mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187482 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3641 lines
		
	
	
		
			133 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3641 lines
		
	
	
		
			133 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements all of the non-inline methods for the LLVM instruction
 | 
						|
// classes.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "LLVMContextImpl.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Support/ConstantRange.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            CallSite Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
User::op_iterator CallSite::getCallee() const {
 | 
						|
  Instruction *II(getInstruction());
 | 
						|
  return isCall()
 | 
						|
    ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
 | 
						|
    : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            TerminatorInst Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Out of line virtual method, so the vtable, etc has a home.
 | 
						|
TerminatorInst::~TerminatorInst() {
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           UnaryInstruction Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Out of line virtual method, so the vtable, etc has a home.
 | 
						|
UnaryInstruction::~UnaryInstruction() {
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                              SelectInst Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// areInvalidOperands - Return a string if the specified operands are invalid
 | 
						|
/// for a select operation, otherwise return null.
 | 
						|
const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
 | 
						|
  if (Op1->getType() != Op2->getType())
 | 
						|
    return "both values to select must have same type";
 | 
						|
  
 | 
						|
  if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
 | 
						|
    // Vector select.
 | 
						|
    if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
 | 
						|
      return "vector select condition element type must be i1";
 | 
						|
    VectorType *ET = dyn_cast<VectorType>(Op1->getType());
 | 
						|
    if (ET == 0)
 | 
						|
      return "selected values for vector select must be vectors";
 | 
						|
    if (ET->getNumElements() != VT->getNumElements())
 | 
						|
      return "vector select requires selected vectors to have "
 | 
						|
                   "the same vector length as select condition";
 | 
						|
  } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
 | 
						|
    return "select condition must be i1 or <n x i1>";
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                               PHINode Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
PHINode::PHINode(const PHINode &PN)
 | 
						|
  : Instruction(PN.getType(), Instruction::PHI,
 | 
						|
                allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
 | 
						|
    ReservedSpace(PN.getNumOperands()) {
 | 
						|
  std::copy(PN.op_begin(), PN.op_end(), op_begin());
 | 
						|
  std::copy(PN.block_begin(), PN.block_end(), block_begin());
 | 
						|
  SubclassOptionalData = PN.SubclassOptionalData;
 | 
						|
}
 | 
						|
 | 
						|
PHINode::~PHINode() {
 | 
						|
  dropHungoffUses();
 | 
						|
}
 | 
						|
 | 
						|
Use *PHINode::allocHungoffUses(unsigned N) const {
 | 
						|
  // Allocate the array of Uses of the incoming values, followed by a pointer
 | 
						|
  // (with bottom bit set) to the User, followed by the array of pointers to
 | 
						|
  // the incoming basic blocks.
 | 
						|
  size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
 | 
						|
    + N * sizeof(BasicBlock*);
 | 
						|
  Use *Begin = static_cast<Use*>(::operator new(size));
 | 
						|
  Use *End = Begin + N;
 | 
						|
  (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
 | 
						|
  return Use::initTags(Begin, End);
 | 
						|
}
 | 
						|
 | 
						|
// removeIncomingValue - Remove an incoming value.  This is useful if a
 | 
						|
// predecessor basic block is deleted.
 | 
						|
Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
 | 
						|
  Value *Removed = getIncomingValue(Idx);
 | 
						|
 | 
						|
  // Move everything after this operand down.
 | 
						|
  //
 | 
						|
  // FIXME: we could just swap with the end of the list, then erase.  However,
 | 
						|
  // clients might not expect this to happen.  The code as it is thrashes the
 | 
						|
  // use/def lists, which is kinda lame.
 | 
						|
  std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
 | 
						|
  std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
 | 
						|
 | 
						|
  // Nuke the last value.
 | 
						|
  Op<-1>().set(0);
 | 
						|
  --NumOperands;
 | 
						|
 | 
						|
  // If the PHI node is dead, because it has zero entries, nuke it now.
 | 
						|
  if (getNumOperands() == 0 && DeletePHIIfEmpty) {
 | 
						|
    // If anyone is using this PHI, make them use a dummy value instead...
 | 
						|
    replaceAllUsesWith(UndefValue::get(getType()));
 | 
						|
    eraseFromParent();
 | 
						|
  }
 | 
						|
  return Removed;
 | 
						|
}
 | 
						|
 | 
						|
/// growOperands - grow operands - This grows the operand list in response
 | 
						|
/// to a push_back style of operation.  This grows the number of ops by 1.5
 | 
						|
/// times.
 | 
						|
///
 | 
						|
void PHINode::growOperands() {
 | 
						|
  unsigned e = getNumOperands();
 | 
						|
  unsigned NumOps = e + e / 2;
 | 
						|
  if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
 | 
						|
 | 
						|
  Use *OldOps = op_begin();
 | 
						|
  BasicBlock **OldBlocks = block_begin();
 | 
						|
 | 
						|
  ReservedSpace = NumOps;
 | 
						|
  OperandList = allocHungoffUses(ReservedSpace);
 | 
						|
 | 
						|
  std::copy(OldOps, OldOps + e, op_begin());
 | 
						|
  std::copy(OldBlocks, OldBlocks + e, block_begin());
 | 
						|
 | 
						|
  Use::zap(OldOps, OldOps + e, true);
 | 
						|
}
 | 
						|
 | 
						|
/// hasConstantValue - If the specified PHI node always merges together the same
 | 
						|
/// value, return the value, otherwise return null.
 | 
						|
Value *PHINode::hasConstantValue() const {
 | 
						|
  // Exploit the fact that phi nodes always have at least one entry.
 | 
						|
  Value *ConstantValue = getIncomingValue(0);
 | 
						|
  for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
 | 
						|
    if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
 | 
						|
      if (ConstantValue != this)
 | 
						|
        return 0; // Incoming values not all the same.
 | 
						|
       // The case where the first value is this PHI.
 | 
						|
      ConstantValue = getIncomingValue(i);
 | 
						|
    }
 | 
						|
  if (ConstantValue == this)
 | 
						|
    return UndefValue::get(getType());
 | 
						|
  return ConstantValue;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                       LandingPadInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
 | 
						|
                               unsigned NumReservedValues, const Twine &NameStr,
 | 
						|
                               Instruction *InsertBefore)
 | 
						|
  : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) {
 | 
						|
  init(PersonalityFn, 1 + NumReservedValues, NameStr);
 | 
						|
}
 | 
						|
 | 
						|
LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
 | 
						|
                               unsigned NumReservedValues, const Twine &NameStr,
 | 
						|
                               BasicBlock *InsertAtEnd)
 | 
						|
  : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) {
 | 
						|
  init(PersonalityFn, 1 + NumReservedValues, NameStr);
 | 
						|
}
 | 
						|
 | 
						|
LandingPadInst::LandingPadInst(const LandingPadInst &LP)
 | 
						|
  : Instruction(LP.getType(), Instruction::LandingPad,
 | 
						|
                allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
 | 
						|
    ReservedSpace(LP.getNumOperands()) {
 | 
						|
  Use *OL = OperandList, *InOL = LP.OperandList;
 | 
						|
  for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
 | 
						|
    OL[I] = InOL[I];
 | 
						|
 | 
						|
  setCleanup(LP.isCleanup());
 | 
						|
}
 | 
						|
 | 
						|
LandingPadInst::~LandingPadInst() {
 | 
						|
  dropHungoffUses();
 | 
						|
}
 | 
						|
 | 
						|
LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
 | 
						|
                                       unsigned NumReservedClauses,
 | 
						|
                                       const Twine &NameStr,
 | 
						|
                                       Instruction *InsertBefore) {
 | 
						|
  return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
 | 
						|
                            InsertBefore);
 | 
						|
}
 | 
						|
 | 
						|
LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
 | 
						|
                                       unsigned NumReservedClauses,
 | 
						|
                                       const Twine &NameStr,
 | 
						|
                                       BasicBlock *InsertAtEnd) {
 | 
						|
  return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
 | 
						|
                            InsertAtEnd);
 | 
						|
}
 | 
						|
 | 
						|
void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
 | 
						|
                          const Twine &NameStr) {
 | 
						|
  ReservedSpace = NumReservedValues;
 | 
						|
  NumOperands = 1;
 | 
						|
  OperandList = allocHungoffUses(ReservedSpace);
 | 
						|
  OperandList[0] = PersFn;
 | 
						|
  setName(NameStr);
 | 
						|
  setCleanup(false);
 | 
						|
}
 | 
						|
 | 
						|
/// growOperands - grow operands - This grows the operand list in response to a
 | 
						|
/// push_back style of operation. This grows the number of ops by 2 times.
