mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9903 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			332 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			332 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the declaration of the Type class.  For more "Type" type
 | |
| // stuff, look in DerivedTypes.h.
 | |
| //
 | |
| // Note that instances of the Type class are immutable: once they are created,
 | |
| // they are never changed.  Also note that only one instance of a particular 
 | |
| // type is ever created.  Thus seeing if two types are equal is a matter of 
 | |
| // doing a trivial pointer comparison.
 | |
| //
 | |
| // Types, once allocated, are never free'd.
 | |
| //
 | |
| // Opaque types are simple derived types with no state.  There may be many
 | |
| // different Opaque type objects floating around, but two are only considered
 | |
| // identical if they are pointer equals of each other.  This allows us to have 
 | |
| // two opaque types that end up resolving to different concrete types later.
 | |
| //
 | |
| // Opaque types are also kinda wierd and scary and different because they have
 | |
| // to keep a list of uses of the type.  When, through linking, parsing, or
 | |
| // bytecode reading, they become resolved, they need to find and update all
 | |
| // users of the unknown type, causing them to reference a new, more concrete
 | |
| // type.  Opaque types are deleted when their use list dwindles to zero users.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_TYPE_H
 | |
| #define LLVM_TYPE_H
 | |
| 
 | |
| #include "llvm/Value.h"
 | |
| #include "Support/GraphTraits.h"
 | |
| #include "Support/iterator"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class DerivedType;
 | |
| class FunctionType;
 | |
| class ArrayType;
 | |
| class PointerType;
 | |
| class StructType;
 | |
| class OpaqueType;
 | |
| 
 | |
| struct Type : public Value {
 | |
|   ///===-------------------------------------------------------------------===//
 | |
|   /// Definitions of all of the base types for the Type system.  Based on this
 | |
|   /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
 | |
|   /// Note: If you add an element to this, you need to add an element to the 
 | |
|   /// Type::getPrimitiveType function, or else things will break!
 | |
|   ///
 | |
|   enum PrimitiveID {
 | |
|     VoidTyID = 0  , BoolTyID,           //  0, 1: Basics...
 | |
|     UByteTyID     , SByteTyID,          //  2, 3: 8 bit types...
 | |
|     UShortTyID    , ShortTyID,          //  4, 5: 16 bit types...
 | |
|     UIntTyID      , IntTyID,            //  6, 7: 32 bit types...
 | |
|     ULongTyID     , LongTyID,           //  8, 9: 64 bit types...
 | |
| 
 | |
|     FloatTyID     , DoubleTyID,         // 10,11: Floating point types...
 | |
| 
 | |
|     TypeTyID,                           // 12   : Type definitions
 | |
|     LabelTyID     ,                     // 13   : Labels... 
 | |
| 
 | |
|     // Derived types... see DerivedTypes.h file...
 | |
|     // Make sure FirstDerivedTyID stays up to date!!!
 | |
|     FunctionTyID  , StructTyID,         // Functions... Structs...
 | |
|     ArrayTyID     , PointerTyID,        // Array... pointer...
 | |
|     OpaqueTyID,                         // Opaque type instances...
 | |
|     //PackedTyID  ,                     // SIMD 'packed' format... TODO
 | |
|     //...
 | |
| 
 | |
|     NumPrimitiveIDs,                    // Must remain as last defined ID
 | |
|     FirstDerivedTyID = FunctionTyID,
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   PrimitiveID ID;        // The current base type of this type...
 | |
|   unsigned    UID;       // The unique ID number for this class
 | |
|   bool        Abstract;  // True if type contains an OpaqueType
 | |
| 
 | |
|   const Type *getForwardedTypeInternal() const;
 | |
| protected:
 | |
|   /// ctor is protected, so only subclasses can create Type objects...
 | |
|   Type(const std::string &Name, PrimitiveID id);
 | |
|   virtual ~Type() {}
 | |
| 
 | |
|   /// setName - Associate the name with this type in the symbol table, but don't
 | |
|   /// set the local name to be equal specified name.
 | |
|   ///
 | |
|   virtual void setName(const std::string &Name, SymbolTable *ST = 0);
 | |
| 
 | |
|   /// Types can become nonabstract later, if they are refined.
 | |
|   ///
 | |
|   inline void setAbstract(bool Val) { Abstract = Val; }
 | |
| 
 | |
|   /// isTypeAbstract - This method is used to calculate the Abstract bit.
 | |
|   ///
 | |
|   bool isTypeAbstract();
 | |
| 
 | |
|   /// ForwardType - This field is used to implement the union find scheme for
 | |
|   /// abstract types.  When types are refined to other types, this field is set
 | |
|   /// to the more refined type.  Only abstract types can be forwarded.
 | |
|   mutable const Type *ForwardType;
 | |
| 
 | |
| public:
 | |
|   virtual void print(std::ostream &O) const;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Property accessors for dealing with types... Some of these virtual methods
 | |
|   // are defined in private classes defined in Type.cpp for primitive types.
