mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	as a questionable case, but the code isn't actually needed. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52657 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1084 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1084 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a linear scan register allocator.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| #include "PhysRegTracker.h"
 | |
| #include "VirtRegMap.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveStackAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/RegAllocRegistry.h"
 | |
| #include "llvm/CodeGen/RegisterCoalescer.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/ADT/EquivalenceClasses.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include <algorithm>
 | |
| #include <set>
 | |
| #include <queue>
 | |
| #include <memory>
 | |
| #include <cmath>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumIters     , "Number of iterations performed");
 | |
| STATISTIC(NumBacktracks, "Number of times we had to backtrack");
 | |
| STATISTIC(NumCoalesce,   "Number of copies coalesced");
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NewHeuristic("new-spilling-heuristic",
 | |
|              cl::desc("Use new spilling heuristic"),
 | |
|              cl::init(false), cl::Hidden);
 | |
| 
 | |
| static RegisterRegAlloc
 | |
| linearscanRegAlloc("linearscan", "  linear scan register allocator",
 | |
|                    createLinearScanRegisterAllocator);
 | |
| 
 | |
| namespace {
 | |
|   struct VISIBILITY_HIDDEN RALinScan : public MachineFunctionPass {
 | |
|     static char ID;
 | |
|     RALinScan() : MachineFunctionPass((intptr_t)&ID) {}
 | |
| 
 | |
|     typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
 | |
|     typedef std::vector<IntervalPtr> IntervalPtrs;
 | |
|   private:
 | |
|     /// RelatedRegClasses - This structure is built the first time a function is
 | |
|     /// compiled, and keeps track of which register classes have registers that
 | |
|     /// belong to multiple classes or have aliases that are in other classes.
 | |
|     EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
 | |
|     std::map<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
 | |
| 
 | |
|     MachineFunction* mf_;
 | |
|     MachineRegisterInfo* mri_;
 | |
|     const TargetMachine* tm_;
 | |
|     const TargetRegisterInfo* tri_;
 | |
|     const TargetInstrInfo* tii_;
 | |
|     MachineRegisterInfo *reginfo_;
 | |
|     BitVector allocatableRegs_;
 | |
|     LiveIntervals* li_;
 | |
|     LiveStacks* ls_;
 | |
|     const MachineLoopInfo *loopInfo;
 | |
| 
 | |
|     /// handled_ - Intervals are added to the handled_ set in the order of their
 | |
|     /// start value.  This is uses for backtracking.
 | |
|     std::vector<LiveInterval*> handled_;
 | |
| 
 | |
|     /// fixed_ - Intervals that correspond to machine registers.
 | |
|     ///
 | |
|     IntervalPtrs fixed_;
 | |
| 
 | |
|     /// active_ - Intervals that are currently being processed, and which have a
 | |
|     /// live range active for the current point.
 | |
|     IntervalPtrs active_;
 | |
| 
 | |
|     /// inactive_ - Intervals that are currently being processed, but which have
 | |
|     /// a hold at the current point.
 | |
|     IntervalPtrs inactive_;
 | |
| 
 | |
|     typedef std::priority_queue<LiveInterval*,
 | |
|                                 std::vector<LiveInterval*>,
 | |
|                                 greater_ptr<LiveInterval> > IntervalHeap;
 | |
|     IntervalHeap unhandled_;
 | |
|     std::auto_ptr<PhysRegTracker> prt_;
 | |
|     std::auto_ptr<VirtRegMap> vrm_;
 | |
|     std::auto_ptr<Spiller> spiller_;
 | |
| 
 | |
|   public:
 | |
|     virtual const char* getPassName() const {
 | |
|       return "Linear Scan Register Allocator";
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<LiveIntervals>();
 | |
|       // Make sure PassManager knows which analyses to make available
 | |
|       // to coalescing and which analyses coalescing invalidates.
 | |
|       AU.addRequiredTransitive<RegisterCoalescer>();
 | |
|       AU.addRequired<LiveStacks>();
 | |
|       AU.addPreserved<LiveStacks>();
 | |
|       AU.addRequired<MachineLoopInfo>();
 | |
|       AU.addPreserved<MachineLoopInfo>();
 | |
|       AU.addPreservedID(MachineDominatorsID);
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     /// runOnMachineFunction - register allocate the whole function
 | |
|     bool runOnMachineFunction(MachineFunction&);
 | |
| 
 | |
|   private:
 | |
|     /// linearScan - the linear scan algorithm
 | |
|     void linearScan();
 | |
| 
 | |
|     /// initIntervalSets - initialize the interval sets.
 | |
|     ///
 | |
|     void initIntervalSets();
 | |
| 
 | |
|     /// processActiveIntervals - expire old intervals and move non-overlapping
 | |
|     /// ones to the inactive list.
 | |
|     void processActiveIntervals(unsigned CurPoint);
 | |
| 
 | |
|     /// processInactiveIntervals - expire old intervals and move overlapping
 | |
|     /// ones to the active list.
 | |
|     void processInactiveIntervals(unsigned CurPoint);
 | |
| 
 | |
|     /// assignRegOrStackSlotAtInterval - assign a register if one
 | |
|     /// is available, or spill.
 | |
|     void assignRegOrStackSlotAtInterval(LiveInterval* cur);
 | |
| 
 | |
|     /// findIntervalsToSpill - Determine the intervals to spill for the
 | |
|     /// specified interval. It's passed the physical registers whose spill
 | |
|     /// weight is the lowest among all the registers whose live intervals
 | |
|     /// conflict with the interval.
 | |
|     void findIntervalsToSpill(LiveInterval *cur,
 | |
|                             std::vector<std::pair<unsigned,float> > &Candidates,
 | |
|                             unsigned NumCands,
 | |
|                             SmallVector<LiveInterval*, 8> &SpillIntervals);
 | |
| 
 | |
|     /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
 | |
|     /// try allocate the definition the same register as the source register
 | |
|     /// if the register is not defined during live time of the interval. This
 | |
|     /// eliminate a copy. This is used to coalesce copies which were not
 | |
|     /// coalesced away before allocation either due to dest and src being in
 | |
|     /// different register classes or because the coalescer was overly
 | |
|     /// conservative.