 | 
						|
void LandingPadInst::growOperands(unsigned Size) {
 | 
						|
  unsigned e = getNumOperands();
 | 
						|
  if (ReservedSpace >= e + Size) return;
 | 
						|
  ReservedSpace = (e + Size / 2) * 2;
 | 
						|
 | 
						|
  Use *NewOps = allocHungoffUses(ReservedSpace);
 | 
						|
  Use *OldOps = OperandList;
 | 
						|
  for (unsigned i = 0; i != e; ++i)
 | 
						|
      NewOps[i] = OldOps[i];
 | 
						|
 | 
						|
  OperandList = NewOps;
 | 
						|
  Use::zap(OldOps, OldOps + e, true);
 | 
						|
}
 | 
						|
 | 
						|
void LandingPadInst::addClause(Value *Val) {
 | 
						|
  unsigned OpNo = getNumOperands();
 | 
						|
  growOperands(1);
 | 
						|
  assert(OpNo < ReservedSpace && "Growing didn't work!");
 | 
						|
  ++NumOperands;
 | 
						|
  OperandList[OpNo] = Val;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        CallInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
CallInst::~CallInst() {
 | 
						|
}
 | 
						|
 | 
						|
void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
 | 
						|
  assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
 | 
						|
  Op<-1>() = Func;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  FunctionType *FTy =
 | 
						|
    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
 | 
						|
 | 
						|
  assert((Args.size() == FTy->getNumParams() ||
 | 
						|
          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
 | 
						|
         "Calling a function with bad signature!");
 | 
						|
 | 
						|
  for (unsigned i = 0; i != Args.size(); ++i)
 | 
						|
    assert((i >= FTy->getNumParams() || 
 | 
						|
            FTy->getParamType(i) == Args[i]->getType()) &&
 | 
						|
           "Calling a function with a bad signature!");
 | 
						|
#endif
 | 
						|
 | 
						|
  std::copy(Args.begin(), Args.end(), op_begin());
 | 
						|
  setName(NameStr);
 | 
						|
}
 | 
						|
 | 
						|
void CallInst::init(Value *Func, const Twine &NameStr) {
 | 
						|
  assert(NumOperands == 1 && "NumOperands not set up?");
 | 
						|
  Op<-1>() = Func;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  FunctionType *FTy =
 | 
						|
    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
 | 
						|
 | 
						|
  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
 | 
						|
#endif
 | 
						|
 | 
						|
  setName(NameStr);
 | 
						|
}
 | 
						|
 | 
						|
CallInst::CallInst(Value *Func, const Twine &Name,
 | 
						|
                   Instruction *InsertBefore)
 | 
						|
  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
 | 
						|
                                   ->getElementType())->getReturnType(),
 | 
						|
                Instruction::Call,
 | 
						|
                OperandTraits<CallInst>::op_end(this) - 1,
 | 
						|
                1, InsertBefore) {
 | 
						|
  init(Func, Name);
 | 
						|
}
 | 
						|
 | 
						|
CallInst::CallInst(Value *Func, const Twine &Name,
 | 
						|
                   BasicBlock *InsertAtEnd)
 | 
						|
  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
 | 
						|
                                   ->getElementType())->getReturnType(),
 | 
						|
                Instruction::Call,
 | 
						|
                OperandTraits<CallInst>::op_end(this) - 1,
 | 
						|
                1, InsertAtEnd) {
 | 
						|
  init(Func, Name);
 | 
						|
}
 | 
						|
 | 
						|
CallInst::CallInst(const CallInst &CI)
 | 
						|
  : Instruction(CI.getType(), Instruction::Call,
 | 
						|
                OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
 | 
						|
                CI.getNumOperands()) {
 | 
						|
  setAttributes(CI.getAttributes());
 | 
						|
  setTailCall(CI.isTailCall());
 | 
						|
  setCallingConv(CI.getCallingConv());
 | 
						|
    
 | 
						|
  std::copy(CI.op_begin(), CI.op_end(), op_begin());
 | 
						|
  SubclassOptionalData = CI.SubclassOptionalData;
 | 
						|
}
 | 
						|
 | 
						|
void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
 | 
						|
  AttributeSet PAL = getAttributes();
 | 
						|
  PAL = PAL.addAttribute(getContext(), i, attr);
 | 
						|
  setAttributes(PAL);
 | 
						|
}
 | 
						|
 | 
						|
void CallInst::removeAttribute(unsigned i, Attribute attr) {
 | 
						|
  AttributeSet PAL = getAttributes();
 | 
						|
  AttrBuilder B(attr);
 | 
						|
  LLVMContext &Context = getContext();
 | 
						|
  PAL = PAL.removeAttributes(Context, i,
 | 
						|
                             AttributeSet::get(Context, i, B));
 | 
						|
  setAttributes(PAL);
 | 
						|
}
 | 
						|
 | 
						|
bool CallInst::hasFnAttrImpl(Attribute::AttrKind A) const {
 | 
						|
  if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
 | 
						|
    return true;
 | 
						|
  if (const Function *F = getCalledFunction())
 | 
						|
    return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
 | 
						|
  if (AttributeList.hasAttribute(i, A))
 | 
						|
    return true;
 | 
						|
  if (const Function *F = getCalledFunction())
 | 
						|
    return F->getAttributes().hasAttribute(i, A);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IsConstantOne - Return true only if val is constant int 1
 | 
						|
static bool IsConstantOne(Value *val) {
 | 
						|
  assert(val && "IsConstantOne does not work with NULL val");
 | 
						|
  return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *createMalloc(Instruction *InsertBefore,
 | 
						|
                                 BasicBlock *InsertAtEnd, Type *IntPtrTy,
 | 
						|
                                 Type *AllocTy, Value *AllocSize, 
 | 
						|
                                 Value *ArraySize, Function *MallocF,
 | 
						|
                                 const Twine &Name) {
 | 
						|
  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
 | 
						|
         "createMalloc needs either InsertBefore or InsertAtEnd");
 | 
						|
 | 
						|
  // malloc(type) becomes: 
 | 
						|
  //       bitcast (i8* malloc(typeSize)) to type*
 | 
						|
  // malloc(type, arraySize) becomes:
 | 
						|
  //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
 | 
						|
  if (!ArraySize)
 | 
						|
    ArraySize = ConstantInt::get(IntPtrTy, 1);
 | 
						|
  else if (ArraySize->getType() != IntPtrTy) {
 | 
						|
    if (InsertBefore)
 | 
						|
      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
 | 
						|
                                              "", InsertBefore);
 | 
						|
    else
 | 
						|
      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
 | 
						|
                                              "", InsertAtEnd);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!IsConstantOne(ArraySize)) {
 | 
						|
    if (IsConstantOne(AllocSize)) {
 | 
						|
      AllocSize = ArraySize;         // Operand * 1 = Operand
 | 
						|
    } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
 | 
						|
      Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
 | 
						|
                                                     false /*ZExt*/);
 | 
						|
      // Malloc arg is constant product of type size and array size
 | 
						|
      AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
 | 
						|
    } else {
 | 
						|
      // Multiply type size by the array size...
 | 
						|
      if (InsertBefore)
 | 
						|
        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
 | 
						|
                                              "mallocsize", InsertBefore);
 | 
						|
      else
 | 
						|
        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
 | 
						|
                                              "mallocsize", InsertAtEnd);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
 | 
						|
  // Create the call to Malloc.
 | 
						|
  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
 | 
						|
  Module* M = BB->getParent()->getParent();
 | 
						|
  Type *BPTy = Type::getInt8PtrTy(BB->getContext());
 | 
						|
  Value *MallocFunc = MallocF;
 | 
						|
  if (!MallocFunc)
 | 
						|
    // prototype malloc as "void *malloc(size_t)"
 | 
						|
    MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
 | 
						|
  PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
 | 
						|
  CallInst *MCall = NULL;
 | 
						|
  Instruction *Result = NULL;
 | 
						|
  if (InsertBefore) {
 | 
						|
    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
 | 
						|
    Result = MCall;
 | 
						|
    if (Result->getType() != AllocPtrType)
 | 
						|
      // Create a cast instruction to convert to the right type...
 | 
						|
      Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
 | 
						|
  } else {
 | 
						|
    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
 | 
						|
    Result = MCall;
 | 
						|
    if (Result->getType() != AllocPtrType) {
 | 
						|
      InsertAtEnd->getInstList().push_back(MCall);
 | 
						|
      // Create a cast instruction to convert to the right type...
 | 
						|
      Result = new BitCastInst(MCall, AllocPtrType, Name);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  MCall->setTailCall();
 | 
						|
  if (Function *F = dyn_cast<Function>(MallocFunc)) {
 | 
						|
    MCall->setCallingConv(F->getCallingConv());
 | 
						|
    if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
 | 
						|
  }
 | 
						|
  assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// CreateMalloc - Generate the IR for a call to malloc:
 | 
						|
/// 1. Compute the malloc call's argument as the specified type's size,
 | 
						|
///    possibly multiplied by the array size if the array size is not
 | 
						|
///    constant 1.
 | 
						|
/// 2. Call malloc with that argument.
 | 
						|
/// 3. Bitcast the result of the malloc call to the specified type.
 | 
						|
Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
 | 
						|
                                    Type *IntPtrTy, Type *AllocTy,
 | 
						|
                                    Value *AllocSize, Value *ArraySize,
 | 
						|
                                    Function * MallocF,
 | 
						|
                                    const Twine &Name) {
 | 
						|
  return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
 | 
						|
                      ArraySize, MallocF, Name);
 | 
						|
}
 | 
						|
 | 
						|
/// CreateMalloc - Generate the IR for a call to malloc:
 | 
						|
/// 1. Compute the malloc call's argument as the specified type's size,
 | 
						|
///    possibly multiplied by the array size if the array size is not
 | 
						|
///    constant 1.
 | 
						|
/// 2. Call malloc with that argument.
 | 
						|
/// 3. Bitcast the result of the malloc call to the specified type.
 | 
						|
/// Note: This function does not add the bitcast to the basic block, that is the
 | 
						|
/// responsibility of the caller.
 | 
						|
Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
 | 
						|
                                    Type *IntPtrTy, Type *AllocTy,
 | 
						|
                                    Value *AllocSize, Value *ArraySize, 
 | 
						|
                                    Function *MallocF, const Twine &Name) {
 | 
						|
  return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
 | 
						|
                      ArraySize, MallocF, Name);
 | 
						|
}
 | 
						|
 | 
						|
static Instruction* createFree(Value* Source, Instruction *InsertBefore,
 | 
						|
                               BasicBlock *InsertAtEnd) {
 | 
						|
  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
 | 
						|
         "createFree needs either InsertBefore or InsertAtEnd");
 | 
						|
  assert(Source->getType()->isPointerTy() &&
 | 
						|
         "Can not free something of nonpointer type!");
 | 
						|
 | 
						|
  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
 | 
						|
  Module* M = BB->getParent()->getParent();
 | 
						|
 | 
						|
  Type *VoidTy = Type::getVoidTy(M->getContext());
 | 
						|
  Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
 | 
						|
  // prototype free as "void free(void*)"
 | 
						|
  Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
 | 
						|
  CallInst* Result = NULL;
 | 
						|
  Value *PtrCast = Source;
 | 
						|
  if (InsertBefore) {
 | 
						|
    if (Source->getType() != IntPtrTy)
 | 
						|
      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
 | 
						|
    Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
 | 
						|
  } else {
 | 
						|
    if (Source->getType() != IntPtrTy)
 | 
						|
      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
 | 
						|
    Result = CallInst::Create(FreeFunc, PtrCast, "");
 | 
						|
  }
 | 
						|
  Result->setTailCall();
 | 
						|
  if (Function *F = dyn_cast<Function>(FreeFunc))
 | 
						|
    Result->setCallingConv(F->getCallingConv());
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// CreateFree - Generate the IR for a call to the builtin free function.
 | 
						|
Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
 | 
						|
  return createFree(Source, InsertBefore, NULL);
 | 
						|
}
 | 
						|
 | 
						|
/// CreateFree - Generate the IR for a call to the builtin free function.
 | 
						|
/// Note: This function does not add the call to the basic block, that is the
 | 
						|
/// responsibility of the caller.
