llvm-6502/lib/CodeGen/RegAllocLinearScan.cpp
Alkis Evlogimenos 5ab20273a4 Improve debugging output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10834 91177308-0d34-0410-b5e6-96231b3b80d8
2004-01-14 00:09:36 +00:00

775 lines
28 KiB
C++

//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a linear scan register allocator.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CFG.h"
#include "Support/Debug.h"
#include "Support/DepthFirstIterator.h"
#include "Support/Statistic.h"
#include "Support/STLExtras.h"
using namespace llvm;
namespace {
Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled");
Statistic<> numReloaded("ra-linearscan", "Number of registers reloaded");
class RA : public MachineFunctionPass {
private:
MachineFunction* mf_;
const TargetMachine* tm_;
const MRegisterInfo* mri_;
MachineFunction::iterator currentMbb_;
MachineBasicBlock::iterator currentInstr_;
typedef std::vector<const LiveIntervals::Interval*> IntervalPtrs;
IntervalPtrs unhandled_, fixed_, active_, inactive_;
typedef std::vector<unsigned> Regs;
Regs tempUseOperands_;
Regs tempDefOperands_;
typedef std::vector<bool> RegMask;
RegMask reserved_;
unsigned regUse_[MRegisterInfo::FirstVirtualRegister];
unsigned regUseBackup_[MRegisterInfo::FirstVirtualRegister];
typedef std::map<unsigned, unsigned> Virt2PhysMap;
Virt2PhysMap v2pMap_;
typedef std::map<unsigned, int> Virt2StackSlotMap;
Virt2StackSlotMap v2ssMap_;
int instrAdded_;
public:
virtual const char* getPassName() const {
return "Linear Scan Register Allocator";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LiveVariables>();
AU.addRequired<LiveIntervals>();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
/// runOnMachineFunction - register allocate the whole function
bool runOnMachineFunction(MachineFunction&);
/// initIntervalSets - initializa the four interval sets:
/// unhandled, fixed, active and inactive
void initIntervalSets(const LiveIntervals::Intervals& li);
/// processActiveIntervals - expire old intervals and move
/// non-overlapping ones to the incative list
void processActiveIntervals(IntervalPtrs::value_type cur);
/// processInactiveIntervals - expire old intervals and move
/// overlapping ones to the active list
void processInactiveIntervals(IntervalPtrs::value_type cur);
/// assignStackSlotAtInterval - choose and spill
/// interval. Currently we spill the interval with the last
/// end point in the active and inactive lists and the current
/// interval
void assignStackSlotAtInterval(IntervalPtrs::value_type cur);
///
/// register handling helpers
///
/// getFreePhysReg - return a free physical register for this
/// virtual register interval if we have one, otherwise return
/// 0
unsigned getFreePhysReg(IntervalPtrs::value_type cur);
/// physRegAvailable - returns true if the specifed physical
/// register is available
bool physRegAvailable(unsigned physReg);
/// tempPhysRegAvailable - returns true if the specifed
/// temporary physical register is available
bool tempPhysRegAvailable(unsigned physReg);
/// getFreeTempPhysReg - return a free temprorary physical
/// register for this virtual register if we have one (should
/// never return 0)
unsigned getFreeTempPhysReg(unsigned virtReg);
/// assignVirt2PhysReg - assigns the free physical register to
/// the virtual register passed as arguments
void assignVirt2PhysReg(unsigned virtReg, unsigned physReg);
/// clearVirtReg - free the physical register associated with this
/// virtual register and disassociate virtual->physical and
/// physical->virtual mappings
void clearVirtReg(unsigned virtReg);
/// assignVirt2StackSlot - assigns this virtual register to a
/// stack slot
void assignVirt2StackSlot(unsigned virtReg);
/// getStackSlot - returns the offset of the specified
/// register on the stack
int getStackSlot(unsigned virtReg);
/// spillVirtReg - spills the virtual register
void spillVirtReg(unsigned virtReg);
/// loadPhysReg - loads to the physical register the value of
/// the virtual register specifed. Virtual register must have
/// an assigned stack slot
void loadVirt2PhysReg(unsigned virtReg, unsigned physReg);
void markPhysRegFree(unsigned physReg);
void markPhysRegNotFree(unsigned physReg);
void backupRegUse() {
memcpy(regUseBackup_, regUse_, sizeof(regUseBackup_));
}
void restoreRegUse() {
memcpy(regUse_, regUseBackup_, sizeof(regUseBackup_));
}
void printVirt2PhysMap() const {
std::cerr << "allocated registers:\n";
for (Virt2PhysMap::const_iterator
i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) {
std::cerr << '[' << i->first << ','
<< mri_->getName(i->second) << "]\n";
}
std::cerr << '\n';
}
void printIntervals(const char* const str,
RA::IntervalPtrs::const_iterator i,
RA::IntervalPtrs::const_iterator e) const {
if (str) std::cerr << str << " intervals:\n";
for (; i != e; ++i) {
std::cerr << "\t\t" << **i << " -> ";
if ((*i)->reg < MRegisterInfo::FirstVirtualRegister) {
std::cerr << mri_->getName((*i)->reg);
}
else {
std::cerr << mri_->getName(v2pMap_.find((*i)->reg)->second);
}
std::cerr << '\n';
}
}
void printFreeRegs(const char* const str,
const TargetRegisterClass* rc) const {
if (str) std::cerr << str << ':';
for (TargetRegisterClass::iterator i =
rc->allocation_order_begin(*mf_);
i != rc->allocation_order_end(*mf_); ++i) {
unsigned reg = *i;
if (!regUse_[reg]) {
std::cerr << ' ' << mri_->getName(reg);
if (reserved_[reg]) std::cerr << "*";
}
}
std::cerr << '\n';
}
};
}
bool RA::runOnMachineFunction(MachineFunction &fn) {
mf_ = &fn;
tm_ = &fn.getTarget();
mri_ = tm_->getRegisterInfo();
initIntervalSets(getAnalysis<LiveIntervals>().getIntervals());
v2pMap_.clear();
v2ssMap_.clear();
memset(regUse_, 0, sizeof(regUse_));
memset(regUseBackup_, 0, sizeof(regUseBackup_));
// FIXME: this will work only for the X86 backend. I need to
// device an algorthm to select the minimal (considering register
// aliasing) number of temp registers to reserve so that we have 2
// registers for each register class available.
// reserve R8: CH, CL
// R16: CX, DI,
// R32: ECX, EDI,
// RFP: FP5, FP6
reserved_.assign(MRegisterInfo::FirstVirtualRegister, false);
reserved_[ 8] = true; /* CH */
reserved_[ 9] = true; /* CL */
reserved_[10] = true; /* CX */
reserved_[12] = true; /* DI */
reserved_[18] = true; /* ECX */
reserved_[19] = true; /* EDI */
reserved_[28] = true; /* FP5 */
reserved_[29] = true; /* FP6 */
// linear scan algorithm
DEBUG(printIntervals("\tunhandled", unhandled_.begin(), unhandled_.end()));
DEBUG(printIntervals("\tfixed", fixed_.begin(), fixed_.end()));
DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end()));
while (!unhandled_.empty() || !fixed_.empty()) {
// pick the interval with the earliest start point
IntervalPtrs::value_type cur;
if (fixed_.empty()) {
cur = unhandled_.front();
unhandled_.erase(unhandled_.begin());
}
else if (unhandled_.empty()) {
cur = fixed_.front();
fixed_.erase(fixed_.begin());
}
else if (unhandled_.front()->start() < fixed_.front()->start()) {
cur = unhandled_.front();
unhandled_.erase(unhandled_.begin());
}
else {
cur = fixed_.front();
fixed_.erase(fixed_.begin());
}
DEBUG(std::cerr << *cur << '\n');
processActiveIntervals(cur);
processInactiveIntervals(cur);
// if this register is fixed we are done
if (cur->reg < MRegisterInfo::FirstVirtualRegister) {
markPhysRegNotFree(cur->reg);
active_.push_back(cur);
}
// otherwise we are allocating a virtual register. try to find
// a free physical register or spill an interval in order to
// assign it one (we could spill the current though).
else {
backupRegUse();
// for every interval in inactive we overlap with, mark the
// register as not free
for (IntervalPtrs::const_iterator i = inactive_.begin(),
e = inactive_.end(); i != e; ++i) {
unsigned reg = (*i)->reg;
if (reg >= MRegisterInfo::FirstVirtualRegister)
reg = v2pMap_[reg];
if (cur->overlaps(**i)) {
markPhysRegNotFree(reg);
}
}
// for every interval in fixed we overlap with,
// mark the register as not free
for (IntervalPtrs::const_iterator i = fixed_.begin(),
e = fixed_.end(); i != e; ++i) {
assert((*i)->reg < MRegisterInfo::FirstVirtualRegister &&
"virtual register interval in fixed set?");
if (cur->overlaps(**i))
markPhysRegNotFree((*i)->reg);
}
DEBUG(std::cerr << "\tallocating current interval:\n");
unsigned physReg = getFreePhysReg(cur);
if (!physReg) {
assignStackSlotAtInterval(cur);
}
else {
restoreRegUse();
assignVirt2PhysReg(cur->reg, physReg);
active_.push_back(cur);
}
}
DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end())); }
// expire any remaining active intervals
for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
unsigned reg = (*i)->reg;
DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
if (reg >= MRegisterInfo::FirstVirtualRegister) {
reg = v2pMap_[reg];
}
markPhysRegFree(reg);
}
active_.clear();
inactive_.clear();
DEBUG(std::cerr << "finished register allocation\n");
DEBUG(printVirt2PhysMap());
DEBUG(std::cerr << "Rewrite machine code:\n");
for (currentMbb_ = mf_->begin(); currentMbb_ != mf_->end(); ++currentMbb_) {
instrAdded_ = 0;
for (currentInstr_ = currentMbb_->begin();
currentInstr_ != currentMbb_->end(); ++currentInstr_) {
DEBUG(std::cerr << "\tinstruction: ";
(*currentInstr_)->print(std::cerr, *tm_););
// use our current mapping and actually replace and
// virtual register with its allocated physical registers
DEBUG(std::cerr << "\t\treplacing virtual registers with mapped "
"physical registers:\n");
for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
i != e; ++i) {
MachineOperand& op = (*currentInstr_)->getOperand(i);
if (op.isVirtualRegister()) {
unsigned virtReg = op.getAllocatedRegNum();
unsigned physReg = v2pMap_[virtReg];
if (physReg) {
DEBUG(std::cerr << "\t\t\t%reg" << virtReg
<< " -> " << mri_->getName(physReg) << '\n');
(*currentInstr_)->SetMachineOperandReg(i, physReg);
}
}
}
DEBUG(std::cerr << "\t\tloading temporarily used operands to "
"registers:\n");
for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
i != e; ++i) {
MachineOperand& op = (*currentInstr_)->getOperand(i);
if (op.isVirtualRegister() && op.isUse() && !op.isDef()) {
unsigned virtReg = op.getAllocatedRegNum();
unsigned physReg = v2pMap_[virtReg];
if (!physReg) {
physReg = getFreeTempPhysReg(virtReg);
loadVirt2PhysReg(virtReg, physReg);
tempUseOperands_.push_back(virtReg);
}
(*currentInstr_)->SetMachineOperandReg(i, physReg);
}
}
DEBUG(std::cerr << "\t\tclearing temporarily used operands:\n");
for (unsigned i = 0, e = tempUseOperands_.size(); i != e; ++i) {
clearVirtReg(tempUseOperands_[i]);
}
tempUseOperands_.clear();
DEBUG(std::cerr << "\t\tassigning temporarily defined operands to "
"registers:\n");
for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
i != e; ++i) {
MachineOperand& op = (*currentInstr_)->getOperand(i);
if (op.isVirtualRegister() && op.isDef()) {
unsigned virtReg = op.getAllocatedRegNum();
unsigned physReg = v2pMap_[virtReg];
if (!physReg) {
physReg = getFreeTempPhysReg(virtReg);
}
if (op.isUse()) { // def and use
loadVirt2PhysReg(virtReg, physReg);
}
else {
assignVirt2PhysReg(virtReg, physReg);
}
tempDefOperands_.push_back(virtReg);
(*currentInstr_)->SetMachineOperandReg(i, physReg);
}
}
DEBUG(std::cerr << "\t\tspilling temporarily defined operands "
"of this instruction:\n");
++currentInstr_; // we want to insert after this instruction
for (unsigned i = 0, e = tempDefOperands_.size(); i != e; ++i) {
spillVirtReg(tempDefOperands_[i]);
}
--currentInstr_; // restore currentInstr_ iterator
tempDefOperands_.clear();
}
}
return true;
}
void RA::initIntervalSets(const LiveIntervals::Intervals& li)
{
assert(unhandled_.empty() && fixed_.empty() &&
active_.empty() && inactive_.empty() &&
"interval sets should be empty on initialization");
for (LiveIntervals::Intervals::const_iterator i = li.begin(), e = li.end();
i != e; ++i) {
if (i->reg < MRegisterInfo::FirstVirtualRegister)
fixed_.push_back(&*i);
else
unhandled_.push_back(&*i);
}
}
void RA::processActiveIntervals(IntervalPtrs::value_type cur)
{
DEBUG(std::cerr << "\tprocessing active intervals:\n");
for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) {
unsigned reg = (*i)->reg;
// remove expired intervals. we expire earlier because this if
// an interval expires this is going to be the last use. in
// this case we can reuse the register for a def in the same
// instruction
if ((*i)->expiredAt(cur->start() + 1)) {
DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
if (reg >= MRegisterInfo::FirstVirtualRegister) {
reg = v2pMap_[reg];
}
markPhysRegFree(reg);
// remove from active
i = active_.erase(i);
}
// move inactive intervals to inactive list
else if (!(*i)->liveAt(cur->start())) {
DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n");
if (reg >= MRegisterInfo::FirstVirtualRegister) {
reg = v2pMap_[reg];
}
markPhysRegFree(reg);
// add to inactive
inactive_.push_back(*i);
// remove from active
i = active_.erase(i);
}
else {
++i;
}
}
}
void RA::processInactiveIntervals(IntervalPtrs::value_type cur)
{
DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) {
unsigned reg = (*i)->reg;
// remove expired intervals. we expire earlier because this if
// an interval expires this is going to be the last use. in
// this case we can reuse the register for a def in the same
// instruction
if ((*i)->expiredAt(cur->start() + 1)) {
DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n");
// remove from inactive
i = inactive_.erase(i);
}
// move re-activated intervals in active list
else if ((*i)->liveAt(cur->start())) {
DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n");
if (reg >= MRegisterInfo::FirstVirtualRegister) {
reg = v2pMap_[reg];
}
markPhysRegNotFree(reg);
// add to active
active_.push_back(*i);
// remove from inactive
i = inactive_.erase(i);
}
else {
++i;
}
}
}
namespace {
template <typename T>
void updateWeight(T rw[], int reg, T w)
{
if (rw[reg] == std::numeric_limits<T>::max() ||
w == std::numeric_limits<T>::max())
rw[reg] = std::numeric_limits<T>::max();
else
rw[reg] += w;
}
}
void RA::assignStackSlotAtInterval(IntervalPtrs::value_type cur)
{
DEBUG(std::cerr << "\t\tassigning stack slot at interval "
<< *cur << ":\n");
// set all weights to zero
float regWeight[MRegisterInfo::FirstVirtualRegister];
for (unsigned i = 0; i < MRegisterInfo::FirstVirtualRegister; ++i)
regWeight[i] = 0.0F;
// for each interval in active that overlaps
for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