 | |
|     unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
 | |
| 
 | |
|     ///
 | |
|     /// register handling helpers
 | |
|     ///
 | |
| 
 | |
|     /// getFreePhysReg - return a free physical register for this virtual
 | |
|     /// register interval if we have one, otherwise return 0.
 | |
|     unsigned getFreePhysReg(LiveInterval* cur);
 | |
| 
 | |
|     /// assignVirt2StackSlot - assigns this virtual register to a
 | |
|     /// stack slot. returns the stack slot
 | |
|     int assignVirt2StackSlot(unsigned virtReg);
 | |
| 
 | |
|     void ComputeRelatedRegClasses();
 | |
| 
 | |
|     template <typename ItTy>
 | |
|     void printIntervals(const char* const str, ItTy i, ItTy e) const {
 | |
|       if (str) DOUT << str << " intervals:\n";
 | |
|       for (; i != e; ++i) {
 | |
|         DOUT << "\t" << *i->first << " -> ";
 | |
|         unsigned reg = i->first->reg;
 | |
|         if (TargetRegisterInfo::isVirtualRegister(reg)) {
 | |
|           reg = vrm_->getPhys(reg);
 | |
|         }
 | |
|         DOUT << tri_->getName(reg) << '\n';
 | |
|       }
 | |
|     }
 | |
|   };
 | |
|   char RALinScan::ID = 0;
 | |
| }
 | |
| 
 | |
| static RegisterPass<RALinScan>
 | |
| X("linearscan-regalloc", "Linear Scan Register Allocator");
 | |
| 
 | |
| void RALinScan::ComputeRelatedRegClasses() {
 | |
|   const TargetRegisterInfo &TRI = *tri_;
 | |
|   
 | |
|   // First pass, add all reg classes to the union, and determine at least one
 | |
|   // reg class that each register is in.
 | |
|   bool HasAliases = false;
 | |
|   for (TargetRegisterInfo::regclass_iterator RCI = TRI.regclass_begin(),
 | |
|        E = TRI.regclass_end(); RCI != E; ++RCI) {
 | |
|     RelatedRegClasses.insert(*RCI);
 | |
|     for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
 | |
|          I != E; ++I) {
 | |
|       HasAliases = HasAliases || *TRI.getAliasSet(*I) != 0;
 | |
|       
 | |
|       const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
 | |
|       if (PRC) {
 | |
|         // Already processed this register.  Just make sure we know that
 | |
|         // multiple register classes share a register.
 | |
|         RelatedRegClasses.unionSets(PRC, *RCI);
 | |
|       } else {
 | |
|         PRC = *RCI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Second pass, now that we know conservatively what register classes each reg
 | |
|   // belongs to, add info about aliases.  We don't need to do this for targets
 | |
|   // without register aliases.
 | |
|   if (HasAliases)
 | |
|     for (std::map<unsigned, const TargetRegisterClass*>::iterator
 | |
|          I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
 | |
|          I != E; ++I)
 | |
|       for (const unsigned *AS = TRI.getAliasSet(I->first); *AS; ++AS)
 | |
|         RelatedRegClasses.unionSets(I->second, OneClassForEachPhysReg[*AS]);
 | |
| }
 | |
| 
 | |
| /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
 | |
| /// try allocate the definition the same register as the source register
 | |
| /// if the register is not defined during live time of the interval. This
 | |
| /// eliminate a copy. This is used to coalesce copies which were not
 | |
| /// coalesced away before allocation either due to dest and src being in
 | |
| /// different register classes or because the coalescer was overly
 | |
| /// conservative.
 | |
| unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
 | |
|   if ((cur.preference && cur.preference == Reg) || !cur.containsOneValue())
 | |
|     return Reg;
 | |
| 
 | |
|   VNInfo *vni = cur.getValNumInfo(0);
 | |
|   if (!vni->def || vni->def == ~1U || vni->def == ~0U)
 | |
|     return Reg;
 | |
|   MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
 | |
|   unsigned SrcReg, DstReg;
 | |
|   if (!CopyMI || !tii_->isMoveInstr(*CopyMI, SrcReg, DstReg))
 | |
|     return Reg;
 | |
|   if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
 | |
|     if (!vrm_->isAssignedReg(SrcReg))
 | |
|       return Reg;
 | |
|     else
 | |
|       SrcReg = vrm_->getPhys(SrcReg);
 | |
|   }
 | |
|   if (Reg == SrcReg)
 | |
|     return Reg;
 | |
| 
 | |
|   const TargetRegisterClass *RC = reginfo_->getRegClass(cur.reg);
 | |
|   if (!RC->contains(SrcReg))
 | |
|     return Reg;
 | |
| 
 | |
|   // Try to coalesce.
 | |
|   if (!li_->conflictsWithPhysRegDef(cur, *vrm_, SrcReg)) {
 | |
|     DOUT << "Coalescing: " << cur << " -> " << tri_->getName(SrcReg)
 | |
|          << '\n';
 | |
|     vrm_->clearVirt(cur.reg);
 | |
|     vrm_->assignVirt2Phys(cur.reg, SrcReg);
 | |
|     ++NumCoalesce;
 | |
|     return SrcReg;
 | |
|   }
 | |
| 
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
 | |
|   mf_ = &fn;
 | |
|   mri_ = &fn.getRegInfo();
 | |
|   tm_ = &fn.getTarget();
 | |
|   tri_ = tm_->getRegisterInfo();
 | |
|   tii_ = tm_->getInstrInfo();
 | |
|   reginfo_ = &mf_->getRegInfo();
 | |
|   allocatableRegs_ = tri_->getAllocatableSet(fn);
 | |
|   li_ = &getAnalysis<LiveIntervals>();
 | |
|   ls_ = &getAnalysis<LiveStacks>();
 | |
|   loopInfo = &getAnalysis<MachineLoopInfo>();
 | |
| 
 | |
|   // We don't run the coalescer here because we have no reason to
 | |
|   // interact with it.  If the coalescer requires interaction, it
 | |
|   // won't do anything.  If it doesn't require interaction, we assume
 | |
|   // it was run as a separate pass.