 | 
						|
Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
 | 
						|
  Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
 | 
						|
  assert(FreeCall && "CreateFree did not create a CallInst");
 | 
						|
  return FreeCall;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        InvokeInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
 | 
						|
                      ArrayRef<Value *> Args, const Twine &NameStr) {
 | 
						|
  assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
 | 
						|
  Op<-3>() = Fn;
 | 
						|
  Op<-2>() = IfNormal;
 | 
						|
  Op<-1>() = IfException;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  FunctionType *FTy =
 | 
						|
    cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
 | 
						|
 | 
						|
  assert(((Args.size() == FTy->getNumParams()) ||
 | 
						|
          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
 | 
						|
         "Invoking a function with bad signature");
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Args.size(); i != e; i++)
 | 
						|
    assert((i >= FTy->getNumParams() || 
 | 
						|
            FTy->getParamType(i) == Args[i]->getType()) &&
 | 
						|
           "Invoking a function with a bad signature!");
 | 
						|
#endif
 | 
						|
 | 
						|
  std::copy(Args.begin(), Args.end(), op_begin());
 | 
						|
  setName(NameStr);
 | 
						|
}
 | 
						|
 | 
						|
InvokeInst::InvokeInst(const InvokeInst &II)
 | 
						|
  : TerminatorInst(II.getType(), Instruction::Invoke,
 | 
						|
                   OperandTraits<InvokeInst>::op_end(this)
 | 
						|
                   - II.getNumOperands(),
 | 
						|
                   II.getNumOperands()) {
 | 
						|
  setAttributes(II.getAttributes());
 | 
						|
  setCallingConv(II.getCallingConv());
 | 
						|
  std::copy(II.op_begin(), II.op_end(), op_begin());
 | 
						|
  SubclassOptionalData = II.SubclassOptionalData;
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
 | 
						|
  return getSuccessor(idx);
 | 
						|
}
 | 
						|
unsigned InvokeInst::getNumSuccessorsV() const {
 | 
						|
  return getNumSuccessors();
 | 
						|
}
 | 
						|
void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
 | 
						|
  return setSuccessor(idx, B);
 | 
						|
}
 | 
						|
 | 
						|
bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const {
 | 
						|
  if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
 | 
						|
    return true;
 | 
						|
  if (const Function *F = getCalledFunction())
 | 
						|
    return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
 | 
						|
  if (AttributeList.hasAttribute(i, A))
 | 
						|
    return true;
 | 
						|
  if (const Function *F = getCalledFunction())
 | 
						|
    return F->getAttributes().hasAttribute(i, A);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
 | 
						|
  AttributeSet PAL = getAttributes();
 | 
						|
  PAL = PAL.addAttribute(getContext(), i, attr);
 | 
						|
  setAttributes(PAL);
 | 
						|
}
 | 
						|
 | 
						|
void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
 | 
						|
  AttributeSet PAL = getAttributes();
 | 
						|
  AttrBuilder B(attr);
 | 
						|
  PAL = PAL.removeAttributes(getContext(), i,
 | 
						|
                             AttributeSet::get(getContext(), i, B));
 | 
						|
  setAttributes(PAL);
 | 
						|
}
 | 
						|
 | 
						|
LandingPadInst *InvokeInst::getLandingPadInst() const {
 | 
						|
  return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        ReturnInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
ReturnInst::ReturnInst(const ReturnInst &RI)
 | 
						|
  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
 | 
						|
                   OperandTraits<ReturnInst>::op_end(this) -
 | 
						|
                     RI.getNumOperands(),
 | 
						|
                   RI.getNumOperands()) {
 | 
						|
  if (RI.getNumOperands())
 | 
						|
    Op<0>() = RI.Op<0>();
 | 
						|
  SubclassOptionalData = RI.SubclassOptionalData;
 | 
						|
}
 | 
						|
 | 
						|
ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
 | 
						|
  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
 | 
						|
                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
 | 
						|
                   InsertBefore) {
 | 
						|
  if (retVal)
 | 
						|
    Op<0>() = retVal;
 | 
						|
}
 | 
						|
ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
 | 
						|
  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
 | 
						|
                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
 | 
						|
                   InsertAtEnd) {
 | 
						|
  if (retVal)
 | 
						|
    Op<0>() = retVal;
 | 
						|
}
 | 
						|
ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
 | 
						|
  : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
 | 
						|
                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
 | 
						|
}
 | 
						|
 | 
						|
unsigned ReturnInst::getNumSuccessorsV() const {
 | 
						|
  return getNumSuccessors();
 | 
						|
}
 | 
						|
 | 
						|
/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
 | 
						|
/// emit the vtable for the class in this translation unit.
 | 
						|
void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
 | 
						|
  llvm_unreachable("ReturnInst has no successors!");
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
 | 
						|
  llvm_unreachable("ReturnInst has no successors!");
 | 
						|
}
 | 
						|
 | 
						|
ReturnInst::~ReturnInst() {
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        ResumeInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
ResumeInst::ResumeInst(const ResumeInst &RI)
 | 
						|
  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
 | 
						|
                   OperandTraits<ResumeInst>::op_begin(this), 1) {
 | 
						|
  Op<0>() = RI.Op<0>();
 | 
						|
}
 | 
						|
 | 
						|
ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
 | 
						|
  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
 | 
						|
                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
 | 
						|
  Op<0>() = Exn;
 | 
						|
}
 | 
						|
 | 
						|
ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
 | 
						|
  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
 | 
						|
                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
 | 
						|
  Op<0>() = Exn;
 | 
						|
}
 | 
						|
 | 
						|
unsigned ResumeInst::getNumSuccessorsV() const {
 | 
						|
  return getNumSuccessors();
 | 
						|
}
 | 
						|
 | 
						|
void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
 | 
						|
  llvm_unreachable("ResumeInst has no successors!");
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
 | 
						|
  llvm_unreachable("ResumeInst has no successors!");
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                      UnreachableInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
UnreachableInst::UnreachableInst(LLVMContext &Context, 
 | 
						|
                                 Instruction *InsertBefore)
 | 
						|
  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
 | 
						|
                   0, 0, InsertBefore) {
 | 
						|
}
 | 
						|
UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
 | 
						|
  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
 | 
						|
                   0, 0, InsertAtEnd) {
 | 
						|
}
 | 
						|
 | 
						|
unsigned UnreachableInst::getNumSuccessorsV() const {
 | 
						|
  return getNumSuccessors();
 | 
						|
}
 | 
						|
 | 
						|
void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
 | 
						|
  llvm_unreachable("UnreachableInst has no successors!");
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
 | 
						|
  llvm_unreachable("UnreachableInst has no successors!");
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        BranchInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void BranchInst::AssertOK() {
 | 
						|
  if (isConditional())
 | 
						|
    assert(getCondition()->getType()->isIntegerTy(1) &&
 | 
						|
           "May only branch on boolean predicates!");
 | 
						|
}
 | 
						|
 | 
						|
BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
 | 
						|
  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
 | 
						|
                   OperandTraits<BranchInst>::op_end(this) - 1,
 | 
						|
                   1, InsertBefore) {
 | 
						|
  assert(IfTrue != 0 && "Branch destination may not be null!");
 | 
						|
  Op<-1>() = IfTrue;
 | 
						|
}
 | 
						|
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
 | 
						|
                       Instruction *InsertBefore)
 | 
						|
  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
 | 
						|
                   OperandTraits<BranchInst>::op_end(this) - 3,
 | 
						|
                   3, InsertBefore) {
 | 
						|
  Op<-1>() = IfTrue;
 | 
						|
  Op<-2>() = IfFalse;
 | 
						|
  Op<-3>() = Cond;
 | 
						|
#ifndef NDEBUG
 | 
						|
  AssertOK();
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
 | 
						|
  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
 | 
						|
                   OperandTraits<BranchInst>::op_end(this) - 1,
 | 
						|
                   1, InsertAtEnd) {
 | 
						|
  assert(IfTrue != 0 && "Branch destination may not be null!");
 | 
						|
  Op<-1>() = IfTrue;
 | 
						|
}
 | 
						|
 | 
						|
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
 | 
						|
           BasicBlock *InsertAtEnd)
 | 
						|
  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
 | 
						|
                   OperandTraits<BranchInst>::op_end(this) - 3,
 | 
						|
                   3, InsertAtEnd) {
 | 
						|
  Op<-1>() = IfTrue;
 | 
						|
  Op<-2>() = IfFalse;
 | 
						|
  Op<-3>() = Cond;
 | 
						|
#ifndef NDEBUG
 | 
						|
  AssertOK();
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
BranchInst::BranchInst(const BranchInst &BI) :
 | 
						|
  TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
 | 
						|
                 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
 | 
						|
                 BI.getNumOperands()) {
 | 
						|
  Op<-1>() = BI.Op<-1>();
 | 
						|
  if (BI.getNumOperands() != 1) {
 | 
						|
    assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
 | 
						|
    Op<-3>() = BI.Op<-3>();
 | 
						|
    Op<-2>() = BI.Op<-2>();
 | 
						|
  }
 | 
						|
  SubclassOptionalData = BI.SubclassOptionalData;
 | 
						|
}
 | 
						|
 | 
						|
void BranchInst::swapSuccessors() {
 | 
						|
  assert(isConditional() &&
 | 
						|
         "Cannot swap successors of an unconditional branch");
 | 
						|
  Op<-1>().swap(Op<-2>());
 | 
						|
 | 
						|
  // Update profile metadata if present and it matches our structural
 | 
						|
  // expectations.
 | 
						|
  MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
 | 
						|
  if (!ProfileData || ProfileData->getNumOperands() != 3)
 | 
						|
    return;
 | 
						|
 | 
						|
  // The first operand is the name. Fetch them backwards and build a new one.
