mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 00:33:15 +00:00
9e9a0d5fc2
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77635 91177308-0d34-0410-b5e6-96231b3b80d8
343 lines
13 KiB
C++
343 lines
13 KiB
C++
//===-- Local.cpp - Functions to perform local transformations ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This family of functions perform various local transformations to the
|
|
// program.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/GlobalAlias.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/DebugInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Local analysis.
|
|
//
|
|
|
|
/// isSafeToLoadUnconditionally - Return true if we know that executing a load
|
|
/// from this value cannot trap. If it is not obviously safe to load from the
|
|
/// specified pointer, we do a quick local scan of the basic block containing
|
|
/// ScanFrom, to determine if the address is already accessed.
|
|
bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
|
|
// If it is an alloca it is always safe to load from.
|
|
if (isa<AllocaInst>(V)) return true;
|
|
|
|
// If it is a global variable it is mostly safe to load from.
|
|
if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
|
|
// Don't try to evaluate aliases. External weak GV can be null.
|
|
return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
|
|
|
|
// Otherwise, be a little bit agressive by scanning the local block where we
|
|
// want to check to see if the pointer is already being loaded or stored
|
|
// from/to. If so, the previous load or store would have already trapped,
|
|
// so there is no harm doing an extra load (also, CSE will later eliminate
|
|
// the load entirely).
|
|
BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
|
|
|
|
while (BBI != E) {
|
|
--BBI;
|
|
|
|
// If we see a free or a call which may write to memory (i.e. which might do
|
|
// a free) the pointer could be marked invalid.
|
|
if (isa<FreeInst>(BBI) ||
|
|
(isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
|
|
!isa<DbgInfoIntrinsic>(BBI)))
|
|
return false;
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
|
|
if (LI->getOperand(0) == V) return true;
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
|
|
if (SI->getOperand(1) == V) return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Local constant propagation.
|
|
//
|
|
|
|
// ConstantFoldTerminator - If a terminator instruction is predicated on a
|
|
// constant value, convert it into an unconditional branch to the constant
|
|
// destination.
|
|
//
|
|
bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
|
|
TerminatorInst *T = BB->getTerminator();
|
|
|
|
// Branch - See if we are conditional jumping on constant
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
|
|
if (BI->isUnconditional()) return false; // Can't optimize uncond branch
|
|
BasicBlock *Dest1 = BI->getSuccessor(0);
|
|
BasicBlock *Dest2 = BI->getSuccessor(1);
|
|
|
|
if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
|
|
// Are we branching on constant?
|
|
// YES. Change to unconditional branch...
|
|
BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
|
|
BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
|
|
|
|
//cerr << "Function: " << T->getParent()->getParent()
|
|
// << "\nRemoving branch from " << T->getParent()
|
|
// << "\n\nTo: " << OldDest << endl;
|
|
|
|
// Let the basic block know that we are letting go of it. Based on this,
|
|
// it will adjust it's PHI nodes.
|
|
assert(BI->getParent() && "Terminator not inserted in block!");
|
|
OldDest->removePredecessor(BI->getParent());
|
|
|
|
// Set the unconditional destination, and change the insn to be an
|
|
// unconditional branch.
|
|
BI->setUnconditionalDest(Destination);
|
|
return true;
|
|
} else if (Dest2 == Dest1) { // Conditional branch to same location?
|
|
// This branch matches something like this:
|
|
// br bool %cond, label %Dest, label %Dest
|
|
// and changes it into: br label %Dest
|
|
|
|
// Let the basic block know that we are letting go of one copy of it.
|
|
assert(BI->getParent() && "Terminator not inserted in block!");
|
|
Dest1->removePredecessor(BI->getParent());
|
|
|
|
// Change a conditional branch to unconditional.
|
|
BI->setUnconditionalDest(Dest1);
|
|
return true;
|
|
}
|
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
|
|
// If we are switching on a constant, we can convert the switch into a
|
|
// single branch instruction!
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
|
|
BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest
|
|
BasicBlock *DefaultDest = TheOnlyDest;
|
|
assert(TheOnlyDest == SI->getDefaultDest() &&
|
|
"Default destination is not successor #0?");
|
|
|
|
// Figure out which case it goes to...
|
|
for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
|
|
// Found case matching a constant operand?
|
|
if (SI->getSuccessorValue(i) == CI) {
|
|
TheOnlyDest = SI->getSuccessor(i);
|
|
break;
|
|
}
|
|
|
|
// Check to see if this branch is going to the same place as the default
|
|
// dest. If so, eliminate it as an explicit compare.
|
|
if (SI->getSuccessor(i) == DefaultDest) {
|
|
// Remove this entry...
|
|
DefaultDest->removePredecessor(SI->getParent());
|
|
SI->removeCase(i);
|
|
--i; --e; // Don't skip an entry...
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, check to see if the switch only branches to one destination.
|
|
// We do this by reseting "TheOnlyDest" to null when we find two non-equal
|
|
// destinations.
|
|
if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
|
|
}
|
|
|
|
if (CI && !TheOnlyDest) {
|
|
// Branching on a constant, but not any of the cases, go to the default
|
|
// successor.
|
|
TheOnlyDest = SI->getDefaultDest();
|
|
}
|
|
|
|
// If we found a single destination that we can fold the switch into, do so
|
|
// now.
|
|
if (TheOnlyDest) {
|
|
// Insert the new branch..
|
|
BranchInst::Create(TheOnlyDest, SI);
|
|
BasicBlock *BB = SI->getParent();
|
|
|
|
// Remove entries from PHI nodes which we no longer branch to...
|
|
for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
|
|
// Found case matching a constant operand?