 | |
|   //
 | |
| 
 | |
|   /// getPrimitiveID - Return the base type of the type.  This will return one
 | |
|   /// of the PrimitiveID enum elements defined above.
 | |
|   ///
 | |
|   inline PrimitiveID getPrimitiveID() const { return ID; }
 | |
| 
 | |
|   /// getUniqueID - Returns the UID of the type.  This can be thought of as a
 | |
|   /// small integer version of the pointer to the type class.  Two types that
 | |
|   /// are structurally different have different UIDs.  This can be used for
 | |
|   /// indexing types into an array.
 | |
|   ///
 | |
|   inline unsigned getUniqueID() const { return UID; }
 | |
| 
 | |
|   /// getDescription - Return the string representation of the type...
 | |
|   const std::string &getDescription() const;
 | |
| 
 | |
|   /// isSigned - Return whether an integral numeric type is signed.  This is
 | |
|   /// true for SByteTy, ShortTy, IntTy, LongTy.  Note that this is not true for
 | |
|   /// Float and Double.
 | |
|   //
 | |
|   virtual bool isSigned() const { return 0; }
 | |
|   
 | |
|   /// isUnsigned - Return whether a numeric type is unsigned.  This is not quite
 | |
|   /// the complement of isSigned... nonnumeric types return false as they do
 | |
|   /// with isSigned.  This returns true for UByteTy, UShortTy, UIntTy, and
 | |
|   /// ULongTy
 | |
|   /// 
 | |
|   virtual bool isUnsigned() const { return 0; }
 | |
| 
 | |
|   /// isInteger - Equilivent to isSigned() || isUnsigned(), but with only a
 | |
|   /// single virtual function invocation.
 | |
|   ///
 | |
|   virtual bool isInteger() const { return 0; }
 | |
| 
 | |
|   /// isIntegral - Returns true if this is an integral type, which is either
 | |
|   /// BoolTy or one of the Integer types.
 | |
|   ///
 | |
|   bool isIntegral() const { return isInteger() || this == BoolTy; }
 | |
| 
 | |
|   /// isFloatingPoint - Return true if this is one of the two floating point
 | |
|   /// types
 | |
|   bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
 | |
| 
 | |
|   /// isAbstract - True if the type is either an Opaque type, or is a derived
 | |
|   /// type that includes an opaque type somewhere in it.  
 | |
|   ///
 | |
|   inline bool isAbstract() const { return Abstract; }
 | |
| 
 | |
|   /// isLosslesslyConvertibleTo - Return true if this type can be converted to
 | |
|   /// 'Ty' without any reinterpretation of bits.  For example, uint to int.
 | |
|   ///
 | |
|   bool isLosslesslyConvertibleTo(const Type *Ty) const;
 | |
| 
 | |
| 
 | |
|   /// Here are some useful little methods to query what type derived types are
 | |
|   /// Note that all other types can just compare to see if this == Type::xxxTy;
 | |
|   ///
 | |
|   inline bool isPrimitiveType() const { return ID < FirstDerivedTyID;  }
 | |
|   inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
 | |
| 
 | |
|   /// isFirstClassType - Return true if the value is holdable in a register.
 | |
|   inline bool isFirstClassType() const {
 | |
|     return (ID != VoidTyID && ID < TypeTyID) || ID == PointerTyID;
 | |
|   }
 | |
| 
 | |
|   /// isSized - Return true if it makes sense to take the size of this type.  To
 | |
|   /// get the actual size for a particular target, it is reasonable to use the
 | |
|   /// TargetData subsystem to do this.
 | |
|   ///
 | |
|   bool isSized() const {
 | |
|     return ID != VoidTyID && ID != TypeTyID &&
 | |
|            ID != FunctionTyID && ID != LabelTyID && ID != OpaqueTyID;
 | |
|   }
 | |
| 
 | |
|   /// getPrimitiveSize - Return the basic size of this type if it is a primative
 | |
|   /// type.  These are fixed by LLVM and are not target dependent.  This will
 | |
|   /// return zero if the type does not have a size or is not a primitive type.
 | |
|   ///
 | |
|   unsigned getPrimitiveSize() const;
 | |
| 
 | |
|   /// getForwaredType - Return the type that this type has been resolved to if
 | |
|   /// it has been resolved to anything.  This is used to implement the
 | |
|   /// union-find algorithm for type resolution.
 | |
|   const Type *getForwardedType() const {
 | |
|     if (!ForwardType) return 0;
 | |
|     return getForwardedTypeInternal();
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Type Iteration support
 | |
|   //
 | |
|   class TypeIterator;
 | |
|   typedef TypeIterator subtype_iterator;
 | |
|   inline subtype_iterator subtype_begin() const;   // DEFINED BELOW
 | |
|   inline subtype_iterator subtype_end() const;     // DEFINED BELOW
 | |
| 
 | |
|   /// getContainedType - This method is used to implement the type iterator
 | |
|   /// (defined a the end of the file).  For derived types, this returns the
 | |
|   /// types 'contained' in the derived type.