 | 
						|
  Value *Ops[] = {
 | 
						|
    ProfileData->getOperand(0),
 | 
						|
    ProfileData->getOperand(2),
 | 
						|
    ProfileData->getOperand(1)
 | 
						|
  };
 | 
						|
  setMetadata(LLVMContext::MD_prof,
 | 
						|
              MDNode::get(ProfileData->getContext(), Ops));
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
 | 
						|
  return getSuccessor(idx);
 | 
						|
}
 | 
						|
unsigned BranchInst::getNumSuccessorsV() const {
 | 
						|
  return getNumSuccessors();
 | 
						|
}
 | 
						|
void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
 | 
						|
  setSuccessor(idx, B);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        AllocaInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static Value *getAISize(LLVMContext &Context, Value *Amt) {
 | 
						|
  if (!Amt)
 | 
						|
    Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
 | 
						|
  else {
 | 
						|
    assert(!isa<BasicBlock>(Amt) &&
 | 
						|
           "Passed basic block into allocation size parameter! Use other ctor");
 | 
						|
    assert(Amt->getType()->isIntegerTy() &&
 | 
						|
           "Allocation array size is not an integer!");
 | 
						|
  }
 | 
						|
  return Amt;
 | 
						|
}
 | 
						|
 | 
						|
AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
 | 
						|
                       const Twine &Name, Instruction *InsertBefore)
 | 
						|
  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
 | 
						|
                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
 | 
						|
  setAlignment(0);
 | 
						|
  assert(!Ty->isVoidTy() && "Cannot allocate void!");
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
 | 
						|
                       const Twine &Name, BasicBlock *InsertAtEnd)
 | 
						|
  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
 | 
						|
                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
 | 
						|
  setAlignment(0);
 | 
						|
  assert(!Ty->isVoidTy() && "Cannot allocate void!");
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
 | 
						|
                       Instruction *InsertBefore)
 | 
						|
  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
 | 
						|
                     getAISize(Ty->getContext(), 0), InsertBefore) {
 | 
						|
  setAlignment(0);
 | 
						|
  assert(!Ty->isVoidTy() && "Cannot allocate void!");
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
 | 
						|
                       BasicBlock *InsertAtEnd)
 | 
						|
  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
 | 
						|
                     getAISize(Ty->getContext(), 0), InsertAtEnd) {
 | 
						|
  setAlignment(0);
 | 
						|
  assert(!Ty->isVoidTy() && "Cannot allocate void!");
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
 | 
						|
                       const Twine &Name, Instruction *InsertBefore)
 | 
						|
  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
 | 
						|
                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
 | 
						|
  setAlignment(Align);
 | 
						|
  assert(!Ty->isVoidTy() && "Cannot allocate void!");
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
 | 
						|
                       const Twine &Name, BasicBlock *InsertAtEnd)
 | 
						|
  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
 | 
						|
                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
 | 
						|
  setAlignment(Align);
 | 
						|
  assert(!Ty->isVoidTy() && "Cannot allocate void!");
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
// Out of line virtual method, so the vtable, etc has a home.
 | 
						|
AllocaInst::~AllocaInst() {
 | 
						|
}
 | 
						|
 | 
						|
void AllocaInst::setAlignment(unsigned Align) {
 | 
						|
  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
 | 
						|
  assert(Align <= MaximumAlignment &&
 | 
						|
         "Alignment is greater than MaximumAlignment!");
 | 
						|
  setInstructionSubclassData(Log2_32(Align) + 1);
 | 
						|
  assert(getAlignment() == Align && "Alignment representation error!");
 | 
						|
}
 | 
						|
 | 
						|
bool AllocaInst::isArrayAllocation() const {
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
 | 
						|
    return !CI->isOne();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Type *AllocaInst::getAllocatedType() const {
 | 
						|
  return getType()->getElementType();
 | 
						|
}
 | 
						|
 | 
						|
/// isStaticAlloca - Return true if this alloca is in the entry block of the
 | 
						|
/// function and is a constant size.  If so, the code generator will fold it
 | 
						|
/// into the prolog/epilog code, so it is basically free.
 | 
						|
bool AllocaInst::isStaticAlloca() const {
 | 
						|
  // Must be constant size.
 | 
						|
  if (!isa<ConstantInt>(getArraySize())) return false;
 | 
						|
  
 | 
						|
  // Must be in the entry block.
 | 
						|
  const BasicBlock *Parent = getParent();
 | 
						|
  return Parent == &Parent->getParent()->front();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           LoadInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void LoadInst::AssertOK() {
 | 
						|
  assert(getOperand(0)->getType()->isPointerTy() &&
 | 
						|
         "Ptr must have pointer type.");
 | 
						|
  assert(!(isAtomic() && getAlignment() == 0) &&
 | 
						|
         "Alignment required for atomic load");
 | 
						|
}
 | 
						|
 | 
						|
LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
 | 
						|
  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | 
						|
                     Load, Ptr, InsertBef) {
 | 
						|
  setVolatile(false);
 | 
						|
  setAlignment(0);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
 | 
						|
  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | 
						|
                     Load, Ptr, InsertAE) {
 | 
						|
  setVolatile(false);
 | 
						|
  setAlignment(0);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
 | 
						|
                   Instruction *InsertBef)
 | 
						|
  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | 
						|
                     Load, Ptr, InsertBef) {
 | 
						|
  setVolatile(isVolatile);
 | 
						|
  setAlignment(0);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
 | 
						|
                   BasicBlock *InsertAE)
 | 
						|
  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | 
						|
                     Load, Ptr, InsertAE) {
 | 
						|
  setVolatile(isVolatile);
 | 
						|
  setAlignment(0);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
 | 
						|
                   unsigned Align, Instruction *InsertBef)
 | 
						|
  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | 
						|
                     Load, Ptr, InsertBef) {
 | 
						|
  setVolatile(isVolatile);
 | 
						|
  setAlignment(Align);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
 | 
						|
                   unsigned Align, BasicBlock *InsertAE)
 | 
						|
  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | 
						|
                     Load, Ptr, InsertAE) {
 | 
						|
  setVolatile(isVolatile);
 | 
						|
  setAlignment(Align);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
 | 
						|
                   unsigned Align, AtomicOrdering Order,
 | 
						|
                   SynchronizationScope SynchScope,
 | 
						|
                   Instruction *InsertBef)
 | 
						|
  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | 
						|
                     Load, Ptr, InsertBef) {
 | 
						|
  setVolatile(isVolatile);
 | 
						|
  setAlignment(Align);
 | 
						|
  setAtomic(Order, SynchScope);
 | 
						|
  AssertOK();
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
 | 
						|
                   unsigned Align, AtomicOrdering Order,
 | 
						|
                   SynchronizationScope SynchScope,
 | 
						|
                   BasicBlock *InsertAE)
 | 
						|
  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | 
						|
                     Load, Ptr, InsertAE) {
 | 
						|
  setVolatile(isVolatile);
 | 
						|
  setAlignment(Align);
 | 
						|
  setAtomic(Order, SynchScope);
 | 
						|
  AssertOK();
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
 | 
						|
  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | 
						|
                     Load, Ptr, InsertBef) {
 | 
						|
  setVolatile(false);
 | 
						|
  setAlignment(0);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
  if (Name && Name[0]) setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
 | 
						|
  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | 
						|
                     Load, Ptr, InsertAE) {
 | 
						|
  setVolatile(false);
 | 
						|
  setAlignment(0);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
  if (Name && Name[0]) setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
 | 
						|
                   Instruction *InsertBef)
 | 
						|
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | 
						|
                   Load, Ptr, InsertBef) {
 | 
						|
  setVolatile(isVolatile);
 | 
						|
  setAlignment(0);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
  if (Name && Name[0]) setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
 | 
						|
                   BasicBlock *InsertAE)
 | 
						|
  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
 | 
						|
                     Load, Ptr, InsertAE) {
 | 
						|
  setVolatile(isVolatile);
 | 
						|
  setAlignment(0);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
  if (Name && Name[0]) setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
void LoadInst::setAlignment(unsigned Align) {
 | 
						|
  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
 | 
						|
  assert(Align <= MaximumAlignment &&
 | 
						|
         "Alignment is greater than MaximumAlignment!");
 | 
						|
  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
 | 
						|
                             ((Log2_32(Align)+1)<<1));
 | 
						|
  assert(getAlignment() == Align && "Alignment representation error!");
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           StoreInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void StoreInst::AssertOK() {
 | 
						|
  assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
 | 
						|
  assert(getOperand(1)->getType()->isPointerTy() &&
 | 
						|
         "Ptr must have pointer type!");
 | 
						|
  assert(getOperand(0)->getType() ==
 | 
						|
                 cast<PointerType>(getOperand(1)->getType())->getElementType()
 | 
						|
         && "Ptr must be a pointer to Val type!");
 | 
						|
  assert(!(isAtomic() && getAlignment() == 0) &&
 | 
						|
         "Alignment required for atomic load");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
 | 
						|
  : Instruction(Type::getVoidTy(val->getContext()), Store,
 | 
						|
                OperandTraits<StoreInst>::op_begin(this),
 | 
						|
                OperandTraits<StoreInst>::operands(this),
 | 
						|
                InsertBefore) {
 | 
						|
  Op<0>() = val;
 | 
						|
  Op<1>() = addr;
 | 
						|
  setVolatile(false);
 | 
						|
  setAlignment(0);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
}
 | 
						|
 | 
						|
StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
 | 
						|
  : Instruction(Type::getVoidTy(val->getContext()), Store,
 | 
						|
                OperandTraits<StoreInst>::op_begin(this),
 | 
						|
                OperandTraits<StoreInst>::operands(this),
 | 
						|
                InsertAtEnd) {
 | 
						|
  Op<0>() = val;
 | 
						|
  Op<1>() = addr;
 | 
						|
  setVolatile(false);
 | 
						|
  setAlignment(0);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
}
 | 
						|
 | 
						|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
 | 
						|
                     Instruction *InsertBefore)
 | 
						|
  : Instruction(Type::getVoidTy(val->getContext()), Store,
 | 
						|
                OperandTraits<StoreInst>::op_begin(this),
 | 
						|
                OperandTraits<StoreInst>::operands(this),
 | 
						|
                InsertBefore) {
 | 
						|
  Op<0>() = val;
 | 
						|
  Op<1>() = addr;
 | 
						|
  setVolatile(isVolatile);
 | 
						|
  setAlignment(0);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
}
 | 
						|
 | 
						|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