i != e; ++i) {
if (!cur->overlaps(**i))
continue;
unsigned reg = (*i)->reg;
if (reg >= MRegisterInfo::FirstVirtualRegister) {
reg = v2pMap_[reg];
}
updateWeight(regWeight, reg, (*i)->weight);
for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
updateWeight(regWeight, *as, (*i)->weight);
}
// for each interval in inactive that overlaps
for (IntervalPtrs::const_iterator i = inactive_.begin(),
e = inactive_.end(); i != e; ++i) {
if (!cur->overlaps(**i))
continue;
unsigned reg = (*i)->reg;
if (reg >= MRegisterInfo::FirstVirtualRegister) {
reg = v2pMap_[reg];
}
updateWeight(regWeight, reg, (*i)->weight);
for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
updateWeight(regWeight, *as, (*i)->weight);
}
// for each fixed interval that overlaps
for (IntervalPtrs::const_iterator i = fixed_.begin(), e = fixed_.end();
i != e; ++i) {
if (!cur->overlaps(**i))
continue;
assert((*i)->reg < MRegisterInfo::FirstVirtualRegister &&
"virtual register interval in fixed set?");
updateWeight(regWeight, (*i)->reg, (*i)->weight);
for (const unsigned* as = mri_->getAliasSet((*i)->reg); *as; ++as)
updateWeight(regWeight, *as, (*i)->weight);
}
float minWeight = std::numeric_limits<float>::max();
unsigned minReg = 0;
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg);
for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_);
i != rc->allocation_order_end(*mf_); ++i) {
unsigned reg = *i;
if (!reserved_[reg] && minWeight > regWeight[reg]) {
minWeight = regWeight[reg];
minReg = reg;
}
}
if (cur->weight < minWeight) {
restoreRegUse();
DEBUG(std::cerr << "\t\t\t\tspilling: " << *cur << '\n');
assignVirt2StackSlot(cur->reg);
}
else {
DEBUG(std::cerr << "\t\t\t\tfreeing: " << mri_->getName(minReg) << '\n');
std::set<unsigned> toSpill;
toSpill.insert(minReg);
for (const unsigned* as = mri_->getAliasSet(minReg); *as; ++as)
toSpill.insert(*as);
std::vector<unsigned> spilled;
for (IntervalPtrs::iterator i = active_.begin();
i != active_.end(); ) {
unsigned reg = (*i)->reg;
if (reg >= MRegisterInfo::FirstVirtualRegister &&
toSpill.find(v2pMap_[reg]) != toSpill.end() &&
cur->overlaps(**i)) {
spilled.push_back(v2pMap_[reg]);
DEBUG(std::cerr << "\t\t\t\tspilling : " << **i << '\n');
assignVirt2StackSlot(reg);
i = active_.erase(i);
}
else {
++i;
}
}
for (IntervalPtrs::iterator i = inactive_.begin();
i != inactive_.end(); ) {
unsigned reg = (*i)->reg;
if (reg >= MRegisterInfo::FirstVirtualRegister &&
toSpill.find(v2pMap_[reg]) != toSpill.end() &&
cur->overlaps(**i)) {
DEBUG(std::cerr << "\t\t\t\tspilling : " << **i << '\n');
assignVirt2StackSlot(reg);
i = inactive_.erase(i);
}
else {
++i;
}
}
unsigned physReg = getFreePhysReg(cur);
assert(physReg && "no free physical register after spill?");
restoreRegUse();
for (unsigned i = 0; i < spilled.size(); ++i)
markPhysRegFree(spilled[i]);
assignVirt2PhysReg(cur->reg, physReg);
active_.push_back(cur);
}
}
bool RA::physRegAvailable(unsigned physReg)
{
assert(!reserved_[physReg] &&
"cannot call this method with a reserved register");
return !regUse_[physReg];
}
unsigned RA::getFreePhysReg(IntervalPtrs::value_type cur)
{
DEBUG(std::cerr << "\t\tgetting free physical register: ");
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg);
for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_);
i != rc->allocation_order_end(*mf_); ++i) {
unsigned reg = *i;
if (!reserved_[reg] && !regUse_[reg]) {
DEBUG(std::cerr << mri_->getName(reg) << '\n');
return reg;
}
}
DEBUG(std::cerr << "no free register\n");
return 0;
}
bool RA::tempPhysRegAvailable(unsigned physReg)
{
assert(reserved_[physReg] &&
"cannot call this method with a not reserved temp register");
return !regUse_[physReg];
}
unsigned RA::getFreeTempPhysReg(unsigned virtReg)
{
DEBUG(std::cerr << "\t\tgetting free temporary physical register: ");
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
// go in reverse allocation order for the temp registers
for (TargetRegisterClass::iterator i = rc->allocation_order_end(*mf_) - 1;
i != rc->allocation_order_begin(*mf_) - 1; --i) {
unsigned reg = *i;
if (reserved_[reg] && !regUse_[reg]) {
DEBUG(std::cerr << mri_->getName(reg) << '\n');
return reg;
}
}
assert(0 && "no free temporary physical register?");
return 0;
}
void RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg)
{
v2pMap_[virtReg] = physReg;
markPhysRegNotFree(physReg);
}
void RA::clearVirtReg(unsigned virtReg)
{
Virt2PhysMap::iterator it = v2pMap_.find(virtReg);
assert(it != v2pMap_.end() &&
"attempting to clear a not allocated virtual register");
unsigned physReg = it->second;
markPhysRegFree(physReg);
v2pMap_[virtReg] = 0; // this marks that this virtual register
// lives on the stack
DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg)
<< "\n");
}
void RA::assignVirt2StackSlot(unsigned virtReg)
{
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);
bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second;
assert(inserted &&
"attempt to assign stack slot to already assigned register?");
// if the virtual register was previously assigned clear the mapping
// and free the virtual register
if (v2pMap_.find(virtReg) != v2pMap_.end()) {
clearVirtReg(virtReg);
}
else {
v2pMap_[virtReg] = 0; // this marks that this virtual register
// lives on the stack
}
}
int RA::getStackSlot(unsigned virtReg)
{
// use lower_bound so that we can do a possibly O(1) insert later
// if necessary
Virt2StackSlotMap::iterator it = v2ssMap_.find(virtReg);
assert(it != v2ssMap_.end() &&
"attempt to get stack slot on register that does not live on the stack");
return it->second;
}
void RA::spillVirtReg(unsigned virtReg)
{
DEBUG(std::cerr << "\t\t\tspilling register: " << virtReg);
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
int frameIndex = getStackSlot(virtReg);
DEBUG(std::cerr << " to stack slot #" << frameIndex << '\n');
++numSpilled;
instrAdded_ += mri_->storeRegToStackSlot(*currentMbb_, currentInstr_,
v2pMap_[virtReg], frameIndex, rc);
clearVirtReg(virtReg);
}
void RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg)
{
DEBUG(std::cerr << "\t\t\tloading register: " << virtReg);
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
int frameIndex = getStackSlot(virtReg);
DEBUG(std::cerr << " from stack slot #" << frameIndex << '\n');
++numReloaded;
instrAdded_ += mri_->loadRegFromStackSlot(*currentMbb_, currentInstr_,
physReg, frameIndex, rc);
assignVirt2PhysReg(virtReg, physReg);
}
void RA::markPhysRegFree(unsigned physReg)
{
assert(regUse_[physReg] != 0);
--regUse_[physReg];
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
physReg = *as;
assert(regUse_[physReg] != 0);
--regUse_[physReg];
}
}
void RA::markPhysRegNotFree(unsigned physReg)
{
++regUse_[physReg];
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
physReg = *as;
++regUse_[physReg];
}
}
FunctionPass* llvm::createLinearScanRegisterAllocator() {
return new RA();
}