 | |
| 
 | |
|   // If this is the first function compiled, compute the related reg classes.
 | |
|   if (RelatedRegClasses.empty())
 | |
|     ComputeRelatedRegClasses();
 | |
|   
 | |
|   if (!prt_.get()) prt_.reset(new PhysRegTracker(*tri_));
 | |
|   vrm_.reset(new VirtRegMap(*mf_));
 | |
|   if (!spiller_.get()) spiller_.reset(createSpiller());
 | |
| 
 | |
|   initIntervalSets();
 | |
| 
 | |
|   linearScan();
 | |
| 
 | |
|   // Rewrite spill code and update the PhysRegsUsed set.
 | |
|   spiller_->runOnMachineFunction(*mf_, *vrm_);
 | |
|   vrm_.reset();  // Free the VirtRegMap
 | |
| 
 | |
|   assert(unhandled_.empty() && "Unhandled live intervals remain!");
 | |
|   fixed_.clear();
 | |
|   active_.clear();
 | |
|   inactive_.clear();
 | |
|   handled_.clear();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// initIntervalSets - initialize the interval sets.
 | |
| ///
 | |
| void RALinScan::initIntervalSets()
 | |
| {
 | |
|   assert(unhandled_.empty() && fixed_.empty() &&
 | |
|          active_.empty() && inactive_.empty() &&
 | |
|          "interval sets should be empty on initialization");
 | |
| 
 | |
|   for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(i->second.reg)) {
 | |
|       reginfo_->setPhysRegUsed(i->second.reg);
 | |
|       fixed_.push_back(std::make_pair(&i->second, i->second.begin()));
 | |
|     } else
 | |
|       unhandled_.push(&i->second);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RALinScan::linearScan()
 | |
| {
 | |
|   // linear scan algorithm
 | |
|   DOUT << "********** LINEAR SCAN **********\n";
 | |
|   DOUT << "********** Function: " << mf_->getFunction()->getName() << '\n';
 | |
| 
 | |
|   DEBUG(printIntervals("fixed", fixed_.begin(), fixed_.end()));
 | |
| 
 | |
|   while (!unhandled_.empty()) {
 | |
|     // pick the interval with the earliest start point
 | |
|     LiveInterval* cur = unhandled_.top();
 | |
|     unhandled_.pop();
 | |
|     ++NumIters;
 | |
|     DOUT << "\n*** CURRENT ***: " << *cur << '\n';
 | |
| 
 | |
|     if (!cur->empty()) {
 | |
|       processActiveIntervals(cur->beginNumber());
 | |
|       processInactiveIntervals(cur->beginNumber());
 | |
| 
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
 | |
|              "Can only allocate virtual registers!");
 | |
|     }
 | |
| 
 | |
|     // Allocating a virtual register. try to find a free
 | |
|     // physical register or spill an interval (possibly this one) in order to
 | |
|     // assign it one.
 | |
|     assignRegOrStackSlotAtInterval(cur);
 | |
| 
 | |
|     DEBUG(printIntervals("active", active_.begin(), active_.end()));
 | |
|     DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end()));
 | |
|   }
 | |
| 
 | |
|   // expire any remaining active intervals
 | |
|   while (!active_.empty()) {
 | |
|     IntervalPtr &IP = active_.back();
 | |
|     unsigned reg = IP.first->reg;
 | |
|     DOUT << "\tinterval " << *IP.first << " expired\n";
 | |
|     assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | |
|            "Can only allocate virtual registers!");
 | |
|     reg = vrm_->getPhys(reg);
 | |
|     prt_->delRegUse(reg);
 | |
|     active_.pop_back();
 | |
|   }
 | |
| 
 | |
|   // expire any remaining inactive intervals
 | |
|   DEBUG(for (IntervalPtrs::reverse_iterator
 | |
|                i = inactive_.rbegin(); i != inactive_.rend(); ++i)
 | |
|         DOUT << "\tinterval " << *i->first << " expired\n");
 | |
|   inactive_.clear();
 | |
| 
 | |
|   // Add live-ins to every BB except for entry. Also perform trivial coalescing.
 | |
|   MachineFunction::iterator EntryMBB = mf_->begin();
 | |
|   SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
 | |
|   for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
 | |
|     LiveInterval &cur = i->second;
 | |
|     unsigned Reg = 0;
 | |
|     bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
 | |
|     if (isPhys)
 | |
|       Reg = i->second.reg;
 | |
|     else if (vrm_->isAssignedReg(cur.reg))
 | |
|       Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
 | |
|     if (!Reg)
 | |
|       continue;
 | |
|     // Ignore splited live intervals.
 | |
|     if (!isPhys && vrm_->getPreSplitReg(cur.reg))
 | |
|       continue;
 | |
|     for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
 | |
|          I != E; ++I) {
 | |
|       const LiveRange &LR = *I;
 | |
|       if (li_->findLiveInMBBs(LR, LiveInMBBs)) {
 | |
|         for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
 | |
|           if (LiveInMBBs[i] != EntryMBB)
 | |
|             LiveInMBBs[i]->addLiveIn(Reg);
 | |
|         LiveInMBBs.clear();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DOUT << *vrm_;
 | |
| }
 | |
| 
 | |
| /// processActiveIntervals - expire old intervals and move non-overlapping ones
 | |
| /// to the inactive list.
 | |
| void RALinScan::processActiveIntervals(unsigned CurPoint)
 | |
| {
 | |
|   DOUT << "\tprocessing active intervals:\n";
 | |
| 
 | |
|   for (unsigned i = 0, e = active_.size(); i != e; ++i) {
 | |
|     LiveInterval *Interval = active_[i].first;
 | |
|     LiveInterval::iterator IntervalPos = active_[i].second;
 | |
|     unsigned reg = Interval->reg;
 | |
| 
 | |
|     IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
 | |
| 
 | |
|     if (IntervalPos == Interval->end()) {     // Remove expired intervals.
 | |
|       DOUT << "\t\tinterval " << *Interval << " expired\n";
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | |
|              "Can only allocate virtual registers!");
 | |
|       reg = vrm_->getPhys(reg);
 | |
|       prt_->delRegUse(reg);
 | |
| 
 | |
|       // Pop off the end of the list.
 | |
|       active_[i] = active_.back();
 | |
|       active_.pop_back();
 | |
|       --i; --e;
 | |
| 
 | |
|     } else if (IntervalPos->start > CurPoint) {
 | |
|       // Move inactive intervals to inactive list.
 | |
|       DOUT << "\t\tinterval " << *Interval << " inactive\n";
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | |
|              "Can only allocate virtual registers!");
 | |
|       reg = vrm_->getPhys(reg);
 | |
|       prt_->delRegUse(reg);
 | |
|       // add to inactive.
 | |
|       inactive_.push_back(std::make_pair(Interval, IntervalPos));
 | |
| 
 | |
|       // Pop off the end of the list.
 | |
|       active_[i] = active_.back();
 | |
|       active_.pop_back();
 | |
|       --i; --e;
 | |
|     } else {
 | |
|       // Otherwise, just update the iterator position.
 | |
|       active_[i].second = IntervalPos;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// processInactiveIntervals - expire old intervals and move overlapping
 | |
| /// ones to the active list.
 | |
| void RALinScan::processInactiveIntervals(unsigned CurPoint)
 | |
| {
 | |
|   DOUT << "\tprocessing inactive intervals:\n";
 | |
| 
 | |
|   for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
 | |
|     LiveInterval *Interval = inactive_[i].first;
 | |
|     LiveInterval::iterator IntervalPos = inactive_[i].second;
 | |
|     unsigned reg = Interval->reg;
 | |
| 
 | |
|     IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
 | |
| 
 | |
|     if (IntervalPos == Interval->end()) {       // remove expired intervals.
 | |
|       DOUT << "\t\tinterval " << *Interval << " expired\n";
 | |
| 
 | |
|       // Pop off the end of the list.
 | |
|       inactive_[i] = inactive_.back();
 | |
|       inactive_.pop_back();
 | |
|       --i; --e;
 | |
|     } else if (IntervalPos->start <= CurPoint) {
 | |
|       // move re-activated intervals in active list
 | |
|       DOUT << "\t\tinterval " << *Interval << " active\n";
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | |
|              "Can only allocate virtual registers!");
 | |
|       reg = vrm_->getPhys(reg);
 | |
|       prt_->addRegUse(reg);
 | |
|       // add to active
 | |
|       active_.push_back(std::make_pair(Interval, IntervalPos));
 | |
| 
 | |
|       // Pop off the end of the list.
 | |
|       inactive_[i] = inactive_.back();
 | |
|       inactive_.pop_back();
 | |
|       --i; --e;
 | |
|     } else {
 | |
|       // Otherwise, just update the iterator position.
 | |
|       inactive_[i].second = IntervalPos;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// updateSpillWeights - updates the spill weights of the specifed physical
 | |
| /// register and its weight.
 | |
| static void updateSpillWeights(std::vector<float> &Weights,
 | |
|                                unsigned reg, float weight,
 | |
|                                const TargetRegisterInfo *TRI) {
 | |
|   Weights[reg] += weight;
 | |
|   for (const unsigned* as = TRI->getAliasSet(reg); *as; ++as)
 | |
|     Weights[*as] += weight;
 | |
| }
 | |
| 
 | |
| static
 | |
| RALinScan::IntervalPtrs::iterator
 | |
| FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
 | |
|   for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
 | |
|        I != E; ++I)
 | |
|     if (I->first == LI) return I;
 | |
|   return IP.end();
 | |
| }
 | |
| 
 | |
| static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, unsigned Point){
 | |
|   for (unsigned i = 0, e = V.size(); i != e; ++i) {
 | |
|     RALinScan::IntervalPtr &IP = V[i];
 | |
|     LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
 | |
|                                                 IP.second, Point);
 | |
|     if (I != IP.first->begin()) --I;
 | |
|     IP.second = I;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// addStackInterval - Create a LiveInterval for stack if the specified live
 | |
| /// interval has been spilled.
 | |
| static void addStackInterval(LiveInterval *cur, LiveStacks *ls_,
 | |
|                              LiveIntervals *li_, float &Weight,
 | |
|                              VirtRegMap &vrm_) {
 | |
|   int SS = vrm_.getStackSlot(cur->reg);
 | |
|   if (SS == VirtRegMap::NO_STACK_SLOT)
 | |
|     return;
 | |
|   LiveInterval &SI = ls_->getOrCreateInterval(SS);
 | |
|   SI.weight += Weight;
 | |
| 
 | |
|   VNInfo *VNI;
 | |
|   if (SI.getNumValNums())
 | |
|     VNI = SI.getValNumInfo(0);
 | |
|   else
 | |
|     VNI = SI.getNextValue(~0U, 0, ls_->getVNInfoAllocator());
 | |
| 
 | |
|   LiveInterval &RI = li_->getInterval(cur->reg);
 | |
|   // FIXME: This may be overly conservative.
 | |
|   SI.MergeRangesInAsValue(RI, VNI);
 | |
| }
 | |
| 
 | |
| /// getConflictWeight - Return the number of conflicts between cur
 | |
| /// live interval and defs and uses of Reg weighted by loop depthes.
 | |
| static float getConflictWeight(LiveInterval *cur, unsigned Reg,
 | |
|                                   LiveIntervals *li_,
 | |
|                                   MachineRegisterInfo *mri_,
 | |
|                                   const MachineLoopInfo *loopInfo) {
 | |
|   float Conflicts = 0;
 | |
|   for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
 | |
|          E = mri_->reg_end(); I != E; ++I) {
 | |
|     MachineInstr *MI = &*I;
 | |
|     if (cur->liveAt(li_->getInstructionIndex(MI))) {
 | |
|       unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
 | |
|       Conflicts += powf(10.0f, (float)loopDepth);
 | |
|     }
 | |
|   }
 | |
|   return Conflicts;
 | |
| }
 | |
| 
 | |
| /// findIntervalsToSpill - Determine the intervals to spill for the
 | |
| /// specified interval. It's passed the physical registers whose spill
 | |
| /// weight is the lowest among all the registers whose live intervals
 | |
| /// conflict with the interval.
 | |
| void RALinScan::findIntervalsToSpill(LiveInterval *cur,
 | |
|                             std::vector<std::pair<unsigned,float> > &Candidates,
 | |
|                             unsigned NumCands,
 | |
|                             SmallVector<LiveInterval*, 8> &SpillIntervals) {
 | |
|   // We have figured out the *best* register to spill. But there are other
 | |
|   // registers that are pretty good as well (spill weight within 3%). Spill
 | |
|   // the one that has fewest defs and uses that conflict with cur.
 | |
|   float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
 | |
|   SmallVector<LiveInterval*, 8> SLIs[3];
 | |
| 
 | |
|   DOUT << "\tConsidering " << NumCands << " candidates: ";
 | |
|   DEBUG(for (unsigned i = 0; i != NumCands; ++i)
 | |
|           DOUT << tri_->getName(Candidates[i].first) << " ";
 | |
|         DOUT << "\n";);
 | |
|   
 | |
|   // Calculate the number of conflicts of each candidate.
 | |
|   for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
 | |
|     unsigned Reg = i->first->reg;
 | |
|     unsigned PhysReg = vrm_->getPhys(Reg);
 | |
|     if (!cur->overlapsFrom(*i->first, i->second))
 | |
|       continue;
 | |
|     for (unsigned j = 0; j < NumCands; ++j) {
 | |
|       unsigned Candidate = Candidates[j].first;
 | |
|       if (tri_->regsOverlap(PhysReg, Candidate)) {
 | |
|         if (NumCands > 1)
 | |
|           Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
 | |
|         SLIs[j].push_back(i->first);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
 | |
|     unsigned Reg = i->first->reg;
 | |
|     unsigned PhysReg = vrm_->getPhys(Reg);
 | |
|     if (!cur->overlapsFrom(*i->first, i->second-1))
 | |
|       continue;
 | |
|     for (unsigned j = 0; j < NumCands; ++j) {
 | |
|       unsigned Candidate = Candidates[j].first;
 | |
|       if (tri_->regsOverlap(PhysReg, Candidate)) {
 | |
|         if (NumCands > 1)
 | |
|           Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
 | |
|         SLIs[j].push_back(i->first);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Which is the best candidate?
 | |
|   unsigned BestCandidate = 0;
 | |
|   float MinConflicts = Conflicts[0];
 | |
|   for (unsigned i = 1; i != NumCands; ++i) {
 | |
|     if (Conflicts[i] < MinConflicts) {
 | |
|       BestCandidate = i;
 | |
|       MinConflicts = Conflicts[i];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
 | |
|             std::back_inserter(SpillIntervals));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct WeightCompare {
 | |
|     typedef std::pair<unsigned, float> RegWeightPair;
 | |
|     bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
 | |
|       return LHS.second < RHS.second;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static bool weightsAreClose(float w1, float w2) {
 | |
|   if (!NewHeuristic)
 | |
|     return false;
 | |
| 
 | |
|   float diff = w1 - w2;
 | |
|   if (diff <= 0.02f)  // Within 0.02f
 | |
|     return true;
 | |
|   return (diff / w2) <= 0.05f;  // Within 5%.
 | |
| }
 | |
| 
 | |
| /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
 | |
| /// spill.
 | |
| void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
 | |
| {
 | |
|   DOUT << "\tallocating current interval: ";
 | |
| 
 | |
|   // This is an implicitly defined live interval, just assign any register.
 | |
|   const TargetRegisterClass *RC = reginfo_->getRegClass(cur->reg);
 | |
|   if (cur->empty()) {
 | |
|     unsigned physReg = cur->preference;
 | |
|     if (!physReg)
 | |
|       physReg = *RC->allocation_order_begin(*mf_);
 | |
|     DOUT <<  tri_->getName(physReg) << '\n';
 | |
|     // Note the register is not really in use.
 | |
|     vrm_->assignVirt2Phys(cur->reg, physReg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   PhysRegTracker backupPrt = *prt_;
 | |
| 
 | |
|   std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
 | |
|   unsigned StartPosition = cur->beginNumber();
 | |
|   const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
 | |
| 
 | |
|   // If this live interval is defined by a move instruction and its source is
 | |
|   // assigned a physical register that is compatible with the target register
 | |
|   // class, then we should try to assign it the same register.
 | |
|   // This can happen when the move is from a larger register class to a smaller
 | |
|   // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
 | |
|   if (!cur->preference && cur->containsOneValue()) {
 | |
|     VNInfo *vni = cur->getValNumInfo(0);
 | |
|     if (vni->def && vni->def != ~1U && vni->def != ~0U) {
 | |
|       MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
 | |
|       unsigned SrcReg, DstReg;
 | |
|       if (CopyMI && tii_->isMoveInstr(*CopyMI, SrcReg, DstReg)) {
 | |
|         unsigned Reg = 0;
 | |
|         if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
 | |
|           Reg = SrcReg;
 | |
|         else if (vrm_->isAssignedReg(SrcReg))
 | |
|           Reg = vrm_->getPhys(SrcReg);
 | |
|         if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
 | |
|           cur->preference = Reg;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // for every interval in inactive we overlap with, mark the
 | |
|   // register as not free and update spill weights.
 | |
|   for (IntervalPtrs::const_iterator i = inactive_.begin(),
 | |
|          e = inactive_.end(); i != e; ++i) {
 | |
|     unsigned Reg = i->first->reg;
 | |
|     assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
 | |
|            "Can only allocate virtual registers!");
 | |
|     const TargetRegisterClass *RegRC = reginfo_->getRegClass(Reg);
 | |
|     // If this is not in a related reg class to the register we're allocating, 
 | |
|     // don't check it.
 | |
|     if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
 | |
|         cur->overlapsFrom(*i->first, i->second-1)) {
 | |
|       Reg = vrm_->getPhys(Reg);
 | |
|       prt_->addRegUse(Reg);
 | |
|       SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Speculatively check to see if we can get a register right now.  If not,
 | |
|   // we know we won't be able to by adding more constraints.  If so, we can
 | |
|   // check to see if it is valid.  Doing an exhaustive search of the fixed_ list
 | |
|   // is very bad (it contains all callee clobbered registers for any functions
 | |
|   // with a call), so we want to avoid doing that if possible.
 | |
|   unsigned physReg = getFreePhysReg(cur);
 | |
|   unsigned BestPhysReg = physReg;
 | |
|   if (physReg) {
 | |
|     // We got a register.  However, if it's in the fixed_ list, we might
 | |
|     // conflict with it.  Check to see if we conflict with it or any of its
 | |
|     // aliases.
 | |
|     SmallSet<unsigned, 8> RegAliases;
 | |
|     for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
 | |
|       RegAliases.insert(*AS);
 | |
|     
 | |
|     bool ConflictsWithFixed = false;
 | |
|     for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
 | |
|       IntervalPtr &IP = fixed_[i];
 | |
|       if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
 | |
|         // Okay, this reg is on the fixed list.  Check to see if we actually
 | |
|         // conflict.
 | |
|         LiveInterval *I = IP.first;
 | |
|         if (I->endNumber() > StartPosition) {
 | |
|           LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
 | |
|           IP.second = II;
 | |
|           if (II != I->begin() && II->start > StartPosition)
 | |
|             --II;
 | |
|           if (cur->overlapsFrom(*I, II)) {
 | |
|             ConflictsWithFixed = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Okay, the register picked by our speculative getFreePhysReg call turned
 | |
|     // out to be in use.  Actually add all of the conflicting fixed registers to
 | |
|     // prt so we can do an accurate query.
 | |
|     if (ConflictsWithFixed) {
 | |
|       // For every interval in fixed we overlap with, mark the register as not
 | |
|       // free and update spill weights.
 | |
|       for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
 | |
|         IntervalPtr &IP = fixed_[i];
 | |
|         LiveInterval *I = IP.first;
 | |
| 
 | |
|         const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
 | |
|         if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&       
 | |
|             I->endNumber() > StartPosition) {
 | |
|           LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
 | |
|           IP.second = II;
 | |
|           if (II != I->begin() && II->start > StartPosition)
 | |
|             --II;
 | |
|           if (cur->overlapsFrom(*I, II)) {
 | |
|             unsigned reg = I->reg;
 | |
|             prt_->addRegUse(reg);
 | |
|             SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Using the newly updated prt_ object, which includes conflicts in the
 | |
|       // future, see if there are any registers available.
 | |
|       physReg = getFreePhysReg(cur);
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   // Restore the physical register tracker, removing information about the
 | |
|   // future.
 | |
|   *prt_ = backupPrt;
 | |
|   
 | |
|   // if we find a free register, we are done: assign this virtual to
 | |
|   // the free physical register and add this interval to the active
 | |
|   // list.
 | |
|   if (physReg) {
 | |
|     DOUT <<  tri_->getName(physReg) << '\n';
 | |
|     vrm_->assignVirt2Phys(cur->reg, physReg);
 | |
|     prt_->addRegUse(physReg);
 | |
|     active_.push_back(std::make_pair(cur, cur->begin()));
 | |
|     handled_.push_back(cur);
 | |
|     return;
 | |
|   }
 | |
|   DOUT << "no free registers\n";
 | |
| 
 | |
|   // Compile the spill weights into an array that is better for scanning.
 | |
|   std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
 | |
|   for (std::vector<std::pair<unsigned, float> >::iterator
 | |
|        I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
 | |
|     updateSpillWeights(SpillWeights, I->first, I->second, tri_);
 | |
|   
 | |
|   // for each interval in active, update spill weights.
 | |
|   for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
 | |
|        i != e; ++i) {
 | |
|     unsigned reg = i->first->reg;
 | |
|     assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | |
|            "Can only allocate virtual registers!");
 | |
|     reg = vrm_->getPhys(reg);
 | |
|     updateSpillWeights(SpillWeights, reg, i->first->weight, tri_);
 | |
|   }
 | |
|  
 | |
|   DOUT << "\tassigning stack slot at interval "<< *cur << ":\n";
 | |
| 
 | |
|   // Find a register to spill.
 | |
|   float minWeight = HUGE_VALF;
 | |
|   unsigned minReg = 0; /*cur->preference*/;  // Try the preferred register first.
 | |
| 
 | |
|   bool Found = false;
 | |
|   std::vector<std::pair<unsigned,float> > RegsWeights;
 | |
|   if (!minReg || SpillWeights[minReg] == HUGE_VALF)
 | |
|     for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
 | |
|            e = RC->allocation_order_end(*mf_); i != e; ++i) {
 | |
|       unsigned reg = *i;
 | |
|       float regWeight = SpillWeights[reg];
 | |
|       if (minWeight > regWeight)
 | |
|         Found = true;
 | |
|       RegsWeights.push_back(std::make_pair(reg, regWeight));
 | |
|     }
 | |
|   
 | |
|   // If we didn't find a register that is spillable, try aliases?
 | |
|   if (!Found) {
 | |
|     for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
 | |
|            e = RC->allocation_order_end(*mf_); i != e; ++i) {
 | |
|       unsigned reg = *i;
 | |
|       // No need to worry about if the alias register size < regsize of RC.
 | |
|       // We are going to spill all registers that alias it anyway.
 | |
|       for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
 | |
|         RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Sort all potential spill candidates by weight.
 | |
|   std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare());
 | |
|   minReg = RegsWeights[0].first;
 | |
|   minWeight = RegsWeights[0].second;
 | |
|   if (minWeight == HUGE_VALF) {
 | |
|     // All registers must have inf weight. Just grab one!
 | |
|     minReg = BestPhysReg ? BestPhysReg : *RC->allocation_order_begin(*mf_);
 | |
|     if (cur->weight == HUGE_VALF || cur->getSize() == 1)
 | |
|       // Spill a physical register around defs and uses.
 | |
|       li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_);
 | |
|   }
 | |
| 
 | |
|   // Find up to 3 registers to consider as spill candidates.
 | |
|   unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
 | |
|   while (LastCandidate > 1) {
 | |
|     if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
 | |
|       break;
 | |
|     --LastCandidate;
 | |
|   }
 | |
| 
 | |
|   DOUT << "\t\tregister(s) with min weight(s): ";
 | |
|   DEBUG(for (unsigned i = 0; i != LastCandidate; ++i)
 | |
|           DOUT << tri_->getName(RegsWeights[i].first)
 | |
|                << " (" << RegsWeights[i].second << ")\n");
 | |
| 
 | |
|   // if the current has the minimum weight, we need to spill it and
 | |
|   // add any added intervals back to unhandled, and restart
 | |
|   // linearscan.
 | |
|   if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
 | |
|     DOUT << "\t\t\tspilling(c): " << *cur << '\n';
 | |
|     float SSWeight;
 | |
|     std::vector<LiveInterval*> added =
 | |
|       li_->addIntervalsForSpills(*cur, loopInfo, *vrm_, SSWeight);
 | |
|     addStackInterval(cur, ls_, li_, SSWeight, *vrm_);
 | |
|     if (added.empty())
 | |
|       return;  // Early exit if all spills were folded.
 | |
| 
 | |
|     // Merge added with unhandled.  Note that we know that
 | |
|     // addIntervalsForSpills returns intervals sorted by their starting
 | |
|     // point.
 | |
|     for (unsigned i = 0, e = added.size(); i != e; ++i)
 | |
|       unhandled_.push(added[i]);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   ++NumBacktracks;
 | |
| 
 | |
|   // push the current interval back to unhandled since we are going
 | |
|   // to re-run at least this iteration. Since we didn't modify it it
 | |
|   // should go back right in the front of the list
 | |
|   unhandled_.push(cur);
 | |
| 
 | |
|   assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
 | |
|          "did not choose a register to spill?");
 | |
| 
 | |
|   // We spill all intervals aliasing the register with
 | |
|   // minimum weight, rollback to the interval with the earliest
 | |
|   // start point and let the linear scan algorithm run again
 | |
|   SmallVector<LiveInterval*, 8> spillIs;
 | |
| 
 | |
|   // Determine which intervals have to be spilled.
 | |
|   findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
 | |
| 
 | |
|   // Set of spilled vregs (used later to rollback properly)
 | |
|   SmallSet<unsigned, 8> spilled;
 | |
| 
 | |
|   // The earliest start of a Spilled interval indicates up to where
 | |
|   // in handled we need to roll back
 | |
|   unsigned earliestStart = cur->beginNumber();
 | |
| 
 | |
|   // Spill live intervals of virtual regs mapped to the physical register we
 | |
|   // want to clear (and its aliases).  We only spill those that overlap with the
 | |
|   // current interval as the rest do not affect its allocation. we also keep
 | |
|   // track of the earliest start of all spilled live intervals since this will
 | |
|   // mark our rollback point.
 | |
|   std::vector<LiveInterval*> added;
 | |
|   while (!spillIs.empty()) {
 | |
|     LiveInterval *sli = spillIs.back();
 | |
|     spillIs.pop_back();
 | |
|     DOUT << "\t\t\tspilling(a): " << *sli << '\n';
 | |
|     earliestStart = std::min(earliestStart, sli->beginNumber());
 | |
|     float SSWeight;
 | |
|     std::vector<LiveInterval*> newIs =
 | |
|       li_->addIntervalsForSpills(*sli, loopInfo, *vrm_, SSWeight);
 | |
|     addStackInterval(sli, ls_, li_, SSWeight, *vrm_);
 | |
|     std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
 | |
|     spilled.insert(sli->reg);
 | |
|   }
 | |
| 
 | |
|   DOUT << "\t\trolling back to: " << earliestStart << '\n';
 | |
| 
 | |
|   // Scan handled in reverse order up to the earliest start of a
 | |
|   // spilled live interval and undo each one, restoring the state of
 | |
|   // unhandled.
 | |
|   while (!handled_.empty()) {
 | |
|     LiveInterval* i = handled_.back();
 | |
|     // If this interval starts before t we are done.
 | |
|     if (i->beginNumber() < earliestStart)
 | |
|       break;
 | |
|     DOUT << "\t\t\tundo changes for: " << *i << '\n';
 | |
|     handled_.pop_back();
 | |
| 
 | |
|     // When undoing a live interval allocation we must know if it is active or
 | |
|     // inactive to properly update the PhysRegTracker and the VirtRegMap.
 | |
|     IntervalPtrs::iterator it;
 | |
|     if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
 | |
|       active_.erase(it);
 | |
|       assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
 | |
|       if (!spilled.count(i->reg))
 | |
|         unhandled_.push(i);
 | |
|       prt_->delRegUse(vrm_->getPhys(i->reg));
 | |
|       vrm_->clearVirt(i->reg);
 | |
|     } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
 | |
|       inactive_.erase(it);
 | |
|       assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
 | |
|       if (!spilled.count(i->reg))
 | |
|         unhandled_.push(i);
 | |
|       vrm_->clearVirt(i->reg);
 | |
|     } else {
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
 | |
|              "Can only allocate virtual registers!");
 | |
|       vrm_->clearVirt(i->reg);
 | |
|       unhandled_.push(i);
 | |
|     }
 | |
| 
 | |
|     // It interval has a preference, it must be defined by a copy. Clear the
 | |
|     // preference now since the source interval allocation may have been undone
 | |
|     // as well.
 | |
|     i->preference = 0;
 | |
|   }
 | |
| 
 | |
|   // Rewind the iterators in the active, inactive, and fixed lists back to the
 | |
|   // point we reverted to.
 | |
|   RevertVectorIteratorsTo(active_, earliestStart);
 | |
|   RevertVectorIteratorsTo(inactive_, earliestStart);
 | |
|   RevertVectorIteratorsTo(fixed_, earliestStart);
 | |
| 
 | |
|   // scan the rest and undo each interval that expired after t and
 | |
|   // insert it in active (the next iteration of the algorithm will
 | |
|   // put it in inactive if required)
 | |
|   for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
 | |
|     LiveInterval *HI = handled_[i];
 | |
|     if (!HI->expiredAt(earliestStart) &&
 | |
|         HI->expiredAt(cur->beginNumber())) {
 | |
|       DOUT << "\t\t\tundo changes for: " << *HI << '\n';
 | |
|       active_.push_back(std::make_pair(HI, HI->begin()));
 | |
|       assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
 | |
|       prt_->addRegUse(vrm_->getPhys(HI->reg));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // merge added with unhandled
 | |
|   for (unsigned i = 0, e = added.size(); i != e; ++i)
 | |
|     unhandled_.push(added[i]);
 | |
| }
 | |
| 
 | |
| /// getFreePhysReg - return a free physical register for this virtual register
 | |
| /// interval if we have one, otherwise return 0.
 | |
| unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
 | |
|   SmallVector<unsigned, 256> inactiveCounts;
 | |
|   unsigned MaxInactiveCount = 0;
 | |
|   
 | |
|   const TargetRegisterClass *RC = reginfo_->getRegClass(cur->reg);
 | |
|   const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
 | |
|  
 | |
|   for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
 | |
|        i != e; ++i) {
 | |
|     unsigned reg = i->first->reg;
 | |
|     assert(TargetRegisterInfo::isVirtualRegister(reg) &&
 | |
|            "Can only allocate virtual registers!");
 | |
| 
 | |
|     // If this is not in a related reg class to the register we're allocating, 
 | |
|     // don't check it.
 | |
|     const TargetRegisterClass *RegRC = reginfo_->getRegClass(reg);
 | |
|     if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
 | |
|       reg = vrm_->getPhys(reg);
 | |
|       if (inactiveCounts.size() <= reg)
 | |
|         inactiveCounts.resize(reg+1);
 | |
|       ++inactiveCounts[reg];
 | |
|       MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned FreeReg = 0;
 | |
|   unsigned FreeRegInactiveCount = 0;
 | |
| 
 | |
|   // If copy coalescer has assigned a "preferred" register, check if it's
 | |
|   // available first.
 | |
|   if (cur->preference) {
 | |
|     if (prt_->isRegAvail(cur->preference)) {
 | |
|       DOUT << "\t\tassigned the preferred register: "
 | |
|            << tri_->getName(cur->preference) << "\n";
 | |
|       return cur->preference;
 | |
|     } else
 | |
|       DOUT << "\t\tunable to assign the preferred register: "
 | |
|            << tri_->getName(cur->preference) << "\n";
 | |
|   }
 | |
| 
 | |
|   // Scan for the first available register.
 | |
|   TargetRegisterClass::iterator I = RC->allocation_order_begin(*mf_);
 | |
|   TargetRegisterClass::iterator E = RC->allocation_order_end(*mf_);
 | |
|   assert(I != E && "No allocatable register in this register class!");
 | |
|   for (; I != E; ++I)
 | |
|     if (prt_->isRegAvail(*I)) {
 | |
|       FreeReg = *I;
 | |
|       if (FreeReg < inactiveCounts.size())
 | |
|         FreeRegInactiveCount = inactiveCounts[FreeReg];
 | |
|       else
 | |
|         FreeRegInactiveCount = 0;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // If there are no free regs, or if this reg has the max inactive count,
 | |
|   // return this register.
 | |
|   if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) return FreeReg;
 | |
|   
 | |
|   // Continue scanning the registers, looking for the one with the highest
 | |
|   // inactive count.  Alkis found that this reduced register pressure very
 | |
|   // slightly on X86 (in rev 1.94 of this file), though this should probably be
 | |
|   // reevaluated now.
 | |
|   for (; I != E; ++I) {
 | |
|     unsigned Reg = *I;
 | |
|     if (prt_->isRegAvail(Reg) && Reg < inactiveCounts.size() &&
 | |
|         FreeRegInactiveCount < inactiveCounts[Reg]) {
 | |
|       FreeReg = Reg;
 | |
|       FreeRegInactiveCount = inactiveCounts[Reg];
 | |
|       if (FreeRegInactiveCount == MaxInactiveCount)
 | |
|         break;    // We found the one with the max inactive count.
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return FreeReg;
 | |
| }
 | |
| 
 | |
| FunctionPass* llvm::createLinearScanRegisterAllocator() {
 | |
|   return new RALinScan();
 | |
| }
 |