 | 
						|
                     unsigned Align, Instruction *InsertBefore)
 | 
						|
  : Instruction(Type::getVoidTy(val->getContext()), Store,
 | 
						|
                OperandTraits<StoreInst>::op_begin(this),
 | 
						|
                OperandTraits<StoreInst>::operands(this),
 | 
						|
                InsertBefore) {
 | 
						|
  Op<0>() = val;
 | 
						|
  Op<1>() = addr;
 | 
						|
  setVolatile(isVolatile);
 | 
						|
  setAlignment(Align);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
}
 | 
						|
 | 
						|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
 | 
						|
                     unsigned Align, AtomicOrdering Order,
 | 
						|
                     SynchronizationScope SynchScope,
 | 
						|
                     Instruction *InsertBefore)
 | 
						|
  : Instruction(Type::getVoidTy(val->getContext()), Store,
 | 
						|
                OperandTraits<StoreInst>::op_begin(this),
 | 
						|
                OperandTraits<StoreInst>::operands(this),
 | 
						|
                InsertBefore) {
 | 
						|
  Op<0>() = val;
 | 
						|
  Op<1>() = addr;
 | 
						|
  setVolatile(isVolatile);
 | 
						|
  setAlignment(Align);
 | 
						|
  setAtomic(Order, SynchScope);
 | 
						|
  AssertOK();
 | 
						|
}
 | 
						|
 | 
						|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
 | 
						|
                     BasicBlock *InsertAtEnd)
 | 
						|
  : Instruction(Type::getVoidTy(val->getContext()), Store,
 | 
						|
                OperandTraits<StoreInst>::op_begin(this),
 | 
						|
                OperandTraits<StoreInst>::operands(this),
 | 
						|
                InsertAtEnd) {
 | 
						|
  Op<0>() = val;
 | 
						|
  Op<1>() = addr;
 | 
						|
  setVolatile(isVolatile);
 | 
						|
  setAlignment(0);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
}
 | 
						|
 | 
						|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
 | 
						|
                     unsigned Align, BasicBlock *InsertAtEnd)
 | 
						|
  : Instruction(Type::getVoidTy(val->getContext()), Store,
 | 
						|
                OperandTraits<StoreInst>::op_begin(this),
 | 
						|
                OperandTraits<StoreInst>::operands(this),
 | 
						|
                InsertAtEnd) {
 | 
						|
  Op<0>() = val;
 | 
						|
  Op<1>() = addr;
 | 
						|
  setVolatile(isVolatile);
 | 
						|
  setAlignment(Align);
 | 
						|
  setAtomic(NotAtomic);
 | 
						|
  AssertOK();
 | 
						|
}
 | 
						|
 | 
						|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
 | 
						|
                     unsigned Align, AtomicOrdering Order,
 | 
						|
                     SynchronizationScope SynchScope,
 | 
						|
                     BasicBlock *InsertAtEnd)
 | 
						|
  : Instruction(Type::getVoidTy(val->getContext()), Store,
 | 
						|
                OperandTraits<StoreInst>::op_begin(this),
 | 
						|
                OperandTraits<StoreInst>::operands(this),
 | 
						|
                InsertAtEnd) {
 | 
						|
  Op<0>() = val;
 | 
						|
  Op<1>() = addr;
 | 
						|
  setVolatile(isVolatile);
 | 
						|
  setAlignment(Align);
 | 
						|
  setAtomic(Order, SynchScope);
 | 
						|
  AssertOK();
 | 
						|
}
 | 
						|
 | 
						|
void StoreInst::setAlignment(unsigned Align) {
 | 
						|
  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
 | 
						|
  assert(Align <= MaximumAlignment &&
 | 
						|
         "Alignment is greater than MaximumAlignment!");
 | 
						|
  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
 | 
						|
                             ((Log2_32(Align)+1) << 1));
 | 
						|
  assert(getAlignment() == Align && "Alignment representation error!");
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                       AtomicCmpXchgInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
 | 
						|
                             AtomicOrdering Ordering,
 | 
						|
                             SynchronizationScope SynchScope) {
 | 
						|
  Op<0>() = Ptr;
 | 
						|
  Op<1>() = Cmp;
 | 
						|
  Op<2>() = NewVal;
 | 
						|
  setOrdering(Ordering);
 | 
						|
  setSynchScope(SynchScope);
 | 
						|
 | 
						|
  assert(getOperand(0) && getOperand(1) && getOperand(2) &&
 | 
						|
         "All operands must be non-null!");
 | 
						|
  assert(getOperand(0)->getType()->isPointerTy() &&
 | 
						|
         "Ptr must have pointer type!");
 | 
						|
  assert(getOperand(1)->getType() ==
 | 
						|
                 cast<PointerType>(getOperand(0)->getType())->getElementType()
 | 
						|
         && "Ptr must be a pointer to Cmp type!");
 | 
						|
  assert(getOperand(2)->getType() ==
 | 
						|
                 cast<PointerType>(getOperand(0)->getType())->getElementType()
 | 
						|
         && "Ptr must be a pointer to NewVal type!");
 | 
						|
  assert(Ordering != NotAtomic &&
 | 
						|
         "AtomicCmpXchg instructions must be atomic!");
 | 
						|
}
 | 
						|
 | 
						|
AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
 | 
						|
                                     AtomicOrdering Ordering,
 | 
						|
                                     SynchronizationScope SynchScope,
 | 
						|
                                     Instruction *InsertBefore)
 | 
						|
  : Instruction(Cmp->getType(), AtomicCmpXchg,
 | 
						|
                OperandTraits<AtomicCmpXchgInst>::op_begin(this),
 | 
						|
                OperandTraits<AtomicCmpXchgInst>::operands(this),
 | 
						|
                InsertBefore) {
 | 
						|
  Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
 | 
						|
}
 | 
						|
 | 
						|
AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
 | 
						|
                                     AtomicOrdering Ordering,
 | 
						|
                                     SynchronizationScope SynchScope,
 | 
						|
                                     BasicBlock *InsertAtEnd)
 | 
						|
  : Instruction(Cmp->getType(), AtomicCmpXchg,
 | 
						|
                OperandTraits<AtomicCmpXchgInst>::op_begin(this),
 | 
						|
                OperandTraits<AtomicCmpXchgInst>::operands(this),
 | 
						|
                InsertAtEnd) {
 | 
						|
  Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
 | 
						|
}
 | 
						|
 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                       AtomicRMWInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
 | 
						|
                         AtomicOrdering Ordering,
 | 
						|
                         SynchronizationScope SynchScope) {
 | 
						|
  Op<0>() = Ptr;
 | 
						|
  Op<1>() = Val;
 | 
						|
  setOperation(Operation);
 | 
						|
  setOrdering(Ordering);
 | 
						|
  setSynchScope(SynchScope);
 | 
						|
 | 
						|
  assert(getOperand(0) && getOperand(1) &&
 | 
						|
         "All operands must be non-null!");
 | 
						|
  assert(getOperand(0)->getType()->isPointerTy() &&
 | 
						|
         "Ptr must have pointer type!");
 | 
						|
  assert(getOperand(1)->getType() ==
 | 
						|
         cast<PointerType>(getOperand(0)->getType())->getElementType()
 | 
						|
         && "Ptr must be a pointer to Val type!");
 | 
						|
  assert(Ordering != NotAtomic &&
 | 
						|
         "AtomicRMW instructions must be atomic!");
 | 
						|
}
 | 
						|
 | 
						|
AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
 | 
						|
                             AtomicOrdering Ordering,
 | 
						|
                             SynchronizationScope SynchScope,
 | 
						|
                             Instruction *InsertBefore)
 | 
						|
  : Instruction(Val->getType(), AtomicRMW,
 | 
						|
                OperandTraits<AtomicRMWInst>::op_begin(this),
 | 
						|
                OperandTraits<AtomicRMWInst>::operands(this),
 | 
						|
                InsertBefore) {
 | 
						|
  Init(Operation, Ptr, Val, Ordering, SynchScope);
 | 
						|
}
 | 
						|
 | 
						|
AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
 | 
						|
                             AtomicOrdering Ordering,
 | 
						|
                             SynchronizationScope SynchScope,
 | 
						|
                             BasicBlock *InsertAtEnd)
 | 
						|
  : Instruction(Val->getType(), AtomicRMW,
 | 
						|
                OperandTraits<AtomicRMWInst>::op_begin(this),
 | 
						|
                OperandTraits<AtomicRMWInst>::operands(this),
 | 
						|
                InsertAtEnd) {
 | 
						|
  Init(Operation, Ptr, Val, Ordering, SynchScope);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                       FenceInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 
 | 
						|
                     SynchronizationScope SynchScope,
 | 
						|
                     Instruction *InsertBefore)
 | 
						|
  : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) {
 | 
						|
  setOrdering(Ordering);
 | 
						|
  setSynchScope(SynchScope);
 | 
						|
}
 | 
						|
 | 
						|
FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 
 | 
						|
                     SynchronizationScope SynchScope,
 | 
						|
                     BasicBlock *InsertAtEnd)
 | 
						|
  : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) {
 | 
						|
  setOrdering(Ordering);
 | 
						|
  setSynchScope(SynchScope);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                       GetElementPtrInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
 | 
						|
                             const Twine &Name) {
 | 
						|
  assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
 | 
						|
  OperandList[0] = Ptr;
 | 
						|
  std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
 | 
						|
  : Instruction(GEPI.getType(), GetElementPtr,
 | 
						|
                OperandTraits<GetElementPtrInst>::op_end(this)
 | 
						|
                - GEPI.getNumOperands(),
 | 
						|
                GEPI.getNumOperands()) {
 | 
						|
  std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
 | 
						|
  SubclassOptionalData = GEPI.SubclassOptionalData;
 | 
						|
}
 | 
						|
 | 
						|
/// getIndexedType - Returns the type of the element that would be accessed with
 | 
						|
/// a gep instruction with the specified parameters.
 | 
						|
///
 | 
						|
/// The Idxs pointer should point to a continuous piece of memory containing the
 | 
						|
/// indices, either as Value* or uint64_t.
 | 
						|
///
 | 
						|
/// A null type is returned if the indices are invalid for the specified
 | 
						|
/// pointer type.
 | 
						|
///
 | 
						|
template <typename IndexTy>
 | 
						|
static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
 | 
						|
  PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType());
 | 
						|
  if (!PTy) return 0;   // Type isn't a pointer type!
 | 
						|
  Type *Agg = PTy->getElementType();
 | 
						|
 | 
						|
  // Handle the special case of the empty set index set, which is always valid.
 | 
						|
  if (IdxList.empty())
 | 
						|
    return Agg;
 | 
						|
 | 
						|
  // If there is at least one index, the top level type must be sized, otherwise
 | 
						|
  // it cannot be 'stepped over'.
 | 
						|
  if (!Agg->isSized())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  unsigned CurIdx = 1;
 | 
						|
  for (; CurIdx != IdxList.size(); ++CurIdx) {
 | 
						|
    CompositeType *CT = dyn_cast<CompositeType>(Agg);
 | 
						|
    if (!CT || CT->isPointerTy()) return 0;
 | 
						|
    IndexTy Index = IdxList[CurIdx];
 | 
						|
    if (!CT->indexValid(Index)) return 0;
 | 
						|
    Agg = CT->getTypeAtIndex(Index);
 | 
						|
  }
 | 
						|
  return CurIdx == IdxList.size() ? Agg : 0;
 | 
						|
}
 | 
						|
 | 
						|
Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
 | 
						|
  return getIndexedTypeInternal(Ptr, IdxList);
 | 
						|
}
 | 
						|
 | 
						|
Type *GetElementPtrInst::getIndexedType(Type *Ptr,
 | 
						|
                                        ArrayRef<Constant *> IdxList) {
 | 
						|
  return getIndexedTypeInternal(Ptr, IdxList);
 | 
						|
}
 | 
						|
 | 
						|
Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
 | 
						|
  return getIndexedTypeInternal(Ptr, IdxList);
 | 
						|
}
 | 
						|
 | 
						|
/// hasAllZeroIndices - Return true if all of the indices of this GEP are
 | 
						|
/// zeros.  If so, the result pointer and the first operand have the same
 | 
						|
/// value, just potentially different types.
 | 
						|
bool GetElementPtrInst::hasAllZeroIndices() const {
 | 
						|
  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
 | 
						|
      if (!CI->isZero()) return false;
 | 
						|
    } else {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// hasAllConstantIndices - Return true if all of the indices of this GEP are
 | 
						|
/// constant integers.  If so, the result pointer and the first operand have
 | 
						|
/// a constant offset between them.
 | 
						|
bool GetElementPtrInst::hasAllConstantIndices() const {
 | 
						|
  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | 
						|
    if (!isa<ConstantInt>(getOperand(i)))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void GetElementPtrInst::setIsInBounds(bool B) {
 | 
						|
  cast<GEPOperator>(this)->setIsInBounds(B);
 | 
						|
}
 | 
						|
 | 
						|
bool GetElementPtrInst::isInBounds() const {
 | 
						|
  return cast<GEPOperator>(this)->isInBounds();
 | 
						|
}
 | 
						|
 | 
						|
bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
 | 
						|
                                                 APInt &Offset) const {
 | 
						|
  // Delegate to the generic GEPOperator implementation.
 | 
						|
  return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           ExtractElementInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
 | 
						|
                                       const Twine &Name,
 | 
						|
                                       Instruction *InsertBef)
 | 
						|
  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
 | 
						|
                ExtractElement,
 | 
						|
                OperandTraits<ExtractElementInst>::op_begin(this),
 | 
						|
                2, InsertBef) {
 | 
						|
  assert(isValidOperands(Val, Index) &&
 | 
						|
         "Invalid extractelement instruction operands!");
 | 
						|
  Op<0>() = Val;
 | 
						|
  Op<1>() = Index;
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
 | 
						|
                                       const Twine &Name,
 | 
						|
                                       BasicBlock *InsertAE)
 | 
						|
  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
 | 
						|
                ExtractElement,
 | 
						|
                OperandTraits<ExtractElementInst>::op_begin(this),
 | 
						|
                2, InsertAE) {
 | 
						|
  assert(isValidOperands(Val, Index) &&
 | 
						|
         "Invalid extractelement instruction operands!");
 | 
						|
 | 
						|
  Op<0>() = Val;
 | 
						|
  Op<1>() = Index;
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
 | 
						|
  if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           InsertElementInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
 | 
						|
                                     const Twine &Name,
 | 
						|
                                     Instruction *InsertBef)
 | 
						|
  : Instruction(Vec->getType(), InsertElement,
 | 
						|
                OperandTraits<InsertElementInst>::op_begin(this),
 | 
						|
                3, InsertBef) {
 | 
						|
  assert(isValidOperands(Vec, Elt, Index) &&
 | 
						|
         "Invalid insertelement instruction operands!");
 | 
						|
  Op<0>() = Vec;
 | 
						|
  Op<1>() = Elt;
 | 
						|
  Op<2>() = Index;
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
 | 
						|
                                     const Twine &Name,
 | 
						|
                                     BasicBlock *InsertAE)
 | 
						|
  : Instruction(Vec->getType(), InsertElement,
 | 
						|
                OperandTraits<InsertElementInst>::op_begin(this),
 | 
						|
                3, InsertAE) {
 | 
						|
  assert(isValidOperands(Vec, Elt, Index) &&
 | 
						|
         "Invalid insertelement instruction operands!");
 | 
						|
 | 
						|
  Op<0>() = Vec;
 | 
						|
  Op<1>() = Elt;
 | 
						|
  Op<2>() = Index;
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 
 | 
						|
                                        const Value *Index) {
 | 
						|
  if (!Vec->getType()->isVectorTy())
 | 
						|
    return false;   // First operand of insertelement must be vector type.
 | 
						|
  
 | 
						|
  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
 | 
						|
    return false;// Second operand of insertelement must be vector element type.
 | 
						|
    
 | 
						|
  if (!Index->getType()->isIntegerTy(32))
 | 
						|
    return false;  // Third operand of insertelement must be i32.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                      ShuffleVectorInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
 | 
						|
                                     const Twine &Name,
 | 
						|
                                     Instruction *InsertBefore)
 | 
						|
: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
 | 
						|
                cast<VectorType>(Mask->getType())->getNumElements()),
 | 
						|
              ShuffleVector,
 | 
						|
              OperandTraits<ShuffleVectorInst>::op_begin(this),
 | 
						|
              OperandTraits<ShuffleVectorInst>::operands(this),
 | 
						|
              InsertBefore) {
 | 
						|
  assert(isValidOperands(V1, V2, Mask) &&
 | 
						|
         "Invalid shuffle vector instruction operands!");
 | 
						|
  Op<0>() = V1;
 | 
						|
  Op<1>() = V2;
 | 
						|
  Op<2>() = Mask;
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
 | 
						|
                                     const Twine &Name,
 | 
						|
                                     BasicBlock *InsertAtEnd)
 | 
						|
: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
 | 
						|
                cast<VectorType>(Mask->getType())->getNumElements()),
 | 
						|
              ShuffleVector,
 | 
						|
              OperandTraits<ShuffleVectorInst>::op_begin(this),
 | 
						|
              OperandTraits<ShuffleVectorInst>::operands(this),
 | 
						|
              InsertAtEnd) {
 | 
						|
  assert(isValidOperands(V1, V2, Mask) &&
 | 
						|
         "Invalid shuffle vector instruction operands!");
 | 
						|
 | 
						|
  Op<0>() = V1;
 | 
						|
  Op<1>() = V2;
 | 
						|
  Op<2>() = Mask;
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
 | 
						|
                                        const Value *Mask) {
 | 
						|
  // V1 and V2 must be vectors of the same type.
 | 
						|
  if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Mask must be vector of i32.
 | 
						|
  VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
 | 
						|
  if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check to see if Mask is valid.
 | 
						|
  if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
 | 
						|
    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
 | 
						|
    for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
 | 
						|
      if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
 | 
						|
        if (CI->uge(V1Size*2))
 | 
						|
          return false;
 | 
						|
      } else if (!isa<UndefValue>(MV->getOperand(i))) {
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (const ConstantDataSequential *CDS =
 | 
						|
        dyn_cast<ConstantDataSequential>(Mask)) {
 | 
						|
    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
 | 
						|
    for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
 | 
						|
      if (CDS->getElementAsInteger(i) >= V1Size*2)
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // The bitcode reader can create a place holder for a forward reference
 | 
						|
  // used as the shuffle mask. When this occurs, the shuffle mask will
 | 
						|
  // fall into this case and fail. To avoid this error, do this bit of
 | 
						|
  // ugliness to allow such a mask pass.
 | 
						|
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
 | 
						|
    if (CE->getOpcode() == Instruction::UserOp1)
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getMaskValue - Return the index from the shuffle mask for the specified
 | 
						|
/// output result.  This is either -1 if the element is undef or a number less
 | 
						|
/// than 2*numelements.
 | 
						|
int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
 | 
						|
  assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
 | 
						|
  if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
 | 
						|
    return CDS->getElementAsInteger(i);
 | 
						|
  Constant *C = Mask->getAggregateElement(i);
 | 
						|
  if (isa<UndefValue>(C))
 | 
						|
    return -1;
 | 
						|
  return cast<ConstantInt>(C)->getZExtValue();
 | 
						|
}
 | 
						|
 | 
						|
/// getShuffleMask - Return the full mask for this instruction, where each
 | 
						|
/// element is the element number and undef's are returned as -1.
 | 
						|
void ShuffleVectorInst::getShuffleMask(Constant *Mask,
 | 
						|
                                       SmallVectorImpl<int> &Result) {
 | 
						|
  unsigned NumElts = Mask->getType()->getVectorNumElements();
 | 
						|
  
 | 
						|
  if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
      Result.push_back(CDS->getElementAsInteger(i));
 | 
						|
    return;
 | 
						|
  }    
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
    Constant *C = Mask->getAggregateElement(i);
 | 
						|
    Result.push_back(isa<UndefValue>(C) ? -1 :
 | 
						|
                     cast<ConstantInt>(C)->getZExtValue());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                             InsertValueInst Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 
 | 
						|
                           const Twine &Name) {
 | 
						|
  assert(NumOperands == 2 && "NumOperands not initialized?");
 | 
						|
 | 
						|
  // There's no fundamental reason why we require at least one index
 | 
						|
  // (other than weirdness with &*IdxBegin being invalid; see
 | 
						|
  // getelementptr's init routine for example). But there's no
 | 
						|
  // present need to support it.
 | 
						|
  assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
 | 
						|
 | 
						|
  assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
 | 
						|
         Val->getType() && "Inserted value must match indexed type!");
 | 
						|
  Op<0>() = Agg;
 | 
						|
  Op<1>() = Val;
 | 
						|
 | 
						|
  Indices.append(Idxs.begin(), Idxs.end());
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
 | 
						|
  : Instruction(IVI.getType(), InsertValue,
 | 
						|
                OperandTraits<InsertValueInst>::op_begin(this), 2),
 | 
						|
    Indices(IVI.Indices) {
 | 
						|
  Op<0>() = IVI.getOperand(0);
 | 
						|
  Op<1>() = IVI.getOperand(1);
 | 
						|
  SubclassOptionalData = IVI.SubclassOptionalData;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                             ExtractValueInst Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
 | 
						|
  assert(NumOperands == 1 && "NumOperands not initialized?");
 | 
						|
 | 
						|
  // There's no fundamental reason why we require at least one index.
 | 
						|
  // But there's no present need to support it.
 | 
						|
  assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
 | 
						|
 | 
						|
  Indices.append(Idxs.begin(), Idxs.end());
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
 | 
						|
  : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
 | 
						|
    Indices(EVI.Indices) {
 | 
						|
  SubclassOptionalData = EVI.SubclassOptionalData;
 | 
						|
}
 | 
						|
 | 
						|
// getIndexedType - Returns the type of the element that would be extracted
 | 
						|
// with an extractvalue instruction with the specified parameters.
 | 
						|
//
 | 
						|
// A null type is returned if the indices are invalid for the specified
 | 
						|
// pointer type.
 | 
						|
//
 | 
						|
Type *ExtractValueInst::getIndexedType(Type *Agg,
 | 
						|
                                       ArrayRef<unsigned> Idxs) {
 | 
						|
  for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) {
 | 
						|
    unsigned Index = Idxs[CurIdx];
 | 
						|
    // We can't use CompositeType::indexValid(Index) here.
 | 
						|
    // indexValid() always returns true for arrays because getelementptr allows
 | 
						|
    // out-of-bounds indices. Since we don't allow those for extractvalue and
 | 
						|
    // insertvalue we need to check array indexing manually.
 | 
						|
    // Since the only other types we can index into are struct types it's just
 | 
						|
    // as easy to check those manually as well.
 | 
						|
    if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
 | 
						|
      if (Index >= AT->getNumElements())
 | 
						|
        return 0;
 | 
						|
    } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
 | 
						|
      if (Index >= ST->getNumElements())
 | 
						|
        return 0;
 | 
						|
    } else {
 | 
						|
      // Not a valid type to index into.
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
 | 
						|
  }
 | 
						|
  return const_cast<Type*>(Agg);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                             BinaryOperator Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
 | 
						|
                               Type *Ty, const Twine &Name,
 | 
						|
                               Instruction *InsertBefore)
 | 
						|
  : Instruction(Ty, iType,
 | 
						|
                OperandTraits<BinaryOperator>::op_begin(this),
 | 
						|
                OperandTraits<BinaryOperator>::operands(this),
 | 
						|
                InsertBefore) {
 | 
						|
  Op<0>() = S1;
 | 
						|
  Op<1>() = S2;
 | 
						|
  init(iType);
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 
 | 
						|
                               Type *Ty, const Twine &Name,
 | 
						|
                               BasicBlock *InsertAtEnd)
 | 
						|
  : Instruction(Ty, iType,
 | 
						|
                OperandTraits<BinaryOperator>::op_begin(this),
 | 
						|
                OperandTraits<BinaryOperator>::operands(this),
 | 
						|
                InsertAtEnd) {
 | 
						|
  Op<0>() = S1;
 | 
						|
  Op<1>() = S2;
 | 
						|
  init(iType);
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void BinaryOperator::init(BinaryOps iType) {
 | 
						|
  Value *LHS = getOperand(0), *RHS = getOperand(1);
 | 
						|
  (void)LHS; (void)RHS; // Silence warnings.
 | 
						|
  assert(LHS->getType() == RHS->getType() &&
 | 
						|
         "Binary operator operand types must match!");
 | 
						|
#ifndef NDEBUG
 | 
						|
  switch (iType) {
 | 
						|
  case Add: case Sub:
 | 
						|
  case Mul:
 | 
						|
    assert(getType() == LHS->getType() &&
 | 
						|
           "Arithmetic operation should return same type as operands!");
 | 
						|
    assert(getType()->isIntOrIntVectorTy() &&
 | 
						|
           "Tried to create an integer operation on a non-integer type!");
 | 
						|
    break;
 | 
						|
  case FAdd: case FSub:
 | 
						|
  case FMul:
 | 
						|
    assert(getType() == LHS->getType() &&
 | 
						|
           "Arithmetic operation should return same type as operands!");
 | 
						|
    assert(getType()->isFPOrFPVectorTy() &&
 | 
						|
           "Tried to create a floating-point operation on a "
 | 
						|
           "non-floating-point type!");
 | 
						|
    break;
 | 
						|
  case UDiv: 
 | 
						|
  case SDiv: 
 | 
						|
    assert(getType() == LHS->getType() &&
 | 
						|
           "Arithmetic operation should return same type as operands!");
 | 
						|
    assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 
 | 
						|
            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
 | 
						|
           "Incorrect operand type (not integer) for S/UDIV");
 | 
						|
    break;
 | 
						|
  case FDiv:
 | 
						|
    assert(getType() == LHS->getType() &&
 | 
						|
           "Arithmetic operation should return same type as operands!");
 | 
						|
    assert(getType()->isFPOrFPVectorTy() &&
 | 
						|
           "Incorrect operand type (not floating point) for FDIV");
 | 
						|
    break;
 | 
						|
  case URem: 
 | 
						|
  case SRem: 
 | 
						|
    assert(getType() == LHS->getType() &&
 | 
						|
           "Arithmetic operation should return same type as operands!");
 | 
						|
    assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 
 | 
						|
            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
 | 
						|
           "Incorrect operand type (not integer) for S/UREM");
 | 
						|
    break;
 | 
						|
  case FRem:
 | 
						|
    assert(getType() == LHS->getType() &&
 | 
						|
           "Arithmetic operation should return same type as operands!");
 | 
						|
    assert(getType()->isFPOrFPVectorTy() &&
 | 
						|
           "Incorrect operand type (not floating point) for FREM");
 | 
						|
    break;
 | 
						|
  case Shl:
 | 
						|
  case LShr:
 | 
						|
  case AShr:
 | 
						|
    assert(getType() == LHS->getType() &&
 | 
						|
           "Shift operation should return same type as operands!");
 | 
						|
    assert((getType()->isIntegerTy() ||
 | 
						|
            (getType()->isVectorTy() && 
 | 
						|
             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
 | 
						|
           "Tried to create a shift operation on a non-integral type!");
 | 
						|
    break;
 | 
						|
  case And: case Or:
 | 
						|
  case Xor:
 | 
						|
    assert(getType() == LHS->getType() &&
 | 
						|
           "Logical operation should return same type as operands!");
 | 
						|
    assert((getType()->isIntegerTy() ||
 | 
						|
            (getType()->isVectorTy() && 
 | 
						|
             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
 | 
						|
           "Tried to create a logical operation on a non-integral type!");
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
 | 
						|
                                       const Twine &Name,
 | 
						|
                                       Instruction *InsertBefore) {
 | 
						|
  assert(S1->getType() == S2->getType() &&
 | 
						|
         "Cannot create binary operator with two operands of differing type!");
 | 
						|
  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
 | 
						|
}
 | 
						|
 | 
						|
BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
 | 
						|
                                       const Twine &Name,
 | 
						|
                                       BasicBlock *InsertAtEnd) {
 | 
						|
  BinaryOperator *Res = Create(Op, S1, S2, Name);
 | 
						|
  InsertAtEnd->getInstList().push_back(Res);
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
 | 
						|
                                          Instruction *InsertBefore) {
 | 
						|
  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
 | 
						|
  return new BinaryOperator(Instruction::Sub,
 | 
						|
                            zero, Op,
 | 
						|
                            Op->getType(), Name, InsertBefore);
 | 
						|
}
 | 
						|
 | 
						|
BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
 | 
						|
                                          BasicBlock *InsertAtEnd) {
 | 
						|
  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
 | 
						|
  return new BinaryOperator(Instruction::Sub,
 | 
						|
                            zero, Op,
 | 
						|
                            Op->getType(), Name, InsertAtEnd);
 | 
						|
}
 | 
						|
 | 
						|
BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
 | 
						|
                                             Instruction *InsertBefore) {
 | 
						|
  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
 | 
						|
  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
 | 
						|
}
 | 
						|
 | 
						|
BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
 | 
						|
                                             BasicBlock *InsertAtEnd) {
 | 
						|
  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
 | 
						|
  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
 | 
						|
}
 | 
						|
 | 
						|
BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
 | 
						|
                                             Instruction *InsertBefore) {
 | 
						|
  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
 | 
						|
  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
 | 
						|
}
 | 
						|
 | 
						|
BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
 | 
						|
                                             BasicBlock *InsertAtEnd) {
 | 
						|
  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
 | 
						|
  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
 | 
						|
}
 | 
						|
 | 
						|
BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
 | 
						|
                                           Instruction *InsertBefore) {
 | 
						|
  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
 | 
						|
  return new BinaryOperator(Instruction::FSub, zero, Op,
 | 
						|
                            Op->getType(), Name, InsertBefore);
 | 
						|
}
 | 
						|
 | 
						|
BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
 | 
						|
                                           BasicBlock *InsertAtEnd) {
 | 
						|
  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
 | 
						|
  return new BinaryOperator(Instruction::FSub, zero, Op,
 | 
						|
                            Op->getType(), Name, InsertAtEnd);
 | 
						|
}
 | 
						|
 | 
						|
BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
 | 
						|
                                          Instruction *InsertBefore) {
 | 
						|
  Constant *C = Constant::getAllOnesValue(Op->getType());
 | 
						|
  return new BinaryOperator(Instruction::Xor, Op, C,
 | 
						|
                            Op->getType(), Name, InsertBefore);
 | 
						|
}
 | 
						|
 | 
						|
BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
 | 
						|
                                          BasicBlock *InsertAtEnd) {
 | 
						|
  Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
 | 
						|
  return new BinaryOperator(Instruction::Xor, Op, AllOnes,
 | 
						|
                            Op->getType(), Name, InsertAtEnd);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// isConstantAllOnes - Helper function for several functions below
 | 
						|
static inline bool isConstantAllOnes(const Value *V) {
 | 
						|
  if (const Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return C->isAllOnesValue();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool BinaryOperator::isNeg(const Value *V) {
 | 
						|
  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
 | 
						|
    if (Bop->getOpcode() == Instruction::Sub)
 | 
						|
      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
 | 
						|
        return C->isNegativeZeroValue();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
 | 
						|
  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
 | 
						|
    if (Bop->getOpcode() == Instruction::FSub)
 | 
						|
      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
 | 
						|
        if (!IgnoreZeroSign)
 | 
						|
          IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
 | 
						|
        return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
 | 
						|
      }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool BinaryOperator::isNot(const Value *V) {
 | 
						|
  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
 | 
						|
    return (Bop->getOpcode() == Instruction::Xor &&
 | 
						|
            (isConstantAllOnes(Bop->getOperand(1)) ||
 | 
						|
             isConstantAllOnes(Bop->getOperand(0))));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Value *BinaryOperator::getNegArgument(Value *BinOp) {
 | 
						|
  return cast<BinaryOperator>(BinOp)->getOperand(1);
 | 
						|
}
 | 
						|
 | 
						|
const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
 | 
						|
  return getNegArgument(const_cast<Value*>(BinOp));
 | 
						|
}
 | 
						|
 | 
						|
Value *BinaryOperator::getFNegArgument(Value *BinOp) {
 | 
						|
  return cast<BinaryOperator>(BinOp)->getOperand(1);
 | 
						|
}
 | 
						|
 | 
						|
const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
 | 
						|
  return getFNegArgument(const_cast<Value*>(BinOp));
 | 
						|
}
 | 
						|
 | 
						|
Value *BinaryOperator::getNotArgument(Value *BinOp) {
 | 
						|
  assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
 | 
						|
  BinaryOperator *BO = cast<BinaryOperator>(BinOp);
 | 
						|
  Value *Op0 = BO->getOperand(0);
 | 
						|
  Value *Op1 = BO->getOperand(1);
 | 
						|
  if (isConstantAllOnes(Op0)) return Op1;
 | 
						|
 | 
						|
  assert(isConstantAllOnes(Op1));
 | 
						|
  return Op0;
 | 
						|
}
 | 
						|
 | 
						|
const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
 | 
						|
  return getNotArgument(const_cast<Value*>(BinOp));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// swapOperands - Exchange the two operands to this instruction.  This
 | 
						|
// instruction is safe to use on any binary instruction and does not
 | 
						|
// modify the semantics of the instruction.  If the instruction is
 | 
						|
// order dependent (SetLT f.e.) the opcode is changed.