 | |
|   ///
 | |
|   virtual const Type *getContainedType(unsigned i) const {
 | |
|     assert(0 && "No contained types!");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /// getNumContainedTypes - Return the number of types in the derived type
 | |
|   virtual unsigned getNumContainedTypes() const { return 0; }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Static members exported by the Type class itself.  Useful for getting
 | |
|   // instances of Type.
 | |
|   //
 | |
| 
 | |
|   /// getPrimitiveType/getUniqueIDType - Return a type based on an identifier.
 | |
|   static const Type *getPrimitiveType(PrimitiveID IDNumber);
 | |
|   static const Type *getUniqueIDType(unsigned UID);
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // These are the builtin types that are always available...
 | |
|   //
 | |
|   static Type *VoidTy , *BoolTy;
 | |
|   static Type *SByteTy, *UByteTy,
 | |
|               *ShortTy, *UShortTy,
 | |
|               *IntTy  , *UIntTy, 
 | |
|               *LongTy , *ULongTy;
 | |
|   static Type *FloatTy, *DoubleTy;
 | |
| 
 | |
|   static Type *TypeTy , *LabelTy;
 | |
| 
 | |
|   /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const Type *T) { return true; }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return V->getValueType() == Value::TypeVal;
 | |
|   }
 | |
| 
 | |
| #include "llvm/Type.def"
 | |
| 
 | |
| private:
 | |
|   class TypeIterator : public bidirectional_iterator<const Type, ptrdiff_t> {
 | |
|     const Type * const Ty;
 | |
|     unsigned Idx;
 | |
| 
 | |
|     typedef TypeIterator _Self;
 | |
|   public:
 | |
|     TypeIterator(const Type *ty, unsigned idx) : Ty(ty), Idx(idx) {}
 | |
|     ~TypeIterator() {}
 | |
| 
 | |
|     const _Self &operator=(const _Self &RHS) {
 | |
|       assert(Ty == RHS.Ty && "Cannot assign from different types!");
 | |
|       Idx = RHS.Idx;
 | |
|       return *this;
 | |
|     }
 | |
|     
 | |
|     bool operator==(const _Self& x) const { return Idx == x.Idx; }
 | |
|     bool operator!=(const _Self& x) const { return !operator==(x); }
 | |
|     
 | |
|     pointer operator*() const { return Ty->getContainedType(Idx); }
 | |
|     pointer operator->() const { return operator*(); }
 | |
|     
 | |
|     _Self& operator++() { ++Idx; return *this; } // Preincrement
 | |
|     _Self operator++(int) { // Postincrement
 | |
|       _Self tmp = *this; ++*this; return tmp; 
 | |
|     }
 | |
|     
 | |
|     _Self& operator--() { --Idx; return *this; }  // Predecrement
 | |
|     _Self operator--(int) { // Postdecrement
 | |
|       _Self tmp = *this; --*this; return tmp;
 | |
|     }
 | |
|   };
 | |
| };
 | |
| 
 | |
| inline Type::TypeIterator Type::subtype_begin() const {
 | |
|   return TypeIterator(this, 0);
 | |
| }
 | |
| 
 | |
| inline Type::TypeIterator Type::subtype_end() const {
 | |
|   return TypeIterator(this, getNumContainedTypes());
 | |
| }
 | |
| 
 | |
| 
 | |
| // Provide specializations of GraphTraits to be able to treat a type as a 
 | |
| // graph of sub types...
 | |
| 
 | |
| template <> struct GraphTraits<Type*> {
 | |
|   typedef Type NodeType;
 | |
|   typedef Type::subtype_iterator ChildIteratorType;
 | |
| 
 | |
|   static inline NodeType *getEntryNode(Type *T) { return T; }
 | |
|   static inline ChildIteratorType child_begin(NodeType *N) { 
 | |
|     return N->subtype_begin(); 
 | |
|   }
 | |
|   static inline ChildIteratorType child_end(NodeType *N) { 
 | |
|     return N->subtype_end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct GraphTraits<const Type*> {
 | |
|   typedef const Type NodeType;
 | |
|   typedef Type::subtype_iterator ChildIteratorType;
 | |
| 
 | |
|   static inline NodeType *getEntryNode(const Type *T) { return T; }
 | |
|   static inline ChildIteratorType child_begin(NodeType *N) { 
 | |
|     return N->subtype_begin(); 
 | |
|   }
 | |
|   static inline ChildIteratorType child_end(NodeType *N) { 
 | |
|     return N->subtype_end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) { 
 | |
|   return Ty.getPrimitiveID() == Type::PointerTyID;
 | |
| }
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |