   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
 | |
| 
 | |
|   MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
 | |
|   MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
 | |
|   MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
 | |
| 
 | |
|   setStackPointerRegisterToSaveRestore(AArch64::SP);
 | |
| 
 | |
|   setSchedulingPreference(Sched::Hybrid);
 | |
| 
 | |
|   // Enable TBZ/TBNZ
 | |
|   MaskAndBranchFoldingIsLegal = true;
 | |
| 
 | |
|   setMinFunctionAlignment(2);
 | |
| 
 | |
|   RequireStrictAlign = (Align == StrictAlign);
 | |
| 
 | |
|   setHasExtractBitsInsn(true);
 | |
| 
 | |
|   if (Subtarget->hasNEON()) {
 | |
|     // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
 | |
|     // silliness like this:
 | |
|     setOperationAction(ISD::FABS, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FADD, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FMA, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FREM, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
 | |
|     setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
 | |
|     setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
 | |
| 
 | |
|     // AArch64 doesn't have a direct vector ->f32 conversion instructions for
 | |
|     // elements smaller than i32, so promote the input to i32 first.
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
 | |
|     // Similarly, there is no direct i32 -> f64 vector conversion instruction.
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
 | |
| 
 | |
|     // AArch64 doesn't have MUL.2d:
 | |
|     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
 | |
|     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
 | |
|     setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
 | |
|     // Likewise, narrowing and extending vector loads/stores aren't handled
 | |
|     // directly.
 | |
|     for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
 | |
|          VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
 | |
| 
 | |
|       setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
 | |
|                          Expand);
 | |
| 
 | |
|       setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
 | |
|       setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
 | |
|       setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
 | |
|       setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
 | |
| 
 | |
|       setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
 | |
| 
 | |
|       for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
 | |
|            InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
 | |
|         setTruncStoreAction((MVT::SimpleValueType)VT,
 | |
|                             (MVT::SimpleValueType)InnerVT, Expand);
 | |
|       setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
 | |
|       setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
 | |
|       setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
 | |
|     }
 | |
| 
 | |
|     // AArch64 has implementations of a lot of rounding-like FP operations.
 | |
|     static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 };
 | |
|     for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) {
 | |
|       MVT Ty = RoundingVecTypes[I];
 | |
|       setOperationAction(ISD::FFLOOR, Ty, Legal);
 | |
|       setOperationAction(ISD::FNEARBYINT, Ty, Legal);
 | |
|       setOperationAction(ISD::FCEIL, Ty, Legal);
 | |
|       setOperationAction(ISD::FRINT, Ty, Legal);
 | |
|       setOperationAction(ISD::FTRUNC, Ty, Legal);
 | |
|       setOperationAction(ISD::FROUND, Ty, Legal);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
 | |
|   if (VT == MVT::v2f32) {
 | |
|     setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
 | |
|     AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
 | |
| 
 | |
|     setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
 | |
|     AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
 | |
|   } else if (VT == MVT::v2f64 || VT == MVT::v4f32) {
 | |
|     setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
 | |
|     AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
 | |
| 
 | |
|     setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
 | |
|     AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
 | |
|   }
 | |
| 
 | |
|   // Mark vector float intrinsics as expand.
 | |
|   if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
 | |
|     setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
 | |
|     setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
 | |
|     setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
 | |
|     setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
 | |
|     setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
 | |
|     setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
 | |
|     setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
 | |
|     setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
 | |
|     setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
 | |
|   setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
 | |
|   setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
 | |
|   setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
 | |
|   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
 | |
|   setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
 | |
|   setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
 | |
|   setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
 | |
|   setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
 | |
|   setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
 | |
|   setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
 | |
|   setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
 | |
| 
 | |
|   setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
 | |
|   setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
 | |
|   setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
 | |
|   setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
 | |
| 
 | |
|   // CNT supports only B element sizes.
 | |
|   if (VT != MVT::v8i8 && VT != MVT::v16i8)
 | |
|     setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
 | |
| 
 | |
|   setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
 | |
|   setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
 | |
|   setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
 | |
|   setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
 | |
|   setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
 | |
| 
 | |
|   setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
 | |
|   setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
 | |
| 
 | |
|   if (Subtarget->isLittleEndian()) {
 | |
|     for (unsigned im = (unsigned)ISD::PRE_INC;
 | |
|          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
 | |
|       setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
 | |
|       setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
 | |
|   addRegisterClass(VT, &AArch64::FPR64RegClass);
 | |
|   addTypeForNEON(VT, MVT::v2i32);
 | |
| }
 | |
| 
 | |
| void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
 | |
|   addRegisterClass(VT, &AArch64::FPR128RegClass);
 | |
|   addTypeForNEON(VT, MVT::v4i32);
 | |
| }
 | |
| 
 | |
| EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
 | |
|   if (!VT.isVector())
 | |
|     return MVT::i32;
 | |
|   return VT.changeVectorElementTypeToInteger();
 | |
| }
 | |
| 
 | |
| /// computeKnownBitsForTargetNode - Determine which of the bits specified in
 | |
| /// Mask are known to be either zero or one and return them in the
 | |
| /// KnownZero/KnownOne bitsets.
 | |
| void AArch64TargetLowering::computeKnownBitsForTargetNode(
 | |
|     const SDValue Op, APInt &KnownZero, APInt &KnownOne,
 | |
|     const SelectionDAG &DAG, unsigned Depth) const {
 | |
|   switch (Op.getOpcode()) {
 | |
|   default:
 | |
|     break;
 | |
|   case AArch64ISD::CSEL: {
 | |
|     APInt KnownZero2, KnownOne2;
 | |
|     DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
 | |
|     DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
 | |
|     KnownZero &= KnownZero2;
 | |
|     KnownOne &= KnownOne2;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::INTRINSIC_W_CHAIN: {
 | |
|    ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
 | |
|     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
 | |
|     switch (IntID) {
 | |
|     default: return;
 | |
|     case Intrinsic::aarch64_ldaxr:
 | |
|     case Intrinsic::aarch64_ldxr: {
 | |
|       unsigned BitWidth = KnownOne.getBitWidth();
 | |
|       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
 | |
|       unsigned MemBits = VT.getScalarType().getSizeInBits();
 | |
|       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
 | |
|       return;
 | |
|     }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|   case ISD::INTRINSIC_VOID: {
 | |
|     unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|     switch (IntNo) {
 | |
|     default:
 | |
|       break;
 | |
|     case Intrinsic::aarch64_neon_umaxv:
 | |
|     case Intrinsic::aarch64_neon_uminv: {
 | |
|       // Figure out the datatype of the vector operand. The UMINV instruction
 | |
|       // will zero extend the result, so we can mark as known zero all the
 | |
|       // bits larger than the element datatype. 32-bit or larget doesn't need
 | |
|       // this as those are legal types and will be handled by isel directly.
 | |
|       MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
 | |
|       unsigned BitWidth = KnownZero.getBitWidth();
 | |
|       if (VT == MVT::v8i8 || VT == MVT::v16i8) {
 | |
|         assert(BitWidth >= 8 && "Unexpected width!");
 | |
|         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
 | |
|         KnownZero |= Mask;
 | |
|       } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
 | |
|         assert(BitWidth >= 16 && "Unexpected width!");
 | |
|         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
 | |
|         KnownZero |= Mask;
 | |
|       }
 | |
|       break;
 | |
|     } break;
 | |
|     }
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
 | |
|   return MVT::i64;
 | |
| }
 | |
| 
 | |
| unsigned AArch64TargetLowering::getMaximalGlobalOffset() const {
 | |
|   // FIXME: On AArch64, this depends on the type.
 | |
|   // Basically, the addressable offsets are o to 4095 * Ty.getSizeInBytes().
 | |
|   // and the offset has to be a multiple of the related size in bytes.
 | |
|   return 4095;
 | |
| }
 | |
| 
 | |
| FastISel *
 | |
| AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
 | |
|                                       const TargetLibraryInfo *libInfo) const {
 | |
|   return AArch64::createFastISel(funcInfo, libInfo);
 | |
| }
 | |
| 
 | |
| const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     return nullptr;
 | |
|   case AArch64ISD::CALL:              return "AArch64ISD::CALL";
 | |
|   case AArch64ISD::ADRP:              return "AArch64ISD::ADRP";
 | |
|   case AArch64ISD::ADDlow:            return "AArch64ISD::ADDlow";
 | |
|   case AArch64ISD::LOADgot:           return "AArch64ISD::LOADgot";
 | |
|   case AArch64ISD::RET_FLAG:          return "AArch64ISD::RET_FLAG";
 | |
|   case AArch64ISD::BRCOND:            return "AArch64ISD::BRCOND";
 | |
|   case AArch64ISD::CSEL:              return "AArch64ISD::CSEL";
 | |
|   case AArch64ISD::FCSEL:             return "AArch64ISD::FCSEL";
 | |
|   case AArch64ISD::CSINV:             return "AArch64ISD::CSINV";
 | |
|   case AArch64ISD::CSNEG:             return "AArch64ISD::CSNEG";
 | |
|   case AArch64ISD::CSINC:             return "AArch64ISD::CSINC";
 | |
|   case AArch64ISD::THREAD_POINTER:    return "AArch64ISD::THREAD_POINTER";
 | |
|   case AArch64ISD::TLSDESC_CALL:      return "AArch64ISD::TLSDESC_CALL";
 | |
|   case AArch64ISD::ADC:               return "AArch64ISD::ADC";
 | |
|   case AArch64ISD::SBC:               return "AArch64ISD::SBC";
 | |
|   case AArch64ISD::ADDS:              return "AArch64ISD::ADDS";
 | |
|   case AArch64ISD::SUBS:              return "AArch64ISD::SUBS";
 | |
|   case AArch64ISD::ADCS:              return "AArch64ISD::ADCS";
 | |
|   case AArch64ISD::SBCS:              return "AArch64ISD::SBCS";
 | |
|   case AArch64ISD::ANDS:              return "AArch64ISD::ANDS";
 | |
|   case AArch64ISD::FCMP:              return "AArch64ISD::FCMP";
 | |
|   case AArch64ISD::FMIN:              return "AArch64ISD::FMIN";
 | |
|   case AArch64ISD::FMAX:              return "AArch64ISD::FMAX";
 | |
|   case AArch64ISD::DUP:               return "AArch64ISD::DUP";
 | |
|   case AArch64ISD::DUPLANE8:          return "AArch64ISD::DUPLANE8";
 | |
|   case AArch64ISD::DUPLANE16:         return "AArch64ISD::DUPLANE16";
 | |
|   case AArch64ISD::DUPLANE32:         return "AArch64ISD::DUPLANE32";
 | |
|   case AArch64ISD::DUPLANE64:         return "AArch64ISD::DUPLANE64";
 | |
|   case AArch64ISD::MOVI:              return "AArch64ISD::MOVI";
 | |
|   case AArch64ISD::MOVIshift:         return "AArch64ISD::MOVIshift";
 | |
|   case AArch64ISD::MOVIedit:          return "AArch64ISD::MOVIedit";
 | |
|   case AArch64ISD::MOVImsl:           return "AArch64ISD::MOVImsl";
 | |
|   case AArch64ISD::FMOV:              return "AArch64ISD::FMOV";
 | |
|   case AArch64ISD::MVNIshift:         return "AArch64ISD::MVNIshift";
 | |
|   case AArch64ISD::MVNImsl:           return "AArch64ISD::MVNImsl";
 | |
|   case AArch64ISD::BICi:              return "AArch64ISD::BICi";
 | |
|   case AArch64ISD::ORRi:              return "AArch64ISD::ORRi";
 | |
|   case AArch64ISD::BSL:               return "AArch64ISD::BSL";
 | |
|   case AArch64ISD::NEG:               return "AArch64ISD::NEG";
 | |
|   case AArch64ISD::EXTR:              return "AArch64ISD::EXTR";
 | |
|   case AArch64ISD::ZIP1:              return "AArch64ISD::ZIP1";
 | |
|   case AArch64ISD::ZIP2:              return "AArch64ISD::ZIP2";
 | |
|   case AArch64ISD::UZP1:              return "AArch64ISD::UZP1";
 | |
|   case AArch64ISD::UZP2:              return "AArch64ISD::UZP2";
 | |
|   case AArch64ISD::TRN1:              return "AArch64ISD::TRN1";
 | |
|   case AArch64ISD::TRN2:              return "AArch64ISD::TRN2";
 | |
|   case AArch64ISD::REV16:             return "AArch64ISD::REV16";
 | |
|   case AArch64ISD::REV32:             return "AArch64ISD::REV32";
 | |
|   case AArch64ISD::REV64:             return "AArch64ISD::REV64";
 | |
|   case AArch64ISD::EXT:               return "AArch64ISD::EXT";
 | |
|   case AArch64ISD::VSHL:              return "AArch64ISD::VSHL";
 | |
|   case AArch64ISD::VLSHR:             return "AArch64ISD::VLSHR";
 | |
|   case AArch64ISD::VASHR:             return "AArch64ISD::VASHR";
 | |
|   case AArch64ISD::CMEQ:              return "AArch64ISD::CMEQ";
 | |
|   case AArch64ISD::CMGE:              return "AArch64ISD::CMGE";
 | |
|   case AArch64ISD::CMGT:              return "AArch64ISD::CMGT";
 | |
|   case AArch64ISD::CMHI:              return "AArch64ISD::CMHI";
 | |
|   case AArch64ISD::CMHS:              return "AArch64ISD::CMHS";
 | |
|   case AArch64ISD::FCMEQ:             return "AArch64ISD::FCMEQ";
 | |
|   case AArch64ISD::FCMGE:             return "AArch64ISD::FCMGE";
 | |
|   case AArch64ISD::FCMGT:             return "AArch64ISD::FCMGT";
 | |
|   case AArch64ISD::CMEQz:             return "AArch64ISD::CMEQz";
 | |
|   case AArch64ISD::CMGEz:             return "AArch64ISD::CMGEz";
 | |
|   case AArch64ISD::CMGTz:             return "AArch64ISD::CMGTz";
 | |
|   case AArch64ISD::CMLEz:             return "AArch64ISD::CMLEz";
 | |
|   case AArch64ISD::CMLTz:             return "AArch64ISD::CMLTz";
 | |
|   case AArch64ISD::FCMEQz:            return "AArch64ISD::FCMEQz";
 | |
|   case AArch64ISD::FCMGEz:            return "AArch64ISD::FCMGEz";
 | |
|   case AArch64ISD::FCMGTz:            return "AArch64ISD::FCMGTz";
 | |
|   case AArch64ISD::FCMLEz:            return "AArch64ISD::FCMLEz";
 | |
|   case AArch64ISD::FCMLTz:            return "AArch64ISD::FCMLTz";
 | |
|   case AArch64ISD::NOT:               return "AArch64ISD::NOT";
 | |
|   case AArch64ISD::BIT:               return "AArch64ISD::BIT";
 | |
|   case AArch64ISD::CBZ:               return "AArch64ISD::CBZ";
 | |
|   case AArch64ISD::CBNZ:              return "AArch64ISD::CBNZ";
 | |
|   case AArch64ISD::TBZ:               return "AArch64ISD::TBZ";
 | |
|   case AArch64ISD::TBNZ:              return "AArch64ISD::TBNZ";
 | |
|   case AArch64ISD::TC_RETURN:         return "AArch64ISD::TC_RETURN";
 | |
|   case AArch64ISD::SITOF:             return "AArch64ISD::SITOF";
 | |
|   case AArch64ISD::UITOF:             return "AArch64ISD::UITOF";
 | |
|   case AArch64ISD::SQSHL_I:           return "AArch64ISD::SQSHL_I";
 | |
|   case AArch64ISD::UQSHL_I:           return "AArch64ISD::UQSHL_I";
 | |
|   case AArch64ISD::SRSHR_I:           return "AArch64ISD::SRSHR_I";
 | |
|   case AArch64ISD::URSHR_I:           return "AArch64ISD::URSHR_I";
 | |
|   case AArch64ISD::SQSHLU_I:          return "AArch64ISD::SQSHLU_I";
 | |
|   case AArch64ISD::WrapperLarge:      return "AArch64ISD::WrapperLarge";
 | |
|   case AArch64ISD::LD2post:           return "AArch64ISD::LD2post";
 | |
|   case AArch64ISD::LD3post:           return "AArch64ISD::LD3post";
 | |
|   case AArch64ISD::LD4post:           return "AArch64ISD::LD4post";
 | |
|   case AArch64ISD::ST2post:           return "AArch64ISD::ST2post";
 | |
|   case AArch64ISD::ST3post:           return "AArch64ISD::ST3post";
 | |
|   case AArch64ISD::ST4post:           return "AArch64ISD::ST4post";
 | |
|   case AArch64ISD::LD1x2post:         return "AArch64ISD::LD1x2post";
 | |
|   case AArch64ISD::LD1x3post:         return "AArch64ISD::LD1x3post";
 | |
|   case AArch64ISD::LD1x4post:         return "AArch64ISD::LD1x4post";
 | |
|   case AArch64ISD::ST1x2post:         return "AArch64ISD::ST1x2post";
 | |
|   case AArch64ISD::ST1x3post:         return "AArch64ISD::ST1x3post";
 | |
|   case AArch64ISD::ST1x4post:         return "AArch64ISD::ST1x4post";
 | |
|   case AArch64ISD::LD1DUPpost:        return "AArch64ISD::LD1DUPpost";
 | |
|   case AArch64ISD::LD2DUPpost:        return "AArch64ISD::LD2DUPpost";
 | |
|   case AArch64ISD::LD3DUPpost:        return "AArch64ISD::LD3DUPpost";
 | |
|   case AArch64ISD::LD4DUPpost:        return "AArch64ISD::LD4DUPpost";
 | |
|   case AArch64ISD::LD1LANEpost:       return "AArch64ISD::LD1LANEpost";
 | |
|   case AArch64ISD::LD2LANEpost:       return "AArch64ISD::LD2LANEpost";
 | |
|   case AArch64ISD::LD3LANEpost:       return "AArch64ISD::LD3LANEpost";
 | |
|   case AArch64ISD::LD4LANEpost:       return "AArch64ISD::LD4LANEpost";
 | |
|   case AArch64ISD::ST2LANEpost:       return "AArch64ISD::ST2LANEpost";
 | |
|   case AArch64ISD::ST3LANEpost:       return "AArch64ISD::ST3LANEpost";
 | |
|   case AArch64ISD::ST4LANEpost:       return "AArch64ISD::ST4LANEpost";
 | |
|   }
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
 | |
|                                     MachineBasicBlock *MBB) const {
 | |
|   // We materialise the F128CSEL pseudo-instruction as some control flow and a
 | |
|   // phi node:
 | |
| 
 | |
|   // OrigBB:
 | |
|   //     [... previous instrs leading to comparison ...]
 | |
|   //     b.ne TrueBB
 | |
|   //     b EndBB
 | |
|   // TrueBB:
 | |
|   //     ; Fallthrough
 | |
|   // EndBB:
 | |
|   //     Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
 | |
| 
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   MachineFunction *MF = MBB->getParent();
 | |
|   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
 | |
|   DebugLoc DL = MI->getDebugLoc();
 | |
|   MachineFunction::iterator It = MBB;
 | |
|   ++It;
 | |
| 
 | |
|   unsigned DestReg = MI->getOperand(0).getReg();
 | |
|   unsigned IfTrueReg = MI->getOperand(1).getReg();
 | |
|   unsigned IfFalseReg = MI->getOperand(2).getReg();
 | |
|   unsigned CondCode = MI->getOperand(3).getImm();
 | |
|   bool NZCVKilled = MI->getOperand(4).isKill();
 | |
| 
 | |
|   MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MF->insert(It, TrueBB);
 | |
|   MF->insert(It, EndBB);
 | |
| 
 | |
|   // Transfer rest of current basic-block to EndBB
 | |
|   EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
 | |
|                 MBB->end());
 | |
|   EndBB->transferSuccessorsAndUpdatePHIs(MBB);
 | |
| 
 | |
|   BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
 | |
|   BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
 | |
|   MBB->addSuccessor(TrueBB);
 | |
|   MBB->addSuccessor(EndBB);
 | |
| 
 | |
|   // TrueBB falls through to the end.
 | |
|   TrueBB->addSuccessor(EndBB);
 | |
| 
 | |
|   if (!NZCVKilled) {
 | |
|     TrueBB->addLiveIn(AArch64::NZCV);
 | |
|     EndBB->addLiveIn(AArch64::NZCV);
 | |
|   }
 | |
| 
 | |
|   BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
 | |
|       .addReg(IfTrueReg)
 | |
|       .addMBB(TrueBB)
 | |
|       .addReg(IfFalseReg)
 | |
|       .addMBB(MBB);
 | |
| 
 | |
|   MI->eraseFromParent();
 | |
|   return EndBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | |
|                                                  MachineBasicBlock *BB) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default:
 | |
| #ifndef NDEBUG
 | |
|     MI->dump();
 | |
| #endif
 | |
|     assert(0 && "Unexpected instruction for custom inserter!");
 | |
|     break;
 | |
| 
 | |
|   case AArch64::F128CSEL:
 | |
|     return EmitF128CSEL(MI, BB);
 | |
| 
 | |
|   case TargetOpcode::STACKMAP:
 | |
|   case TargetOpcode::PATCHPOINT:
 | |
|     return emitPatchPoint(MI, BB);
 | |
|   }
 | |
|   llvm_unreachable("Unexpected instruction for custom inserter!");
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // AArch64 Lowering private implementation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Lowering Code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
 | |
| /// CC
 | |
| static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown condition code!");
 | |
|   case ISD::SETNE:
 | |
|     return AArch64CC::NE;
 | |
|   case ISD::SETEQ:
 | |
|     return AArch64CC::EQ;
 | |
|   case ISD::SETGT:
 | |
|     return AArch64CC::GT;
 | |
|   case ISD::SETGE:
 | |
|     return AArch64CC::GE;
 | |
|   case ISD::SETLT:
 | |
|     return AArch64CC::LT;
 | |
|   case ISD::SETLE:
 | |
|     return AArch64CC::LE;
 | |
|   case ISD::SETUGT:
 | |
|     return AArch64CC::HI;
 | |
|   case ISD::SETUGE:
 | |
|     return AArch64CC::HS;
 | |
|   case ISD::SETULT:
 | |
|     return AArch64CC::LO;
 | |
|   case ISD::SETULE:
 | |
|     return AArch64CC::LS;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
 | |
| static void changeFPCCToAArch64CC(ISD::CondCode CC,
 | |
|                                   AArch64CC::CondCode &CondCode,
 | |
|                                   AArch64CC::CondCode &CondCode2) {
 | |
|   CondCode2 = AArch64CC::AL;
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown FP condition!");
 | |
|   case ISD::SETEQ:
 | |
|   case ISD::SETOEQ:
 | |
|     CondCode = AArch64CC::EQ;
 | |
|     break;
 | |
|   case ISD::SETGT:
 | |
|   case ISD::SETOGT:
 | |
|     CondCode = AArch64CC::GT;
 | |
|     break;
 | |
|   case ISD::SETGE:
 | |
|   case ISD::SETOGE:
 | |
|     CondCode = AArch64CC::GE;
 | |
|     break;
 | |
|   case ISD::SETOLT:
 | |
|     CondCode = AArch64CC::MI;
 | |
|     break;
 | |
|   case ISD::SETOLE:
 | |
|     CondCode = AArch64CC::LS;
 | |
|     break;
 | |
|   case ISD::SETONE:
 | |
|     CondCode = AArch64CC::MI;
 | |
|     CondCode2 = AArch64CC::GT;
 | |
|     break;
 | |
|   case ISD::SETO:
 | |
|     CondCode = AArch64CC::VC;
 | |
|     break;
 | |
|   case ISD::SETUO:
 | |
|     CondCode = AArch64CC::VS;
 | |
|     break;
 | |
|   case ISD::SETUEQ:
 | |
|     CondCode = AArch64CC::EQ;
 | |
|     CondCode2 = AArch64CC::VS;
 | |
|     break;
 | |
|   case ISD::SETUGT:
 | |
|     CondCode = AArch64CC::HI;
 | |
|     break;
 | |
|   case ISD::SETUGE:
 | |
|     CondCode = AArch64CC::PL;
 | |
|     break;
 | |
|   case ISD::SETLT:
 | |
|   case ISD::SETULT:
 | |
|     CondCode = AArch64CC::LT;
 | |
|     break;
 | |
|   case ISD::SETLE:
 | |
|   case ISD::SETULE:
 | |
|     CondCode = AArch64CC::LE;
 | |
|     break;
 | |
|   case ISD::SETNE:
 | |
|   case ISD::SETUNE:
 | |
|     CondCode = AArch64CC::NE;
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
 | |
| /// CC usable with the vector instructions. Fewer operations are available
 | |
| /// without a real NZCV register, so we have to use less efficient combinations
 | |
| /// to get the same effect.
 | |
| static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
 | |
|                                         AArch64CC::CondCode &CondCode,
 | |
|                                         AArch64CC::CondCode &CondCode2,
 | |
|                                         bool &Invert) {
 | |
|   Invert = false;
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     // Mostly the scalar mappings work fine.
 | |
|     changeFPCCToAArch64CC(CC, CondCode, CondCode2);
 | |
|     break;
 | |
|   case ISD::SETUO:
 | |
|     Invert = true; // Fallthrough
 | |
|   case ISD::SETO:
 | |
|     CondCode = AArch64CC::MI;
 | |
|     CondCode2 = AArch64CC::GE;
 | |
|     break;
 | |
|   case ISD::SETUEQ:
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETUGE:
 | |
|     // All of the compare-mask comparisons are ordered, but we can switch
 | |
|     // between the two by a double inversion. E.g. ULE == !OGT.
 | |
|     Invert = true;
 | |
|     changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isLegalArithImmed(uint64_t C) {
 | |
|   // Matches AArch64DAGToDAGISel::SelectArithImmed().
 | |
|   return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
 | |
| }
 | |
| 
 | |
| static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
 | |
|                               SDLoc dl, SelectionDAG &DAG) {
 | |
|   EVT VT = LHS.getValueType();
 | |
| 
 | |
|   if (VT.isFloatingPoint())
 | |
|     return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
 | |
| 
 | |
|   // The CMP instruction is just an alias for SUBS, and representing it as
 | |
|   // SUBS means that it's possible to get CSE with subtract operations.
 | |
|   // A later phase can perform the optimization of setting the destination
 | |
|   // register to WZR/XZR if it ends up being unused.
 | |
|   unsigned Opcode = AArch64ISD::SUBS;
 | |
| 
 | |
|   if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
 | |
|       cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
 | |
|       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | |
|     // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
 | |
|     // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
 | |
|     // can be set differently by this operation. It comes down to whether
 | |
|     // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
 | |
|     // everything is fine. If not then the optimization is wrong. Thus general
 | |
|     // comparisons are only valid if op2 != 0.
 | |
| 
 | |
|     // So, finally, the only LLVM-native comparisons that don't mention C and V
 | |
|     // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
 | |
|     // the absence of information about op2.
 | |
|     Opcode = AArch64ISD::ADDS;
 | |
|     RHS = RHS.getOperand(1);
 | |
|   } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
 | |
|              cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
 | |
|              !isUnsignedIntSetCC(CC)) {
 | |
|     // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
 | |
|     // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
 | |
|     // of the signed comparisons.
 | |
|     Opcode = AArch64ISD::ANDS;
 | |
|     RHS = LHS.getOperand(1);
 | |
|     LHS = LHS.getOperand(0);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
 | |
|       .getValue(1);
 | |
| }
 | |
| 
 | |
| static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
 | |
|                              SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
 | |
|   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
 | |
|     EVT VT = RHS.getValueType();
 | |
|     uint64_t C = RHSC->getZExtValue();
 | |
|     if (!isLegalArithImmed(C)) {
 | |
|       // Constant does not fit, try adjusting it by one?
 | |
|       switch (CC) {
 | |
|       default:
 | |
|         break;
 | |
|       case ISD::SETLT:
 | |
|       case ISD::SETGE:
 | |
|         if ((VT == MVT::i32 && C != 0x80000000 &&
 | |
|              isLegalArithImmed((uint32_t)(C - 1))) ||
 | |
|             (VT == MVT::i64 && C != 0x80000000ULL &&
 | |
|              isLegalArithImmed(C - 1ULL))) {
 | |
|           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
 | |
|           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
 | |
|           RHS = DAG.getConstant(C, VT);
 | |
|         }
 | |
|         break;
 | |
|       case ISD::SETULT:
 | |
|       case ISD::SETUGE:
 | |
|         if ((VT == MVT::i32 && C != 0 &&
 | |
|              isLegalArithImmed((uint32_t)(C - 1))) ||
 | |
|             (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
 | |
|           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
 | |
|           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
 | |
|           RHS = DAG.getConstant(C, VT);
 | |
|         }
 | |
|         break;
 | |
|       case ISD::SETLE:
 | |
|       case ISD::SETGT:
 | |
|         if ((VT == MVT::i32 && C != 0x7fffffff &&
 | |
|              isLegalArithImmed((uint32_t)(C + 1))) ||
 | |
|             (VT == MVT::i64 && C != 0x7ffffffffffffffULL &&
 | |
|              isLegalArithImmed(C + 1ULL))) {
 | |
|           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
 | |
|           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
 | |
|           RHS = DAG.getConstant(C, VT);
 | |
|         }
 | |
|         break;
 | |
|       case ISD::SETULE:
 | |
|       case ISD::SETUGT:
 | |
|         if ((VT == MVT::i32 && C != 0xffffffff &&
 | |
|              isLegalArithImmed((uint32_t)(C + 1))) ||
 | |
|             (VT == MVT::i64 && C != 0xfffffffffffffffULL &&
 | |
|              isLegalArithImmed(C + 1ULL))) {
 | |
|           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
 | |
|           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
 | |
|           RHS = DAG.getConstant(C, VT);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
 | |
|   AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
 | |
|   AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
 | |
|   return Cmp;
 | |
| }
 | |
| 
 | |
| static std::pair<SDValue, SDValue>
 | |
| getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
 | |
|   assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
 | |
|          "Unsupported value type");
 | |
|   SDValue Value, Overflow;
 | |
|   SDLoc DL(Op);
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   unsigned Opc = 0;
 | |
|   switch (Op.getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown overflow instruction!");
 | |
|   case ISD::SADDO:
 | |
|     Opc = AArch64ISD::ADDS;
 | |
|     CC = AArch64CC::VS;
 | |
|     break;
 | |
|   case ISD::UADDO:
 | |
|     Opc = AArch64ISD::ADDS;
 | |
|     CC = AArch64CC::HS;
 | |
|     break;
 | |
|   case ISD::SSUBO:
 | |
|     Opc = AArch64ISD::SUBS;
 | |
|     CC = AArch64CC::VS;
 | |
|     break;
 | |
|   case ISD::USUBO:
 | |
|     Opc = AArch64ISD::SUBS;
 | |
|     CC = AArch64CC::LO;
 | |
|     break;
 | |
|   // Multiply needs a little bit extra work.
 | |
|   case ISD::SMULO:
 | |
|   case ISD::UMULO: {
 | |
|     CC = AArch64CC::NE;
 | |
|     bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
 | |
|     if (Op.getValueType() == MVT::i32) {
 | |
|       unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
 | |
|       // For a 32 bit multiply with overflow check we want the instruction
 | |
|       // selector to generate a widening multiply (SMADDL/UMADDL). For that we
 | |
|       // need to generate the following pattern:
 | |
|       // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
 | |
|       LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
 | |
|       RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
 | |
|       SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
 | |
|       SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
 | |
|                                 DAG.getConstant(0, MVT::i64));
 | |
|       // On AArch64 the upper 32 bits are always zero extended for a 32 bit
 | |
|       // operation. We need to clear out the upper 32 bits, because we used a
 | |
|       // widening multiply that wrote all 64 bits. In the end this should be a
 | |
|       // noop.
 | |
|       Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
 | |
|       if (IsSigned) {
 | |
|         // The signed overflow check requires more than just a simple check for
 | |
|         // any bit set in the upper 32 bits of the result. These bits could be
 | |
|         // just the sign bits of a negative number. To perform the overflow
 | |
|         // check we have to arithmetic shift right the 32nd bit of the result by
 | |
|         // 31 bits. Then we compare the result to the upper 32 bits.
 | |
|         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
 | |
|                                         DAG.getConstant(32, MVT::i64));
 | |
|         UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
 | |
|         SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
 | |
|                                         DAG.getConstant(31, MVT::i64));
 | |
|         // It is important that LowerBits is last, otherwise the arithmetic
 | |
|         // shift will not be folded into the compare (SUBS).
 | |
|         SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
 | |
|         Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
 | |
|                        .getValue(1);
 | |
|       } else {
 | |
|         // The overflow check for unsigned multiply is easy. We only need to
 | |
|         // check if any of the upper 32 bits are set. This can be done with a
 | |
|         // CMP (shifted register). For that we need to generate the following
 | |
|         // pattern:
 | |
|         // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
 | |
|         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
 | |
|                                         DAG.getConstant(32, MVT::i64));
 | |
|         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
 | |
|         Overflow =
 | |
|             DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
 | |
|                         UpperBits).getValue(1);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
 | |
|     // For the 64 bit multiply
 | |
|     Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
 | |
|     if (IsSigned) {
 | |
|       SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
 | |
|       SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
 | |
|                                       DAG.getConstant(63, MVT::i64));
 | |
|       // It is important that LowerBits is last, otherwise the arithmetic
 | |
|       // shift will not be folded into the compare (SUBS).
 | |
|       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
 | |
|       Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
 | |
|                      .getValue(1);
 | |
|     } else {
 | |
|       SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
 | |
|       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
 | |
|       Overflow =
 | |
|           DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
 | |
|                       UpperBits).getValue(1);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   } // switch (...)
 | |
| 
 | |
|   if (Opc) {
 | |
|     SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
 | |
| 
 | |
|     // Emit the AArch64 operation with overflow check.
 | |
|     Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
 | |
|     Overflow = Value.getValue(1);
 | |
|   }
 | |
|   return std::make_pair(Value, Overflow);
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
 | |
|                                              RTLIB::Libcall Call) const {
 | |
|   SmallVector<SDValue, 2> Ops;
 | |
|   for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
 | |
|     Ops.push_back(Op.getOperand(i));
 | |
| 
 | |
|   return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
 | |
|                      SDLoc(Op)).first;
 | |
| }
 | |
| 
 | |
| static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDValue Sel = Op.getOperand(0);
 | |
|   SDValue Other = Op.getOperand(1);
 | |
| 
 | |
|   // If neither operand is a SELECT_CC, give up.
 | |
|   if (Sel.getOpcode() != ISD::SELECT_CC)
 | |
|     std::swap(Sel, Other);
 | |
|   if (Sel.getOpcode() != ISD::SELECT_CC)
 | |
|     return Op;
 | |
| 
 | |
|   // The folding we want to perform is:
 | |
|   // (xor x, (select_cc a, b, cc, 0, -1) )
 | |
|   //   -->
 | |
|   // (csel x, (xor x, -1), cc ...)
 | |
|   //
 | |
|   // The latter will get matched to a CSINV instruction.
 | |
| 
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
 | |
|   SDValue LHS = Sel.getOperand(0);
 | |
|   SDValue RHS = Sel.getOperand(1);
 | |
|   SDValue TVal = Sel.getOperand(2);
 | |
|   SDValue FVal = Sel.getOperand(3);
 | |
|   SDLoc dl(Sel);
 | |
| 
 | |
|   // FIXME: This could be generalized to non-integer comparisons.
 | |
|   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
 | |
|     return Op;
 | |
| 
 | |
|   ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
 | |
|   ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
 | |
| 
 | |
|   // The the values aren't constants, this isn't the pattern we're looking for.
 | |
|   if (!CFVal || !CTVal)
 | |
|     return Op;
 | |
| 
 | |
|   // We can commute the SELECT_CC by inverting the condition.  This
 | |
|   // might be needed to make this fit into a CSINV pattern.
 | |
|   if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
 | |
|     std::swap(TVal, FVal);
 | |
|     std::swap(CTVal, CFVal);
 | |
|     CC = ISD::getSetCCInverse(CC, true);
 | |
|   }
 | |
| 
 | |
|   // If the constants line up, perform the transform!
 | |
|   if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
 | |
|     SDValue CCVal;
 | |
|     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
 | |
| 
 | |
|     FVal = Other;
 | |
|     TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
 | |
|                        DAG.getConstant(-1ULL, Other.getValueType()));
 | |
| 
 | |
|     return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
 | |
|                        CCVal, Cmp);
 | |
|   }
 | |
| 
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   // Let legalize expand this if it isn't a legal type yet.
 | |
|   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
 | |
| 
 | |
|   unsigned Opc;
 | |
|   bool ExtraOp = false;
 | |
|   switch (Op.getOpcode()) {
 | |
|   default:
 | |
|     assert(0 && "Invalid code");
 | |
|   case ISD::ADDC:
 | |
|     Opc = AArch64ISD::ADDS;
 | |
|     break;
 | |
|   case ISD::SUBC:
 | |
|     Opc = AArch64ISD::SUBS;
 | |
|     break;
 | |
|   case ISD::ADDE:
 | |
|     Opc = AArch64ISD::ADCS;
 | |
|     ExtraOp = true;
 | |
|     break;
 | |
|   case ISD::SUBE:
 | |
|     Opc = AArch64ISD::SBCS;
 | |
|     ExtraOp = true;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (!ExtraOp)
 | |
|     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
 | |
|   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
 | |
|                      Op.getOperand(2));
 | |
| }
 | |
| 
 | |
| static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
 | |
|   // Let legalize expand this if it isn't a legal type yet.
 | |
|   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
 | |
|     return SDValue();
 | |
| 
 | |
|   AArch64CC::CondCode CC;
 | |
|   // The actual operation that sets the overflow or carry flag.
 | |
|   SDValue Value, Overflow;
 | |
|   std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
 | |
| 
 | |
|   // We use 0 and 1 as false and true values.
 | |
|   SDValue TVal = DAG.getConstant(1, MVT::i32);
 | |
|   SDValue FVal = DAG.getConstant(0, MVT::i32);
 | |
| 
 | |
|   // We use an inverted condition, because the conditional select is inverted
 | |
|   // too. This will allow it to be selected to a single instruction:
 | |
|   // CSINC Wd, WZR, WZR, invert(cond).
 | |
|   SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
 | |
|   Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
 | |
|                          CCVal, Overflow);
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
 | |
| }
 | |
| 
 | |
| // Prefetch operands are:
 | |
| // 1: Address to prefetch
 | |
| // 2: bool isWrite
 | |
| // 3: int locality (0 = no locality ... 3 = extreme locality)
 | |
| // 4: bool isDataCache
 | |
| static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDLoc DL(Op);
 | |
|   unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
 | |
|   unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
 | |
|   // The data thing is not used.
 | |
|   // unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
 | |
| 
 | |
|   bool IsStream = !Locality;
 | |
|   // When the locality number is set
 | |
|   if (Locality) {
 | |
|     // The front-end should have filtered out the out-of-range values
 | |
|     assert(Locality <= 3 && "Prefetch locality out-of-range");
 | |
|     // The locality degree is the opposite of the cache speed.
 | |
|     // Put the number the other way around.
 | |
|     // The encoding starts at 0 for level 1
 | |
|     Locality = 3 - Locality;
 | |
|   }
 | |
| 
 | |
|   // built the mask value encoding the expected behavior.
 | |
|   unsigned PrfOp = (IsWrite << 4) |     // Load/Store bit
 | |
|                    (Locality << 1) |    // Cache level bits
 | |
|                    (unsigned)IsStream;  // Stream bit
 | |
|   return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
 | |
|                      DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
 | |
| 
 | |
|   RTLIB::Libcall LC;
 | |
|   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
 | |
| 
 | |
|   return LowerF128Call(Op, DAG, LC);
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   if (Op.getOperand(0).getValueType() != MVT::f128) {
 | |
|     // It's legal except when f128 is involved
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   RTLIB::Libcall LC;
 | |
|   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
 | |
| 
 | |
|   // FP_ROUND node has a second operand indicating whether it is known to be
 | |
|   // precise. That doesn't take part in the LibCall so we can't directly use
 | |
|   // LowerF128Call.
 | |
|   SDValue SrcVal = Op.getOperand(0);
 | |
|   return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
 | |
|                      /*isSigned*/ false, SDLoc(Op)).first;
 | |
| }
 | |
| 
 | |
| static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
 | |
|   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
 | |
|   // Any additional optimization in this function should be recorded
 | |
|   // in the cost tables.
 | |
|   EVT InVT = Op.getOperand(0).getValueType();
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   // FP_TO_XINT conversion from the same type are legal.
 | |
|   if (VT.getSizeInBits() == InVT.getSizeInBits())
 | |
|     return Op;
 | |
| 
 | |
|   if (InVT == MVT::v2f64 || InVT == MVT::v4f32) {
 | |
|     SDLoc dl(Op);
 | |
|     SDValue Cv =
 | |
|         DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
 | |
|                     Op.getOperand(0));
 | |
|     return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
 | |
|   } else if (InVT == MVT::v2f32) {
 | |
|     SDLoc dl(Op);
 | |
|     SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v2f64, Op.getOperand(0));
 | |
|     return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
 | |
|   }
 | |
| 
 | |
|   // Type changing conversions are illegal.
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   if (Op.getOperand(0).getValueType().isVector())
 | |
|     return LowerVectorFP_TO_INT(Op, DAG);
 | |
| 
 | |
|   if (Op.getOperand(0).getValueType() != MVT::f128) {
 | |
|     // It's legal except when f128 is involved
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   RTLIB::Libcall LC;
 | |
|   if (Op.getOpcode() == ISD::FP_TO_SINT)
 | |
|     LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
 | |
|   else
 | |
|     LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
 | |
| 
 | |
|   SmallVector<SDValue, 2> Ops;
 | |
|   for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
 | |
|     Ops.push_back(Op.getOperand(i));
 | |
| 
 | |
|   return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
 | |
|                      SDLoc(Op)).first;
 | |
| }
 | |
| 
 | |
| static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
 | |
|   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
 | |
|   // Any additional optimization in this function should be recorded
 | |
|   // in the cost tables.
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc dl(Op);
 | |
|   SDValue In = Op.getOperand(0);
 | |
|   EVT InVT = In.getValueType();
 | |
| 
 | |
|   // v2i32 to v2f32 is legal.
 | |
|   if (VT == MVT::v2f32 && InVT == MVT::v2i32)
 | |
|     return Op;
 | |
| 
 | |
|   // This function only handles v2f64 outputs.
 | |
|   if (VT == MVT::v2f64) {
 | |
|     // Extend the input argument to a v2i64 that we can feed into the
 | |
|     // floating point conversion. Zero or sign extend based on whether
 | |
|     // we're doing a signed or unsigned float conversion.
 | |
|     unsigned Opc =
 | |
|         Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
 | |
|     assert(Op.getNumOperands() == 1 && "FP conversions take one argument");
 | |
|     SDValue Promoted = DAG.getNode(Opc, dl, MVT::v2i64, Op.getOperand(0));
 | |
|     return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Promoted);
 | |
|   }
 | |
| 
 | |
|   // Scalarize v2i64 to v2f32 conversions.
 | |
|   std::vector<SDValue> BuildVectorOps;
 | |
|   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
 | |
|     SDValue Sclr = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, In,
 | |
|                                DAG.getConstant(i, MVT::i64));
 | |
|     Sclr = DAG.getNode(Op->getOpcode(), dl, MVT::f32, Sclr);
 | |
|     BuildVectorOps.push_back(Sclr);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, BuildVectorOps);
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   if (Op.getValueType().isVector())
 | |
|     return LowerVectorINT_TO_FP(Op, DAG);
 | |
| 
 | |
|   // i128 conversions are libcalls.
 | |
|   if (Op.getOperand(0).getValueType() == MVT::i128)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Other conversions are legal, unless it's to the completely software-based
 | |
|   // fp128.
 | |
|   if (Op.getValueType() != MVT::f128)
 | |
|     return Op;
 | |
| 
 | |
|   RTLIB::Libcall LC;
 | |
|   if (Op.getOpcode() == ISD::SINT_TO_FP)
 | |
|     LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
 | |
|   else
 | |
|     LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
 | |
| 
 | |
|   return LowerF128Call(Op, DAG, LC);
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   // For iOS, we want to call an alternative entry point: __sincos_stret,
 | |
|   // which returns the values in two S / D registers.
 | |
|   SDLoc dl(Op);
 | |
|   SDValue Arg = Op.getOperand(0);
 | |
|   EVT ArgVT = Arg.getValueType();
 | |
|   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
 | |
| 
 | |
|   ArgListTy Args;
 | |
|   ArgListEntry Entry;
 | |
| 
 | |
|   Entry.Node = Arg;
 | |
|   Entry.Ty = ArgTy;
 | |
|   Entry.isSExt = false;
 | |
|   Entry.isZExt = false;
 | |
|   Args.push_back(Entry);
 | |
| 
 | |
|   const char *LibcallName =
 | |
|       (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
 | |
|   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
 | |
| 
 | |
|   StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
 | |
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
 | |
|     .setCallee(CallingConv::Fast, RetTy, Callee, &Args, 0);
 | |
| 
 | |
|   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
 | |
|   return CallResult.first;
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   switch (Op.getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("unimplemented operand");
 | |
|     return SDValue();
 | |
|   case ISD::GlobalAddress:
 | |
|     return LowerGlobalAddress(Op, DAG);
 | |
|   case ISD::GlobalTLSAddress:
 | |
|     return LowerGlobalTLSAddress(Op, DAG);
 | |
|   case ISD::SETCC:
 | |
|     return LowerSETCC(Op, DAG);
 | |
|   case ISD::BR_CC:
 | |
|     return LowerBR_CC(Op, DAG);
 | |
|   case ISD::SELECT:
 | |
|     return LowerSELECT(Op, DAG);
 | |
|   case ISD::SELECT_CC:
 | |
|     return LowerSELECT_CC(Op, DAG);
 | |
|   case ISD::JumpTable:
 | |
|     return LowerJumpTable(Op, DAG);
 | |
|   case ISD::ConstantPool:
 | |
|     return LowerConstantPool(Op, DAG);
 | |
|   case ISD::BlockAddress:
 | |
|     return LowerBlockAddress(Op, DAG);
 | |
|   case ISD::VASTART:
 | |
|     return LowerVASTART(Op, DAG);
 | |
|   case ISD::VACOPY:
 | |
|     return LowerVACOPY(Op, DAG);
 | |
|   case ISD::VAARG:
 | |
|     return LowerVAARG(Op, DAG);
 | |
|   case ISD::ADDC:
 | |
|   case ISD::ADDE:
 | |
|   case ISD::SUBC:
 | |
|   case ISD::SUBE:
 | |
|     return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
 | |
|   case ISD::SADDO:
 | |
|   case ISD::UADDO:
 | |
|   case ISD::SSUBO:
 | |
|   case ISD::USUBO:
 | |
|   case ISD::SMULO:
 | |
|   case ISD::UMULO:
 | |
|     return LowerXALUO(Op, DAG);
 | |
|   case ISD::FADD:
 | |
|     return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
 | |
|   case ISD::FSUB:
 | |
|     return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
 | |
|   case ISD::FMUL:
 | |
|     return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
 | |
|   case ISD::FDIV:
 | |
|     return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
 | |
|   case ISD::FP_ROUND:
 | |
|     return LowerFP_ROUND(Op, DAG);
 | |
|   case ISD::FP_EXTEND:
 | |
|     return LowerFP_EXTEND(Op, DAG);
 | |
|   case ISD::FRAMEADDR:
 | |
|     return LowerFRAMEADDR(Op, DAG);
 | |
|   case ISD::RETURNADDR:
 | |
|     return LowerRETURNADDR(Op, DAG);
 | |
|   case ISD::INSERT_VECTOR_ELT:
 | |
|     return LowerINSERT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::EXTRACT_VECTOR_ELT:
 | |
|     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::BUILD_VECTOR:
 | |
|     return LowerBUILD_VECTOR(Op, DAG);
 | |
|   case ISD::VECTOR_SHUFFLE:
 | |
|     return LowerVECTOR_SHUFFLE(Op, DAG);
 | |
|   case ISD::EXTRACT_SUBVECTOR:
 | |
|     return LowerEXTRACT_SUBVECTOR(Op, DAG);
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:
 | |
|   case ISD::SHL:
 | |
|     return LowerVectorSRA_SRL_SHL(Op, DAG);
 | |
|   case ISD::SHL_PARTS:
 | |
|     return LowerShiftLeftParts(Op, DAG);
 | |
|   case ISD::SRL_PARTS:
 | |
|   case ISD::SRA_PARTS:
 | |
|     return LowerShiftRightParts(Op, DAG);
 | |
|   case ISD::CTPOP:
 | |
|     return LowerCTPOP(Op, DAG);
 | |
|   case ISD::FCOPYSIGN:
 | |
|     return LowerFCOPYSIGN(Op, DAG);
 | |
|   case ISD::AND:
 | |
|     return LowerVectorAND(Op, DAG);
 | |
|   case ISD::OR:
 | |
|     return LowerVectorOR(Op, DAG);
 | |
|   case ISD::XOR:
 | |
|     return LowerXOR(Op, DAG);
 | |
|   case ISD::PREFETCH:
 | |
|     return LowerPREFETCH(Op, DAG);
 | |
|   case ISD::SINT_TO_FP:
 | |
|   case ISD::UINT_TO_FP:
 | |
|     return LowerINT_TO_FP(Op, DAG);
 | |
|   case ISD::FP_TO_SINT:
 | |
|   case ISD::FP_TO_UINT:
 | |
|     return LowerFP_TO_INT(Op, DAG);
 | |
|   case ISD::FSINCOS:
 | |
|     return LowerFSINCOS(Op, DAG);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getFunctionAlignment - Return the Log2 alignment of this function.
 | |
| unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Calling Convention Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AArch64GenCallingConv.inc"
 | |
| 
 | |
| /// Selects the correct CCAssignFn for a the given CallingConvention
 | |
| /// value.
 | |
| CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
 | |
|                                                      bool IsVarArg) const {
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     llvm_unreachable("Unsupported calling convention.");
 | |
|   case CallingConv::WebKit_JS:
 | |
|     return CC_AArch64_WebKit_JS;
 | |
|   case CallingConv::C:
 | |
|   case CallingConv::Fast:
 | |
|     if (!Subtarget->isTargetDarwin())
 | |
|       return CC_AArch64_AAPCS;
 | |
|     return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerFormalArguments(
 | |
|     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
 | |
|     SmallVectorImpl<SDValue> &InVals) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | |
|                  getTargetMachine(), ArgLocs, *DAG.getContext());
 | |
| 
 | |
|   // At this point, Ins[].VT may already be promoted to i32. To correctly
 | |
|   // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
 | |
|   // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
 | |
|   // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
 | |
|   // we use a special version of AnalyzeFormalArguments to pass in ValVT and
 | |
|   // LocVT.
 | |
|   unsigned NumArgs = Ins.size();
 | |
|   Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
 | |
|   unsigned CurArgIdx = 0;
 | |
|   for (unsigned i = 0; i != NumArgs; ++i) {
 | |
|     MVT ValVT = Ins[i].VT;
 | |
|     std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx);
 | |
|     CurArgIdx = Ins[i].OrigArgIndex;
 | |
| 
 | |
|     // Get type of the original argument.
 | |
|     EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
 | |
|     MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
 | |
|     // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
 | |
|     if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
 | |
|       ValVT = MVT::i8;
 | |
|     else if (ActualMVT == MVT::i16)
 | |
|       ValVT = MVT::i16;
 | |
| 
 | |
|     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
 | |
|     bool Res =
 | |
|         AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
 | |
|     assert(!Res && "Call operand has unhandled type");
 | |
|     (void)Res;
 | |
|   }
 | |
|   assert(ArgLocs.size() == Ins.size());
 | |
|   SmallVector<SDValue, 16> ArgValues;
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
| 
 | |
|     if (Ins[i].Flags.isByVal()) {
 | |
|       // Byval is used for HFAs in the PCS, but the system should work in a
 | |
|       // non-compliant manner for larger structs.
 | |
|       EVT PtrTy = getPointerTy();
 | |
|       int Size = Ins[i].Flags.getByValSize();
 | |
|       unsigned NumRegs = (Size + 7) / 8;
 | |
| 
 | |
|       // FIXME: This works on big-endian for composite byvals, which are the common
 | |
|       // case. It should also work for fundamental types too.
 | |
|       unsigned FrameIdx =
 | |
|         MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
 | |
|       SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
 | |
|       InVals.push_back(FrameIdxN);
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (VA.isRegLoc()) {
 | |
|       // Arguments stored in registers.
 | |
|       EVT RegVT = VA.getLocVT();
 | |
| 
 | |
|       SDValue ArgValue;
 | |
|       const TargetRegisterClass *RC;
 | |
| 
 | |
|       if (RegVT == MVT::i32)
 | |
|         RC = &AArch64::GPR32RegClass;
 | |
|       else if (RegVT == MVT::i64)
 | |
|         RC = &AArch64::GPR64RegClass;
 | |
|       else if (RegVT == MVT::f32)
 | |
|         RC = &AArch64::FPR32RegClass;
 | |
|       else if (RegVT == MVT::f64 || RegVT.is64BitVector())
 | |
|         RC = &AArch64::FPR64RegClass;
 | |
|       else if (RegVT == MVT::f128 || RegVT.is128BitVector())
 | |
|         RC = &AArch64::FPR128RegClass;
 | |
|       else
 | |
|         llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
 | |
| 
 | |
|       // Transform the arguments in physical registers into virtual ones.
 | |
|       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | |
|       ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
 | |
| 
 | |
|       // If this is an 8, 16 or 32-bit value, it is really passed promoted
 | |
|       // to 64 bits.  Insert an assert[sz]ext to capture this, then
 | |
|       // truncate to the right size.
 | |
|       switch (VA.getLocInfo()) {
 | |
|       default:
 | |
|         llvm_unreachable("Unknown loc info!");
 | |
|       case CCValAssign::Full:
 | |
|         break;
 | |
|       case CCValAssign::BCvt:
 | |
|         ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
 | |
|         break;
 | |
|       case CCValAssign::AExt:
 | |
|       case CCValAssign::SExt:
 | |
|       case CCValAssign::ZExt:
 | |
|         // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
 | |
|         // nodes after our lowering.
 | |
|         assert(RegVT == Ins[i].VT && "incorrect register location selected");
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       InVals.push_back(ArgValue);
 | |
| 
 | |
|     } else { // VA.isRegLoc()
 | |
|       assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
 | |
|       unsigned ArgOffset = VA.getLocMemOffset();
 | |
|       unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
 | |
| 
 | |
|       uint32_t BEAlign = 0;
 | |
|       if (ArgSize < 8 && !Subtarget->isLittleEndian())
 | |
|         BEAlign = 8 - ArgSize;
 | |
| 
 | |
|       int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
 | |
| 
 | |
|       // Create load nodes to retrieve arguments from the stack.
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
 | |
|       SDValue ArgValue;
 | |
| 
 | |
|       // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
 | |
|       ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
 | |
|       MVT MemVT = VA.getValVT();
 | |
| 
 | |
|       switch (VA.getLocInfo()) {
 | |
|       default:
 | |
|         break;
 | |
|       case CCValAssign::BCvt:
 | |
|         MemVT = VA.getLocVT();
 | |
|         break;
 | |
|       case CCValAssign::SExt:
 | |
|         ExtType = ISD::SEXTLOAD;
 | |
|         break;
 | |
|       case CCValAssign::ZExt:
 | |
|         ExtType = ISD::ZEXTLOAD;
 | |
|         break;
 | |
|       case CCValAssign::AExt:
 | |
|         ExtType = ISD::EXTLOAD;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
 | |
|                                 MachinePointerInfo::getFixedStack(FI),
 | |
|                                 MemVT, false, false, false, nullptr);
 | |
| 
 | |
|       InVals.push_back(ArgValue);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // varargs
 | |
|   if (isVarArg) {
 | |
|     if (!Subtarget->isTargetDarwin()) {
 | |
|       // The AAPCS variadic function ABI is identical to the non-variadic
 | |
|       // one. As a result there may be more arguments in registers and we should
 | |
|       // save them for future reference.
 | |
|       saveVarArgRegisters(CCInfo, DAG, DL, Chain);
 | |
|     }
 | |
| 
 | |
|     AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
 | |
|     // This will point to the next argument passed via stack.
 | |
|     unsigned StackOffset = CCInfo.getNextStackOffset();
 | |
|     // We currently pass all varargs at 8-byte alignment.
 | |
|     StackOffset = ((StackOffset + 7) & ~7);
 | |
|     AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
 | |
|   }
 | |
| 
 | |
|   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
 | |
|   unsigned StackArgSize = CCInfo.getNextStackOffset();
 | |
|   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
 | |
|   if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
 | |
|     // This is a non-standard ABI so by fiat I say we're allowed to make full
 | |
|     // use of the stack area to be popped, which must be aligned to 16 bytes in
 | |
|     // any case:
 | |
|     StackArgSize = RoundUpToAlignment(StackArgSize, 16);
 | |
| 
 | |
|     // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
 | |
|     // a multiple of 16.
 | |
|     FuncInfo->setArgumentStackToRestore(StackArgSize);
 | |
| 
 | |
|     // This realignment carries over to the available bytes below. Our own
 | |
|     // callers will guarantee the space is free by giving an aligned value to
 | |
|     // CALLSEQ_START.
 | |
|   }
 | |
|   // Even if we're not expected to free up the space, it's useful to know how
 | |
|   // much is there while considering tail calls (because we can reuse it).
 | |
|   FuncInfo->setBytesInStackArgArea(StackArgSize);
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
 | |
|                                                 SelectionDAG &DAG, SDLoc DL,
 | |
|                                                 SDValue &Chain) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
 | |
| 
 | |
|   SmallVector<SDValue, 8> MemOps;
 | |
| 
 | |
|   static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
 | |
|                                           AArch64::X3, AArch64::X4, AArch64::X5,
 | |
|                                           AArch64::X6, AArch64::X7 };
 | |
|   static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
 | |
|   unsigned FirstVariadicGPR =
 | |
|       CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs);
 | |
| 
 | |
|   unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
 | |
|   int GPRIdx = 0;
 | |
|   if (GPRSaveSize != 0) {
 | |
|     GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
 | |
| 
 | |
|     SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
 | |
| 
 | |
|     for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
 | |
|       unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
 | |
|       SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
 | |
|       SDValue Store =
 | |
|           DAG.getStore(Val.getValue(1), DL, Val, FIN,
 | |
|                        MachinePointerInfo::getStack(i * 8), false, false, 0);
 | |
|       MemOps.push_back(Store);
 | |
|       FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
 | |
|                         DAG.getConstant(8, getPointerTy()));
 | |
|     }
 | |
|   }
 | |
|   FuncInfo->setVarArgsGPRIndex(GPRIdx);
 | |
|   FuncInfo->setVarArgsGPRSize(GPRSaveSize);
 | |
| 
 | |
|   if (Subtarget->hasFPARMv8()) {
 | |
|     static const MCPhysReg FPRArgRegs[] = {
 | |
|         AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
 | |
|         AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
 | |
|     static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
 | |
|     unsigned FirstVariadicFPR =
 | |
|         CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs);
 | |
| 
 | |
|     unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
 | |
|     int FPRIdx = 0;
 | |
|     if (FPRSaveSize != 0) {
 | |
|       FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
 | |
| 
 | |
|       SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
 | |
| 
 | |
|       for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
 | |
|         unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
 | |
|         SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
 | |
| 
 | |
|         SDValue Store =
 | |
|             DAG.getStore(Val.getValue(1), DL, Val, FIN,
 | |
|                          MachinePointerInfo::getStack(i * 16), false, false, 0);
 | |
|         MemOps.push_back(Store);
 | |
|         FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
 | |
|                           DAG.getConstant(16, getPointerTy()));
 | |
|       }
 | |
|     }
 | |
|     FuncInfo->setVarArgsFPRIndex(FPRIdx);
 | |
|     FuncInfo->setVarArgsFPRSize(FPRSaveSize);
 | |
|   }
 | |
| 
 | |
|   if (!MemOps.empty()) {
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LowerCallResult - Lower the result values of a call into the
 | |
| /// appropriate copies out of appropriate physical registers.
 | |
| SDValue AArch64TargetLowering::LowerCallResult(
 | |
|     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
 | |
|     SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
 | |
|     SDValue ThisVal) const {
 | |
|   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
 | |
|                           ? RetCC_AArch64_WebKit_JS
 | |
|                           : RetCC_AArch64_AAPCS;
 | |
|   // Assign locations to each value returned by this call.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | |
|                  getTargetMachine(), RVLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeCallResult(Ins, RetCC);
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     CCValAssign VA = RVLocs[i];
 | |
| 
 | |
|     // Pass 'this' value directly from the argument to return value, to avoid
 | |
|     // reg unit interference
 | |
|     if (i == 0 && isThisReturn) {
 | |
|       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
 | |
|              "unexpected return calling convention register assignment");
 | |
|       InVals.push_back(ThisVal);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SDValue Val =
 | |
|         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
 | |
|     Chain = Val.getValue(1);
 | |
|     InFlag = Val.getValue(2);
 | |
| 
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default:
 | |
|       llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full:
 | |
|       break;
 | |
|     case CCValAssign::BCvt:
 | |
|       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     InVals.push_back(Val);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::isEligibleForTailCallOptimization(
 | |
|     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
 | |
|     bool isCalleeStructRet, bool isCallerStructRet,
 | |
|     const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|     const SmallVectorImpl<SDValue> &OutVals,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
 | |
|   // For CallingConv::C this function knows whether the ABI needs
 | |
|   // changing. That's not true for other conventions so they will have to opt in
 | |
|   // manually.
 | |
|   if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
 | |
|     return false;
 | |
| 
 | |
|   const MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const Function *CallerF = MF.getFunction();
 | |
|   CallingConv::ID CallerCC = CallerF->getCallingConv();
 | |
|   bool CCMatch = CallerCC == CalleeCC;
 | |
| 
 | |
|   // Byval parameters hand the function a pointer directly into the stack area
 | |
|   // we want to reuse during a tail call. Working around this *is* possible (see
 | |
|   // X86) but less efficient and uglier in LowerCall.
 | |
|   for (Function::const_arg_iterator i = CallerF->arg_begin(),
 | |
|                                     e = CallerF->arg_end();
 | |
|        i != e; ++i)
 | |
|     if (i->hasByValAttr())
 | |
|       return false;
 | |
| 
 | |
|   if (getTargetMachine().Options.GuaranteedTailCallOpt) {
 | |
|     if (IsTailCallConvention(CalleeCC) && CCMatch)
 | |
|       return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Now we search for cases where we can use a tail call without changing the
 | |
|   // ABI. Sibcall is used in some places (particularly gcc) to refer to this
 | |
|   // concept.
 | |
| 
 | |
|   // I want anyone implementing a new calling convention to think long and hard
 | |
|   // about this assert.
 | |
|   assert((!isVarArg || CalleeCC == CallingConv::C) &&
 | |
|          "Unexpected variadic calling convention");
 | |
| 
 | |
|   if (isVarArg && !Outs.empty()) {
 | |
|     // At least two cases here: if caller is fastcc then we can't have any
 | |
|     // memory arguments (we'd be expected to clean up the stack afterwards). If
 | |
|     // caller is C then we could potentially use its argument area.
 | |
| 
 | |
|     // FIXME: for now we take the most conservative of these in both cases:
 | |
|     // disallow all variadic memory operands.
 | |
|     SmallVector<CCValAssign, 16> ArgLocs;
 | |
|     CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
 | |
|                    getTargetMachine(), ArgLocs, *DAG.getContext());
 | |
| 
 | |
|     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
 | |
|     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
 | |
|       if (!ArgLocs[i].isRegLoc())
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   // If the calling conventions do not match, then we'd better make sure the
 | |
|   // results are returned in the same way as what the caller expects.
 | |
|   if (!CCMatch) {
 | |
|     SmallVector<CCValAssign, 16> RVLocs1;
 | |
|     CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
 | |
|                     getTargetMachine(), RVLocs1, *DAG.getContext());
 | |
|     CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
 | |
| 
 | |
|     SmallVector<CCValAssign, 16> RVLocs2;
 | |
|     CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
 | |
|                     getTargetMachine(), RVLocs2, *DAG.getContext());
 | |
|     CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
 | |
| 
 | |
|     if (RVLocs1.size() != RVLocs2.size())
 | |
|       return false;
 | |
|     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
 | |
|       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
 | |
|         return false;
 | |
|       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
 | |
|         return false;
 | |
|       if (RVLocs1[i].isRegLoc()) {
 | |
|         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
 | |
|           return false;
 | |
|       } else {
 | |
|         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Nothing more to check if the callee is taking no arguments
 | |
|   if (Outs.empty())
 | |
|     return true;
 | |
| 
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
 | |
|                  getTargetMachine(), ArgLocs, *DAG.getContext());
 | |
| 
 | |
|   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
 | |
| 
 | |
|   const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
 | |
| 
 | |
|   // If the stack arguments for this call would fit into our own save area then
 | |
|   // the call can be made tail.
 | |
|   return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
 | |
|                                                    SelectionDAG &DAG,
 | |
|                                                    MachineFrameInfo *MFI,
 | |
|                                                    int ClobberedFI) const {
 | |
|   SmallVector<SDValue, 8> ArgChains;
 | |
|   int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
 | |
|   int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
 | |
| 
 | |
|   // Include the original chain at the beginning of the list. When this is
 | |
|   // used by target LowerCall hooks, this helps legalize find the
 | |
|   // CALLSEQ_BEGIN node.