|
|
BasicBlock *Succ = SI->getSuccessor(i);
|
|
if (Succ == TheOnlyDest)
|
|
TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
|
|
else
|
|
Succ->removePredecessor(BB);
|
|
}
|
|
|
|
// Delete the old switch...
|
|
BB->getInstList().erase(SI);
|
|
return true;
|
|
} else if (SI->getNumSuccessors() == 2) {
|
|
// Otherwise, we can fold this switch into a conditional branch
|
|
// instruction if it has only one non-default destination.
|
|
Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
|
|
SI->getSuccessorValue(1), "cond");
|
|
// Insert the new branch...
|
|
BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
|
|
|
|
// Delete the old switch...
|
|
SI->eraseFromParent();
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Local dead code elimination...
|
|
//
|
|
|
|
/// isInstructionTriviallyDead - Return true if the result produced by the
|
|
/// instruction is not used, and the instruction has no side effects.
|
|
///
|
|
bool llvm::isInstructionTriviallyDead(Instruction *I) {
|
|
if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
|
|
|
|
// We don't want debug info removed by anything this general.
|
|
if (isa<DbgInfoIntrinsic>(I)) return false;
|
|
|
|
if (!I->mayHaveSideEffects()) return true;
|
|
|
|
// Special case intrinsics that "may have side effects" but can be deleted
|
|
// when dead.
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
|
|
// Safe to delete llvm.stacksave if dead.
|
|
if (II->getIntrinsicID() == Intrinsic::stacksave)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
|
|
/// trivially dead instruction, delete it. If that makes any of its operands
|
|
/// trivially dead, delete them too, recursively.
|
|
void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
|
|
return;
|
|
|
|
SmallVector<Instruction*, 16> DeadInsts;
|
|
DeadInsts.push_back(I);
|
|
|
|
while (!DeadInsts.empty()) {
|
|
I = DeadInsts.pop_back_val();
|
|
|
|
// Null out all of the instruction's operands to see if any operand becomes
|
|
// dead as we go.
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
|
|
Value *OpV = I->getOperand(i);
|
|
I->setOperand(i, 0);
|
|
|
|
if (!OpV->use_empty()) continue;
|
|
|
|
// If the operand is an instruction that became dead as we nulled out the
|
|
// operand, and if it is 'trivially' dead, delete it in a future loop
|
|
// iteration.
|
|
if (Instruction *OpI = dyn_cast<Instruction>(OpV))
|
|
if (isInstructionTriviallyDead(OpI))
|
|
DeadInsts.push_back(OpI);
|
|
}
|
|
|
|
I->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
|
|
/// dead PHI node, due to being a def-use chain of single-use nodes that
|
|
/// either forms a cycle or is terminated by a trivially dead instruction,
|
|
/// delete it. If that makes any of its operands trivially dead, delete them
|
|
/// too, recursively.
|
|
void
|
|
llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
|
|
// We can remove a PHI if it is on a cycle in the def-use graph
|
|
// where each node in the cycle has degree one, i.e. only one use,
|
|
// and is an instruction with no side effects.
|
|
if (!PN->hasOneUse())
|
|
return;
|
|
|
|
SmallPtrSet<PHINode *, 4> PHIs;
|
|
PHIs.insert(PN);
|
|
for (Instruction *J = cast<Instruction>(*PN->use_begin());
|
|
J->hasOneUse() && !J->mayHaveSideEffects();
|
|
J = cast<Instruction>(*J->use_begin()))
|
|
// If we find a PHI more than once, we're on a cycle that
|
|
// won't prove fruitful.
|
|
if (PHINode *JP = dyn_cast<PHINode>(J))
|
|
if (!PHIs.insert(cast<PHINode>(JP))) {
|
|
// Break the cycle and delete the PHI and its operands.
|
|
JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
|
|
RecursivelyDeleteTriviallyDeadInstructions(JP);
|
|
break;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Control Flow Graph Restructuring...
|
|
//
|
|
|
|
/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
|
|
/// predecessor is known to have one successor (DestBB!). Eliminate the edge
|
|
/// between them, moving the instructions in the predecessor into DestBB and
|
|
/// deleting the predecessor block.
|
|
///
|
|
void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB) {
|
|
// If BB has single-entry PHI nodes, fold them.
|
|
while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
|
|
Value *NewVal = PN->getIncomingValue(0);
|
|
// Replace self referencing PHI with undef, it must be dead.
|
|
if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
|
|
PN->replaceAllUsesWith(NewVal);
|
|
PN->eraseFromParent();
|
|
}
|
|
|
|
BasicBlock *PredBB = DestBB->getSinglePredecessor();
|
|
assert(PredBB && "Block doesn't have a single predecessor!");
|
|
|
|
// Splice all the instructions from PredBB to DestBB.
|
|
PredBB->getTerminator()->eraseFromParent();
|
|
DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
|
|
|
|
// Anything that branched to PredBB now branches to DestBB.
|
|
PredBB->replaceAllUsesWith(DestBB);
|
|
|
|
// Nuke BB.
|
|
PredBB->eraseFromParent();
|
|
}
|
|
|
|
/// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
|
|
/// by DbgIntrinsics. If DbgInUses is specified then the vector is filled
|
|
/// with the DbgInfoIntrinsic that use the instruction I.
|
|
bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I,
|
|
SmallVectorImpl<DbgInfoIntrinsic *> *DbgInUses) {
|
|
if (DbgInUses)
|
|
DbgInUses->clear();
|
|
|
|
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
|
|
++UI) {
|
|
if (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(*UI)) {
|
|
if (DbgInUses)
|
|
DbgInUses->push_back(DI);
|
|
} else {
|
|
if (DbgInUses)
|
|
DbgInUses->clear();
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|