 | |
|   ArgChains.push_back(Chain);
 | |
| 
 | |
|   // Add a chain value for each stack argument corresponding
 | |
|   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
 | |
|                             UE = DAG.getEntryNode().getNode()->use_end();
 | |
|        U != UE; ++U)
 | |
|     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
 | |
|       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
 | |
|         if (FI->getIndex() < 0) {
 | |
|           int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
 | |
|           int64_t InLastByte = InFirstByte;
 | |
|           InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
 | |
| 
 | |
|           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
 | |
|               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
 | |
|             ArgChains.push_back(SDValue(L, 1));
 | |
|         }
 | |
| 
 | |
|   // Build a tokenfactor for all the chains.
 | |
|   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
 | |
|                                                    bool TailCallOpt) const {
 | |
|   return CallCC == CallingConv::Fast && TailCallOpt;
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
 | |
|   return CallCC == CallingConv::Fast;
 | |
| }
 | |
| 
 | |
| /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
 | |
| /// and add input and output parameter nodes.
 | |
| SDValue
 | |
| AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
 | |
|                                  SmallVectorImpl<SDValue> &InVals) const {
 | |
|   SelectionDAG &DAG = CLI.DAG;
 | |
|   SDLoc &DL = CLI.DL;
 | |
|   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
 | |
|   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
 | |
|   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
 | |
|   SDValue Chain = CLI.Chain;
 | |
|   SDValue Callee = CLI.Callee;
 | |
|   bool &IsTailCall = CLI.IsTailCall;
 | |
|   CallingConv::ID CallConv = CLI.CallConv;
 | |
|   bool IsVarArg = CLI.IsVarArg;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
 | |
|   bool IsThisReturn = false;
 | |
| 
 | |
|   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
 | |
|   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
 | |
|   bool IsSibCall = false;
 | |
| 
 | |
|   if (IsTailCall) {
 | |
|     // Check if it's really possible to do a tail call.
 | |
|     IsTailCall = isEligibleForTailCallOptimization(
 | |
|         Callee, CallConv, IsVarArg, IsStructRet,
 | |
|         MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
 | |
|     if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
 | |
|       report_fatal_error("failed to perform tail call elimination on a call "
 | |
|                          "site marked musttail");
 | |
| 
 | |
|     // A sibling call is one where we're under the usual C ABI and not planning
 | |
|     // to change that but can still do a tail call:
 | |
|     if (!TailCallOpt && IsTailCall)
 | |
|       IsSibCall = true;
 | |
| 
 | |
|     if (IsTailCall)
 | |
|       ++NumTailCalls;
 | |
|   }
 | |
| 
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
 | |
|                  getTargetMachine(), ArgLocs, *DAG.getContext());
 | |
| 
 | |
|   if (IsVarArg) {
 | |
|     // Handle fixed and variable vector arguments differently.
 | |
|     // Variable vector arguments always go into memory.
 | |
|     unsigned NumArgs = Outs.size();
 | |
| 
 | |
|     for (unsigned i = 0; i != NumArgs; ++i) {
 | |
|       MVT ArgVT = Outs[i].VT;
 | |
|       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
 | |
|       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
 | |
|                                                /*IsVarArg=*/ !Outs[i].IsFixed);
 | |
|       bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
 | |
|       assert(!Res && "Call operand has unhandled type");
 | |
|       (void)Res;
 | |
|     }
 | |
|   } else {
 | |
|     // At this point, Outs[].VT may already be promoted to i32. To correctly
 | |
|     // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
 | |
|     // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
 | |
|     // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
 | |
|     // we use a special version of AnalyzeCallOperands to pass in ValVT and
 | |
|     // LocVT.
 | |
|     unsigned NumArgs = Outs.size();
 | |
|     for (unsigned i = 0; i != NumArgs; ++i) {
 | |
|       MVT ValVT = Outs[i].VT;
 | |
|       // Get type of the original argument.
 | |
|       EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
 | |
|                                   /*AllowUnknown*/ true);
 | |
|       MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
 | |
|       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
 | |
|       // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
 | |
|       if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
 | |
|         ValVT = MVT::i8;
 | |
|       else if (ActualMVT == MVT::i16)
 | |
|         ValVT = MVT::i16;
 | |
| 
 | |
|       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
 | |
|       bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
 | |
|       assert(!Res && "Call operand has unhandled type");
 | |
|       (void)Res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = CCInfo.getNextStackOffset();
 | |
| 
 | |
|   if (IsSibCall) {
 | |
|     // Since we're not changing the ABI to make this a tail call, the memory
 | |
|     // operands are already available in the caller's incoming argument space.
 | |
|     NumBytes = 0;
 | |
|   }
 | |
| 
 | |
|   // FPDiff is the byte offset of the call's argument area from the callee's.
 | |
|   // Stores to callee stack arguments will be placed in FixedStackSlots offset
 | |
|   // by this amount for a tail call. In a sibling call it must be 0 because the
 | |
|   // caller will deallocate the entire stack and the callee still expects its
 | |
|   // arguments to begin at SP+0. Completely unused for non-tail calls.
 | |
|   int FPDiff = 0;
 | |
| 
 | |
|   if (IsTailCall && !IsSibCall) {
 | |
|     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
 | |
| 
 | |
|     // Since callee will pop argument stack as a tail call, we must keep the
 | |
|     // popped size 16-byte aligned.
 | |
|     NumBytes = RoundUpToAlignment(NumBytes, 16);
 | |
| 
 | |
|     // FPDiff will be negative if this tail call requires more space than we
 | |
|     // would automatically have in our incoming argument space. Positive if we
 | |
|     // can actually shrink the stack.
 | |
|     FPDiff = NumReusableBytes - NumBytes;
 | |
| 
 | |
|     // The stack pointer must be 16-byte aligned at all times it's used for a
 | |
|     // memory operation, which in practice means at *all* times and in
 | |
|     // particular across call boundaries. Therefore our own arguments started at
 | |
|     // a 16-byte aligned SP and the delta applied for the tail call should
 | |
|     // satisfy the same constraint.
 | |
|     assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
 | |
|   }
 | |
| 
 | |
|   // Adjust the stack pointer for the new arguments...
 | |
|   // These operations are automatically eliminated by the prolog/epilog pass
 | |
|   if (!IsSibCall)
 | |
|     Chain =
 | |
|         DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
 | |
| 
 | |
|   SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
| 
 | |
|   // Walk the register/memloc assignments, inserting copies/loads.
 | |
|   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
 | |
|        ++i, ++realArgIdx) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     SDValue Arg = OutVals[realArgIdx];
 | |
|     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
 | |
| 
 | |
|     // Promote the value if needed.
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default:
 | |
|       llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full:
 | |
|       break;
 | |
|     case CCValAssign::SExt:
 | |
|       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::ZExt:
 | |
|       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::AExt:
 | |
|       if (Outs[realArgIdx].ArgVT == MVT::i1) {
 | |
|         // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
 | |
|         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
 | |
|         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
 | |
|       }
 | |
|       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::BCvt:
 | |
|       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::FPExt:
 | |
|       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (VA.isRegLoc()) {
 | |
|       if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
 | |
|         assert(VA.getLocVT() == MVT::i64 &&
 | |
|                "unexpected calling convention register assignment");
 | |
|         assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
 | |
|                "unexpected use of 'returned'");
 | |
|         IsThisReturn = true;
 | |
|       }
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | |
|     } else {
 | |
|       assert(VA.isMemLoc());
 | |
| 
 | |
|       SDValue DstAddr;
 | |
|       MachinePointerInfo DstInfo;
 | |
| 
 | |
|       // FIXME: This works on big-endian for composite byvals, which are the
 | |
|       // common case. It should also work for fundamental types too.
 | |
|       uint32_t BEAlign = 0;
 | |
|       unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
 | |
|                                         : VA.getLocVT().getSizeInBits();
 | |
|       OpSize = (OpSize + 7) / 8;
 | |
|       if (!Subtarget->isLittleEndian() && !Flags.isByVal()) {
 | |
|         if (OpSize < 8)
 | |
|           BEAlign = 8 - OpSize;
 | |
|       }
 | |
|       unsigned LocMemOffset = VA.getLocMemOffset();
 | |
|       int32_t Offset = LocMemOffset + BEAlign;
 | |
|       SDValue PtrOff = DAG.getIntPtrConstant(Offset);
 | |
|       PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
 | |
| 
 | |
|       if (IsTailCall) {
 | |
|         Offset = Offset + FPDiff;
 | |
|         int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
 | |
| 
 | |
|         DstAddr = DAG.getFrameIndex(FI, getPointerTy());
 | |
|         DstInfo = MachinePointerInfo::getFixedStack(FI);
 | |
| 
 | |
|         // Make sure any stack arguments overlapping with where we're storing
 | |
|         // are loaded before this eventual operation. Otherwise they'll be
 | |
|         // clobbered.
 | |
|         Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
 | |
|       } else {
 | |
|         SDValue PtrOff = DAG.getIntPtrConstant(Offset);
 | |
| 
 | |
|         DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
 | |
|         DstInfo = MachinePointerInfo::getStack(LocMemOffset);
 | |
|       }
 | |
| 
 | |
|       if (Outs[i].Flags.isByVal()) {
 | |
|         SDValue SizeNode =
 | |
|             DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
 | |
|         SDValue Cpy = DAG.getMemcpy(
 | |
|             Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
 | |
|             /*isVolatile = */ false,
 | |
|             /*alwaysInline = */ false, DstInfo, MachinePointerInfo());
 | |
| 
 | |
|         MemOpChains.push_back(Cpy);
 | |
|       } else {
 | |
|         // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
 | |
|         // promoted to a legal register type i32, we should truncate Arg back to
 | |
|         // i1/i8/i16.
 | |
|         if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
 | |
|             VA.getValVT() == MVT::i16)
 | |
|           Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
 | |
| 
 | |
|         SDValue Store =
 | |
|             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
 | |
|         MemOpChains.push_back(Store);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into the appropriate regs.
 | |
|   SDValue InFlag;
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
 | |
|                              RegsToPass[i].second, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
 | |
|   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
 | |
|   // node so that legalize doesn't hack it.
 | |
|   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
 | |
|       Subtarget->isTargetMachO()) {
 | |
|     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|       const GlobalValue *GV = G->getGlobal();
 | |
|       bool InternalLinkage = GV->hasInternalLinkage();
 | |
|       if (InternalLinkage)
 | |
|         Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
 | |
|       else {
 | |
|         Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
 | |
|                                             AArch64II::MO_GOT);
 | |
|         Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
 | |
|       }
 | |
|     } else if (ExternalSymbolSDNode *S =
 | |
|                    dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|       const char *Sym = S->getSymbol();
 | |
|       Callee =
 | |
|           DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
 | |
|       Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
 | |
|     }
 | |
|   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     const GlobalValue *GV = G->getGlobal();
 | |
|     Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
 | |
|   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     const char *Sym = S->getSymbol();
 | |
|     Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
 | |
|   }
 | |
| 
 | |
|   // We don't usually want to end the call-sequence here because we would tidy
 | |
|   // the frame up *after* the call, however in the ABI-changing tail-call case
 | |
|   // we've carefully laid out the parameters so that when sp is reset they'll be
 | |
|   // in the correct location.
 | |
|   if (IsTailCall && !IsSibCall) {
 | |
|     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | |
|                                DAG.getIntPtrConstant(0, true), InFlag, DL);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   std::vector<SDValue> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   if (IsTailCall) {
 | |
|     // Each tail call may have to adjust the stack by a different amount, so
 | |
|     // this information must travel along with the operation for eventual
 | |
|     // consumption by emitEpilogue.
 | |
|     Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are known live
 | |
|   // into the call.
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | |
|                                   RegsToPass[i].second.getValueType()));
 | |
| 
 | |
|   // Add a register mask operand representing the call-preserved registers.
 | |
|   const uint32_t *Mask;
 | |
|   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
 | |
|   const AArch64RegisterInfo *ARI =
 | |
|       static_cast<const AArch64RegisterInfo *>(TRI);
 | |
|   if (IsThisReturn) {
 | |
|     // For 'this' returns, use the X0-preserving mask if applicable
 | |
|     Mask = ARI->getThisReturnPreservedMask(CallConv);
 | |
|     if (!Mask) {
 | |
|       IsThisReturn = false;
 | |
|       Mask = ARI->getCallPreservedMask(CallConv);
 | |
|     }
 | |
|   } else
 | |
|     Mask = ARI->getCallPreservedMask(CallConv);
 | |
| 
 | |
|   assert(Mask && "Missing call preserved mask for calling convention");
 | |
|   Ops.push_back(DAG.getRegisterMask(Mask));
 | |
| 
 | |
|   if (InFlag.getNode())
 | |
|     Ops.push_back(InFlag);
 | |
| 
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
| 
 | |
|   // If we're doing a tall call, use a TC_RETURN here rather than an
 | |
|   // actual call instruction.
 | |
|   if (IsTailCall)
 | |
|     return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
 | |
| 
 | |
|   // Returns a chain and a flag for retval copy to use.
 | |
|   Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
 | |
|                                 ? RoundUpToAlignment(NumBytes, 16)
 | |
|                                 : 0;
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | |
|                              DAG.getIntPtrConstant(CalleePopBytes, true),
 | |
|                              InFlag, DL);
 | |
|   if (!Ins.empty())
 | |
|     InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Handle result values, copying them out of physregs into vregs that we
 | |
|   // return.
 | |
|   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
 | |
|                          InVals, IsThisReturn,
 | |
|                          IsThisReturn ? OutVals[0] : SDValue());
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::CanLowerReturn(
 | |
|     CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
 | |
|     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
 | |
|   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
 | |
|                           ? RetCC_AArch64_WebKit_JS
 | |
|                           : RetCC_AArch64_AAPCS;
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
 | |
|   return CCInfo.CheckReturn(Outs, RetCC);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
 | |
|                                    bool isVarArg,
 | |
|                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                    const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                    SDLoc DL, SelectionDAG &DAG) const {
 | |
|   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
 | |
|                           ? RetCC_AArch64_WebKit_JS
 | |
|                           : RetCC_AArch64_AAPCS;
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | |
|                  getTargetMachine(), RVLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeReturn(Outs, RetCC);
 | |
| 
 | |
|   // Copy the result values into the output registers.
 | |
|   SDValue Flag;
 | |
|   SmallVector<SDValue, 4> RetOps(1, Chain);
 | |
|   for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
 | |
|        ++i, ++realRVLocIdx) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
|     SDValue Arg = OutVals[realRVLocIdx];
 | |
| 
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default:
 | |
|       llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full:
 | |
|       if (Outs[i].ArgVT == MVT::i1) {
 | |
|         // AAPCS requires i1 to be zero-extended to i8 by the producer of the
 | |
|         // value. This is strictly redundant on Darwin (which uses "zeroext
 | |
|         // i1"), but will be optimised out before ISel.
 | |
|         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
 | |
|         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
 | |
|       }
 | |
|       break;
 | |
|     case CCValAssign::BCvt:
 | |
|       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
 | |
|     Flag = Chain.getValue(1);
 | |
|     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | |
|   }
 | |
| 
 | |
|   RetOps[0] = Chain; // Update chain.
 | |
| 
 | |
|   // Add the flag if we have it.
 | |
|   if (Flag.getNode())
 | |
|     RetOps.push_back(Flag);
 | |
| 
 | |
|   return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Other Lowering Code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   SDLoc DL(Op);
 | |
|   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | |
|   unsigned char OpFlags =
 | |
|       Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
 | |
| 
 | |
|   assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
 | |
|          "unexpected offset in global node");
 | |
| 
 | |
|   // This also catched the large code model case for Darwin.
 | |
|   if ((OpFlags & AArch64II::MO_GOT) != 0) {
 | |
|     SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
 | |
|     // FIXME: Once remat is capable of dealing with instructions with register
 | |
|     // operands, expand this into two nodes instead of using a wrapper node.
 | |
|     return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
 | |
|   }
 | |
| 
 | |
|   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
 | |
|     const unsigned char MO_NC = AArch64II::MO_NC;
 | |
|     return DAG.getNode(
 | |
|         AArch64ISD::WrapperLarge, DL, PtrVT,
 | |
|         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
 | |
|         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
 | |
|         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
 | |
|         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
 | |
|   } else {
 | |
|     // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
 | |
|     // the only correct model on Darwin.
 | |
|     SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
 | |
|                                             OpFlags | AArch64II::MO_PAGE);
 | |
|     unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
 | |
|     SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
 | |
| 
 | |
|     SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
 | |
|     return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Convert a TLS address reference into the correct sequence of loads
 | |
| /// and calls to compute the variable's address (for Darwin, currently) and
 | |
| /// return an SDValue containing the final node.
 | |
| 
 | |
| /// Darwin only has one TLS scheme which must be capable of dealing with the
 | |
| /// fully general situation, in the worst case. This means:
 | |
| ///     + "extern __thread" declaration.
 | |
| ///     + Defined in a possibly unknown dynamic library.
 | |
| ///
 | |
| /// The general system is that each __thread variable has a [3 x i64] descriptor
 | |
| /// which contains information used by the runtime to calculate the address. The
 | |
| /// only part of this the compiler needs to know about is the first xword, which
 | |
| /// contains a function pointer that must be called with the address of the
 | |
| /// entire descriptor in "x0".
 | |
| ///
 | |
| /// Since this descriptor may be in a different unit, in general even the
 | |
| /// descriptor must be accessed via an indirect load. The "ideal" code sequence
 | |
| /// is:
 | |
| ///     adrp x0, _var@TLVPPAGE
 | |
| ///     ldr x0, [x0, _var@TLVPPAGEOFF]   ; x0 now contains address of descriptor
 | |
| ///     ldr x1, [x0]                     ; x1 contains 1st entry of descriptor,
 | |
| ///                                      ; the function pointer
 | |
| ///     blr x1                           ; Uses descriptor address in x0
 | |
| ///     ; Address of _var is now in x0.
 | |
| ///
 | |
| /// If the address of _var's descriptor *is* known to the linker, then it can
 | |
| /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
 | |
| /// a slight efficiency gain.
 | |
| SDValue
 | |
| AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
 | |
| 
 | |
|   SDLoc DL(Op);
 | |
|   MVT PtrVT = getPointerTy();
 | |
|   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | |
| 
 | |
|   SDValue TLVPAddr =
 | |
|       DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
 | |
|   SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
 | |
| 
 | |
|   // The first entry in the descriptor is a function pointer that we must call
 | |
|   // to obtain the address of the variable.
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
|   SDValue FuncTLVGet =
 | |
|       DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
 | |
|                   false, true, true, 8);
 | |
|   Chain = FuncTLVGet.getValue(1);
 | |
| 
 | |
|   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   MFI->setAdjustsStack(true);
 | |
| 
 | |
|   // TLS calls preserve all registers except those that absolutely must be
 | |
|   // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
 | |
|   // silly).
 | |
|   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
 | |
|   const AArch64RegisterInfo *ARI =
 | |
|       static_cast<const AArch64RegisterInfo *>(TRI);
 | |
|   const uint32_t *Mask = ARI->getTLSCallPreservedMask();
 | |
| 
 | |
|   // Finally, we can make the call. This is just a degenerate version of a
 | |
|   // normal AArch64 call node: x0 takes the address of the descriptor, and
 | |
|   // returns the address of the variable in this thread.
 | |
|   Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
 | |
|   Chain =
 | |
|       DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
 | |
|                   Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
 | |
|                   DAG.getRegisterMask(Mask), Chain.getValue(1));
 | |
|   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
 | |
| }
 | |
| 
 | |
| /// When accessing thread-local variables under either the general-dynamic or
 | |
| /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
 | |
| /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
 | |
| /// is a function pointer to carry out the resolution. This function takes the
 | |
| /// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All
 | |
| /// other registers (except LR, NZCV) are preserved.
 | |
| ///
 | |
| /// Thus, the ideal call sequence on AArch64 is:
 | |
| ///
 | |
| ///     adrp x0, :tlsdesc:thread_var
 | |
| ///     ldr x8, [x0, :tlsdesc_lo12:thread_var]
 | |
| ///     add x0, x0, :tlsdesc_lo12:thread_var
 | |
| ///     .tlsdesccall thread_var
 | |
| ///     blr x8
 | |
| ///     (TPIDR_EL0 offset now in x0).
 | |
| ///
 | |
| /// The ".tlsdesccall" directive instructs the assembler to insert a particular
 | |
| /// relocation to help the linker relax this sequence if it turns out to be too
 | |
| /// conservative.
 | |
| ///
 | |
| /// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this
 | |
| /// is harmless.
 | |
| SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr,
 | |
|                                                    SDValue DescAddr, SDLoc DL,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   EVT PtrVT = getPointerTy();
 | |
| 
 | |
|   // The function we need to call is simply the first entry in the GOT for this
 | |
|   // descriptor, load it in preparation.
 | |
|   SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr);
 | |
| 
 | |
|   // TLS calls preserve all registers except those that absolutely must be
 | |
|   // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
 | |
|   // silly).
 | |
|   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
 | |
|   const AArch64RegisterInfo *ARI =
 | |
|       static_cast<const AArch64RegisterInfo *>(TRI);
 | |
|   const uint32_t *Mask = ARI->getTLSCallPreservedMask();
 | |
| 
 | |
|   // The function takes only one argument: the address of the descriptor itself
 | |
|   // in X0.
 | |
|   SDValue Glue, Chain;
 | |
|   Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
 | |
|   Glue = Chain.getValue(1);
 | |
| 
 | |
|   // We're now ready to populate the argument list, as with a normal call:
 | |
|   SmallVector<SDValue, 6> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Func);
 | |
|   Ops.push_back(SymAddr);
 | |
|   Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
 | |
|   Ops.push_back(DAG.getRegisterMask(Mask));
 | |
|   Ops.push_back(Glue);
 | |
| 
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|   Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops);
 | |
|   Glue = Chain.getValue(1);
 | |
| 
 | |
|   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   assert(Subtarget->isTargetELF() && "This function expects an ELF target");
 | |
|   assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
 | |
|          "ELF TLS only supported in small memory model");
 | |
|   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | |
| 
 | |
|   TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
 | |
| 
 | |
|   SDValue TPOff;
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   SDLoc DL(Op);
 | |
|   const GlobalValue *GV = GA->getGlobal();
 | |
| 
 | |
|   SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
 | |
| 
 | |
|   if (Model == TLSModel::LocalExec) {
 | |
|     SDValue HiVar = DAG.getTargetGlobalAddress(
 | |
|         GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
 | |
|     SDValue LoVar = DAG.getTargetGlobalAddress(
 | |
|         GV, DL, PtrVT, 0,
 | |
|         AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
 | |
| 
 | |
|     TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
 | |
|                                        DAG.getTargetConstant(16, MVT::i32)),
 | |
|                     0);
 | |
|     TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
 | |
|                                        DAG.getTargetConstant(0, MVT::i32)),
 | |
|                     0);
 | |
|   } else if (Model == TLSModel::InitialExec) {
 | |
|     TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
 | |
|     TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
 | |
|   } else if (Model == TLSModel::LocalDynamic) {
 | |
|     // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
 | |
|     // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
 | |
|     // the beginning of the module's TLS region, followed by a DTPREL offset
 | |
|     // calculation.
 | |
| 
 | |
|     // These accesses will need deduplicating if there's more than one.
 | |
|     AArch64FunctionInfo *MFI =
 | |
|         DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
 | |
|     MFI->incNumLocalDynamicTLSAccesses();
 | |
| 
 | |
|     // Accesses used in this sequence go via the TLS descriptor which lives in
 | |
|     // the GOT. Prepare an address we can use to handle this.
 | |
|     SDValue HiDesc = DAG.getTargetExternalSymbol(
 | |
|         "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE);
 | |
|     SDValue LoDesc = DAG.getTargetExternalSymbol(
 | |
|         "_TLS_MODULE_BASE_", PtrVT,
 | |
|         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
 | |
| 
 | |
|     // First argument to the descriptor call is the address of the descriptor
 | |
|     // itself.
 | |
|     SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
 | |
|     DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
 | |
| 
 | |
|     // The call needs a relocation too for linker relaxation. It doesn't make
 | |
|     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
 | |
|     // the address.
 | |
|     SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
 | |
|                                                   AArch64II::MO_TLS);
 | |
| 
 | |
|     // Now we can calculate the offset from TPIDR_EL0 to this module's
 | |
|     // thread-local area.
 | |
|     TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
 | |
| 
 | |
|     // Now use :dtprel_whatever: operations to calculate this variable's offset
 | |
|     // in its thread-storage area.
 | |
|     SDValue HiVar = DAG.getTargetGlobalAddress(
 | |
|         GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
 | |
|     SDValue LoVar = DAG.getTargetGlobalAddress(
 | |
|         GV, DL, MVT::i64, 0,
 | |
|         AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
 | |
| 
 | |
|     SDValue DTPOff =
 | |
|         SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
 | |
|                                    DAG.getTargetConstant(16, MVT::i32)),
 | |
|                 0);
 | |
|     DTPOff =
 | |
|         SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar,
 | |
|                                    DAG.getTargetConstant(0, MVT::i32)),
 | |
|                 0);
 | |
| 
 | |
|     TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff);
 | |
|   } else if (Model == TLSModel::GeneralDynamic) {
 | |
|     // Accesses used in this sequence go via the TLS descriptor which lives in
 | |
|     // the GOT. Prepare an address we can use to handle this.
 | |
|     SDValue HiDesc = DAG.getTargetGlobalAddress(
 | |
|         GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE);
 | |
|     SDValue LoDesc = DAG.getTargetGlobalAddress(
 | |
|         GV, DL, PtrVT, 0,
 | |
|         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
 | |
| 
 | |
|     // First argument to the descriptor call is the address of the descriptor
 | |
|     // itself.
 | |
|     SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
 | |
|     DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
 | |
| 
 | |
|     // The call needs a relocation too for linker relaxation. It doesn't make
 | |
|     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
 | |
|     // the address.
 | |
|     SDValue SymAddr =
 | |
|         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
 | |
| 
 | |
|     // Finally we can make a call to calculate the offset from tpidr_el0.
 | |
|     TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
 | |
|   } else
 | |
|     llvm_unreachable("Unsupported ELF TLS access model");
 | |
| 
 | |
|   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   if (Subtarget->isTargetDarwin())
 | |
|     return LowerDarwinGlobalTLSAddress(Op, DAG);
 | |
|   else if (Subtarget->isTargetELF())
 | |
|     return LowerELFGlobalTLSAddress(Op, DAG);
 | |
| 
 | |
|   llvm_unreachable("Unexpected platform trying to use TLS");
 | |
| }
 | |
| SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
 | |
|   SDValue LHS = Op.getOperand(2);
 | |
|   SDValue RHS = Op.getOperand(3);
 | |
|   SDValue Dest = Op.getOperand(4);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // Handle f128 first, since lowering it will result in comparing the return
 | |
|   // value of a libcall against zero, which is just what the rest of LowerBR_CC
 | |
|   // is expecting to deal with.
 | |
|   if (LHS.getValueType() == MVT::f128) {
 | |
|     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
 | |
| 
 | |
|     // If softenSetCCOperands returned a scalar, we need to compare the result
 | |
|     // against zero to select between true and false values.
 | |
|     if (!RHS.getNode()) {
 | |
|       RHS = DAG.getConstant(0, LHS.getValueType());
 | |
|       CC = ISD::SETNE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
 | |
|   // instruction.
 | |
|   unsigned Opc = LHS.getOpcode();
 | |
|   if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
 | |
|       cast<ConstantSDNode>(RHS)->isOne() &&
 | |
|       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
 | |
|        Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
 | |
|     assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
 | |
|            "Unexpected condition code.");
 | |
|     // Only lower legal XALUO ops.
 | |
|     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
 | |
|       return SDValue();
 | |
| 
 | |
|     // The actual operation with overflow check.
 | |
|     AArch64CC::CondCode OFCC;
 | |
|     SDValue Value, Overflow;
 | |
|     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
 | |
| 
 | |
|     if (CC == ISD::SETNE)
 | |
|       OFCC = getInvertedCondCode(OFCC);
 | |
|     SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
 | |
| 
 | |
|     return DAG.getNode(AArch64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest,
 | |
|                        CCVal, Overflow);
 | |
|   }
 | |
| 
 | |
|   if (LHS.getValueType().isInteger()) {
 | |
|     assert((LHS.getValueType() == RHS.getValueType()) &&
 | |
|            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
 | |
| 
 | |
|     // If the RHS of the comparison is zero, we can potentially fold this
 | |
|     // to a specialized branch.
 | |
|     const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
 | |
|     if (RHSC && RHSC->getZExtValue() == 0) {
 | |
|       if (CC == ISD::SETEQ) {
 | |
|         // See if we can use a TBZ to fold in an AND as well.
 | |
|         // TBZ has a smaller branch displacement than CBZ.  If the offset is
 | |
|         // out of bounds, a late MI-layer pass rewrites branches.
 | |
|         // 403.gcc is an example that hits this case.
 | |
|         if (LHS.getOpcode() == ISD::AND &&
 | |
|             isa<ConstantSDNode>(LHS.getOperand(1)) &&
 | |
|             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
 | |
|           SDValue Test = LHS.getOperand(0);
 | |
|           uint64_t Mask = LHS.getConstantOperandVal(1);
 | |
| 
 | |
|           // TBZ only operates on i64's, but the ext should be free.
 | |
|           if (Test.getValueType() == MVT::i32)
 | |
|             Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
 | |
| 
 | |
|           return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
 | |
|                              DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
 | |
|         }
 | |
| 
 | |
|         return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
 | |
|       } else if (CC == ISD::SETNE) {
 | |
|         // See if we can use a TBZ to fold in an AND as well.
 | |
|         // TBZ has a smaller branch displacement than CBZ.  If the offset is
 | |
|         // out of bounds, a late MI-layer pass rewrites branches.
 | |
|         // 403.gcc is an example that hits this case.
 | |
|         if (LHS.getOpcode() == ISD::AND &&
 | |
|             isa<ConstantSDNode>(LHS.getOperand(1)) &&
 | |
|             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
 | |
|           SDValue Test = LHS.getOperand(0);
 | |
|           uint64_t Mask = LHS.getConstantOperandVal(1);
 | |
| 
 | |
|           // TBNZ only operates on i64's, but the ext should be free.
 | |
|           if (Test.getValueType() == MVT::i32)
 | |
|             Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
 | |
| 
 | |
|           return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
 | |
|                              DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
 | |
|         }
 | |
| 
 | |
|         return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SDValue CCVal;
 | |
|     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
 | |
|     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
 | |
|                        Cmp);
 | |
|   }
 | |
| 
 | |
|   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
 | |
| 
 | |
|   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
 | |
|   // clean.  Some of them require two branches to implement.
 | |
|   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
 | |
|   AArch64CC::CondCode CC1, CC2;
 | |
|   changeFPCCToAArch64CC(CC, CC1, CC2);
 | |
|   SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
 | |
|   SDValue BR1 =
 | |
|       DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
 | |
|   if (CC2 != AArch64CC::AL) {
 | |
|     SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
 | |
|     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
 | |
|                        Cmp);
 | |
|   }
 | |
| 
 | |
|   return BR1;
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   SDValue In1 = Op.getOperand(0);
 | |
|   SDValue In2 = Op.getOperand(1);
 | |
|   EVT SrcVT = In2.getValueType();
 | |
|   if (SrcVT != VT) {
 | |
|     if (SrcVT == MVT::f32 && VT == MVT::f64)
 | |
|       In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
 | |
|     else if (SrcVT == MVT::f64 && VT == MVT::f32)
 | |
|       In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
 | |
|     else
 | |
|       // FIXME: Src type is different, bail out for now. Can VT really be a
 | |
|       // vector type?
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   EVT VecVT;
 | |
|   EVT EltVT;
 | |
|   SDValue EltMask, VecVal1, VecVal2;
 | |
|   if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
 | |
|     EltVT = MVT::i32;
 | |
|     VecVT = MVT::v4i32;
 | |
|     EltMask = DAG.getConstant(0x80000000ULL, EltVT);
 | |
| 
 | |
|     if (!VT.isVector()) {
 | |
|       VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
 | |
|                                           DAG.getUNDEF(VecVT), In1);
 | |
|       VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
 | |
|                                           DAG.getUNDEF(VecVT), In2);
 | |
|     } else {
 | |
|       VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
 | |
|       VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
 | |
|     }
 | |
|   } else if (VT == MVT::f64 || VT == MVT::v2f64) {
 | |
|     EltVT = MVT::i64;
 | |
|     VecVT = MVT::v2i64;
 | |
| 
 | |
|     // We want to materialize a mask with the the high bit set, but the AdvSIMD
 | |
|     // immediate moves cannot materialize that in a single instruction for
 | |
|     // 64-bit elements. Instead, materialize zero and then negate it.
 | |
|     EltMask = DAG.getConstant(0, EltVT);
 | |
| 
 | |
|     if (!VT.isVector()) {
 | |
|       VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
 | |
|                                           DAG.getUNDEF(VecVT), In1);
 | |
|       VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
 | |
|                                           DAG.getUNDEF(VecVT), In2);
 | |
|     } else {
 | |
|       VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
 | |
|       VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
 | |
|     }
 | |
|   } else {
 | |
|     llvm_unreachable("Invalid type for copysign!");
 | |
|   }
 | |
| 
 | |
|   std::vector<SDValue> BuildVectorOps;
 | |
|   for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i)
 | |
|     BuildVectorOps.push_back(EltMask);
 | |
| 
 | |
|   SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps);
 | |
| 
 | |
|   // If we couldn't materialize the mask above, then the mask vector will be
 | |
|   // the zero vector, and we need to negate it here.
 | |
|   if (VT == MVT::f64 || VT == MVT::v2f64) {
 | |
|     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
 | |
|     BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
 | |
|     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
 | |
|   }
 | |
| 
 | |
|   SDValue Sel =
 | |
|       DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
 | |
| 
 | |
|   if (VT == MVT::f32)
 | |
|     return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
 | |
|   else if (VT == MVT::f64)
 | |
|     return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
 | |
|   else
 | |
|     return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
 | |
|   if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
 | |
|           AttributeSet::FunctionIndex, Attribute::NoImplicitFloat))
 | |
|     return SDValue();
 | |
| 
 | |
|   // While there is no integer popcount instruction, it can
 | |
|   // be more efficiently lowered to the following sequence that uses
 | |
|   // AdvSIMD registers/instructions as long as the copies to/from
 | |
|   // the AdvSIMD registers are cheap.
 | |
|   //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd
 | |
|   //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts
 | |
|   //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts
 | |
|   //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg
 | |
|   SDValue Val = Op.getOperand(0);
 | |
|   SDLoc DL(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8);
 | |
| 
 | |
|   SDValue VecVal;
 | |
|   if (VT == MVT::i32) {
 | |
|     VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
 | |
|     VecVal = DAG.getTargetInsertSubreg(AArch64::ssub, DL, MVT::v8i8, ZeroVec,
 | |
|                                        VecVal);
 | |
|   } else {
 | |
|     VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
 | |
|   }
 | |
| 
 | |
|   SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal);
 | |
|   SDValue UaddLV = DAG.getNode(
 | |
|       ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
 | |
|       DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
 | |
| 
 | |
|   if (VT == MVT::i64)
 | |
|     UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
 | |
|   return UaddLV;
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
 | |
| 
 | |
|   if (Op.getValueType().isVector())
 | |
|     return LowerVSETCC(Op, DAG);
 | |
| 
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // We chose ZeroOrOneBooleanContents, so use zero and one.
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDValue TVal = DAG.getConstant(1, VT);
 | |
|   SDValue FVal = DAG.getConstant(0, VT);
 | |
| 
 | |
|   // Handle f128 first, since one possible outcome is a normal integer
 | |
|   // comparison which gets picked up by the next if statement.
 | |
|   if (LHS.getValueType() == MVT::f128) {
 | |
|     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
 | |
| 
 | |
|     // If softenSetCCOperands returned a scalar, use it.
 | |
|     if (!RHS.getNode()) {
 | |
|       assert(LHS.getValueType() == Op.getValueType() &&
 | |
|              "Unexpected setcc expansion!");
 | |
|       return LHS;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (LHS.getValueType().isInteger()) {
 | |
|     SDValue CCVal;
 | |
|     SDValue Cmp =
 | |
|         getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
 | |
| 
 | |
|     // Note that we inverted the condition above, so we reverse the order of
 | |
|     // the true and false operands here.  This will allow the setcc to be
 | |
|     // matched to a single CSINC instruction.
 | |
|     return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
 | |
|   }
 | |
| 
 | |
|   // Now we know we're dealing with FP values.
 | |
|   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
 | |
| 
 | |
|   // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
 | |
|   // and do the comparison.
 | |
|   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
 | |
| 
 | |
|   AArch64CC::CondCode CC1, CC2;
 | |
|   changeFPCCToAArch64CC(CC, CC1, CC2);
 | |
|   if (CC2 == AArch64CC::AL) {
 | |
|     changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
 | |
|     SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
 | |
| 
 | |
|     // Note that we inverted the condition above, so we reverse the order of
 | |
|     // the true and false operands here.  This will allow the setcc to be
 | |
|     // matched to a single CSINC instruction.
 | |
|     return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
 | |
|   } else {
 | |
|     // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
 | |
|     // totally clean.  Some of them require two CSELs to implement.  As is in
 | |
|     // this case, we emit the first CSEL and then emit a second using the output
 | |
|     // of the first as the RHS.  We're effectively OR'ing the two CC's together.
 | |
| 
 | |
|     // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
 | |
|     SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
 | |
|     SDValue CS1 =
 | |
|         DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
 | |
| 
 | |
|     SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
 | |
|     return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// A SELECT_CC operation is really some kind of max or min if both values being
 | |
| /// compared are, in some sense, equal to the results in either case. However,
 | |
| /// it is permissible to compare f32 values and produce directly extended f64
 | |
| /// values.
 | |
| ///
 | |
| /// Extending the comparison operands would also be allowed, but is less likely
 | |
| /// to happen in practice since their use is right here. Note that truncate
 | |
| /// operations would *not* be semantically equivalent.
 | |
| static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
 | |
|   if (Cmp == Result)
 | |
|     return true;
 | |
| 
 | |
|   ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
 | |
|   ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
 | |
|   if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
 | |
|       Result.getValueType() == MVT::f64) {
 | |
|     bool Lossy;
 | |
|     APFloat CmpVal = CCmp->getValueAPF();
 | |
|     CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
 | |
|     return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
 | |
|   }
 | |
| 
 | |
|   return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   SDValue CC = Op->getOperand(0);
 | |
|   SDValue TVal = Op->getOperand(1);
 | |
|   SDValue FVal = Op->getOperand(2);
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   unsigned Opc = CC.getOpcode();
 | |
|   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
 | |
|   // instruction.
 | |
|   if (CC.getResNo() == 1 &&
 | |
|       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
 | |
|        Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
 | |
|     // Only lower legal XALUO ops.
 | |
|     if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
 | |
|       return SDValue();
 | |
| 
 | |
|     AArch64CC::CondCode OFCC;
 | |
|     SDValue Value, Overflow;
 | |
|     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG);
 | |
|     SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
 | |
| 
 | |
|     return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
 | |
|                        CCVal, Overflow);
 | |
|   }
 | |
| 
 | |
|   if (CC.getOpcode() == ISD::SETCC)
 | |
|     return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
 | |
|                            cast<CondCodeSDNode>(CC.getOperand(2))->get());
 | |
|   else
 | |
|     return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
 | |
|                            FVal, ISD::SETNE);
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   SDValue TVal = Op.getOperand(2);
 | |
|   SDValue FVal = Op.getOperand(3);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // Handle f128 first, because it will result in a comparison of some RTLIB
 | |
|   // call result against zero.
 | |
|   if (LHS.getValueType() == MVT::f128) {
 | |
|     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
 | |
| 
 | |
|     // If softenSetCCOperands returned a scalar, we need to compare the result
 | |
|     // against zero to select between true and false values.
 | |
|     if (!RHS.getNode()) {
 | |
|       RHS = DAG.getConstant(0, LHS.getValueType());
 | |
|       CC = ISD::SETNE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle integers first.
 | |
|   if (LHS.getValueType().isInteger()) {
 | |
|     assert((LHS.getValueType() == RHS.getValueType()) &&
 | |
|            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
 | |
| 
 | |
|     unsigned Opcode = AArch64ISD::CSEL;
 | |
| 
 | |
|     // If both the TVal and the FVal are constants, see if we can swap them in
 | |
|     // order to for a CSINV or CSINC out of them.
 | |
|     ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
 | |
|     ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
 | |
| 
 | |
|     if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
 | |
|       std::swap(TVal, FVal);
 | |
|       std::swap(CTVal, CFVal);
 | |
|       CC = ISD::getSetCCInverse(CC, true);
 | |
|     } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
 | |
|       std::swap(TVal, FVal);
 | |
|       std::swap(CTVal, CFVal);
 | |
|       CC = ISD::getSetCCInverse(CC, true);
 | |
|     } else if (TVal.getOpcode() == ISD::XOR) {
 | |
|       // If TVal is a NOT we want to swap TVal and FVal so that we can match
 | |
|       // with a CSINV rather than a CSEL.
 | |
|       ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
 | |
| 
 | |
|       if (CVal && CVal->isAllOnesValue()) {
 | |
|         std::swap(TVal, FVal);
 | |
|         std::swap(CTVal, CFVal);
 | |
|         CC = ISD::getSetCCInverse(CC, true);
 | |
|       }
 | |
|     } else if (TVal.getOpcode() == ISD::SUB) {
 | |
|       // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
 | |
|       // that we can match with a CSNEG rather than a CSEL.
 | |
|       ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
 | |
| 
 | |
|       if (CVal && CVal->isNullValue()) {
 | |
|         std::swap(TVal, FVal);
 | |
|         std::swap(CTVal, CFVal);
 | |
|         CC = ISD::getSetCCInverse(CC, true);
 | |
|       }
 | |
|     } else if (CTVal && CFVal) {
 | |
|       const int64_t TrueVal = CTVal->getSExtValue();
 | |
|       const int64_t FalseVal = CFVal->getSExtValue();
 | |
|       bool Swap = false;
 | |
| 
 | |
|       // If both TVal and FVal are constants, see if FVal is the
 | |
|       // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
 | |
|       // instead of a CSEL in that case.
 | |
|       if (TrueVal == ~FalseVal) {
 | |
|         Opcode = AArch64ISD::CSINV;
 | |
|       } else if (TrueVal == -FalseVal) {
 | |
|         Opcode = AArch64ISD::CSNEG;
 | |
|       } else if (TVal.getValueType() == MVT::i32) {
 | |
|         // If our operands are only 32-bit wide, make sure we use 32-bit
 | |
|         // arithmetic for the check whether we can use CSINC. This ensures that
 | |
|         // the addition in the check will wrap around properly in case there is
 | |
|         // an overflow (which would not be the case if we do the check with
 | |
|         // 64-bit arithmetic).
 | |
|         const uint32_t TrueVal32 = CTVal->getZExtValue();
 | |
|         const uint32_t FalseVal32 = CFVal->getZExtValue();
 | |
| 
 | |
|         if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
 | |
|           Opcode = AArch64ISD::CSINC;
 | |
| 
 | |
|           if (TrueVal32 > FalseVal32) {
 | |
|             Swap = true;
 | |
|           }
 | |
|         }
 | |
|         // 64-bit check whether we can use CSINC.
 | |
|       } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
 | |
|         Opcode = AArch64ISD::CSINC;
 | |
| 
 | |
|         if (TrueVal > FalseVal) {
 | |
|           Swap = true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Swap TVal and FVal if necessary.
 | |
|       if (Swap) {
 | |
|         std::swap(TVal, FVal);
 | |
|         std::swap(CTVal, CFVal);
 | |
|         CC = ISD::getSetCCInverse(CC, true);
 | |
|       }
 | |
| 
 | |
|       if (Opcode != AArch64ISD::CSEL) {
 | |
|         // Drop FVal since we can get its value by simply inverting/negating
 | |
|         // TVal.
 | |
|         FVal = TVal;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SDValue CCVal;
 | |
|     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
 | |
| 
 | |
|     EVT VT = Op.getValueType();
 | |
|     return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
 | |
|   }
 | |
| 
 | |
|   // Now we know we're dealing with FP values.
 | |
|   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
 | |
|   assert(LHS.getValueType() == RHS.getValueType());
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   // Try to match this select into a max/min operation, which have dedicated
 | |
|   // opcode in the instruction set.
 | |
|   // FIXME: This is not correct in the presence of NaNs, so we only enable this
 | |
|   // in no-NaNs mode.
 | |
|   if (getTargetMachine().Options.NoNaNsFPMath) {
 | |
|     SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
 | |
|     if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
 | |
|         selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
 | |
|       CC = ISD::getSetCCSwappedOperands(CC);
 | |
|       std::swap(MinMaxLHS, MinMaxRHS);
 | |
|     }
 | |
| 
 | |
|     if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
 | |
|         selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
 | |
|       switch (CC) {
 | |
|       default:
 | |
|         break;
 | |
|       case ISD::SETGT:
 | |
|       case ISD::SETGE:
 | |
|       case ISD::SETUGT:
 | |
|       case ISD::SETUGE:
 | |
|       case ISD::SETOGT:
 | |
|       case ISD::SETOGE:
 | |
|         return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
 | |
|         break;
 | |
|       case ISD::SETLT:
 | |
|       case ISD::SETLE:
 | |
|       case ISD::SETULT:
 | |
|       case ISD::SETULE:
 | |
|       case ISD::SETOLT:
 | |
|       case ISD::SETOLE:
 | |
|         return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
 | |
|   // and do the comparison.
 | |
|   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
 | |
| 
 | |
|   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
 | |
|   // clean.  Some of them require two CSELs to implement.
 | |
|   AArch64CC::CondCode CC1, CC2;
 | |
|   changeFPCCToAArch64CC(CC, CC1, CC2);
 | |
|   SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
 | |
|   SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
 | |
| 
 | |
|   // If we need a second CSEL, emit it, using the output of the first as the
 | |
|   // RHS.  We're effectively OR'ing the two CC's together.
 | |
|   if (CC2 != AArch64CC::AL) {
 | |
|     SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
 | |
|     return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, return the output of the first CSEL.
 | |
|   return CS1;
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   // Jump table entries as PC relative offsets. No additional tweaking
 | |
|   // is necessary here. Just get the address of the jump table.
 | |
|   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
 | |
|       !Subtarget->isTargetMachO()) {
 | |
|     const unsigned char MO_NC = AArch64II::MO_NC;
 | |
|     return DAG.getNode(
 | |
|         AArch64ISD::WrapperLarge, DL, PtrVT,
 | |
|         DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
 | |
|         DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
 | |
|         DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
 | |
|         DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
 | |
|                                AArch64II::MO_G0 | MO_NC));
 | |
|   }
 | |
| 
 | |
|   SDValue Hi =
 | |
|       DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
 | |
|   SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
 | |
|                                       AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
 | |
|   SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
 | |
|   return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
 | |
|     // Use the GOT for the large code model on iOS.
 | |
|     if (Subtarget->isTargetMachO()) {
 | |
|       SDValue GotAddr = DAG.getTargetConstantPool(
 | |
|           CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
 | |
|           AArch64II::MO_GOT);
 | |
|       return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
 | |
|     }
 | |
| 
 | |
|     const unsigned char MO_NC = AArch64II::MO_NC;
 | |
|     return DAG.getNode(
 | |
|         AArch64ISD::WrapperLarge, DL, PtrVT,
 | |
|         DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
 | |
|                                   CP->getOffset(), AArch64II::MO_G3),
 | |
|         DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
 | |
|                                   CP->getOffset(), AArch64II::MO_G2 | MO_NC),
 | |
|         DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
 | |
|                                   CP->getOffset(), AArch64II::MO_G1 | MO_NC),
 | |
|         DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
 | |
|                                   CP->getOffset(), AArch64II::MO_G0 | MO_NC));
 | |
|   } else {
 | |
|     // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
 | |
|     // ELF, the only valid one on Darwin.
 | |
|     SDValue Hi =
 | |
|         DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
 | |
|                                   CP->getOffset(), AArch64II::MO_PAGE);
 | |
|     SDValue Lo = DAG.getTargetConstantPool(
 | |
|         CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
 | |
|         AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
 | |
| 
 | |
|     SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
 | |
|     return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   SDLoc DL(Op);
 | |
|   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
 | |
|       !Subtarget->isTargetMachO()) {
 | |
|     const unsigned char MO_NC = AArch64II::MO_NC;
 | |
|     return DAG.getNode(
 | |
|         AArch64ISD::WrapperLarge, DL, PtrVT,
 | |
|         DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
 | |
|         DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
 | |
|         DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
 | |
|         DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
 | |
|   } else {
 | |
|     SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
 | |
|     SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
 | |
|                                                              AArch64II::MO_NC);
 | |
|     SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
 | |
|     return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   AArch64FunctionInfo *FuncInfo =
 | |
|       DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
 | |
| 
 | |
|   SDLoc DL(Op);
 | |
|   SDValue FR =
 | |
|       DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
 | |
|                       MachinePointerInfo(SV), false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   // The layout of the va_list struct is specified in the AArch64 Procedure Call
 | |
|   // Standard, section B.3.
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue VAList = Op.getOperand(1);
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|   SmallVector<SDValue, 4> MemOps;
 | |
| 
 | |
|   // void *__stack at offset 0
 | |
|   SDValue Stack =
 | |
|       DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
 | |
|   MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
 | |
|                                 MachinePointerInfo(SV), false, false, 8));
 | |
| 
 | |
|   // void *__gr_top at offset 8
 | |
|   int GPRSize = FuncInfo->getVarArgsGPRSize();
 | |
|   if (GPRSize > 0) {
 | |
|     SDValue GRTop, GRTopAddr;
 | |
| 
 | |
|     GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
 | |
|                             DAG.getConstant(8, getPointerTy()));
 | |
| 
 | |
|     GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
 | |
|     GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
 | |
|                         DAG.getConstant(GPRSize, getPointerTy()));
 | |
| 
 | |
|     MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
 | |
|                                   MachinePointerInfo(SV, 8), false, false, 8));
 | |
|   }
 | |
| 
 | |
|   // void *__vr_top at offset 16
 | |
|   int FPRSize = FuncInfo->getVarArgsFPRSize();
 | |
|   if (FPRSize > 0) {
 | |
|     SDValue VRTop, VRTopAddr;
 | |
|     VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
 | |
|                             DAG.getConstant(16, getPointerTy()));
 | |
| 
 | |
|     VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
 | |
|     VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
 | |
|                         DAG.getConstant(FPRSize, getPointerTy()));
 | |
| 
 | |
|     MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
 | |
|                                   MachinePointerInfo(SV, 16), false, false, 8));
 | |
|   }
 | |
| 
 | |
|   // int __gr_offs at offset 24
 | |
|   SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
 | |
|                                    DAG.getConstant(24, getPointerTy()));
 | |
|   MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
 | |
|                                 GROffsAddr, MachinePointerInfo(SV, 24), false,
 | |
|                                 false, 4));
 | |
| 
 | |
|   // int __vr_offs at offset 28
 | |
|   SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
 | |
|                                    DAG.getConstant(28, getPointerTy()));
 | |
|   MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
 | |
|                                 VROffsAddr, MachinePointerInfo(SV, 28), false,
 | |
|                                 false, 4));
 | |
| 
 | |
|   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
 | |
|                                      : LowerAAPCS_VASTART(Op, DAG);
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
 | |
|   // pointer.
 | |
|   unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
 | |
|   const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
 | |
|   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
 | |
| 
 | |
|   return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
 | |
|                        Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
 | |
|                        8, false, false, MachinePointerInfo(DestSV),
 | |
|                        MachinePointerInfo(SrcSV));
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert(Subtarget->isTargetDarwin() &&
 | |
|          "automatic va_arg instruction only works on Darwin");
 | |
| 
 | |
|   const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Addr = Op.getOperand(1);
 | |
|   unsigned Align = Op.getConstantOperandVal(3);
 | |
| 
 | |
|   SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
 | |
|                                MachinePointerInfo(V), false, false, false, 0);
 | |
|   Chain = VAList.getValue(1);
 | |
| 
 | |
|   if (Align > 8) {
 | |
|     assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
 | |
|     VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
 | |
|                          DAG.getConstant(Align - 1, getPointerTy()));
 | |
|     VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
 | |
|                          DAG.getConstant(-(int64_t)Align, getPointerTy()));
 | |
|   }
 | |
| 
 | |
|   Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
 | |
|   uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
 | |
| 
 | |
|   // Scalar integer and FP values smaller than 64 bits are implicitly extended
 | |
|   // up to 64 bits.  At the very least, we have to increase the striding of the
 | |
|   // vaargs list to match this, and for FP values we need to introduce
 | |
|   // FP_ROUND nodes as well.
 | |
|   if (VT.isInteger() && !VT.isVector())
 | |
|     ArgSize = 8;
 | |
|   bool NeedFPTrunc = false;
 | |
|   if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
 | |
|     ArgSize = 8;
 | |
|     NeedFPTrunc = true;
 | |
|   }
 | |
| 
 | |
|   // Increment the pointer, VAList, to the next vaarg
 | |
|   SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
 | |
|                                DAG.getConstant(ArgSize, getPointerTy()));
 | |
|   // Store the incremented VAList to the legalized pointer
 | |
|   SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
 | |
|                                  false, false, 0);
 | |
| 
 | |
|   // Load the actual argument out of the pointer VAList
 | |
|   if (NeedFPTrunc) {
 | |
|     // Load the value as an f64.
 | |
|     SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
 | |
|                                  MachinePointerInfo(), false, false, false, 0);
 | |
|     // Round the value down to an f32.
 | |
|     SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
 | |
|                                    DAG.getIntPtrConstant(1));
 | |
|     SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
 | |
|     // Merge the rounded value with the chain output of the load.
 | |
|     return DAG.getMergeValues(Ops, DL);
 | |
|   }
 | |
| 
 | |
|   return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
 | |
|                      false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   MFI->setFrameAddressIsTaken(true);
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   SDValue FrameAddr =
 | |
|       DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
 | |
|   while (Depth--)
 | |
|     FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
 | |
|                             MachinePointerInfo(), false, false, false, 0);
 | |
|   return FrameAddr;
 | |
| }
 | |
| 
 | |
| // FIXME? Maybe this could be a TableGen attribute on some registers and
 | |
| // this table could be generated automatically from RegInfo.
 | |
| unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
 | |
|                                                   EVT VT) const {
 | |
|   unsigned Reg = StringSwitch<unsigned>(RegName)
 | |
|                        .Case("sp", AArch64::SP)
 | |
|                        .Default(0);
 | |
|   if (Reg)
 | |
|     return Reg;
 | |
|   report_fatal_error("Invalid register name global variable");
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   MFI->setReturnAddressIsTaken(true);
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   if (Depth) {
 | |
|     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | |
|     SDValue Offset = DAG.getConstant(8, getPointerTy());
 | |
|     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
 | |
|                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
 | |
|                        MachinePointerInfo(), false, false, false, 0);
 | |
|   }
 | |
| 
 | |
|   // Return LR, which contains the return address. Mark it an implicit live-in.
 | |
|   unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
 | |
|   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
 | |
| }
 | |
| 
 | |
| /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
 | |
| /// i64 values and take a 2 x i64 value to shift plus a shift amount.
 | |
| SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
 | |
|                                                     SelectionDAG &DAG) const {
 | |
|   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned VTBits = VT.getSizeInBits();
 | |
|   SDLoc dl(Op);
 | |
|   SDValue ShOpLo = Op.getOperand(0);
 | |
|   SDValue ShOpHi = Op.getOperand(1);
 | |
|   SDValue ShAmt = Op.getOperand(2);
 | |
|   SDValue ARMcc;
 | |
|   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
 | |
| 
 | |
|   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
 | |
| 
 | |
|   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
 | |
|                                  DAG.getConstant(VTBits, MVT::i64), ShAmt);
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
 | |
|   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
 | |
|                                    DAG.getConstant(VTBits, MVT::i64));
 | |
|   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
 | |
| 
 | |
|   SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
 | |
|                                ISD::SETGE, dl, DAG);
 | |
|   SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
 | |
| 
 | |
|   SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
 | |
|   SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
 | |
|   SDValue Lo =
 | |
|       DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
 | |
| 
 | |
|   // AArch64 shifts larger than the register width are wrapped rather than
 | |
|   // clamped, so we can't just emit "hi >> x".
 | |
|   SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
 | |
|   SDValue TrueValHi = Opc == ISD::SRA
 | |
|                           ? DAG.getNode(Opc, dl, VT, ShOpHi,
 | |
|                                         DAG.getConstant(VTBits - 1, MVT::i64))
 | |
|                           : DAG.getConstant(0, VT);
 | |
|   SDValue Hi =
 | |
|       DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
 | |
| 
 | |
|   SDValue Ops[2] = { Lo, Hi };
 | |
|   return DAG.getMergeValues(Ops, dl);
 | |
| }
 | |
| 
 | |
| /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
 | |
| /// i64 values and take a 2 x i64 value to shift plus a shift amount.
 | |
| SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned VTBits = VT.getSizeInBits();
 | |
|   SDLoc dl(Op);
 | |
|   SDValue ShOpLo = Op.getOperand(0);
 | |
|   SDValue ShOpHi = Op.getOperand(1);
 | |
|   SDValue ShAmt = Op.getOperand(2);
 | |
|   SDValue ARMcc;
 | |
| 
 | |
|   assert(Op.getOpcode() == ISD::SHL_PARTS);
 | |
|   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
 | |
|                                  DAG.getConstant(VTBits, MVT::i64), ShAmt);
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
 | |
|   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
 | |
|                                    DAG.getConstant(VTBits, MVT::i64));
 | |
|   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
 | |
|   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
 | |
| 
 | |
|   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
 | |
| 
 | |
|   SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
 | |
|                                ISD::SETGE, dl, DAG);
 | |
|   SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
 | |
|   SDValue Hi =
 | |
|       DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
 | |
| 
 | |
|   // AArch64 shifts of larger than register sizes are wrapped rather than
 | |
|   // clamped, so we can't just emit "lo << a" if a is too big.
 | |
|   SDValue TrueValLo = DAG.getConstant(0, VT);
 | |
|   SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
 | |
|   SDValue Lo =
 | |
|       DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
 | |
| 
 | |
|   SDValue Ops[2] = { Lo, Hi };
 | |
|   return DAG.getMergeValues(Ops, dl);
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::isOffsetFoldingLegal(
 | |
|     const GlobalAddressSDNode *GA) const {
 | |
|   // The AArch64 target doesn't support folding offsets into global addresses.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | |
|   // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
 | |
|   // FIXME: We should be able to handle f128 as well with a clever lowering.
 | |
|   if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
 | |
|     return true;
 | |
| 
 | |
|   if (VT == MVT::f64)
 | |
|     return AArch64_AM::getFP64Imm(Imm) != -1;
 | |
|   else if (VT == MVT::f32)
 | |
|     return AArch64_AM::getFP32Imm(Imm) != -1;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          AArch64 Optimization Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          AArch64 Inline Assembly Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Table of Constraints
 | |
| // TODO: This is the current set of constraints supported by ARM for the
 | |
| // compiler, not all of them may make sense, e.g. S may be difficult to support.
 | |
| //
 | |
| // r - A general register
 | |
| // w - An FP/SIMD register of some size in the range v0-v31
 | |
| // x - An FP/SIMD register of some size in the range v0-v15
 | |
| // I - Constant that can be used with an ADD instruction
 | |
| // J - Constant that can be used with a SUB instruction
 | |
| // K - Constant that can be used with a 32-bit logical instruction
 | |
| // L - Constant that can be used with a 64-bit logical instruction
 | |
| // M - Constant that can be used as a 32-bit MOV immediate
 | |
| // N - Constant that can be used as a 64-bit MOV immediate
 | |
| // Q - A memory reference with base register and no offset
 | |
| // S - A symbolic address
 | |
| // Y - Floating point constant zero
 | |
| // Z - Integer constant zero
 | |
| //
 | |
| //   Note that general register operands will be output using their 64-bit x
 | |
| // register name, whatever the size of the variable, unless the asm operand
 | |
| // is prefixed by the %w modifier. Floating-point and SIMD register operands
 | |
| // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
 | |
| // %q modifier.
 | |
| 
 | |
| /// getConstraintType - Given a constraint letter, return the type of
 | |
| /// constraint it is for this target.
 | |
| AArch64TargetLowering::ConstraintType
 | |
| AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     default:
 | |
|       break;
 | |
|     case 'z':
 | |
|       return C_Other;
 | |
|     case 'x':
 | |
|     case 'w':
 | |
|       return C_RegisterClass;
 | |
|     // An address with a single base register. Due to the way we
 | |
|     // currently handle addresses it is the same as 'r'.
 | |
|     case 'Q':
 | |
|       return C_Memory;
 | |
|     }
 | |
|   }
 | |
|   return TargetLowering::getConstraintType(Constraint);
 | |
| }
 | |
| 
 | |
| /// Examine constraint type and operand type and determine a weight value.
 | |
| /// This object must already have been set up with the operand type
 | |
| /// and the current alternative constraint selected.
 | |
| TargetLowering::ConstraintWeight
 | |
| AArch64TargetLowering::getSingleConstraintMatchWeight(
 | |
|     AsmOperandInfo &info, const char *constraint) const {
 | |
|   ConstraintWeight weight = CW_Invalid;
 | |
|   Value *CallOperandVal = info.CallOperandVal;
 | |
|   // If we don't have a value, we can't do a match,
 | |
|   // but allow it at the lowest weight.
 | |
|   if (!CallOperandVal)
 | |
|     return CW_Default;
 | |
|   Type *type = CallOperandVal->getType();
 | |
|   // Look at the constraint type.
 | |
|   switch (*constraint) {
 | |
|   default:
 | |
|     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
 | |
|     break;
 | |
|   case 'x':
 | |
|   case 'w':
 | |
|     if (type->isFloatingPointTy() || type->isVectorTy())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
|   case 'z':
 | |
|     weight = CW_Constant;
 | |
|     break;
 | |
|   }
 | |
|   return weight;
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass *>
 | |
| AArch64TargetLowering::getRegForInlineAsmConstraint(
 | |
|     const std::string &Constraint, MVT VT) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     case 'r':
 | |
|       if (VT.getSizeInBits() == 64)
 | |
|         return std::make_pair(0U, &AArch64::GPR64commonRegClass);
 | |
|       return std::make_pair(0U, &AArch64::GPR32commonRegClass);
 | |
|     case 'w':
 | |
|       if (VT == MVT::f32)
 | |
|         return std::make_pair(0U, &AArch64::FPR32RegClass);
 | |
|       if (VT.getSizeInBits() == 64)
 | |
|         return std::make_pair(0U, &AArch64::FPR64RegClass);
 | |
|       if (VT.getSizeInBits() == 128)
 | |
|         return std::make_pair(0U, &AArch64::FPR128RegClass);
 | |
|       break;
 | |
|     // The instructions that this constraint is designed for can
 | |
|     // only take 128-bit registers so just use that regclass.
 | |
|     case 'x':
 | |
|       if (VT.getSizeInBits() == 128)
 | |
|         return std::make_pair(0U, &AArch64::FPR128_loRegClass);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (StringRef("{cc}").equals_lower(Constraint))
 | |
|     return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
 | |
| 
 | |
|   // Use the default implementation in TargetLowering to convert the register
 | |
|   // constraint into a member of a register class.
 | |
|   std::pair<unsigned, const TargetRegisterClass *> Res;
 | |
|   Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
 | |
| 
 | |
|   // Not found as a standard register?
 | |
|   if (!Res.second) {
 | |
|     unsigned Size = Constraint.size();
 | |
|     if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
 | |
|         tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
 | |
|       const std::string Reg =
 | |
|           std::string(&Constraint[2], &Constraint[Size - 1]);
 | |
|       int RegNo = atoi(Reg.c_str());
 | |
|       if (RegNo >= 0 && RegNo <= 31) {
 | |
|         // v0 - v31 are aliases of q0 - q31.
 | |
|         // By default we'll emit v0-v31 for this unless there's a modifier where
 | |
|         // we'll emit the correct register as well.
 | |
|         Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
 | |
|         Res.second = &AArch64::FPR128RegClass;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | |
| /// vector.  If it is invalid, don't add anything to Ops.
 | |
| void AArch64TargetLowering::LowerAsmOperandForConstraint(
 | |
|     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
 | |
|     SelectionDAG &DAG) const {
 | |
|   SDValue Result;
 | |
| 
 | |
|   // Currently only support length 1 constraints.
 | |
|   if (Constraint.length() != 1)
 | |
|     return;
 | |
| 
 | |
|   char ConstraintLetter = Constraint[0];
 | |
|   switch (ConstraintLetter) {
 | |
|   default:
 | |
|     break;
 | |
| 
 | |
|   // This set of constraints deal with valid constants for various instructions.
 | |
|   // Validate and return a target constant for them if we can.
 | |
|   case 'z': {
 | |
|     // 'z' maps to xzr or wzr so it needs an input of 0.
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | |
|     if (!C || C->getZExtValue() != 0)
 | |
|       return;
 | |
| 
 | |
|     if (Op.getValueType() == MVT::i64)
 | |
|       Result = DAG.getRegister(AArch64::XZR, MVT::i64);
 | |
|     else
 | |
|       Result = DAG.getRegister(AArch64::WZR, MVT::i32);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case 'I':
 | |
|   case 'J':
 | |
|   case 'K':
 | |
|   case 'L':
 | |
|   case 'M':
 | |
|   case 'N':
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | |
|     if (!C)
 | |
|       return;
 | |
| 
 | |
|     // Grab the value and do some validation.
 | |
|     uint64_t CVal = C->getZExtValue();
 | |
|     switch (ConstraintLetter) {
 | |
|     // The I constraint applies only to simple ADD or SUB immediate operands:
 | |
|     // i.e. 0 to 4095 with optional shift by 12
 | |
|     // The J constraint applies only to ADD or SUB immediates that would be
 | |
|     // valid when negated, i.e. if [an add pattern] were to be output as a SUB
 | |
|     // instruction [or vice versa], in other words -1 to -4095 with optional
 | |
|     // left shift by 12.
 | |
|     case 'I':
 | |
|       if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
 | |
|         break;
 | |
|       return;
 | |
|     case 'J': {
 | |
|       uint64_t NVal = -C->getSExtValue();
 | |
|       if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal))
 | |
|         break;
 | |
|       return;
 | |
|     }
 | |
|     // The K and L constraints apply *only* to logical immediates, including
 | |
|     // what used to be the MOVI alias for ORR (though the MOVI alias has now
 | |
|     // been removed and MOV should be used). So these constraints have to
 | |
|     // distinguish between bit patterns that are valid 32-bit or 64-bit
 | |
|     // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
 | |
|     // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
 | |
|     // versa.
 | |
|     case 'K':
 | |
|       if (AArch64_AM::isLogicalImmediate(CVal, 32))
 | |
|         break;
 | |
|       return;
 | |
|     case 'L':
 | |
|       if (AArch64_AM::isLogicalImmediate(CVal, 64))
 | |
|         break;
 | |
|       return;
 | |
|     // The M and N constraints are a superset of K and L respectively, for use
 | |
|     // with the MOV (immediate) alias. As well as the logical immediates they
 | |
|     // also match 32 or 64-bit immediates that can be loaded either using a
 | |
|     // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
 | |
|     // (M) or 64-bit 0x1234000000000000 (N) etc.
 | |
|     // As a note some of this code is liberally stolen from the asm parser.
 | |
|     case 'M': {
 | |
|       if (!isUInt<32>(CVal))
 | |
|         return;
 | |
|       if (AArch64_AM::isLogicalImmediate(CVal, 32))
 | |
|         break;
 | |
|       if ((CVal & 0xFFFF) == CVal)
 | |
|         break;
 | |
|       if ((CVal & 0xFFFF0000ULL) == CVal)
 | |
|         break;
 | |
|       uint64_t NCVal = ~(uint32_t)CVal;
 | |
|       if ((NCVal & 0xFFFFULL) == NCVal)
 | |
|         break;
 | |
|       if ((NCVal & 0xFFFF0000ULL) == NCVal)
 | |
|         break;
 | |
|       return;
 | |
|     }
 | |
|     case 'N': {
 | |
|       if (AArch64_AM::isLogicalImmediate(CVal, 64))
 | |
|         break;
 | |
|       if ((CVal & 0xFFFFULL) == CVal)
 | |
|         break;
 | |
|       if ((CVal & 0xFFFF0000ULL) == CVal)
 | |
|         break;
 | |
|       if ((CVal & 0xFFFF00000000ULL) == CVal)
 | |
|         break;
 | |
|       if ((CVal & 0xFFFF000000000000ULL) == CVal)
 | |
|         break;
 | |
|       uint64_t NCVal = ~CVal;
 | |
|       if ((NCVal & 0xFFFFULL) == NCVal)
 | |
|         break;
 | |
|       if ((NCVal & 0xFFFF0000ULL) == NCVal)
 | |
|         break;
 | |
|       if ((NCVal & 0xFFFF00000000ULL) == NCVal)
 | |
|         break;
 | |
|       if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
 | |
|         break;
 | |
|       return;
 | |
|     }
 | |
|     default:
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // All assembler immediates are 64-bit integers.
 | |
|     Result = DAG.getTargetConstant(CVal, MVT::i64);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Result.getNode()) {
 | |
|     Ops.push_back(Result);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     AArch64 Advanced SIMD Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// WidenVector - Given a value in the V64 register class, produce the
 | |
| /// equivalent value in the V128 register class.
 | |
| static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
 | |
|   EVT VT = V64Reg.getValueType();
 | |
|   unsigned NarrowSize = VT.getVectorNumElements();
 | |
|   MVT EltTy = VT.getVectorElementType().getSimpleVT();
 | |
|   MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
 | |
|   SDLoc DL(V64Reg);
 | |
| 
 | |
|   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
 | |
|                      V64Reg, DAG.getConstant(0, MVT::i32));
 | |
| }
 | |
| 
 | |
| /// getExtFactor - Determine the adjustment factor for the position when
 | |
| /// generating an "extract from vector registers" instruction.
 | |
| static unsigned getExtFactor(SDValue &V) {
 | |
|   EVT EltType = V.getValueType().getVectorElementType();
 | |
|   return EltType.getSizeInBits() / 8;
 | |
| }
 | |
| 
 | |
| /// NarrowVector - Given a value in the V128 register class, produce the
 | |
| /// equivalent value in the V64 register class.
 | |
| static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
 | |
|   EVT VT = V128Reg.getValueType();
 | |
|   unsigned WideSize = VT.getVectorNumElements();
 | |
|   MVT EltTy = VT.getVectorElementType().getSimpleVT();
 | |
|   MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
 | |
|   SDLoc DL(V128Reg);
 | |
| 
 | |
|   return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
 | |
| }
 | |
| 
 | |
| // Gather data to see if the operation can be modelled as a
 | |
| // shuffle in combination with VEXTs.
 | |
| SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
| 
 | |
|   SmallVector<SDValue, 2> SourceVecs;
 | |
|   SmallVector<unsigned, 2> MinElts;
 | |
|   SmallVector<unsigned, 2> MaxElts;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     SDValue V = Op.getOperand(i);
 | |
|     if (V.getOpcode() == ISD::UNDEF)
 | |
|       continue;
 | |
|     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
 | |
|       // A shuffle can only come from building a vector from various
 | |
|       // elements of other vectors.
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     // Record this extraction against the appropriate vector if possible...
 | |
|     SDValue SourceVec = V.getOperand(0);
 | |
|     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
 | |
|     bool FoundSource = false;
 | |
|     for (unsigned j = 0; j < SourceVecs.size(); ++j) {
 | |
|       if (SourceVecs[j] == SourceVec) {
 | |
|         if (MinElts[j] > EltNo)
 | |
|           MinElts[j] = EltNo;
 | |
|         if (MaxElts[j] < EltNo)
 | |
|           MaxElts[j] = EltNo;
 | |
|         FoundSource = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Or record a new source if not...
 | |
|     if (!FoundSource) {
 | |
|       SourceVecs.push_back(SourceVec);
 | |
|       MinElts.push_back(EltNo);
 | |
|       MaxElts.push_back(EltNo);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Currently only do something sane when at most two source vectors
 | |
|   // involved.
 | |
|   if (SourceVecs.size() > 2)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue ShuffleSrcs[2] = { DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
 | |
|   int VEXTOffsets[2] = { 0, 0 };
 | |
| 
 | |
|   // This loop extracts the usage patterns of the source vectors
 | |
|   // and prepares appropriate SDValues for a shuffle if possible.
 | |
|   for (unsigned i = 0; i < SourceVecs.size(); ++i) {
 | |
|     if (SourceVecs[i].getValueType() == VT) {
 | |
|       // No VEXT necessary
 | |
|       ShuffleSrcs[i] = SourceVecs[i];
 | |
|       VEXTOffsets[i] = 0;
 | |
|       continue;
 | |
|     } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
 | |
|       // We can pad out the smaller vector for free, so if it's part of a
 | |
|       // shuffle...
 | |
|       ShuffleSrcs[i] = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, SourceVecs[i],
 | |
|                                    DAG.getUNDEF(SourceVecs[i].getValueType()));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Don't attempt to extract subvectors from BUILD_VECTOR sources
 | |
|     // that expand or trunc the original value.
 | |
|     // TODO: We can try to bitcast and ANY_EXTEND the result but
 | |
|     // we need to consider the cost of vector ANY_EXTEND, and the
 | |
|     // legality of all the types.
 | |
|     if (SourceVecs[i].getValueType().getVectorElementType() !=
 | |
|         VT.getVectorElementType())
 | |
|       return SDValue();
 | |
| 
 | |
|     // Since only 64-bit and 128-bit vectors are legal on ARM and
 | |
|     // we've eliminated the other cases...
 | |
|     assert(SourceVecs[i].getValueType().getVectorNumElements() == 2 * NumElts &&
 | |
|            "unexpected vector sizes in ReconstructShuffle");
 | |
| 
 | |
|     if (MaxElts[i] - MinElts[i] >= NumElts) {
 | |
|       // Span too large for a VEXT to cope
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     if (MinElts[i] >= NumElts) {
 | |
|       // The extraction can just take the second half
 | |
|       VEXTOffsets[i] = NumElts;
 | |
|       ShuffleSrcs[i] =
 | |
|           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i],
 | |
|                       DAG.getIntPtrConstant(NumElts));
 | |
|     } else if (MaxElts[i] < NumElts) {
 | |
|       // The extraction can just take the first half
 | |
|       VEXTOffsets[i] = 0;
 | |
|       ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
 | |
|                                    SourceVecs[i], DAG.getIntPtrConstant(0));
 | |
|     } else {
 | |
|       // An actual VEXT is needed
 | |
|       VEXTOffsets[i] = MinElts[i];
 | |
|       SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
 | |
|                                      SourceVecs[i], DAG.getIntPtrConstant(0));
 | |
|       SDValue VEXTSrc2 =
 | |
|           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i],
 | |
|                       DAG.getIntPtrConstant(NumElts));
 | |
|       unsigned Imm = VEXTOffsets[i] * getExtFactor(VEXTSrc1);
 | |
|       ShuffleSrcs[i] = DAG.getNode(AArch64ISD::EXT, dl, VT, VEXTSrc1, VEXTSrc2,
 | |
|                                    DAG.getConstant(Imm, MVT::i32));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<int, 8> Mask;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     SDValue Entry = Op.getOperand(i);
 | |
|     if (Entry.getOpcode() == ISD::UNDEF) {
 | |
|       Mask.push_back(-1);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SDValue ExtractVec = Entry.getOperand(0);
 | |
|     int ExtractElt =
 | |
|         cast<ConstantSDNode>(Op.getOperand(i).getOperand(1))->getSExtValue();
 | |
|     if (ExtractVec == SourceVecs[0]) {
 | |
|       Mask.push_back(ExtractElt - VEXTOffsets[0]);
 | |
|     } else {
 | |
|       Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Final check before we try to produce nonsense...
 | |
|   if (isShuffleMaskLegal(Mask, VT))
 | |
|     return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
 | |
|                                 &Mask[0]);
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // check if an EXT instruction can handle the shuffle mask when the
 | |
| // vector sources of the shuffle are the same.
 | |
| static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
| 
 | |
|   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
 | |
|   if (M[0] < 0)
 | |
|     return false;
 | |
| 
 | |
|   Imm = M[0];
 | |
| 
 | |
|   // If this is a VEXT shuffle, the immediate value is the index of the first
 | |
|   // element.  The other shuffle indices must be the successive elements after
 | |
|   // the first one.
 | |
|   unsigned ExpectedElt = Imm;
 | |
|   for (unsigned i = 1; i < NumElts; ++i) {
 | |
|     // Increment the expected index.  If it wraps around, just follow it
 | |
|     // back to index zero and keep going.
 | |
|     ++ExpectedElt;
 | |
|     if (ExpectedElt == NumElts)
 | |
|       ExpectedElt = 0;
 | |
| 
 | |
|     if (M[i] < 0)
 | |
|       continue; // ignore UNDEF indices
 | |
|     if (ExpectedElt != static_cast<unsigned>(M[i]))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // check if an EXT instruction can handle the shuffle mask when the
 | |
| // vector sources of the shuffle are different.
 | |
| static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
 | |
|                       unsigned &Imm) {
 | |
|   // Look for the first non-undef element.
 | |
|   const int *FirstRealElt = std::find_if(M.begin(), M.end(),
 | |
|       [](int Elt) {return Elt >= 0;});
 | |
| 
 | |
|   // Benefit form APInt to handle overflow when calculating expected element.
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
 | |
|   APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
 | |
|   // The following shuffle indices must be the successive elements after the
 | |
|   // first real element.
 | |
|   const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
 | |
|       [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
 | |
|   if (FirstWrongElt != M.end())
 | |
|     return false;
 | |
| 
 | |
|   // The index of an EXT is the first element if it is not UNDEF.
 | |
|   // Watch out for the beginning UNDEFs. The EXT index should be the expected
 | |
|   // value of the first element.  E.g. 
 | |
|   // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
 | |
|   // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
 | |
|   // ExpectedElt is the last mask index plus 1.
 | |
|   Imm = ExpectedElt.getZExtValue();
 | |
| 
 | |
|   // There are two difference cases requiring to reverse input vectors.
 | |
|   // For example, for vector <4 x i32> we have the following cases,
 | |
|   // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
 | |
|   // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
 | |
|   // For both cases, we finally use mask <5, 6, 7, 0>, which requires
 | |
|   // to reverse two input vectors.
 | |
|   if (Imm < NumElts)
 | |
|     ReverseEXT = true;
 | |
|   else
 | |
|     Imm -= NumElts;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isREVMask - Check if a vector shuffle corresponds to a REV
 | |
| /// instruction with the specified blocksize.  (The order of the elements
 | |
| /// within each block of the vector is reversed.)
 | |
| static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
 | |
|   assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
 | |
|          "Only possible block sizes for REV are: 16, 32, 64");
 | |
| 
 | |
|   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   unsigned BlockElts = M[0] + 1;
 | |
|   // If the first shuffle index is UNDEF, be optimistic.
 | |
|   if (M[0] < 0)
 | |
|     BlockElts = BlockSize / EltSz;
 | |
| 
 | |
|   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     if (M[i] < 0)
 | |
|       continue; // ignore UNDEF indices
 | |
|     if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   unsigned Idx = WhichResult * NumElts / 2;
 | |
|   for (unsigned i = 0; i != NumElts; i += 2) {
 | |
|     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
 | |
|         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
 | |
|       return false;
 | |
|     Idx += 1;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     if (M[i] < 0)
 | |
|       continue; // ignore UNDEF indices
 | |
|     if ((unsigned)M[i] != 2 * i + WhichResult)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   for (unsigned i = 0; i < NumElts; i += 2) {
 | |
|     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
 | |
|         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
 | |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | |
| /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
 | |
| static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   unsigned Idx = WhichResult * NumElts / 2;
 | |
|   for (unsigned i = 0; i != NumElts; i += 2) {
 | |
|     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
 | |
|         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
 | |
|       return false;
 | |
|     Idx += 1;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
 | |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | |
| /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
 | |
| static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | |
|   unsigned Half = VT.getVectorNumElements() / 2;
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   for (unsigned j = 0; j != 2; ++j) {
 | |
|     unsigned Idx = WhichResult;
 | |
|     for (unsigned i = 0; i != Half; ++i) {
 | |
|       int MIdx = M[i + j * Half];
 | |
|       if (MIdx >= 0 && (unsigned)MIdx != Idx)
 | |
|         return false;
 | |
|       Idx += 2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
 | |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | |
| /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
 | |
| static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   for (unsigned i = 0; i < NumElts; i += 2) {
 | |
|     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
 | |
|         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isINSMask(ArrayRef<int> M, int NumInputElements,
 | |
|                       bool &DstIsLeft, int &Anomaly) {
 | |
|   if (M.size() != static_cast<size_t>(NumInputElements))
 | |
|     return false;
 | |
| 
 | |
|   int NumLHSMatch = 0, NumRHSMatch = 0;
 | |
|   int LastLHSMismatch = -1, LastRHSMismatch = -1;
 | |
| 
 | |
|   for (int i = 0; i < NumInputElements; ++i) {
 | |
|     if (M[i] == -1) {
 | |
|       ++NumLHSMatch;
 | |
|       ++NumRHSMatch;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (M[i] == i)
 | |
|       ++NumLHSMatch;
 | |
|     else
 | |
|       LastLHSMismatch = i;
 | |
| 
 | |
|     if (M[i] == i + NumInputElements)
 | |
|       ++NumRHSMatch;
 | |
|     else
 | |
|       LastRHSMismatch = i;
 | |
|   }
 | |
| 
 | |
|   if (NumLHSMatch == NumInputElements - 1) {
 | |
|     DstIsLeft = true;
 | |
|     Anomaly = LastLHSMismatch;
 | |
|     return true;
 | |
|   } else if (NumRHSMatch == NumInputElements - 1) {
 | |
|     DstIsLeft = false;
 | |
|     Anomaly = LastRHSMismatch;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
 | |
|   if (VT.getSizeInBits() != 128)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
| 
 | |
|   for (int I = 0, E = NumElts / 2; I != E; I++) {
 | |
|     if (Mask[I] != I)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   int Offset = NumElts / 2;
 | |
|   for (int I = NumElts / 2, E = NumElts; I != E; I++) {
 | |
|     if (Mask[I] != I + SplitLHS * Offset)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDLoc DL(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDValue V0 = Op.getOperand(0);
 | |
|   SDValue V1 = Op.getOperand(1);
 | |
|   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
 | |
| 
 | |
|   if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
 | |
|       VT.getVectorElementType() != V1.getValueType().getVectorElementType())
 | |
|     return SDValue();
 | |
| 
 | |
|   bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
 | |
| 
 | |
|   if (!isConcatMask(Mask, VT, SplitV0))
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
 | |
|                                 VT.getVectorNumElements() / 2);
 | |
|   if (SplitV0) {
 | |
|     V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
 | |
|                      DAG.getConstant(0, MVT::i64));
 | |
|   }
 | |
|   if (V1.getValueType().getSizeInBits() == 128) {
 | |
|     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
 | |
|                      DAG.getConstant(0, MVT::i64));
 | |
|   }
 | |
|   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
 | |
| }
 | |
| 
 | |
| /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
 | |
| /// the specified operations to build the shuffle.
 | |
| static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
 | |
|                                       SDValue RHS, SelectionDAG &DAG,
 | |
|                                       SDLoc dl) {
 | |
|   unsigned OpNum = (PFEntry >> 26) & 0x0F;
 | |
|   unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
 | |
|   unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
 | |
| 
 | |
|   enum {
 | |
|     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | |
|     OP_VREV,
 | |
|     OP_VDUP0,
 | |
|     OP_VDUP1,
 | |
|     OP_VDUP2,
 | |
|     OP_VDUP3,
 | |
|     OP_VEXT1,
 | |
|     OP_VEXT2,
 | |
|     OP_VEXT3,
 | |
|     OP_VUZPL, // VUZP, left result
 | |
|     OP_VUZPR, // VUZP, right result
 | |
|     OP_VZIPL, // VZIP, left result
 | |
|     OP_VZIPR, // VZIP, right result
 | |
|     OP_VTRNL, // VTRN, left result
 | |
|     OP_VTRNR  // VTRN, right result
 | |
|   };
 | |
| 
 | |
|   if (OpNum == OP_COPY) {
 | |
|     if (LHSID == (1 * 9 + 2) * 9 + 3)
 | |
|       return LHS;
 | |
|     assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
 | |
|     return RHS;
 | |
|   }
 | |
| 
 | |
|   SDValue OpLHS, OpRHS;
 | |
|   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
 | |
|   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
 | |
|   EVT VT = OpLHS.getValueType();
 | |
| 
 | |
|   switch (OpNum) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown shuffle opcode!");
 | |
|   case OP_VREV:
 | |
|     // VREV divides the vector in half and swaps within the half.
 | |
|     if (VT.getVectorElementType() == MVT::i32 ||
 | |
|         VT.getVectorElementType() == MVT::f32)
 | |
|       return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
 | |
|     // vrev <4 x i16> -> REV32
 | |
|     if (VT.getVectorElementType() == MVT::i16)
 | |
|       return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
 | |
|     // vrev <4 x i8> -> REV16
 | |
|     assert(VT.getVectorElementType() == MVT::i8);
 | |
|     return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
 | |
|   case OP_VDUP0:
 | |
|   case OP_VDUP1:
 | |
|   case OP_VDUP2:
 | |
|   case OP_VDUP3: {
 | |
|     EVT EltTy = VT.getVectorElementType();
 | |
|     unsigned Opcode;
 | |
|     if (EltTy == MVT::i8)
 | |
|       Opcode = AArch64ISD::DUPLANE8;
 | |
|     else if (EltTy == MVT::i16)
 | |
|       Opcode = AArch64ISD::DUPLANE16;
 | |
|     else if (EltTy == MVT::i32 || EltTy == MVT::f32)
 | |
|       Opcode = AArch64ISD::DUPLANE32;
 | |
|     else if (EltTy == MVT::i64 || EltTy == MVT::f64)
 | |
|       Opcode = AArch64ISD::DUPLANE64;
 | |
|     else
 | |
|       llvm_unreachable("Invalid vector element type?");
 | |
| 
 | |
|     if (VT.getSizeInBits() == 64)
 | |
|       OpLHS = WidenVector(OpLHS, DAG);
 | |
|     SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
 | |
|     return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
 | |
|   }
 | |
|   case OP_VEXT1:
 | |
|   case OP_VEXT2:
 | |
|   case OP_VEXT3: {
 | |
|     unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
 | |
|     return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
 | |
|                        DAG.getConstant(Imm, MVT::i32));
 | |
|   }
 | |
|   case OP_VUZPL:
 | |
|     return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
 | |
|                        OpRHS);
 | |
|   case OP_VUZPR:
 | |
|     return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
 | |
|                        OpRHS);
 | |
|   case OP_VZIPL:
 | |
|     return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
 | |
|                        OpRHS);
 | |
|   case OP_VZIPR:
 | |
|     return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
 | |
|                        OpRHS);
 | |
|   case OP_VTRNL:
 | |
|     return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
 | |
|                        OpRHS);
 | |
|   case OP_VTRNR:
 | |
|     return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
 | |
|                        OpRHS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
 | |
|                            SelectionDAG &DAG) {
 | |
|   // Check to see if we can use the TBL instruction.
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   EVT EltVT = Op.getValueType().getVectorElementType();
 | |
|   unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
 | |
| 
 | |
|   SmallVector<SDValue, 8> TBLMask;
 | |
|   for (int Val : ShuffleMask) {
 | |
|     for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
 | |
|       unsigned Offset = Byte + Val * BytesPerElt;
 | |
|       TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MVT IndexVT = MVT::v8i8;
 | |
|   unsigned IndexLen = 8;
 | |
|   if (Op.getValueType().getSizeInBits() == 128) {
 | |
|     IndexVT = MVT::v16i8;
 | |
|     IndexLen = 16;
 | |
|   }
 | |
| 
 | |
|   SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
 | |
|   SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
 | |
| 
 | |
|   SDValue Shuffle;
 | |
|   if (V2.getNode()->getOpcode() == ISD::UNDEF) {
 | |
|     if (IndexLen == 8)
 | |
|       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
 | |
|     Shuffle = DAG.getNode(
 | |
|         ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
 | |
|         DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
 | |
|         DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
 | |
|                     makeArrayRef(TBLMask.data(), IndexLen)));
 | |
|   } else {
 | |
|     if (IndexLen == 8) {
 | |
|       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
 | |
|       Shuffle = DAG.getNode(
 | |
|           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
 | |
|           DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
 | |
|           DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
 | |
|                       makeArrayRef(TBLMask.data(), IndexLen)));
 | |
|     } else {
 | |
|       // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
 | |
|       // cannot currently represent the register constraints on the input
 | |
|       // table registers.
 | |
|       //  Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
 | |
|       //                   DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
 | |
|       //                               &TBLMask[0], IndexLen));
 | |
|       Shuffle = DAG.getNode(
 | |
|           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
 | |
|           DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
 | |
|           DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
 | |
|                       makeArrayRef(TBLMask.data(), IndexLen)));
 | |
|     }
 | |
|   }
 | |
|   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
 | |
| }
 | |
| 
 | |
| static unsigned getDUPLANEOp(EVT EltType) {
 | |
|   if (EltType == MVT::i8)
 | |
|     return AArch64ISD::DUPLANE8;
 | |
|   if (EltType == MVT::i16)
 | |
|     return AArch64ISD::DUPLANE16;
 | |
|   if (EltType == MVT::i32 || EltType == MVT::f32)
 | |
|     return AArch64ISD::DUPLANE32;
 | |
|   if (EltType == MVT::i64 || EltType == MVT::f64)
 | |
|     return AArch64ISD::DUPLANE64;
 | |
| 
 | |
|   llvm_unreachable("Invalid vector element type?");
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
 | |
| 
 | |
|   // Convert shuffles that are directly supported on NEON to target-specific
 | |
|   // DAG nodes, instead of keeping them as shuffles and matching them again
 | |
|   // during code selection.  This is more efficient and avoids the possibility
 | |
|   // of inconsistencies between legalization and selection.
 | |
|   ArrayRef<int> ShuffleMask = SVN->getMask();
 | |
| 
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
| 
 | |
|   if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
 | |
|                                        V1.getValueType().getSimpleVT())) {
 | |
|     int Lane = SVN->getSplatIndex();
 | |
|     // If this is undef splat, generate it via "just" vdup, if possible.
 | |
|     if (Lane == -1)
 | |
|       Lane = 0;
 | |
| 
 | |
|     if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
 | |
|       return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
 | |
|                          V1.getOperand(0));
 | |
|     // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
 | |
|     // constant. If so, we can just reference the lane's definition directly.
 | |
|     if (V1.getOpcode() == ISD::BUILD_VECTOR &&
 | |
|         !isa<ConstantSDNode>(V1.getOperand(Lane)))
 | |
|       return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
 | |
| 
 | |
|     // Otherwise, duplicate from the lane of the input vector.
 | |
|     unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
 | |
| 
 | |
|     // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
 | |
|     // to make a vector of the same size as this SHUFFLE. We can ignore the
 | |
|     // extract entirely, and canonicalise the concat using WidenVector.
 | |
|     if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
 | |
|       Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
 | |
|       V1 = V1.getOperand(0);
 | |
|     } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
 | |
|       unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
 | |
|       Lane -= Idx * VT.getVectorNumElements() / 2;
 | |
|       V1 = WidenVector(V1.getOperand(Idx), DAG);
 | |
|     } else if (VT.getSizeInBits() == 64)
 | |
|       V1 = WidenVector(V1, DAG);
 | |
| 
 | |
|     return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
 | |
|   }
 | |
| 
 | |
|   if (isREVMask(ShuffleMask, VT, 64))
 | |
|     return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
 | |
|   if (isREVMask(ShuffleMask, VT, 32))
 | |
|     return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
 | |
|   if (isREVMask(ShuffleMask, VT, 16))
 | |
|     return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
 | |
| 
 | |
|   bool ReverseEXT = false;
 | |
|   unsigned Imm;
 | |
|   if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
 | |
|     if (ReverseEXT)
 | |
|       std::swap(V1, V2);
 | |
|     Imm *= getExtFactor(V1);
 | |
|     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
 | |
|                        DAG.getConstant(Imm, MVT::i32));
 | |
|   } else if (V2->getOpcode() == ISD::UNDEF &&
 | |
|              isSingletonEXTMask(ShuffleMask, VT, Imm)) {
 | |
|     Imm *= getExtFactor(V1);
 | |
|     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
 | |
|                        DAG.getConstant(Imm, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   unsigned WhichResult;
 | |
|   if (isZIPMask(ShuffleMask, VT, WhichResult)) {
 | |
|     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
 | |
|     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
 | |
|   }
 | |
|   if (isUZPMask(ShuffleMask, VT, WhichResult)) {
 | |
|     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
 | |
|     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
 | |
|   }
 | |
|   if (isTRNMask(ShuffleMask, VT, WhichResult)) {
 | |
|     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
 | |
|     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
 | |
|   }
 | |
| 
 | |
|   if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
 | |
|     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
 | |
|     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
 | |
|   }
 | |
|   if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
 | |
|     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
 | |
|     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
 | |
|   }
 | |
|   if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
 | |
|     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
 | |
|     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
 | |
|   }
 | |
| 
 | |
|   SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
 | |
|   if (Concat.getNode())
 | |
|     return Concat;
 | |
| 
 | |
|   bool DstIsLeft;
 | |
|   int Anomaly;
 | |
|   int NumInputElements = V1.getValueType().getVectorNumElements();
 | |
|   if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
 | |
|     SDValue DstVec = DstIsLeft ? V1 : V2;
 | |
|     SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
 | |
| 
 | |
|     SDValue SrcVec = V1;
 | |
|     int SrcLane = ShuffleMask[Anomaly];
 | |
|     if (SrcLane >= NumInputElements) {
 | |
|       SrcVec = V2;
 | |
|       SrcLane -= VT.getVectorNumElements();
 | |
|     }
 | |
|     SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
 | |
| 
 | |
|     EVT ScalarVT = VT.getVectorElementType();
 | |
|     if (ScalarVT.getSizeInBits() < 32)
 | |
|       ScalarVT = MVT::i32;
 | |
| 
 | |
|     return DAG.getNode(
 | |
|         ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
 | |
|         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
 | |
|         DstLaneV);
 | |
|   }
 | |
| 
 | |
|   // If the shuffle is not directly supported and it has 4 elements, use
 | |
|   // the PerfectShuffle-generated table to synthesize it from other shuffles.
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   if (NumElts == 4) {
 | |
|     unsigned PFIndexes[4];
 | |
|     for (unsigned i = 0; i != 4; ++i) {
 | |
|       if (ShuffleMask[i] < 0)
 | |
|         PFIndexes[i] = 8;
 | |
|       else
 | |
|         PFIndexes[i] = ShuffleMask[i];
 | |
|     }
 | |
| 
 | |
|     // Compute the index in the perfect shuffle table.
 | |
|     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
 | |
|                             PFIndexes[2] * 9 + PFIndexes[3];
 | |
|     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | |
|     unsigned Cost = (PFEntry >> 30);
 | |
| 
 | |
|     if (Cost <= 4)
 | |
|       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
 | |
|   }
 | |
| 
 | |
|   return GenerateTBL(Op, ShuffleMask, DAG);
 | |
| }
 | |
| 
 | |
| static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
 | |
|                                APInt &UndefBits) {
 | |
|   EVT VT = BVN->getValueType(0);
 | |
|   APInt SplatBits, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
 | |
|     unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
 | |
| 
 | |
|     for (unsigned i = 0; i < NumSplats; ++i) {
 | |
|       CnstBits <<= SplatBitSize;
 | |
|       UndefBits <<= SplatBitSize;
 | |
|       CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
 | |
|       UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   BuildVectorSDNode *BVN =
 | |
|       dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDLoc dl(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   if (!BVN)
 | |
|     return Op;
 | |
| 
 | |
|   APInt CnstBits(VT.getSizeInBits(), 0);
 | |
|   APInt UndefBits(VT.getSizeInBits(), 0);
 | |
|   if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
 | |
|     // We only have BIC vector immediate instruction, which is and-not.
 | |
|     CnstBits = ~CnstBits;
 | |
| 
 | |
|     // We make use of a little bit of goto ickiness in order to avoid having to
 | |
|     // duplicate the immediate matching logic for the undef toggled case.
 | |
|     bool SecondTry = false;
 | |
|   AttemptModImm:
 | |
| 
 | |
|     if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
 | |
|       CnstBits = CnstBits.zextOrTrunc(64);
 | |
|       uint64_t CnstVal = CnstBits.getZExtValue();
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(0, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(8, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(16, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(24, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(0, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(8, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SecondTry)
 | |
|       goto FailedModImm;
 | |
|     SecondTry = true;
 | |
|     CnstBits = ~UndefBits;
 | |
|     goto AttemptModImm;
 | |
|   }
 | |
| 
 | |
| // We can always fall back to a non-immediate AND.
 | |
| FailedModImm:
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| // Specialized code to quickly find if PotentialBVec is a BuildVector that
 | |
| // consists of only the same constant int value, returned in reference arg
 | |
| // ConstVal
 | |
| static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
 | |
|                                      uint64_t &ConstVal) {
 | |
|   BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
 | |
|   if (!Bvec)
 | |
|     return false;
 | |
|   ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
 | |
|   if (!FirstElt)
 | |
|     return false;
 | |
|   EVT VT = Bvec->getValueType(0);
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   for (unsigned i = 1; i < NumElts; ++i)
 | |
|     if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
 | |
|       return false;
 | |
|   ConstVal = FirstElt->getZExtValue();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static unsigned getIntrinsicID(const SDNode *N) {
 | |
|   unsigned Opcode = N->getOpcode();
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     return Intrinsic::not_intrinsic;
 | |
|   case ISD::INTRINSIC_WO_CHAIN: {
 | |
|     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | |
|     if (IID < Intrinsic::num_intrinsics)
 | |
|       return IID;
 | |
|     return Intrinsic::not_intrinsic;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
 | |
| // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
 | |
| // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
 | |
| // Also, logical shift right -> sri, with the same structure.
 | |
| static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   if (!VT.isVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   // Is the first op an AND?
 | |
|   const SDValue And = N->getOperand(0);
 | |
|   if (And.getOpcode() != ISD::AND)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Is the second op an shl or lshr?
 | |
|   SDValue Shift = N->getOperand(1);
 | |
|   // This will have been turned into: AArch64ISD::VSHL vector, #shift
 | |
|   // or AArch64ISD::VLSHR vector, #shift
 | |
|   unsigned ShiftOpc = Shift.getOpcode();
 | |
|   if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
 | |
|     return SDValue();
 | |
|   bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
 | |
| 
 | |
|   // Is the shift amount constant?
 | |
|   ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
 | |
|   if (!C2node)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Is the and mask vector all constant?
 | |
|   uint64_t C1;
 | |
|   if (!isAllConstantBuildVector(And.getOperand(1), C1))
 | |
|     return SDValue();
 | |
| 
 | |
|   // Is C1 == ~C2, taking into account how much one can shift elements of a
 | |
|   // particular size?
 | |
|   uint64_t C2 = C2node->getZExtValue();
 | |
|   unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
 | |
|   if (C2 > ElemSizeInBits)
 | |
|     return SDValue();
 | |
|   unsigned ElemMask = (1 << ElemSizeInBits) - 1;
 | |
|   if ((C1 & ElemMask) != (~C2 & ElemMask))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue X = And.getOperand(0);
 | |
|   SDValue Y = Shift.getOperand(0);
 | |
| 
 | |
|   unsigned Intrin =
 | |
|       IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
 | |
|   SDValue ResultSLI =
 | |
|       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                   DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
 | |
| 
 | |
|   DEBUG(dbgs() << "aarch64-lower: transformed: \n");
 | |
|   DEBUG(N->dump(&DAG));
 | |
|   DEBUG(dbgs() << "into: \n");
 | |
|   DEBUG(ResultSLI->dump(&DAG));
 | |
| 
 | |
|   ++NumShiftInserts;
 | |
|   return ResultSLI;
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
 | |
|   if (EnableAArch64SlrGeneration) {
 | |
|     SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
 | |
|     if (Res.getNode())
 | |
|       return Res;
 | |
|   }
 | |
| 
 | |
|   BuildVectorSDNode *BVN =
 | |
|       dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
 | |
|   SDValue LHS = Op.getOperand(1);
 | |
|   SDLoc dl(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   // OR commutes, so try swapping the operands.
 | |
|   if (!BVN) {
 | |
|     LHS = Op.getOperand(0);
 | |
|     BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
 | |
|   }
 | |
|   if (!BVN)
 | |
|     return Op;
 | |
| 
 | |
|   APInt CnstBits(VT.getSizeInBits(), 0);
 | |
|   APInt UndefBits(VT.getSizeInBits(), 0);
 | |
|   if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
 | |
|     // We make use of a little bit of goto ickiness in order to avoid having to
 | |
|     // duplicate the immediate matching logic for the undef toggled case.
 | |
|     bool SecondTry = false;
 | |
|   AttemptModImm:
 | |
| 
 | |
|     if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
 | |
|       CnstBits = CnstBits.zextOrTrunc(64);
 | |
|       uint64_t CnstVal = CnstBits.getZExtValue();
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(0, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(8, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(16, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(24, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(0, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(8, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SecondTry)
 | |
|       goto FailedModImm;
 | |
|     SecondTry = true;
 | |
|     CnstBits = UndefBits;
 | |
|     goto AttemptModImm;
 | |
|   }
 | |
| 
 | |
| // We can always fall back to a non-immediate OR.
 | |
| FailedModImm:
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
 | |
|   SDLoc dl(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   APInt CnstBits(VT.getSizeInBits(), 0);
 | |
|   APInt UndefBits(VT.getSizeInBits(), 0);
 | |
|   if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
 | |
|     // We make use of a little bit of goto ickiness in order to avoid having to
 | |
|     // duplicate the immediate matching logic for the undef toggled case.
 | |
|     bool SecondTry = false;
 | |
|   AttemptModImm:
 | |
| 
 | |
|     if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
 | |
|       CnstBits = CnstBits.zextOrTrunc(64);
 | |
|       uint64_t CnstVal = CnstBits.getZExtValue();
 | |
| 
 | |
|       // Certain magic vector constants (used to express things like NOT
 | |
|       // and NEG) are passed through unmodified.  This allows codegen patterns
 | |
|       // for these operations to match.  Special-purpose patterns will lower
 | |
|       // these immediates to MOVIs if it proves necessary.
 | |
|       if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
 | |
|         return Op;
 | |
| 
 | |
|       // The many faces of MOVI...
 | |
|       if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
 | |
|         if (VT.getSizeInBits() == 128) {
 | |
|           SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
 | |
|                                     DAG.getConstant(CnstVal, MVT::i32));
 | |
|           return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|         }
 | |
| 
 | |
|         // Support the V64 version via subregister insertion.
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(0, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(8, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(16, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(24, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(0, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(8, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(264, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(272, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       // The few faces of FMOV...
 | |
|       if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
 | |
|           VT.getSizeInBits() == 128) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       // The many faces of MVNI...
 | |
|       CnstVal = ~CnstVal;
 | |
|       if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(0, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(8, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(16, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(24, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(0, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(8, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(264, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
| 
 | |
|       if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
 | |
|         CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
 | |
|         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | |
|         SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
 | |
|                                   DAG.getConstant(CnstVal, MVT::i32),
 | |
|                                   DAG.getConstant(272, MVT::i32));
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SecondTry)
 | |
|       goto FailedModImm;
 | |
|     SecondTry = true;
 | |
|     CnstBits = UndefBits;
 | |
|     goto AttemptModImm;
 | |
|   }
 | |
| FailedModImm:
 | |
| 
 | |
|   // Scan through the operands to find some interesting properties we can
 | |
|   // exploit:
 | |
|   //   1) If only one value is used, we can use a DUP, or
 | |
|   //   2) if only the low element is not undef, we can just insert that, or
 | |
|   //   3) if only one constant value is used (w/ some non-constant lanes),
 | |
|   //      we can splat the constant value into the whole vector then fill
 | |
|   //      in the non-constant lanes.
 | |
|   //   4) FIXME: If different constant values are used, but we can intelligently
 | |
|   //             select the values we'll be overwriting for the non-constant
 | |
|   //             lanes such that we can directly materialize the vector
 | |
|   //             some other way (MOVI, e.g.), we can be sneaky.
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   bool isOnlyLowElement = true;
 | |
|   bool usesOnlyOneValue = true;
 | |
|   bool usesOnlyOneConstantValue = true;
 | |
|   bool isConstant = true;
 | |
|   unsigned NumConstantLanes = 0;
 | |
|   SDValue Value;
 | |
|   SDValue ConstantValue;
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     SDValue V = Op.getOperand(i);
 | |
|     if (V.getOpcode() == ISD::UNDEF)
 | |
|       continue;
 | |
|     if (i > 0)
 | |
|       isOnlyLowElement = false;
 | |
|     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
 | |
|       isConstant = false;
 | |
| 
 | |
|     if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
 | |
|       ++NumConstantLanes;
 | |
|       if (!ConstantValue.getNode())
 | |
|         ConstantValue = V;
 | |
|       else if (ConstantValue != V)
 | |
|         usesOnlyOneConstantValue = false;
 | |
|     }
 | |
| 
 | |
|     if (!Value.getNode())
 | |
|       Value = V;
 | |
|     else if (V != Value)
 | |
|       usesOnlyOneValue = false;
 | |
|   }
 | |
| 
 | |
|   if (!Value.getNode())
 | |
|     return DAG.getUNDEF(VT);
 | |
| 
 | |
|   if (isOnlyLowElement)
 | |
|     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
 | |
| 
 | |
|   // Use DUP for non-constant splats.  For f32 constant splats, reduce to
 | |
|   // i32 and try again.
 | |
|   if (usesOnlyOneValue) {
 | |
|     if (!isConstant) {
 | |
|       if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
 | |
|           Value.getValueType() != VT)
 | |
|         return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
 | |
| 
 | |
|       // This is actually a DUPLANExx operation, which keeps everything vectory.
 | |
| 
 | |
|       // DUPLANE works on 128-bit vectors, widen it if necessary.
 | |
|       SDValue Lane = Value.getOperand(1);
 | |
|       Value = Value.getOperand(0);
 | |
|       if (Value.getValueType().getSizeInBits() == 64)
 | |
|         Value = WidenVector(Value, DAG);
 | |
| 
 | |
|       unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
 | |
|       return DAG.getNode(Opcode, dl, VT, Value, Lane);
 | |
|     }
 | |
| 
 | |
|     if (VT.getVectorElementType().isFloatingPoint()) {
 | |
|       SmallVector<SDValue, 8> Ops;
 | |
|       MVT NewType =
 | |
|           (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
 | |
|       for (unsigned i = 0; i < NumElts; ++i)
 | |
|         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
 | |
|       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
 | |
|       SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
 | |
|       Val = LowerBUILD_VECTOR(Val, DAG);
 | |
|       if (Val.getNode())
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there was only one constant value used and for more than one lane,
 | |
|   // start by splatting that value, then replace the non-constant lanes. This
 | |
|   // is better than the default, which will perform a separate initialization
 | |
|   // for each lane.
 | |
|   if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
 | |
|     SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
 | |
|     // Now insert the non-constant lanes.
 | |
|     for (unsigned i = 0; i < NumElts; ++i) {
 | |
|       SDValue V = Op.getOperand(i);
 | |
|       SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
 | |
|       if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
 | |
|         // Note that type legalization likely mucked about with the VT of the
 | |
|         // source operand, so we may have to convert it here before inserting.
 | |
|         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
 | |
|       }
 | |
|     }
 | |
|     return Val;
 | |
|   }
 | |
| 
 | |
|   // If all elements are constants and the case above didn't get hit, fall back
 | |
|   // to the default expansion, which will generate a load from the constant
 | |
|   // pool.
 | |
|   if (isConstant)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
 | |
|   if (NumElts >= 4) {
 | |
|     SDValue shuffle = ReconstructShuffle(Op, DAG);
 | |
|     if (shuffle != SDValue())
 | |
|       return shuffle;
 | |
|   }
 | |
| 
 | |
|   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
 | |
|   // know the default expansion would otherwise fall back on something even
 | |
|   // worse. For a vector with one or two non-undef values, that's
 | |
|   // scalar_to_vector for the elements followed by a shuffle (provided the
 | |
|   // shuffle is valid for the target) and materialization element by element
 | |
|   // on the stack followed by a load for everything else.
 | |
|   if (!isConstant && !usesOnlyOneValue) {
 | |
|     SDValue Vec = DAG.getUNDEF(VT);
 | |
|     SDValue Op0 = Op.getOperand(0);
 | |
|     unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
 | |
|     unsigned i = 0;
 | |
|     // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
 | |
|     // a) Avoid a RMW dependency on the full vector register, and
 | |
|     // b) Allow the register coalescer to fold away the copy if the
 | |
|     //    value is already in an S or D register.
 | |
|     if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
 | |
|       unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
 | |
|       MachineSDNode *N =
 | |
|           DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
 | |
|                              DAG.getTargetConstant(SubIdx, MVT::i32));
 | |
|       Vec = SDValue(N, 0);
 | |
|       ++i;
 | |
|     }
 | |
|     for (; i < NumElts; ++i) {
 | |
|       SDValue V = Op.getOperand(i);
 | |
|       if (V.getOpcode() == ISD::UNDEF)
 | |
|         continue;
 | |
|       SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
 | |
|       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
 | |
|     }
 | |
|     return Vec;
 | |
|   }
 | |
| 
 | |
|   // Just use the default expansion. We failed to find a better alternative.
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
 | |
|                                                       SelectionDAG &DAG) const {
 | |
|   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
 | |
| 
 | |
|   // Check for non-constant lane.
 | |
|   if (!isa<ConstantSDNode>(Op.getOperand(2)))
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = Op.getOperand(0).getValueType();
 | |
| 
 | |
|   // Insertion/extraction are legal for V128 types.
 | |
|   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
 | |
|       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
 | |
|     return Op;
 | |
| 
 | |
|   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
 | |
|       VT != MVT::v1i64 && VT != MVT::v2f32)
 | |
|     return SDValue();
 | |
| 
 | |
|   // For V64 types, we perform insertion by expanding the value
 | |
|   // to a V128 type and perform the insertion on that.
 | |
|   SDLoc DL(Op);
 | |
|   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
 | |
|   EVT WideTy = WideVec.getValueType();
 | |
| 
 | |
|   SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
 | |
|                              Op.getOperand(1), Op.getOperand(2));
 | |
|   // Re-narrow the resultant vector.
 | |
|   return NarrowVector(Node, DAG);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
 | |
| 
 | |
|   // Check for non-constant lane.
 | |
|   if (!isa<ConstantSDNode>(Op.getOperand(1)))
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = Op.getOperand(0).getValueType();
 | |
| 
 | |
|   // Insertion/extraction are legal for V128 types.
 | |
|   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
 | |
|       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
 | |
|     return Op;
 | |
| 
 | |
|   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
 | |
|       VT != MVT::v1i64 && VT != MVT::v2f32)
 | |
|     return SDValue();
 | |
| 
 | |
|   // For V64 types, we perform extraction by expanding the value
 | |
|   // to a V128 type and perform the extraction on that.
 | |
|   SDLoc DL(Op);
 | |
|   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
 | |
|   EVT WideTy = WideVec.getValueType();
 | |
| 
 | |
|   EVT ExtrTy = WideTy.getVectorElementType();
 | |
|   if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
 | |
|     ExtrTy = MVT::i32;
 | |
| 
 | |
|   // For extractions, we just return the result directly.
 | |
|   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
 | |
|                      Op.getOperand(1));
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
 | |
|                                                       SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getOperand(0).getValueType();
 | |
|   SDLoc dl(Op);
 | |
|   // Just in case...
 | |
|   if (!VT.isVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | |
|   if (!Cst)
 | |
|     return SDValue();
 | |
|   unsigned Val = Cst->getZExtValue();
 | |
| 
 | |
|   unsigned Size = Op.getValueType().getSizeInBits();
 | |
|   if (Val == 0) {
 | |
|     switch (Size) {
 | |
|     case 8:
 | |
|       return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
 | |
|                                         Op.getOperand(0));
 | |
|     case 16:
 | |
|       return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
 | |
|                                         Op.getOperand(0));
 | |
|     case 32:
 | |
|       return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
 | |
|                                         Op.getOperand(0));
 | |
|     case 64:
 | |
|       return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
 | |
|                                         Op.getOperand(0));
 | |
|     default:
 | |
|       llvm_unreachable("Unexpected vector type in extract_subvector!");
 | |
|     }
 | |
|   }
 | |
|   // If this is extracting the upper 64-bits of a 128-bit vector, we match
 | |
|   // that directly.
 | |
|   if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
 | |
|     return Op;
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
 | |
|                                                EVT VT) const {
 | |
|   if (VT.getVectorNumElements() == 4 &&
 | |
|       (VT.is128BitVector() || VT.is64BitVector())) {
 | |
|     unsigned PFIndexes[4];
 | |
|     for (unsigned i = 0; i != 4; ++i) {
 | |
|       if (M[i] < 0)
 | |
|         PFIndexes[i] = 8;
 | |
|       else
 | |
|         PFIndexes[i] = M[i];
 | |
|     }
 | |
| 
 | |
|     // Compute the index in the perfect shuffle table.
 | |
|     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
 | |
|                             PFIndexes[2] * 9 + PFIndexes[3];
 | |
|     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | |
|     unsigned Cost = (PFEntry >> 30);
 | |
| 
 | |
|     if (Cost <= 4)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   bool DummyBool;
 | |
|   int DummyInt;
 | |
|   unsigned DummyUnsigned;
 | |
| 
 | |
|   return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
 | |
|           isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
 | |
|           isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
 | |
|           // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
 | |
|           isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
 | |
|           isZIPMask(M, VT, DummyUnsigned) ||
 | |
|           isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
 | |
|           isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
 | |
|           isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
 | |
|           isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
 | |
|           isConcatMask(M, VT, VT.getSizeInBits() == 128));
 | |
| }
 | |
| 
 | |
| /// getVShiftImm - Check if this is a valid build_vector for the immediate
 | |
| /// operand of a vector shift operation, where all the elements of the
 | |
| /// build_vector must have the same constant integer value.
 | |
| static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
 | |
|   // Ignore bit_converts.
 | |
|   while (Op.getOpcode() == ISD::BITCAST)
 | |
|     Op = Op.getOperand(0);
 | |
|   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
 | |
|   APInt SplatBits, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
 | |
|                                     HasAnyUndefs, ElementBits) ||
 | |
|       SplatBitSize > ElementBits)
 | |
|     return false;
 | |
|   Cnt = SplatBits.getSExtValue();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVShiftLImm - Check if this is a valid build_vector for the immediate
 | |
| /// operand of a vector shift left operation.  That value must be in the range:
 | |
| ///   0 <= Value < ElementBits for a left shift; or
 | |
| ///   0 <= Value <= ElementBits for a long left shift.
 | |
| static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
 | |
|   assert(VT.isVector() && "vector shift count is not a vector type");
 | |
|   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
 | |
|   if (!getVShiftImm(Op, ElementBits, Cnt))
 | |
|     return false;
 | |
|   return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
 | |
| }
 | |
| 
 | |
| /// isVShiftRImm - Check if this is a valid build_vector for the immediate
 | |
| /// operand of a vector shift right operation.  For a shift opcode, the value
 | |
| /// is positive, but for an intrinsic the value count must be negative. The
 | |
| /// absolute value must be in the range:
 | |
| ///   1 <= |Value| <= ElementBits for a right shift; or
 | |
| ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
 | |
| static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
 | |
|                          int64_t &Cnt) {
 | |
|   assert(VT.isVector() && "vector shift count is not a vector type");
 | |
|   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
 | |
|   if (!getVShiftImm(Op, ElementBits, Cnt))
 | |
|     return false;
 | |
|   if (isIntrinsic)
 | |
|     Cnt = -Cnt;
 | |
|   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
 | |
|                                                       SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   int64_t Cnt;
 | |
| 
 | |
|   if (!Op.getOperand(1).getValueType().isVector())
 | |
|     return Op;
 | |
|   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("unexpected shift opcode");
 | |
| 
 | |
|   case ISD::SHL:
 | |
|     if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
 | |
|       return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
 | |
|                          DAG.getConstant(Cnt, MVT::i32));
 | |
|     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                        DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
 | |
|                        Op.getOperand(0), Op.getOperand(1));
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:
 | |
|     // Right shift immediate
 | |
|     if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
 | |
|         Cnt < EltSize) {
 | |
|       unsigned Opc =
 | |
|           (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
 | |
|       return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
 | |
|                          DAG.getConstant(Cnt, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     // Right shift register.  Note, there is not a shift right register
 | |
|     // instruction, but the shift left register instruction takes a signed
 | |
|     // value, where negative numbers specify a right shift.
 | |
|     unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
 | |
|                                                 : Intrinsic::aarch64_neon_ushl;
 | |
|     // negate the shift amount
 | |
|     SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
 | |
|     SDValue NegShiftLeft =
 | |
|         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                     DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
 | |
|     return NegShiftLeft;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
 | |
|                                     AArch64CC::CondCode CC, bool NoNans, EVT VT,
 | |
|                                     SDLoc dl, SelectionDAG &DAG) {
 | |
|   EVT SrcVT = LHS.getValueType();
 | |
| 
 | |
|   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
 | |
|   APInt CnstBits(VT.getSizeInBits(), 0);
 | |
|   APInt UndefBits(VT.getSizeInBits(), 0);
 | |
|   bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
 | |
|   bool IsZero = IsCnst && (CnstBits == 0);
 | |
| 
 | |
|   if (SrcVT.getVectorElementType().isFloatingPoint()) {
 | |
|     switch (CC) {
 | |
|     default:
 | |
|       return SDValue();
 | |
|     case AArch64CC::NE: {
 | |
|       SDValue Fcmeq;
 | |
|       if (IsZero)
 | |
|         Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
 | |
|       else
 | |
|         Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
 | |
|       return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
 | |
|     }
 | |
|     case AArch64CC::EQ:
 | |
|       if (IsZero)
 | |
|         return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
 | |
|       return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
 | |
|     case AArch64CC::GE:
 | |
|       if (IsZero)
 | |
|         return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
 | |
|       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
 | |
|     case AArch64CC::GT:
 | |
|       if (IsZero)
 | |
|         return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
 | |
|       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
 | |
|     case AArch64CC::LS:
 | |
|       if (IsZero)
 | |
|         return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
 | |
|       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
 | |
|     case AArch64CC::LT:
 | |
|       if (!NoNans)
 | |
|         return SDValue();
 | |
|     // If we ignore NaNs then we can use to the MI implementation.
 | |
|     // Fallthrough.
 | |
|     case AArch64CC::MI:
 | |
|       if (IsZero)
 | |
|         return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
 | |
|       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     return SDValue();
 | |
|   case AArch64CC::NE: {
 | |
|     SDValue Cmeq;
 | |
|     if (IsZero)
 | |
|       Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
 | |
|     else
 | |
|       Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
 | |
|     return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
 | |
|   }
 | |
|   case AArch64CC::EQ:
 | |
|     if (IsZero)
 | |
|       return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
 | |
|     return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
 | |
|   case AArch64CC::GE:
 | |
|     if (IsZero)
 | |
|       return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
 | |
|     return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
 | |
|   case AArch64CC::GT:
 | |
|     if (IsZero)
 | |
|       return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
 | |
|     return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
 | |
|   case AArch64CC::LE:
 | |
|     if (IsZero)
 | |
|       return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
 | |
|     return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
 | |
|   case AArch64CC::LS:
 | |
|     return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
 | |
|   case AArch64CC::LO:
 | |
|     return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
 | |
|   case AArch64CC::LT:
 | |
|     if (IsZero)
 | |
|       return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
 | |
|     return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
 | |
|   case AArch64CC::HI:
 | |
|     return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
 | |
|   case AArch64CC::HS:
 | |
|     return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   if (LHS.getValueType().getVectorElementType().isInteger()) {
 | |
|     assert(LHS.getValueType() == RHS.getValueType());
 | |
|     AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
 | |
|     return EmitVectorComparison(LHS, RHS, AArch64CC, false, Op.getValueType(),
 | |
|                                 dl, DAG);
 | |
|   }
 | |
| 
 | |
|   assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
 | |
|          LHS.getValueType().getVectorElementType() == MVT::f64);
 | |
| 
 | |
|   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
 | |
|   // clean.  Some of them require two branches to implement.
 | |
|   AArch64CC::CondCode CC1, CC2;
 | |
|   bool ShouldInvert;
 | |
|   changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
 | |
| 
 | |
|   bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
 | |
|   SDValue Cmp =
 | |
|       EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG);
 | |
|   if (!Cmp.getNode())
 | |
|     return SDValue();
 | |
| 
 | |
|   if (CC2 != AArch64CC::AL) {
 | |
|     SDValue Cmp2 =
 | |
|         EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG);
 | |
|     if (!Cmp2.getNode())
 | |
|       return SDValue();
 | |
| 
 | |
|     Cmp = DAG.getNode(ISD::OR, dl, Cmp.getValueType(), Cmp, Cmp2);
 | |
|   }
 | |
| 
 | |
|   if (ShouldInvert)
 | |
|     return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
 | |
| 
 | |
|   return Cmp;
 | |
| }
 | |
| 
 | |
| /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
 | |
| /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
 | |
| /// specified in the intrinsic calls.
 | |
| bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
 | |
|                                                const CallInst &I,
 | |
|                                                unsigned Intrinsic) const {
 | |
|   switch (Intrinsic) {
 | |
|   case Intrinsic::aarch64_neon_ld2:
 | |
|   case Intrinsic::aarch64_neon_ld3:
 | |
|   case Intrinsic::aarch64_neon_ld4:
 | |
|   case Intrinsic::aarch64_neon_ld1x2:
 | |
|   case Intrinsic::aarch64_neon_ld1x3:
 | |
|   case Intrinsic::aarch64_neon_ld1x4:
 | |
|   case Intrinsic::aarch64_neon_ld2lane:
 | |
|   case Intrinsic::aarch64_neon_ld3lane:
 | |
|   case Intrinsic::aarch64_neon_ld4lane:
 | |
|   case Intrinsic::aarch64_neon_ld2r:
 | |
|   case Intrinsic::aarch64_neon_ld3r:
 | |
|   case Intrinsic::aarch64_neon_ld4r: {
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     // Conservatively set memVT to the entire set of vectors loaded.
 | |
|     uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
 | |
|     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
 | |
|     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
 | |
|     Info.offset = 0;
 | |
|     Info.align = 0;
 | |
|     Info.vol = false; // volatile loads with NEON intrinsics not supported
 | |
|     Info.readMem = true;
 | |
|     Info.writeMem = false;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::aarch64_neon_st2:
 | |
|   case Intrinsic::aarch64_neon_st3:
 | |
|   case Intrinsic::aarch64_neon_st4:
 | |
|   case Intrinsic::aarch64_neon_st1x2:
 | |
|   case Intrinsic::aarch64_neon_st1x3:
 | |
|   case Intrinsic::aarch64_neon_st1x4:
 | |
|   case Intrinsic::aarch64_neon_st2lane:
 | |
|   case Intrinsic::aarch64_neon_st3lane:
 | |
|   case Intrinsic::aarch64_neon_st4lane: {
 | |
|     Info.opc = ISD::INTRINSIC_VOID;
 | |
|     // Conservatively set memVT to the entire set of vectors stored.
 | |
|     unsigned NumElts = 0;
 | |
|     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
 | |
|       Type *ArgTy = I.getArgOperand(ArgI)->getType();
 | |
|       if (!ArgTy->isVectorTy())
 | |
|         break;
 | |
|       NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
 | |
|     }
 | |
|     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
 | |
|     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
 | |
|     Info.offset = 0;
 | |
|     Info.align = 0;
 | |
|     Info.vol = false; // volatile stores with NEON intrinsics not supported
 | |
|     Info.readMem = false;
 | |
|     Info.writeMem = true;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::aarch64_ldaxr:
 | |
|   case Intrinsic::aarch64_ldxr: {
 | |
|     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = MVT::getVT(PtrTy->getElementType());
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = 0;
 | |
|     Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
 | |
|     Info.vol = true;
 | |
|     Info.readMem = true;
 | |
|     Info.writeMem = false;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::aarch64_stlxr:
 | |
|   case Intrinsic::aarch64_stxr: {
 | |
|     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = MVT::getVT(PtrTy->getElementType());
 | |
|     Info.ptrVal = I.getArgOperand(1);
 | |
|     Info.offset = 0;
 | |
|     Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
 | |
|     Info.vol = true;
 | |
|     Info.readMem = false;
 | |
|     Info.writeMem = true;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::aarch64_ldaxp:
 | |
|   case Intrinsic::aarch64_ldxp: {
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = MVT::i128;
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = 0;
 | |
|     Info.align = 16;
 | |
|     Info.vol = true;
 | |
|     Info.readMem = true;
 | |
|     Info.writeMem = false;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::aarch64_stlxp:
 | |
|   case Intrinsic::aarch64_stxp: {
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = MVT::i128;
 | |
|     Info.ptrVal = I.getArgOperand(2);
 | |
|     Info.offset = 0;
 | |
|     Info.align = 16;
 | |
|     Info.vol = true;
 | |
|     Info.readMem = false;
 | |
|     Info.writeMem = true;
 | |
|     return true;
 | |
|   }
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Truncations from 64-bit GPR to 32-bit GPR is free.
 | |
| bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
 | |
|   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | |
|     return false;
 | |
|   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
 | |
|   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
 | |
|   return NumBits1 > NumBits2;
 | |
| }
 | |
| bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
 | |
|   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
 | |
|     return false;
 | |
|   unsigned NumBits1 = VT1.getSizeInBits();
 | |
|   unsigned NumBits2 = VT2.getSizeInBits();
 | |
|   return NumBits1 > NumBits2;
 | |
| }
 | |
| 
 | |
| // All 32-bit GPR operations implicitly zero the high-half of the corresponding
 | |
| // 64-bit GPR.
 | |
| bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
 | |
|   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | |
|     return false;
 | |
|   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
 | |
|   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
 | |
|   return NumBits1 == 32 && NumBits2 == 64;
 | |
| }
 | |
| bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
 | |
|   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
 | |
|     return false;
 | |
|   unsigned NumBits1 = VT1.getSizeInBits();
 | |
|   unsigned NumBits2 = VT2.getSizeInBits();
 | |
|   return NumBits1 == 32 && NumBits2 == 64;
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
 | |
|   EVT VT1 = Val.getValueType();
 | |
|   if (isZExtFree(VT1, VT2)) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (Val.getOpcode() != ISD::LOAD)
 | |
|     return false;
 | |
| 
 | |
|   // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
 | |
|   return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
 | |
|           VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
 | |
|           VT1.getSizeInBits() <= 32);
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
 | |
|                                           unsigned &RequiredAligment) const {
 | |
|   if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
 | |
|     return false;
 | |
|   // Cyclone supports unaligned accesses.
 | |
|   RequiredAligment = 0;
 | |
|   unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
 | |
|   return NumBits == 32 || NumBits == 64;
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
 | |
|                                           unsigned &RequiredAligment) const {
 | |
|   if (!LoadedType.isSimple() ||
 | |
|       (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
 | |
|     return false;
 | |
|   // Cyclone supports unaligned accesses.
 | |
|   RequiredAligment = 0;
 | |
|   unsigned NumBits = LoadedType.getSizeInBits();
 | |
|   return NumBits == 32 || NumBits == 64;
 | |
| }
 | |
| 
 | |
| static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
 | |
|                        unsigned AlignCheck) {
 | |
|   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
 | |
|           (DstAlign == 0 || DstAlign % AlignCheck == 0));
 | |
| }
 | |
| 
 | |
| EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
 | |
|                                                unsigned SrcAlign, bool IsMemset,
 | |
|                                                bool ZeroMemset,
 | |
|                                                bool MemcpyStrSrc,
 | |
|                                                MachineFunction &MF) const {
 | |
|   // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
 | |
|   // instruction to materialize the v2i64 zero and one store (with restrictive
 | |
|   // addressing mode). Just do two i64 store of zero-registers.
 | |
|   bool Fast;
 | |
|   const Function *F = MF.getFunction();
 | |
|   if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
 | |
|       !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
 | |
|                                        Attribute::NoImplicitFloat) &&
 | |
|       (memOpAlign(SrcAlign, DstAlign, 16) ||
 | |
|        (allowsUnalignedMemoryAccesses(MVT::f128, 0, &Fast) && Fast)))
 | |
|     return MVT::f128;
 | |
| 
 | |
|   return Size >= 8 ? MVT::i64 : MVT::i32;
 | |
| }
 | |
| 
 | |
| // 12-bit optionally shifted immediates are legal for adds.
 | |
| bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
 | |
|   if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
 | |
| // immediates is the same as for an add or a sub.
 | |
| bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
 | |
|   if (Immed < 0)
 | |
|     Immed *= -1;
 | |
|   return isLegalAddImmediate(Immed);
 | |
| }
 | |
| 
 | |
| /// isLegalAddressingMode - Return true if the addressing mode represented
 | |
| /// by AM is legal for this target, for a load/store of the specified type.
 | |
| bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
 | |
|                                                   Type *Ty) const {
 | |
|   // AArch64 has five basic addressing modes:
 | |
|   //  reg
 | |
|   //  reg + 9-bit signed offset
 | |
|   //  reg + SIZE_IN_BYTES * 12-bit unsigned offset
 | |
|   //  reg1 + reg2
 | |
|   //  reg + SIZE_IN_BYTES * reg
 | |
| 
 | |
|   // No global is ever allowed as a base.
 | |
|   if (AM.BaseGV)
 | |
|     return false;
 | |
| 
 | |
|   // No reg+reg+imm addressing.
 | |
|   if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
 | |
|     return false;
 | |
| 
 | |
|   // check reg + imm case:
 | |
|   // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
 | |
|   uint64_t NumBytes = 0;
 | |
|   if (Ty->isSized()) {
 | |
|     uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
 | |
|     NumBytes = NumBits / 8;
 | |
|     if (!isPowerOf2_64(NumBits))
 | |
|       NumBytes = 0;
 | |
|   }
 | |
| 
 | |
|   if (!AM.Scale) {
 | |
|     int64_t Offset = AM.BaseOffs;
 | |
| 
 | |
|     // 9-bit signed offset
 | |
|     if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
 | |
|       return true;
 | |
| 
 | |
|     // 12-bit unsigned offset
 | |
|     unsigned shift = Log2_64(NumBytes);
 | |
|     if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
 | |
|         // Must be a multiple of NumBytes (NumBytes is a power of 2)
 | |
|         (Offset >> shift) << shift == Offset)
 | |
|       return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
 | |
| 
 | |
|   if (!AM.Scale || AM.Scale == 1 ||
 | |
|       (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
 | |
|                                                 Type *Ty) const {
 | |
|   // Scaling factors are not free at all.
 | |
|   // Operands                     | Rt Latency
 | |
|   // -------------------------------------------
 | |
|   // Rt, [Xn, Xm]                 | 4
 | |
|   // -------------------------------------------
 | |
|   // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
 | |
|   // Rt, [Xn, Wm, <extend> #imm]  |
 | |
|   if (isLegalAddressingMode(AM, Ty))
 | |
|     // Scale represents reg2 * scale, thus account for 1 if
 | |
|     // it is not equal to 0 or 1.
 | |
|     return AM.Scale != 0 && AM.Scale != 1;
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
 | |
|   VT = VT.getScalarType();
 | |
| 
 | |
|   if (!VT.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     return true;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| const MCPhysReg *
 | |
| AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
 | |
|   // LR is a callee-save register, but we must treat it as clobbered by any call
 | |
|   // site. Hence we include LR in the scratch registers, which are in turn added
 | |
|   // as implicit-defs for stackmaps and patchpoints.
 | |
|   static const MCPhysReg ScratchRegs[] = {
 | |
|     AArch64::X16, AArch64::X17, AArch64::LR, 0
 | |
|   };
 | |
|   return ScratchRegs;
 | |
| }
 | |
| 
 | |
| bool
 | |
| AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
 | |
|   EVT VT = N->getValueType(0);
 | |
|     // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
 | |
|     // it with shift to let it be lowered to UBFX.
 | |
|   if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
 | |
|       isa<ConstantSDNode>(N->getOperand(1))) {
 | |
|     uint64_t TruncMask = N->getConstantOperandVal(1);
 | |
|     if (isMask_64(TruncMask) &&
 | |
|       N->getOperand(0).getOpcode() == ISD::SRL &&
 | |
|       isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
 | |
|                                                               Type *Ty) const {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   if (BitSize == 0)
 | |
|     return false;
 | |
| 
 | |
|   int64_t Val = Imm.getSExtValue();
 | |
|   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
 | |
|     return true;
 | |
| 
 | |
|   if ((int64_t)Val < 0)
 | |
|     Val = ~Val;
 | |
|   if (BitSize == 32)
 | |
|     Val &= (1LL << 32) - 1;
 | |
| 
 | |
|   unsigned LZ = countLeadingZeros((uint64_t)Val);
 | |
|   unsigned Shift = (63 - LZ) / 16;
 | |
|   // MOVZ is free so return true for one or fewer MOVK.
 | |
|   return (Shift < 3) ? true : false;
 | |
| }
 | |
| 
 | |
| // Generate SUBS and CSEL for integer abs.
 | |
| static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   SDValue N1 = N->getOperand(1);
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
 | |
|   // and change it to SUB and CSEL.
 | |
|   if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
 | |
|       N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
 | |
|       N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
 | |
|     if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
 | |
|       if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
 | |
|         SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
 | |
|                                   N0.getOperand(0));
 | |
|         // Generate SUBS & CSEL.
 | |
|         SDValue Cmp =
 | |
|             DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
 | |
|                         N0.getOperand(0), DAG.getConstant(0, VT));
 | |
|         return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
 | |
|                            DAG.getConstant(AArch64CC::PL, MVT::i32),
 | |
|                            SDValue(Cmp.getNode(), 1));
 | |
|       }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // performXorCombine - Attempts to handle integer ABS.
 | |
| static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const AArch64Subtarget *Subtarget) {
 | |
|   if (DCI.isBeforeLegalizeOps())
 | |
|     return SDValue();
 | |
| 
 | |
|   return performIntegerAbsCombine(N, DAG);
 | |
| }
 | |
| 
 | |
| static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const AArch64Subtarget *Subtarget) {
 | |
|   if (DCI.isBeforeLegalizeOps())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Multiplication of a power of two plus/minus one can be done more
 | |
|   // cheaply as as shift+add/sub. For now, this is true unilaterally. If
 | |
|   // future CPUs have a cheaper MADD instruction, this may need to be
 | |
|   // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
 | |
|   // 64-bit is 5 cycles, so this is always a win.
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
 | |
|     APInt Value = C->getAPIntValue();
 | |
|     EVT VT = N->getValueType(0);
 | |
|     APInt VM1 = Value - 1;
 | |
|     if (VM1.isPowerOf2()) {
 | |
|       // Multiplying by one more than a power of two, replace with a shift
 | |
|       // and an add.
 | |
|       SDValue ShiftedVal =
 | |
|           DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
 | |
|                       DAG.getConstant(VM1.logBase2(), MVT::i64));
 | |
|       return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
 | |
|     }
 | |
|     APInt VP1 = Value + 1;
 | |
|     if (VP1.isPowerOf2()) {
 | |
|       // Multiplying by one less than a power of two, replace with a shift
 | |
|       // and a subtract.
 | |
|       SDValue ShiftedVal =
 | |
|           DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
 | |
|                       DAG.getConstant(VP1.logBase2(), MVT::i64));
 | |
|       return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
 | |
|     }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT != MVT::f32 && VT != MVT::f64)
 | |
|     return SDValue();
 | |
|   // Only optimize when the source and destination types have the same width.
 | |
|   if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
 | |
|     return SDValue();
 | |
| 
 | |
|   // If the result of an integer load is only used by an integer-to-float
 | |
|   // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
 | |
|   // This eliminates an "integer-to-vector-move UOP and improve throughput.
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
 | |
|       // Do not change the width of a volatile load.
 | |
|       !cast<LoadSDNode>(N0)->isVolatile()) {
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | |
|     SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
 | |
|                                LN0->getPointerInfo(), LN0->isVolatile(),
 | |
|                                LN0->isNonTemporal(), LN0->isInvariant(),
 | |
|                                LN0->getAlignment());
 | |
| 
 | |
|     // Make sure successors of the original load stay after it by updating them
 | |
|     // to use the new Chain.
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
 | |
| 
 | |
|     unsigned Opcode =
 | |
|         (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
 | |
|     return DAG.getNode(Opcode, SDLoc(N), VT, Load);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// An EXTR instruction is made up of two shifts, ORed together. This helper
 | |
| /// searches for and classifies those shifts.
 | |
| static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
 | |
|                          bool &FromHi) {
 | |
|   if (N.getOpcode() == ISD::SHL)
 | |
|     FromHi = false;
 | |
|   else if (N.getOpcode() == ISD::SRL)
 | |
|     FromHi = true;
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   if (!isa<ConstantSDNode>(N.getOperand(1)))
 | |
|     return false;
 | |
| 
 | |
|   ShiftAmount = N->getConstantOperandVal(1);
 | |
|   Src = N->getOperand(0);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// EXTR instruction extracts a contiguous chunk of bits from two existing
 | |
| /// registers viewed as a high/low pair. This function looks for the pattern:
 | |
| /// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
 | |
| /// EXTR. Can't quite be done in TableGen because the two immediates aren't
 | |
| /// independent.
 | |
| static SDValue tryCombineToEXTR(SDNode *N,
 | |
|                                 TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc DL(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   assert(N->getOpcode() == ISD::OR && "Unexpected root");
 | |
| 
 | |
|   if (VT != MVT::i32 && VT != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue LHS;
 | |
|   uint32_t ShiftLHS = 0;
 | |
|   bool LHSFromHi = 0;
 | |
|   if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue RHS;
 | |
|   uint32_t ShiftRHS = 0;
 | |
|   bool RHSFromHi = 0;
 | |
|   if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
 | |
|     return SDValue();
 | |
| 
 | |
|   // If they're both trying to come from the high part of the register, they're
 | |
|   // not really an EXTR.
 | |
|   if (LHSFromHi == RHSFromHi)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
 | |
|     return SDValue();
 | |
| 
 | |
|   if (LHSFromHi) {
 | |
|     std::swap(LHS, RHS);
 | |
|     std::swap(ShiftLHS, ShiftRHS);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
 | |
|                      DAG.getConstant(ShiftRHS, MVT::i64));
 | |
| }
 | |
| 
 | |
| static SDValue tryCombineToBSL(SDNode *N,
 | |
|                                 TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   if (!VT.isVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   if (N0.getOpcode() != ISD::AND)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue N1 = N->getOperand(1);
 | |
|   if (N1.getOpcode() != ISD::AND)
 | |
|     return SDValue();
 | |
| 
 | |
|   // We only have to look for constant vectors here since the general, variable
 | |
|   // case can be handled in TableGen.
 | |
|   unsigned Bits = VT.getVectorElementType().getSizeInBits();
 | |
|   uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
 | |
|   for (int i = 1; i >= 0; --i)
 | |
|     for (int j = 1; j >= 0; --j) {
 | |
|       BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
 | |
|       BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
 | |
|       if (!BVN0 || !BVN1)
 | |
|         continue;
 | |
| 
 | |
|       bool FoundMatch = true;
 | |
|       for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
 | |
|         ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
 | |
|         ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
 | |
|         if (!CN0 || !CN1 ||
 | |
|             CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
 | |
|           FoundMatch = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (FoundMatch)
 | |
|         return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
 | |
|                            N0->getOperand(1 - i), N1->getOperand(1 - j));
 | |
|     }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                 const AArch64Subtarget *Subtarget) {
 | |
|   // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
 | |
|   if (!EnableAArch64ExtrGeneration)
 | |
|     return SDValue();
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue Res = tryCombineToEXTR(N, DCI);
 | |
|   if (Res.getNode())
 | |
|     return Res;
 | |
| 
 | |
|   Res = tryCombineToBSL(N, DCI);
 | |
|   if (Res.getNode())
 | |
|     return Res;
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue performBitcastCombine(SDNode *N,
 | |
|                                      TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                      SelectionDAG &DAG) {
 | |
|   // Wait 'til after everything is legalized to try this. That way we have
 | |
|   // legal vector types and such.
 | |
|   if (DCI.isBeforeLegalizeOps())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Remove extraneous bitcasts around an extract_subvector.
 | |
|   // For example,
 | |
|   //    (v4i16 (bitconvert
 | |
|   //             (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
 | |
|   //  becomes
 | |
|   //    (extract_subvector ((v8i16 ...), (i64 4)))
 | |
| 
 | |
|   // Only interested in 64-bit vectors as the ultimate result.
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (!VT.isVector())
 | |
|     return SDValue();
 | |
|   if (VT.getSimpleVT().getSizeInBits() != 64)
 | |
|     return SDValue();
 | |
|   // Is the operand an extract_subvector starting at the beginning or halfway
 | |
|   // point of the vector? A low half may also come through as an
 | |
|   // EXTRACT_SUBREG, so look for that, too.
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
|   if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
 | |
|       !(Op0->isMachineOpcode() &&
 | |
|         Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
 | |
|     return SDValue();
 | |
|   uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
 | |
|   if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
 | |
|     if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
 | |
|       return SDValue();
 | |
|   } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
 | |
|     if (idx != AArch64::dsub)
 | |
|       return SDValue();
 | |
|     // The dsub reference is equivalent to a lane zero subvector reference.
 | |
|     idx = 0;
 | |
|   }
 | |
|   // Look through the bitcast of the input to the extract.
 | |
|   if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
 | |
|     return SDValue();
 | |
|   SDValue Source = Op0->getOperand(0)->getOperand(0);
 | |
|   // If the source type has twice the number of elements as our destination
 | |
|   // type, we know this is an extract of the high or low half of the vector.
 | |
|   EVT SVT = Source->getValueType(0);
 | |
|   if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
 | |
|     return SDValue();
 | |
| 
 | |
|   DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
 | |
| 
 | |
|   // Create the simplified form to just extract the low or high half of the
 | |
|   // vector directly rather than bothering with the bitcasts.
 | |
|   SDLoc dl(N);
 | |
|   unsigned NumElements = VT.getVectorNumElements();
 | |
|   if (idx) {
 | |
|     SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
 | |
|     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
 | |
|   } else {
 | |
|     SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
 | |
|     return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
 | |
|                                       Source, SubReg),
 | |
|                    0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue performConcatVectorsCombine(SDNode *N,
 | |
|                                            TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                            SelectionDAG &DAG) {
 | |
|   // Wait 'til after everything is legalized to try this. That way we have
 | |
|   // legal vector types and such.
 | |
|   if (DCI.isBeforeLegalizeOps())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
 | |
|   // splat. The indexed instructions are going to be expecting a DUPLANE64, so
 | |
|   // canonicalise to that.
 | |
|   if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) {
 | |
|     assert(VT.getVectorElementType().getSizeInBits() == 64);
 | |
|     return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT,
 | |
|                        WidenVector(N->getOperand(0), DAG),
 | |
|                        DAG.getConstant(0, MVT::i64));
 | |
|   }
 | |
| 
 | |
|   // Canonicalise concat_vectors so that the right-hand vector has as few
 | |
|   // bit-casts as possible before its real operation. The primary matching
 | |
|   // destination for these operations will be the narrowing "2" instructions,
 | |
|   // which depend on the operation being performed on this right-hand vector.
 | |
|   // For example,
 | |
|   //    (concat_vectors LHS,  (v1i64 (bitconvert (v4i16 RHS))))
 | |
|   // becomes
 | |
|   //    (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
 | |
| 
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
|   if (Op1->getOpcode() != ISD::BITCAST)
 | |
|     return SDValue();
 | |
|   SDValue RHS = Op1->getOperand(0);
 | |
|   MVT RHSTy = RHS.getValueType().getSimpleVT();
 | |
|   // If the RHS is not a vector, this is not the pattern we're looking for.
 | |
|   if (!RHSTy.isVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
 | |
| 
 | |
|   MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
 | |
|                                   RHSTy.getVectorNumElements() * 2);
 | |
|   return DAG.getNode(
 | |
|       ISD::BITCAST, dl, VT,
 | |
|       DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
 | |
|                   DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS));
 | |
| }
 | |
| 
 | |
| static SDValue tryCombineFixedPointConvert(SDNode *N,
 | |
|                                            TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                            SelectionDAG &DAG) {
 | |
|   // Wait 'til after everything is legalized to try this. That way we have
 | |
|   // legal vector types and such.
 | |
|   if (DCI.isBeforeLegalizeOps())
 | |
|     return SDValue();
 | |
|   // Transform a scalar conversion of a value from a lane extract into a
 | |
|   // lane extract of a vector conversion. E.g., from foo1 to foo2:
 | |
|   // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
 | |
|   // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
 | |
|   //
 | |
|   // The second form interacts better with instruction selection and the
 | |
|   // register allocator to avoid cross-class register copies that aren't
 | |
|   // coalescable due to a lane reference.
 | |
| 
 | |
|   // Check the operand and see if it originates from a lane extract.
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
|   if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | |
|     // Yep, no additional predication needed. Perform the transform.
 | |
|     SDValue IID = N->getOperand(0);
 | |
|     SDValue Shift = N->getOperand(2);
 | |
|     SDValue Vec = Op1.getOperand(0);
 | |
|     SDValue Lane = Op1.getOperand(1);
 | |
|     EVT ResTy = N->getValueType(0);
 | |
|     EVT VecResTy;
 | |
|     SDLoc DL(N);
 | |
| 
 | |
|     // The vector width should be 128 bits by the time we get here, even
 | |
|     // if it started as 64 bits (the extract_vector handling will have
 | |
|     // done so).
 | |
|     assert(Vec.getValueType().getSizeInBits() == 128 &&
 | |
|            "unexpected vector size on extract_vector_elt!");
 | |
|     if (Vec.getValueType() == MVT::v4i32)
 | |
|       VecResTy = MVT::v4f32;
 | |
|     else if (Vec.getValueType() == MVT::v2i64)
 | |
|       VecResTy = MVT::v2f64;
 | |
|     else
 | |
|       assert(0 && "unexpected vector type!");
 | |
| 
 | |
|     SDValue Convert =
 | |
|         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // AArch64 high-vector "long" operations are formed by performing the non-high
 | |
| // version on an extract_subvector of each operand which gets the high half:
 | |
| //
 | |
| //  (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
 | |
| //
 | |
| // However, there are cases which don't have an extract_high explicitly, but
 | |
| // have another operation that can be made compatible with one for free. For
 | |
| // example:
 | |
| //
 | |
| //  (dupv64 scalar) --> (extract_high (dup128 scalar))
 | |
| //
 | |
| // This routine does the actual conversion of such DUPs, once outer routines
 | |
| // have determined that everything else is in order.
 | |
| static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
 | |
|   // We can handle most types of duplicate, but the lane ones have an extra
 | |
|   // operand saying *which* lane, so we need to know.
 | |
|   bool IsDUPLANE;
 | |
|   switch (N.getOpcode()) {
 | |
|   case AArch64ISD::DUP:
 | |
|     IsDUPLANE = false;
 | |
|     break;
 | |
|   case AArch64ISD::DUPLANE8:
 | |
|   case AArch64ISD::DUPLANE16:
 | |
|   case AArch64ISD::DUPLANE32:
 | |
|   case AArch64ISD::DUPLANE64:
 | |
|     IsDUPLANE = true;
 | |
|     break;
 | |
|   default:
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   MVT NarrowTy = N.getSimpleValueType();
 | |
|   if (!NarrowTy.is64BitVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   MVT ElementTy = NarrowTy.getVectorElementType();
 | |
|   unsigned NumElems = NarrowTy.getVectorNumElements();
 | |
|   MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
 | |
| 
 | |
|   SDValue NewDUP;
 | |
|   if (IsDUPLANE)
 | |
|     NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
 | |
|                          N.getOperand(1));
 | |
|   else
 | |
|     NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
 | |
| 
 | |
|   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
 | |
|                      NewDUP, DAG.getConstant(NumElems, MVT::i64));
 | |
| }
 | |
| 
 | |
| static bool isEssentiallyExtractSubvector(SDValue N) {
 | |
|   if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
 | |
|     return true;
 | |
| 
 | |
|   return N.getOpcode() == ISD::BITCAST &&
 | |
|          N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
 | |
| }
 | |
| 
 | |
| /// \brief Helper structure to keep track of ISD::SET_CC operands.
 | |
| struct GenericSetCCInfo {
 | |
|   const SDValue *Opnd0;
 | |
|   const SDValue *Opnd1;
 | |
|   ISD::CondCode CC;
 | |
| };
 | |
| 
 | |
| /// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
 | |
| struct AArch64SetCCInfo {
 | |
|   const SDValue *Cmp;
 | |
|   AArch64CC::CondCode CC;
 | |
| };
 | |
| 
 | |
| /// \brief Helper structure to keep track of SetCC information.
 | |
| union SetCCInfo {
 | |
|   GenericSetCCInfo Generic;
 | |
|   AArch64SetCCInfo AArch64;
 | |
| };
 | |
| 
 | |
| /// \brief Helper structure to be able to read SetCC information.  If set to
 | |
| /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
 | |
| /// GenericSetCCInfo.
 | |
| struct SetCCInfoAndKind {
 | |
|   SetCCInfo Info;
 | |
|   bool IsAArch64;
 | |
| };
 | |
| 
 | |
| /// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
 | |
| /// an
 | |
| /// AArch64 lowered one.
 | |
| /// \p SetCCInfo is filled accordingly.
 | |
| /// \post SetCCInfo is meanginfull only when this function returns true.
 | |
| /// \return True when Op is a kind of SET_CC operation.
 | |
| static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
 | |
|   // If this is a setcc, this is straight forward.
 | |
|   if (Op.getOpcode() == ISD::SETCC) {
 | |
|     SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
 | |
|     SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
 | |
|     SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | |
|     SetCCInfo.IsAArch64 = false;
 | |
|     return true;
 | |
|   }
 | |
|   // Otherwise, check if this is a matching csel instruction.
 | |
|   // In other words:
 | |
|   // - csel 1, 0, cc
 | |
|   // - csel 0, 1, !cc
 | |
|   if (Op.getOpcode() != AArch64ISD::CSEL)
 | |
|     return false;
 | |
|   // Set the information about the operands.
 | |
|   // TODO: we want the operands of the Cmp not the csel
 | |
|   SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
 | |
|   SetCCInfo.IsAArch64 = true;
 | |
|   SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
 | |
|       cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
 | |
| 
 | |
|   // Check that the operands matches the constraints:
 | |
|   // (1) Both operands must be constants.
 | |
|   // (2) One must be 1 and the other must be 0.
 | |
|   ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
 | |
|   ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | |
| 
 | |
|   // Check (1).
 | |
|   if (!TValue || !FValue)
 | |
|     return false;
 | |
| 
 | |
|   // Check (2).
 | |
|   if (!TValue->isOne()) {
 | |
|     // Update the comparison when we are interested in !cc.
 | |
|     std::swap(TValue, FValue);
 | |
|     SetCCInfo.Info.AArch64.CC =
 | |
|         AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
 | |
|   }
 | |
|   return TValue->isOne() && FValue->isNullValue();
 | |
| }
 | |
| 
 | |
| // Returns true if Op is setcc or zext of setcc.
 | |
| static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
 | |
|   if (isSetCC(Op, Info))
 | |
|     return true;
 | |
|   return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
 | |
|     isSetCC(Op->getOperand(0), Info));
 | |
| }
 | |
| 
 | |
| // The folding we want to perform is:
 | |
| // (add x, [zext] (setcc cc ...) )
 | |
| //   -->
 | |
| // (csel x, (add x, 1), !cc ...)
 | |
| //
 | |
| // The latter will get matched to a CSINC instruction.
 | |
| static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
 | |
|   assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
 | |
|   SDValue LHS = Op->getOperand(0);
 | |
|   SDValue RHS = Op->getOperand(1);
 | |
|   SetCCInfoAndKind InfoAndKind;
 | |
| 
 | |
|   // If neither operand is a SET_CC, give up.
 | |
|   if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
 | |
|     std::swap(LHS, RHS);
 | |
|     if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   // FIXME: This could be generatized to work for FP comparisons.
 | |
|   EVT CmpVT = InfoAndKind.IsAArch64
 | |
|                   ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
 | |
|                   : InfoAndKind.Info.Generic.Opnd0->getValueType();
 | |
|   if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue CCVal;
 | |
|   SDValue Cmp;
 | |
|   SDLoc dl(Op);
 | |
|   if (InfoAndKind.IsAArch64) {
 | |
|     CCVal = DAG.getConstant(
 | |
|         AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
 | |
|     Cmp = *InfoAndKind.Info.AArch64.Cmp;
 | |
|   } else
 | |
|     Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
 | |
|                       *InfoAndKind.Info.Generic.Opnd1,
 | |
|                       ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
 | |
|                       CCVal, DAG, dl);
 | |
| 
 | |
|   EVT VT = Op->getValueType(0);
 | |
|   LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
 | |
|   return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
 | |
| }
 | |
| 
 | |
| // The basic add/sub long vector instructions have variants with "2" on the end
 | |
| // which act on the high-half of their inputs. They are normally matched by
 | |
| // patterns like:
 | |
| //
 | |
| // (add (zeroext (extract_high LHS)),
 | |
| //      (zeroext (extract_high RHS)))
 | |
| // -> uaddl2 vD, vN, vM
 | |
| //
 | |
| // However, if one of the extracts is something like a duplicate, this
 | |
| // instruction can still be used profitably. This function puts the DAG into a
 | |
| // more appropriate form for those patterns to trigger.
 | |
| static SDValue performAddSubLongCombine(SDNode *N,
 | |
|                                         TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                         SelectionDAG &DAG) {
 | |
|   if (DCI.isBeforeLegalizeOps())
 | |
|     return SDValue();
 | |
| 
 | |
|   MVT VT = N->getSimpleValueType(0);
 | |
|   if (!VT.is128BitVector()) {
 | |
|     if (N->getOpcode() == ISD::ADD)
 | |
|       return performSetccAddFolding(N, DAG);
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   // Make sure both branches are extended in the same way.
 | |
|   SDValue LHS = N->getOperand(0);
 | |
|   SDValue RHS = N->getOperand(1);
 | |
|   if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
 | |
|        LHS.getOpcode() != ISD::SIGN_EXTEND) ||
 | |
|       LHS.getOpcode() != RHS.getOpcode())
 | |
|     return SDValue();
 | |
| 
 | |
|   unsigned ExtType = LHS.getOpcode();
 | |
| 
 | |
|   // It's not worth doing if at least one of the inputs isn't already an
 | |
|   // extract, but we don't know which it'll be so we have to try both.
 | |
|   if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
 | |
|     RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
 | |
|     if (!RHS.getNode())
 | |
|       return SDValue();
 | |
| 
 | |
|     RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
 | |
|   } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
 | |
|     LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
 | |
|     if (!LHS.getNode())
 | |
|       return SDValue();
 | |
| 
 | |
|     LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
 | |
| }
 | |
| 
 | |
| // Massage DAGs which we can use the high-half "long" operations on into
 | |
| // something isel will recognize better. E.g.
 | |
| //
 | |
| // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
 | |
| //   (aarch64_neon_umull (extract_high (v2i64 vec)))
 | |
| //                     (extract_high (v2i64 (dup128 scalar)))))
 | |
| //
 | |
| static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
 | |
|                                        TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                        SelectionDAG &DAG) {
 | |
|   if (DCI.isBeforeLegalizeOps())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue LHS = N->getOperand(1);
 | |
|   SDValue RHS = N->getOperand(2);
 | |
|   assert(LHS.getValueType().is64BitVector() &&
 | |
|          RHS.getValueType().is64BitVector() &&
 | |
|          "unexpected shape for long operation");
 | |
| 
 | |
|   // Either node could be a DUP, but it's not worth doing both of them (you'd
 | |
|   // just as well use the non-high version) so look for a corresponding extract
 | |
|   // operation on the other "wing".
 | |
|   if (isEssentiallyExtractSubvector(LHS)) {
 | |
|     RHS = tryExtendDUPToExtractHigh(RHS, DAG);
 | |
|     if (!RHS.getNode())
 | |
|       return SDValue();
 | |
|   } else if (isEssentiallyExtractSubvector(RHS)) {
 | |
|     LHS = tryExtendDUPToExtractHigh(LHS, DAG);
 | |
|     if (!LHS.getNode())
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
 | |
|                      N->getOperand(0), LHS, RHS);
 | |
| }
 | |
| 
 | |
| static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
 | |
|   MVT ElemTy = N->getSimpleValueType(0).getScalarType();
 | |
|   unsigned ElemBits = ElemTy.getSizeInBits();
 | |
| 
 | |
|   int64_t ShiftAmount;
 | |
|   if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
 | |
|     APInt SplatValue, SplatUndef;
 | |
|     unsigned SplatBitSize;
 | |
|     bool HasAnyUndefs;
 | |
|     if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
 | |
|                               HasAnyUndefs, ElemBits) ||
 | |
|         SplatBitSize != ElemBits)
 | |
|       return SDValue();
 | |
| 
 | |
|     ShiftAmount = SplatValue.getSExtValue();
 | |
|   } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
 | |
|     ShiftAmount = CVN->getSExtValue();
 | |
|   } else
 | |
|     return SDValue();
 | |
| 
 | |
|   unsigned Opcode;
 | |
|   bool IsRightShift;
 | |
|   switch (IID) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown shift intrinsic");
 | |
|   case Intrinsic::aarch64_neon_sqshl:
 | |
|     Opcode = AArch64ISD::SQSHL_I;
 | |
|     IsRightShift = false;
 | |
|     break;
 | |
|   case Intrinsic::aarch64_neon_uqshl:
 | |
|     Opcode = AArch64ISD::UQSHL_I;
 | |
|     IsRightShift = false;
 | |
|     break;
 | |
|   case Intrinsic::aarch64_neon_srshl:
 | |
|     Opcode = AArch64ISD::SRSHR_I;
 | |
|     IsRightShift = true;
 | |
|     break;
 | |
|   case Intrinsic::aarch64_neon_urshl:
 | |
|     Opcode = AArch64ISD::URSHR_I;
 | |
|     IsRightShift = true;
 | |
|     break;
 | |
|   case Intrinsic::aarch64_neon_sqshlu:
 | |
|     Opcode = AArch64ISD::SQSHLU_I;
 | |
|     IsRightShift = false;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
 | |
|     return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
 | |
|                        DAG.getConstant(-ShiftAmount, MVT::i32));
 | |
|   else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount <= ElemBits)
 | |
|     return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
 | |
|                        DAG.getConstant(ShiftAmount, MVT::i32));
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // The CRC32[BH] instructions ignore the high bits of their data operand. Since
 | |
| // the intrinsics must be legal and take an i32, this means there's almost
 | |
| // certainly going to be a zext in the DAG which we can eliminate.
 | |
| static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
 | |
|   SDValue AndN = N->getOperand(2);
 | |
|   if (AndN.getOpcode() != ISD::AND)
 | |
|     return SDValue();
 | |
| 
 | |
|   ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
 | |
|   if (!CMask || CMask->getZExtValue() != Mask)
 | |
|     return SDValue();
 | |
| 
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
 | |
|                      N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
 | |
| }
 | |
| 
 | |
| static SDValue performIntrinsicCombine(SDNode *N,
 | |
|                                        TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                        const AArch64Subtarget *Subtarget) {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   unsigned IID = getIntrinsicID(N);
 | |
|   switch (IID) {
 | |
|   default:
 | |
|     break;
 | |
|   case Intrinsic::aarch64_neon_vcvtfxs2fp:
 | |
|   case Intrinsic::aarch64_neon_vcvtfxu2fp:
 | |
|     return tryCombineFixedPointConvert(N, DCI, DAG);
 | |
|     break;
 | |
|   case Intrinsic::aarch64_neon_fmax:
 | |
|     return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
 | |
|                        N->getOperand(1), N->getOperand(2));
 | |
|   case Intrinsic::aarch64_neon_fmin:
 | |
|     return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
 | |
|                        N->getOperand(1), N->getOperand(2));
 | |
|   case Intrinsic::aarch64_neon_smull:
 | |
|   case Intrinsic::aarch64_neon_umull:
 | |
|   case Intrinsic::aarch64_neon_pmull:
 | |
|   case Intrinsic::aarch64_neon_sqdmull:
 | |
|     return tryCombineLongOpWithDup(IID, N, DCI, DAG);
 | |
|   case Intrinsic::aarch64_neon_sqshl:
 | |
|   case Intrinsic::aarch64_neon_uqshl:
 | |
|   case Intrinsic::aarch64_neon_sqshlu:
 | |
|   case Intrinsic::aarch64_neon_srshl:
 | |
|   case Intrinsic::aarch64_neon_urshl:
 | |
|     return tryCombineShiftImm(IID, N, DAG);
 | |
|   case Intrinsic::aarch64_crc32b:
 | |
|   case Intrinsic::aarch64_crc32cb:
 | |
|     return tryCombineCRC32(0xff, N, DAG);
 | |
|   case Intrinsic::aarch64_crc32h:
 | |
|   case Intrinsic::aarch64_crc32ch:
 | |
|     return tryCombineCRC32(0xffff, N, DAG);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue performExtendCombine(SDNode *N,
 | |
|                                     TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                     SelectionDAG &DAG) {
 | |
|   // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
 | |
|   // we can convert that DUP into another extract_high (of a bigger DUP), which
 | |
|   // helps the backend to decide that an sabdl2 would be useful, saving a real
 | |
|   // extract_high operation.
 | |
|   if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
 | |
|       N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
 | |
|     SDNode *ABDNode = N->getOperand(0).getNode();
 | |
|     unsigned IID = getIntrinsicID(ABDNode);
 | |
|     if (IID == Intrinsic::aarch64_neon_sabd ||
 | |
|         IID == Intrinsic::aarch64_neon_uabd) {
 | |
|       SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
 | |
|       if (!NewABD.getNode())
 | |
|         return SDValue();
 | |
| 
 | |
|       return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
 | |
|                          NewABD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This is effectively a custom type legalization for AArch64.
 | |
|   //
 | |
|   // Type legalization will split an extend of a small, legal, type to a larger
 | |
|   // illegal type by first splitting the destination type, often creating
 | |
|   // illegal source types, which then get legalized in isel-confusing ways,
 | |
|   // leading to really terrible codegen. E.g.,
 | |
|   //   %result = v8i32 sext v8i8 %value
 | |
|   // becomes
 | |
|   //   %losrc = extract_subreg %value, ...
 | |
|   //   %hisrc = extract_subreg %value, ...
 | |
|   //   %lo = v4i32 sext v4i8 %losrc
 | |
|   //   %hi = v4i32 sext v4i8 %hisrc
 | |
|   // Things go rapidly downhill from there.
 | |
|   //
 | |
|   // For AArch64, the [sz]ext vector instructions can only go up one element
 | |
|   // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
 | |
|   // take two instructions.
 | |
|   //
 | |
|   // This implies that the most efficient way to do the extend from v8i8
 | |
|   // to two v4i32 values is to first extend the v8i8 to v8i16, then do
 | |
|   // the normal splitting to happen for the v8i16->v8i32.
 | |
| 
 | |
|   // This is pre-legalization to catch some cases where the default
 | |
|   // type legalization will create ill-tempered code.
 | |
|   if (!DCI.isBeforeLegalizeOps())
 | |
|     return SDValue();
 | |
| 
 | |
|   // We're only interested in cleaning things up for non-legal vector types
 | |
|   // here. If both the source and destination are legal, things will just
 | |
|   // work naturally without any fiddling.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT ResVT = N->getValueType(0);
 | |
|   if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
 | |
|     return SDValue();
 | |
|   // If the vector type isn't a simple VT, it's beyond the scope of what
 | |
|   // we're  worried about here. Let legalization do its thing and hope for
 | |
|   // the best.
 | |
|   if (!ResVT.isSimple())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue Src = N->getOperand(0);
 | |
|   MVT SrcVT = Src->getValueType(0).getSimpleVT();
 | |
|   // If the source VT is a 64-bit vector, we can play games and get the
 | |
|   // better results we want.
 | |
|   if (SrcVT.getSizeInBits() != 64)
 | |
|     return SDValue();
 | |
| 
 | |
|   unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
 | |
|   unsigned ElementCount = SrcVT.getVectorNumElements();
 | |
|   SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
 | |
|   SDLoc DL(N);
 | |
|   Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
 | |
| 
 | |
|   // Now split the rest of the operation into two halves, each with a 64
 | |
|   // bit source.
 | |
|   EVT LoVT, HiVT;
 | |
|   SDValue Lo, Hi;
 | |
|   unsigned NumElements = ResVT.getVectorNumElements();
 | |
|   assert(!(NumElements & 1) && "Splitting vector, but not in half!");
 | |
|   LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
 | |
|                                  ResVT.getVectorElementType(), NumElements / 2);
 | |
| 
 | |
|   EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
 | |
|                                LoVT.getVectorNumElements());
 | |
|   Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
 | |
|                    DAG.getIntPtrConstant(0));
 | |
|   Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
 | |
|                    DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
 | |
|   Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
 | |
|   Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
 | |
| 
 | |
|   // Now combine the parts back together so we still have a single result
 | |
|   // like the combiner expects.
 | |
|   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
 | |
| }
 | |
| 
 | |
| /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
 | |
| /// value. The load store optimizer pass will merge them to store pair stores.
 | |
| /// This has better performance than a splat of the scalar followed by a split
 | |
| /// vector store. Even if the stores are not merged it is four stores vs a dup,
 | |
| /// followed by an ext.b and two stores.
 | |
| static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
 | |
|   SDValue StVal = St->getValue();
 | |
|   EVT VT = StVal.getValueType();
 | |
| 
 | |
|   // Don't replace floating point stores, they possibly won't be transformed to
 | |
|   // stp because of the store pair suppress pass.
 | |
|   if (VT.isFloatingPoint())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Check for insert vector elements.
 | |
|   if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
 | |
|     return SDValue();
 | |
| 
 | |
|   // We can express a splat as store pair(s) for 2 or 4 elements.
 | |
|   unsigned NumVecElts = VT.getVectorNumElements();
 | |
|   if (NumVecElts != 4 && NumVecElts != 2)
 | |
|     return SDValue();
 | |
|   SDValue SplatVal = StVal.getOperand(1);
 | |
|   unsigned RemainInsertElts = NumVecElts - 1;
 | |
| 
 | |
|   // Check that this is a splat.
 | |
|   while (--RemainInsertElts) {
 | |
|     SDValue NextInsertElt = StVal.getOperand(0);
 | |
|     if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
 | |
|       return SDValue();
 | |
|     if (NextInsertElt.getOperand(1) != SplatVal)
 | |
|       return SDValue();
 | |
|     StVal = NextInsertElt;
 | |
|   }
 | |
|   unsigned OrigAlignment = St->getAlignment();
 | |
|   unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
 | |
|   unsigned Alignment = std::min(OrigAlignment, EltOffset);
 | |
| 
 | |
|   // Create scalar stores. This is at least as good as the code sequence for a
 | |
|   // split unaligned store wich is a dup.s, ext.b, and two stores.
 | |
|   // Most of the time the three stores should be replaced by store pair
 | |
|   // instructions (stp).
 | |
|   SDLoc DL(St);
 | |
|   SDValue BasePtr = St->getBasePtr();
 | |
|   SDValue NewST1 =
 | |
|       DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
 | |
|                    St->isVolatile(), St->isNonTemporal(), St->getAlignment());
 | |
| 
 | |
|   unsigned Offset = EltOffset;
 | |
|   while (--NumVecElts) {
 | |
|     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
 | |
|                                     DAG.getConstant(Offset, MVT::i64));
 | |
|     NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
 | |
|                           St->getPointerInfo(), St->isVolatile(),
 | |
|                           St->isNonTemporal(), Alignment);
 | |
|     Offset += EltOffset;
 | |
|   }
 | |
|   return NewST1;
 | |
| }
 | |
| 
 | |
| static SDValue performSTORECombine(SDNode *N,
 | |
|                                    TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                    SelectionDAG &DAG,
 | |
|                                    const AArch64Subtarget *Subtarget) {
 | |
|   if (!DCI.isBeforeLegalize())
 | |
|     return SDValue();
 | |
| 
 | |
|   StoreSDNode *S = cast<StoreSDNode>(N);
 | |
|   if (S->isVolatile())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Cyclone has bad performance on unaligned 16B stores when crossing line and
 | |
|   // page boundries. We want to split such stores.
 | |
|   if (!Subtarget->isCyclone())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Don't split at Oz.
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute(
 | |
|       AttributeSet::FunctionIndex, Attribute::MinSize);
 | |
|   if (IsMinSize)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue StVal = S->getValue();
 | |
|   EVT VT = StVal.getValueType();
 | |
| 
 | |
|   // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
 | |
|   // those up regresses performance on micro-benchmarks and olden/bh.
 | |
|   if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Split unaligned 16B stores. They are terrible for performance.
 | |
|   // Don't split stores with alignment of 1 or 2. Code that uses clang vector
 | |
|   // extensions can use this to mark that it does not want splitting to happen
 | |
|   // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
 | |
|   // eliminating alignment hazards is only 1 in 8 for alignment of 2.
 | |
|   if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
 | |
|       S->getAlignment() <= 2)
 | |
|     return SDValue();
 | |
| 
 | |
|   // If we get a splat of a scalar convert this vector store to a store of
 | |
|   // scalars. They will be merged into store pairs thereby removing two
 | |
|   // instructions.
 | |
|   SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
 | |
|   if (ReplacedSplat != SDValue())
 | |
|     return ReplacedSplat;
 | |
| 
 | |
|   SDLoc DL(S);
 | |
|   unsigned NumElts = VT.getVectorNumElements() / 2;
 | |
|   // Split VT into two.
 | |
|   EVT HalfVT =
 | |
|       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
 | |
|   SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
 | |
|                                    DAG.getIntPtrConstant(0));
 | |
|   SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
 | |
|                                    DAG.getIntPtrConstant(NumElts));
 | |
|   SDValue BasePtr = S->getBasePtr();
 | |
|   SDValue NewST1 =
 | |
|       DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
 | |
|                    S->isVolatile(), S->isNonTemporal(), S->getAlignment());
 | |
|   SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
 | |
|                                   DAG.getConstant(8, MVT::i64));
 | |
|   return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
 | |
|                       S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
 | |
|                       S->getAlignment());
 | |
| }
 | |
| 
 | |
| /// Target-specific DAG combine function for post-increment LD1 (lane) and
 | |
| /// post-increment LD1R.
 | |
| static SDValue performPostLD1Combine(SDNode *N,
 | |
|                                      TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                      bool IsLaneOp) {
 | |
|   if (DCI.isBeforeLegalizeOps())
 | |
|     return SDValue();
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   unsigned LoadIdx = IsLaneOp ? 1 : 0;
 | |
|   SDNode *LD = N->getOperand(LoadIdx).getNode();
 | |
|   // If it is not LOAD, can not do such combine.
 | |
|   if (LD->getOpcode() != ISD::LOAD)
 | |
|     return SDValue();
 | |
| 
 | |
|   LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
 | |
|   EVT MemVT = LoadSDN->getMemoryVT();
 | |
|   // Check if memory operand is the same type as the vector element.
 | |
|   if (MemVT != VT.getVectorElementType())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Check if there are other uses. If so, do not combine as it will introduce
 | |
|   // an extra load.
 | |
|   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
 | |
|        ++UI) {
 | |
|     if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
 | |
|       continue;
 | |
|     if (*UI != N)
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   SDValue Addr = LD->getOperand(1);
 | |
|   SDValue Vector = N->getOperand(0);
 | |
|   // Search for a use of the address operand that is an increment.
 | |
|   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
 | |
|        Addr.getNode()->use_end(); UI != UE; ++UI) {
 | |
|     SDNode *User = *UI;
 | |
|     if (User->getOpcode() != ISD::ADD
 | |
|         || UI.getUse().getResNo() != Addr.getResNo())
 | |
|       continue;
 | |
| 
 | |
|     // Check that the add is independent of the load.  Otherwise, folding it
 | |
|     // would create a cycle.
 | |
|     if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
 | |
|       continue;
 | |
|     // Also check that add is not used in the vector operand.  This would also
 | |
|     // create a cycle.
 | |
|     if (User->isPredecessorOf(Vector.getNode()))
 | |
|       continue;
 | |
| 
 | |
|     // If the increment is a constant, it must match the memory ref size.
 | |
|     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
 | |
|     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
 | |
|       uint32_t IncVal = CInc->getZExtValue();
 | |
|       unsigned NumBytes = VT.getScalarSizeInBits() / 8;
 | |
|       if (IncVal != NumBytes)
 | |
|         continue;
 | |
|       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
 | |
|     }
 | |
| 
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     Ops.push_back(LD->getOperand(0));  // Chain
 | |
|     if (IsLaneOp) {
 | |
|       Ops.push_back(Vector);           // The vector to be inserted
 | |
|       Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
 | |
|     }
 | |
|     Ops.push_back(Addr);
 | |
|     Ops.push_back(Inc);
 | |
| 
 | |
|     EVT Tys[3] = { VT, MVT::i64, MVT::Other };
 | |
|     SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, 3));
 | |
|     unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
 | |
|     SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
 | |
|                                            MemVT,
 | |
|                                            LoadSDN->getMemOperand());
 | |
| 
 | |
|     // Update the uses.
 | |
|     std::vector<SDValue> NewResults;
 | |
|     NewResults.push_back(SDValue(LD, 0));             // The result of load
 | |
|     NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
 | |
|     DCI.CombineTo(LD, NewResults);
 | |
|     DCI.CombineTo(N, SDValue(UpdN.getNode(), 0));     // Dup/Inserted Result
 | |
|     DCI.CombineTo(User, SDValue(UpdN.getNode(), 1));  // Write back register
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// Target-specific DAG combine function for NEON load/store intrinsics
 | |
| /// to merge base address updates.
 | |
| static SDValue performNEONPostLDSTCombine(SDNode *N,
 | |
|                                           TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                           SelectionDAG &DAG) {
 | |
|   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
 | |
|     return SDValue();
 | |
| 
 | |
|   unsigned AddrOpIdx = N->getNumOperands() - 1;
 | |
|   SDValue Addr = N->getOperand(AddrOpIdx);
 | |
| 
 | |
|   // Search for a use of the address operand that is an increment.
 | |
|   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
 | |
|        UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
 | |
|     SDNode *User = *UI;
 | |
|     if (User->getOpcode() != ISD::ADD ||
 | |
|         UI.getUse().getResNo() != Addr.getResNo())
 | |
|       continue;
 | |
| 
 | |
|     // Check that the add is independent of the load/store.  Otherwise, folding
 | |
|     // it would create a cycle.
 | |
|     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
 | |
|       continue;
 | |
| 
 | |
|     // Find the new opcode for the updating load/store.
 | |
|     bool IsStore = false;
 | |
|     bool IsLaneOp = false;
 | |
|     bool IsDupOp = false;
 | |
|     unsigned NewOpc = 0;
 | |
|     unsigned NumVecs = 0;
 | |
|     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
 | |
|     switch (IntNo) {
 | |
|     default: llvm_unreachable("unexpected intrinsic for Neon base update");
 | |
|     case Intrinsic::aarch64_neon_ld2:       NewOpc = AArch64ISD::LD2post;
 | |
|       NumVecs = 2; break;
 | |
|     case Intrinsic::aarch64_neon_ld3:       NewOpc = AArch64ISD::LD3post;
 | |
|       NumVecs = 3; break;
 | |
|     case Intrinsic::aarch64_neon_ld4:       NewOpc = AArch64ISD::LD4post;
 | |
|       NumVecs = 4; break;
 | |
|     case Intrinsic::aarch64_neon_st2:       NewOpc = AArch64ISD::ST2post;
 | |
|       NumVecs = 2; IsStore = true; break;
 | |
|     case Intrinsic::aarch64_neon_st3:       NewOpc = AArch64ISD::ST3post;
 | |
|       NumVecs = 3; IsStore = true; break;
 | |
|     case Intrinsic::aarch64_neon_st4:       NewOpc = AArch64ISD::ST4post;
 | |
|       NumVecs = 4; IsStore = true; break;
 | |
|     case Intrinsic::aarch64_neon_ld1x2:     NewOpc = AArch64ISD::LD1x2post;
 | |
|       NumVecs = 2; break;
 | |
|     case Intrinsic::aarch64_neon_ld1x3:     NewOpc = AArch64ISD::LD1x3post;
 | |
|       NumVecs = 3; break;
 | |
|     case Intrinsic::aarch64_neon_ld1x4:     NewOpc = AArch64ISD::LD1x4post;
 | |
|       NumVecs = 4; break;
 | |
|     case Intrinsic::aarch64_neon_st1x2:     NewOpc = AArch64ISD::ST1x2post;
 | |
|       NumVecs = 2; IsStore = true; break;
 | |
|     case Intrinsic::aarch64_neon_st1x3:     NewOpc = AArch64ISD::ST1x3post;
 | |
|       NumVecs = 3; IsStore = true; break;
 | |
|     case Intrinsic::aarch64_neon_st1x4:     NewOpc = AArch64ISD::ST1x4post;
 | |
|       NumVecs = 4; IsStore = true; break;
 | |
|     case Intrinsic::aarch64_neon_ld2r:      NewOpc = AArch64ISD::LD2DUPpost;
 | |
|       NumVecs = 2; IsDupOp = true; break;
 | |
|     case Intrinsic::aarch64_neon_ld3r:      NewOpc = AArch64ISD::LD3DUPpost;
 | |
|       NumVecs = 3; IsDupOp = true; break;
 | |
|     case Intrinsic::aarch64_neon_ld4r:      NewOpc = AArch64ISD::LD4DUPpost;
 | |
|       NumVecs = 4; IsDupOp = true; break;
 | |
|     case Intrinsic::aarch64_neon_ld2lane:   NewOpc = AArch64ISD::LD2LANEpost;
 | |
|       NumVecs = 2; IsLaneOp = true; break;
 | |
|     case Intrinsic::aarch64_neon_ld3lane:   NewOpc = AArch64ISD::LD3LANEpost;
 | |
|       NumVecs = 3; IsLaneOp = true; break;
 | |
|     case Intrinsic::aarch64_neon_ld4lane:   NewOpc = AArch64ISD::LD4LANEpost;
 | |
|       NumVecs = 4; IsLaneOp = true; break;
 | |
|     case Intrinsic::aarch64_neon_st2lane:   NewOpc = AArch64ISD::ST2LANEpost;
 | |
|       NumVecs = 2; IsStore = true; IsLaneOp = true; break;
 | |
|     case Intrinsic::aarch64_neon_st3lane:   NewOpc = AArch64ISD::ST3LANEpost;
 | |
|       NumVecs = 3; IsStore = true; IsLaneOp = true; break;
 | |
|     case Intrinsic::aarch64_neon_st4lane:   NewOpc = AArch64ISD::ST4LANEpost;
 | |
|       NumVecs = 4; IsStore = true; IsLaneOp = true; break;
 | |
|     }
 | |
| 
 | |
|     EVT VecTy;
 | |
|     if (IsStore)
 | |
|       VecTy = N->getOperand(2).getValueType();
 | |
|     else
 | |
|       VecTy = N->getValueType(0);
 | |
| 
 | |
|     // If the increment is a constant, it must match the memory ref size.
 | |
|     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
 | |
|     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
 | |
|       uint32_t IncVal = CInc->getZExtValue();
 | |
|       unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
 | |
|       if (IsLaneOp || IsDupOp)
 | |
|         NumBytes /= VecTy.getVectorNumElements();
 | |
|       if (IncVal != NumBytes)
 | |
|         continue;
 | |
|       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
 | |
|     }
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     Ops.push_back(N->getOperand(0)); // Incoming chain
 | |
|     // Load lane and store have vector list as input.
 | |
|     if (IsLaneOp || IsStore)
 | |
|       for (unsigned i = 2; i < AddrOpIdx; ++i)
 | |
|         Ops.push_back(N->getOperand(i));
 | |
|     Ops.push_back(Addr); // Base register
 | |
|     Ops.push_back(Inc);
 | |
| 
 | |
|     // Return Types.
 | |
|     EVT Tys[6];
 | |
|     unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
 | |
|     unsigned n;
 | |
|     for (n = 0; n < NumResultVecs; ++n)
 | |
|       Tys[n] = VecTy;
 | |
|     Tys[n++] = MVT::i64;  // Type of write back register
 | |
|     Tys[n] = MVT::Other;  // Type of the chain
 | |
|     SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs + 2));
 | |
| 
 | |
|     MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
 | |
|     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
 | |
|                                            MemInt->getMemoryVT(),
 | |
|                                            MemInt->getMemOperand());
 | |
| 
 | |
|     // Update the uses.
 | |
|     std::vector<SDValue> NewResults;
 | |
|     for (unsigned i = 0; i < NumResultVecs; ++i) {
 | |
|       NewResults.push_back(SDValue(UpdN.getNode(), i));
 | |
|     }
 | |
|     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
 | |
|     DCI.CombineTo(N, NewResults);
 | |
|     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // Optimize compare with zero and branch.
 | |
| static SDValue performBRCONDCombine(SDNode *N,
 | |
|                                     TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                     SelectionDAG &DAG) {
 | |
|   SDValue Chain = N->getOperand(0);
 | |
|   SDValue Dest = N->getOperand(1);
 | |
|   SDValue CCVal = N->getOperand(2);
 | |
|   SDValue Cmp = N->getOperand(3);
 | |
| 
 | |
|   assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
 | |
|   unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
 | |
|   if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
 | |
|     return SDValue();
 | |
| 
 | |
|   unsigned CmpOpc = Cmp.getOpcode();
 | |
|   if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Only attempt folding if there is only one use of the flag and no use of the
 | |
|   // value.
 | |
|   if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue LHS = Cmp.getOperand(0);
 | |
|   SDValue RHS = Cmp.getOperand(1);
 | |
| 
 | |
|   assert(LHS.getValueType() == RHS.getValueType() &&
 | |
|          "Expected the value type to be the same for both operands!");
 | |
|   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
 | |
|     std::swap(LHS, RHS);
 | |
| 
 | |
|   if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
 | |
|     return SDValue();
 | |
| 
 | |
|   if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
 | |
|       LHS.getOpcode() == ISD::SRL)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Fold the compare into the branch instruction.
 | |
|   SDValue BR;
 | |
|   if (CC == AArch64CC::EQ)
 | |
|     BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
 | |
|   else
 | |
|     BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
 | |
| 
 | |
|   // Do not add new nodes to DAG combiner worklist.
 | |
|   DCI.CombineTo(N, BR, false);
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // vselect (v1i1 setcc) ->
 | |
| //     vselect (v1iXX setcc)  (XX is the size of the compared operand type)
 | |
| // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
 | |
| // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
 | |
| // such VSELECT.
 | |
| static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   EVT CCVT = N0.getValueType();
 | |
| 
 | |
|   if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
 | |
|       CCVT.getVectorElementType() != MVT::i1)
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT ResVT = N->getValueType(0);
 | |
|   EVT CmpVT = N0.getOperand(0).getValueType();
 | |
|   // Only combine when the result type is of the same size as the compared
 | |
|   // operands.
 | |
|   if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue IfTrue = N->getOperand(1);
 | |
|   SDValue IfFalse = N->getOperand(2);
 | |
|   SDValue SetCC =
 | |
|       DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
 | |
|                    N0.getOperand(0), N0.getOperand(1),
 | |
|                    cast<CondCodeSDNode>(N0.getOperand(2))->get());
 | |
|   return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
 | |
|                      IfTrue, IfFalse);
 | |
| }
 | |
| 
 | |
| /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
 | |
| /// the compare-mask instructions rather than going via NZCV, even if LHS and
 | |
| /// RHS are really scalar. This replaces any scalar setcc in the above pattern
 | |
| /// with a vector one followed by a DUP shuffle on the result.
 | |
| static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   EVT ResVT = N->getValueType(0);
 | |
| 
 | |
|   if (!N->getOperand(1).getValueType().isVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDLoc DL(N0);
 | |
| 
 | |
|   EVT SrcVT = N0.getOperand(0).getValueType();
 | |
|   SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT,
 | |
|                            ResVT.getSizeInBits() / SrcVT.getSizeInBits());
 | |
|   EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
 | |
| 
 | |
|   // First perform a vector comparison, where lane 0 is the one we're interested
 | |
|   // in.
 | |
|   SDValue LHS =
 | |
|       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
 | |
|   SDValue RHS =
 | |
|       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
 | |
|   SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
 | |
| 
 | |
|   // Now duplicate the comparison mask we want across all other lanes.
 | |
|   SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
 | |
|   SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
 | |
|   Mask = DAG.getNode(ISD::BITCAST, DL, ResVT.changeVectorElementTypeToInteger(),
 | |
|                      Mask);
 | |
| 
 | |
|   return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
 | |
| }
 | |
| 
 | |
| SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
 | |
|                                                  DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     break;
 | |
|   case ISD::ADD:
 | |
|   case ISD::SUB:
 | |
|     return performAddSubLongCombine(N, DCI, DAG);
 | |
|   case ISD::XOR:
 | |
|     return performXorCombine(N, DAG, DCI, Subtarget);
 | |
|   case ISD::MUL:
 | |
|     return performMulCombine(N, DAG, DCI, Subtarget);
 | |
|   case ISD::SINT_TO_FP:
 | |
|   case ISD::UINT_TO_FP:
 | |
|     return performIntToFpCombine(N, DAG);
 | |
|   case ISD::OR:
 | |
|     return performORCombine(N, DCI, Subtarget);
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|     return performIntrinsicCombine(N, DCI, Subtarget);
 | |
|   case ISD::ANY_EXTEND:
 | |
|   case ISD::ZERO_EXTEND:
 | |
|   case ISD::SIGN_EXTEND:
 | |
|     return performExtendCombine(N, DCI, DAG);
 | |
|   case ISD::BITCAST:
 | |
|     return performBitcastCombine(N, DCI, DAG);
 | |
|   case ISD::CONCAT_VECTORS:
 | |
|     return performConcatVectorsCombine(N, DCI, DAG);
 | |
|   case ISD::SELECT:
 | |
|     return performSelectCombine(N, DAG);
 | |
|   case ISD::VSELECT:
 | |
|     return performVSelectCombine(N, DCI.DAG);
 | |
|   case ISD::STORE:
 | |
|     return performSTORECombine(N, DCI, DAG, Subtarget);
 | |
|   case AArch64ISD::BRCOND:
 | |
|     return performBRCONDCombine(N, DCI, DAG);
 | |
|   case AArch64ISD::DUP:
 | |
|     return performPostLD1Combine(N, DCI, false);
 | |
|   case ISD::INSERT_VECTOR_ELT:
 | |
|     return performPostLD1Combine(N, DCI, true);
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|   case ISD::INTRINSIC_W_CHAIN:
 | |
|     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | |
|     case Intrinsic::aarch64_neon_ld2:
 | |
|     case Intrinsic::aarch64_neon_ld3:
 | |
|     case Intrinsic::aarch64_neon_ld4:
 | |
|     case Intrinsic::aarch64_neon_ld1x2:
 | |
|     case Intrinsic::aarch64_neon_ld1x3:
 | |
|     case Intrinsic::aarch64_neon_ld1x4:
 | |
|     case Intrinsic::aarch64_neon_ld2lane:
 | |
|     case Intrinsic::aarch64_neon_ld3lane:
 | |
|     case Intrinsic::aarch64_neon_ld4lane:
 | |
|     case Intrinsic::aarch64_neon_ld2r:
 | |
|     case Intrinsic::aarch64_neon_ld3r:
 | |
|     case Intrinsic::aarch64_neon_ld4r:
 | |
|     case Intrinsic::aarch64_neon_st2:
 | |
|     case Intrinsic::aarch64_neon_st3:
 | |
|     case Intrinsic::aarch64_neon_st4:
 | |
|     case Intrinsic::aarch64_neon_st1x2:
 | |
|     case Intrinsic::aarch64_neon_st1x3:
 | |
|     case Intrinsic::aarch64_neon_st1x4:
 | |
|     case Intrinsic::aarch64_neon_st2lane:
 | |
|     case Intrinsic::aarch64_neon_st3lane:
 | |
|     case Intrinsic::aarch64_neon_st4lane:
 | |
|       return performNEONPostLDSTCombine(N, DCI, DAG);
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // Check if the return value is used as only a return value, as otherwise
 | |
| // we can't perform a tail-call. In particular, we need to check for
 | |
| // target ISD nodes that are returns and any other "odd" constructs
 | |
| // that the generic analysis code won't necessarily catch.
 | |
| bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
 | |
|                                                SDValue &Chain) const {
 | |
|   if (N->getNumValues() != 1)
 | |
|     return false;
 | |
|   if (!N->hasNUsesOfValue(1, 0))
 | |
|     return false;
 | |
| 
 | |
|   SDValue TCChain = Chain;
 | |
|   SDNode *Copy = *N->use_begin();
 | |
|   if (Copy->getOpcode() == ISD::CopyToReg) {
 | |
|     // If the copy has a glue operand, we conservatively assume it isn't safe to
 | |
|     // perform a tail call.
 | |
|     if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
 | |
|         MVT::Glue)
 | |
|       return false;
 | |
|     TCChain = Copy->getOperand(0);
 | |
|   } else if (Copy->getOpcode() != ISD::FP_EXTEND)
 | |
|     return false;
 | |
| 
 | |
|   bool HasRet = false;
 | |
|   for (SDNode *Node : Copy->uses()) {
 | |
|     if (Node->getOpcode() != AArch64ISD::RET_FLAG)
 | |
|       return false;
 | |
|     HasRet = true;
 | |
|   }
 | |
| 
 | |
|   if (!HasRet)
 | |
|     return false;
 | |
| 
 | |
|   Chain = TCChain;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Return whether the an instruction can potentially be optimized to a tail
 | |
| // call. This will cause the optimizers to attempt to move, or duplicate,
 | |
| // return instructions to help enable tail call optimizations for this
 | |
| // instruction.
 | |
| bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
 | |
|   if (!CI->isTailCall())
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
 | |
|                                                    SDValue &Offset,
 | |
|                                                    ISD::MemIndexedMode &AM,
 | |
|                                                    bool &IsInc,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
 | |
|     return false;
 | |
| 
 | |
|   Base = Op->getOperand(0);
 | |
|   // All of the indexed addressing mode instructions take a signed
 | |
|   // 9 bit immediate offset.
 | |
|   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
 | |
|     int64_t RHSC = (int64_t)RHS->getZExtValue();
 | |
|     if (RHSC >= 256 || RHSC <= -256)
 | |
|       return false;
 | |
|     IsInc = (Op->getOpcode() == ISD::ADD);
 | |
|     Offset = Op->getOperand(1);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
 | |
|                                                       SDValue &Offset,
 | |
|                                                       ISD::MemIndexedMode &AM,
 | |
|                                                       SelectionDAG &DAG) const {
 | |
|   EVT VT;
 | |
|   SDValue Ptr;
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     VT = LD->getMemoryVT();
 | |
|     Ptr = LD->getBasePtr();
 | |
|   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     VT = ST->getMemoryVT();
 | |
|     Ptr = ST->getBasePtr();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   bool IsInc;
 | |
|   if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
 | |
|     return false;
 | |
|   AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::getPostIndexedAddressParts(
 | |
|     SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
 | |
|     ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
 | |
|   EVT VT;
 | |
|   SDValue Ptr;
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     VT = LD->getMemoryVT();
 | |
|     Ptr = LD->getBasePtr();
 | |
|   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     VT = ST->getMemoryVT();
 | |
|     Ptr = ST->getBasePtr();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   bool IsInc;
 | |
|   if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
 | |
|     return false;
 | |
|   // Post-indexing updates the base, so it's not a valid transform
 | |
|   // if that's not the same as the load's pointer.
 | |
|   if (Ptr != Base)
 | |
|     return false;
 | |
|   AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void AArch64TargetLowering::ReplaceNodeResults(
 | |
|     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Don't know how to custom expand this");
 | |
|   case ISD::FP_TO_UINT:
 | |
|   case ISD::FP_TO_SINT:
 | |
|     assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
 | |
|     // Let normal code take care of it by not adding anything to Results.
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool AArch64TargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const {
 | |
|   // Loads and stores less than 128-bits are already atomic; ones above that
 | |
|   // are doomed anyway, so defer to the default libcall and blame the OS when
 | |
|   // things go wrong:
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | |
|     return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128;
 | |
|   else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
 | |
|     return LI->getType()->getPrimitiveSizeInBits() == 128;
 | |
| 
 | |
|   // For the real atomic operations, we have ldxr/stxr up to 128 bits.
 | |
|   return Inst->getType()->getPrimitiveSizeInBits() <= 128;
 | |
| }
 | |
| 
 | |
| Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
 | |
|                                              AtomicOrdering Ord) const {
 | |
|   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | |
|   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
 | |
|   bool IsAcquire =
 | |
|       Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent;
 | |
| 
 | |
|   // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
 | |
|   // intrinsic must return {i64, i64} and we have to recombine them into a
 | |
|   // single i128 here.
 | |
|   if (ValTy->getPrimitiveSizeInBits() == 128) {
 | |
|     Intrinsic::ID Int =
 | |
|         IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
 | |
|     Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
 | |
| 
 | |
|     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
 | |
|     Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
 | |
| 
 | |
|     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
 | |
|     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
 | |
|     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
 | |
|     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
 | |
|     return Builder.CreateOr(
 | |
|         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
 | |
|   }
 | |
| 
 | |
|   Type *Tys[] = { Addr->getType() };
 | |
|   Intrinsic::ID Int =
 | |
|       IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
 | |
|   Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
 | |
| 
 | |
|   return Builder.CreateTruncOrBitCast(
 | |
|       Builder.CreateCall(Ldxr, Addr),
 | |
|       cast<PointerType>(Addr->getType())->getElementType());
 | |
| }
 | |
| 
 | |
| Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
 | |
|                                                    Value *Val, Value *Addr,
 | |
|                                                    AtomicOrdering Ord) const {
 | |
|   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | |
|   bool IsRelease =
 | |
|       Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent;
 | |
| 
 | |
|   // Since the intrinsics must have legal type, the i128 intrinsics take two
 | |
|   // parameters: "i64, i64". We must marshal Val into the appropriate form
 | |
|   // before the call.
 | |
|   if (Val->getType()->getPrimitiveSizeInBits() == 128) {
 | |
|     Intrinsic::ID Int =
 | |
|         IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
 | |
|     Function *Stxr = Intrinsic::getDeclaration(M, Int);
 | |
|     Type *Int64Ty = Type::getInt64Ty(M->getContext());
 | |
| 
 | |
|     Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
 | |
|     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
 | |
|     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
 | |
|     return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
 | |
|   }
 | |
| 
 | |
|   Intrinsic::ID Int =
 | |
|       IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
 | |
|   Type *Tys[] = { Addr->getType() };
 | |
|   Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
 | |
| 
 | |
|   return Builder.CreateCall2(
 | |
|       Stxr, Builder.CreateZExtOrBitCast(
 | |
|                 Val, Stxr->getFunctionType()->getParamType(0)),
 | |
|       Addr);
 | |
| }
 |