 | 
						|
//
 | 
						|
bool BinaryOperator::swapOperands() {
 | 
						|
  if (!isCommutative())
 | 
						|
    return true; // Can't commute operands
 | 
						|
  Op<0>().swap(Op<1>());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void BinaryOperator::setHasNoUnsignedWrap(bool b) {
 | 
						|
  cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
 | 
						|
}
 | 
						|
 | 
						|
void BinaryOperator::setHasNoSignedWrap(bool b) {
 | 
						|
  cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
 | 
						|
}
 | 
						|
 | 
						|
void BinaryOperator::setIsExact(bool b) {
 | 
						|
  cast<PossiblyExactOperator>(this)->setIsExact(b);
 | 
						|
}
 | 
						|
 | 
						|
bool BinaryOperator::hasNoUnsignedWrap() const {
 | 
						|
  return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
 | 
						|
}
 | 
						|
 | 
						|
bool BinaryOperator::hasNoSignedWrap() const {
 | 
						|
  return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
 | 
						|
}
 | 
						|
 | 
						|
bool BinaryOperator::isExact() const {
 | 
						|
  return cast<PossiblyExactOperator>(this)->isExact();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                             FPMathOperator Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
 | 
						|
/// An accuracy of 0.0 means that the operation should be performed with the
 | 
						|
/// default precision.
 | 
						|
float FPMathOperator::getFPAccuracy() const {
 | 
						|
  const MDNode *MD =
 | 
						|
    cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
 | 
						|
  if (!MD)
 | 
						|
    return 0.0;
 | 
						|
  ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
 | 
						|
  return Accuracy->getValueAPF().convertToFloat();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                CastInst Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void CastInst::anchor() {}
 | 
						|
 | 
						|
// Just determine if this cast only deals with integral->integral conversion.
 | 
						|
bool CastInst::isIntegerCast() const {
 | 
						|
  switch (getOpcode()) {
 | 
						|
    default: return false;
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::Trunc:
 | 
						|
      return true;
 | 
						|
    case Instruction::BitCast:
 | 
						|
      return getOperand(0)->getType()->isIntegerTy() &&
 | 
						|
        getType()->isIntegerTy();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool CastInst::isLosslessCast() const {
 | 
						|
  // Only BitCast can be lossless, exit fast if we're not BitCast
 | 
						|
  if (getOpcode() != Instruction::BitCast)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Identity cast is always lossless
 | 
						|
  Type* SrcTy = getOperand(0)->getType();
 | 
						|
  Type* DstTy = getType();
 | 
						|
  if (SrcTy == DstTy)
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // Pointer to pointer is always lossless.
 | 
						|
  if (SrcTy->isPointerTy())
 | 
						|
    return DstTy->isPointerTy();
 | 
						|
  return false;  // Other types have no identity values
 | 
						|
}
 | 
						|
 | 
						|
/// This function determines if the CastInst does not require any bits to be
 | 
						|
/// changed in order to effect the cast. Essentially, it identifies cases where
 | 
						|
/// no code gen is necessary for the cast, hence the name no-op cast.  For 
 | 
						|
/// example, the following are all no-op casts:
 | 
						|
/// # bitcast i32* %x to i8*
 | 
						|
/// # bitcast <2 x i32> %x to <4 x i16> 
 | 
						|
/// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
 | 
						|
/// @brief Determine if the described cast is a no-op.
 | 
						|
bool CastInst::isNoopCast(Instruction::CastOps Opcode,
 | 
						|
                          Type *SrcTy,
 | 
						|
                          Type *DestTy,
 | 
						|
                          Type *IntPtrTy) {
 | 
						|
  switch (Opcode) {
 | 
						|
    default: llvm_unreachable("Invalid CastOp");
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt: 
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
      return false; // These always modify bits
 | 
						|
    case Instruction::BitCast:
 | 
						|
      return true;  // BitCast never modifies bits.
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
      return IntPtrTy->getScalarSizeInBits() ==
 | 
						|
             DestTy->getScalarSizeInBits();
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
      return IntPtrTy->getScalarSizeInBits() ==
 | 
						|
             SrcTy->getScalarSizeInBits();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Determine if a cast is a no-op.
 | 
						|
bool CastInst::isNoopCast(Type *IntPtrTy) const {
 | 
						|
  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
 | 
						|
}
 | 
						|
 | 
						|
/// This function determines if a pair of casts can be eliminated and what 
 | 
						|
/// opcode should be used in the elimination. This assumes that there are two 
 | 
						|
/// instructions like this:
 | 
						|
/// *  %F = firstOpcode SrcTy %x to MidTy
 | 
						|
/// *  %S = secondOpcode MidTy %F to DstTy
 | 
						|
/// The function returns a resultOpcode so these two casts can be replaced with:
 | 
						|
/// *  %Replacement = resultOpcode %SrcTy %x to DstTy
 | 
						|
/// If no such cast is permited, the function returns 0.
 | 
						|
unsigned CastInst::isEliminableCastPair(
 | 
						|
  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
 | 
						|
  Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
 | 
						|
  Type *DstIntPtrTy) {
 | 
						|
  // Define the 144 possibilities for these two cast instructions. The values
 | 
						|
  // in this matrix determine what to do in a given situation and select the
 | 
						|
  // case in the switch below.  The rows correspond to firstOp, the columns 
 | 
						|
  // correspond to secondOp.  In looking at the table below, keep in  mind
 | 
						|
  // the following cast properties:
 | 
						|
  //
 | 
						|
  //          Size Compare       Source               Destination
 | 
						|
  // Operator  Src ? Size   Type       Sign         Type       Sign
 | 
						|
  // -------- ------------ -------------------   ---------------------
 | 
						|
  // TRUNC         >       Integer      Any        Integral     Any
 | 
						|
  // ZEXT          <       Integral   Unsigned     Integer      Any
 | 
						|
  // SEXT          <       Integral    Signed      Integer      Any
 | 
						|
  // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
 | 
						|
  // FPTOSI       n/a      FloatPt      n/a        Integral    Signed 
 | 
						|
  // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a   
 | 
						|
  // SITOFP       n/a      Integral    Signed      FloatPt      n/a   
 | 
						|
  // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a   
 | 
						|
  // FPEXT         <       FloatPt      n/a        FloatPt      n/a   
 | 
						|
  // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
 | 
						|
  // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
 | 
						|
  // BITCAST       =       FirstClass   n/a       FirstClass    n/a   
 | 
						|
  //
 | 
						|
  // NOTE: some transforms are safe, but we consider them to be non-profitable.
 | 
						|
  // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
 | 
						|
  // into "fptoui double to i64", but this loses information about the range
 | 
						|
  // of the produced value (we no longer know the top-part is all zeros). 
 | 
						|
  // Further this conversion is often much more expensive for typical hardware,
 | 
						|
  // and causes issues when building libgcc.  We disallow fptosi+sext for the 
 | 
						|
  // same reason.
 | 
						|
  const unsigned numCastOps = 
 | 
						|
    Instruction::CastOpsEnd - Instruction::CastOpsBegin;
 | 
						|
  static const uint8_t CastResults[numCastOps][numCastOps] = {
 | 
						|
    // T        F  F  U  S  F  F  P  I  B   -+
 | 
						|
    // R  Z  S  P  P  I  I  T  P  2  N  T    |
 | 
						|
    // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
 | 
						|
    // N  X  X  U  S  F  F  N  X  N  2  V    |
 | 
						|
    // C  T  T  I  I  P  P  C  T  T  P  T   -+
 | 
						|
    {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
 | 
						|
    {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
 | 
						|
    {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
 | 
						|
    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
 | 
						|
    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
 | 
						|
    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
 | 
						|
    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
 | 
						|
    { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
 | 
						|
    { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
 | 
						|
    {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
 | 
						|
    { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
 | 
						|
    {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
 | 
						|
  };
 | 
						|
  
 | 
						|
  // If either of the casts are a bitcast from scalar to vector, disallow the
 | 
						|
  // merging. However, bitcast of A->B->A are allowed.
 | 
						|
  bool isFirstBitcast  = (firstOp == Instruction::BitCast);
 | 
						|
  bool isSecondBitcast = (secondOp == Instruction::BitCast);
 | 
						|
  bool chainedBitcast  = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
 | 
						|
 | 
						|
  // Check if any of the bitcasts convert scalars<->vectors.
 | 
						|
  if ((isFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
 | 
						|
      (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
 | 
						|
    // Unless we are bitcasing to the original type, disallow optimizations.
 | 
						|
    if (!chainedBitcast) return 0;
 | 
						|
 | 
						|
  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
 | 
						|
                            [secondOp-Instruction::CastOpsBegin];
 | 
						|
  switch (ElimCase) {
 | 
						|
    case 0: 
 | 
						|
      // categorically disallowed
 | 
						|
      return 0;
 | 
						|
    case 1: 
 | 
						|
      // allowed, use first cast's opcode
 | 
						|
      return firstOp;
 | 
						|
    case 2: 
 | 
						|
      // allowed, use second cast's opcode
 | 
						|
      return secondOp;
 | 
						|
    case 3: 
 | 
						|
      // no-op cast in second op implies firstOp as long as the DestTy 
 | 
						|
      // is integer and we are not converting between a vector and a
 | 
						|
      // non vector type.
 | 
						|
      if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
 | 
						|
        return firstOp;
 | 
						|
      return 0;
 | 
						|
    case 4:
 | 
						|
      // no-op cast in second op implies firstOp as long as the DestTy
 | 
						|
      // is floating point.
 | 
						|
      if (DstTy->isFloatingPointTy())
 | 
						|
        return firstOp;
 | 
						|
      return 0;
 | 
						|
    case 5: 
 | 
						|
      // no-op cast in first op implies secondOp as long as the SrcTy
 | 
						|
      // is an integer.
 | 
						|
      if (SrcTy->isIntegerTy())
 | 
						|
        return secondOp;
 | 
						|
      return 0;
 | 
						|
    case 6:
 | 
						|
      // no-op cast in first op implies secondOp as long as the SrcTy
 | 
						|
      // is a floating point.
 | 
						|
      if (SrcTy->isFloatingPointTy())
 | 
						|
        return secondOp;
 | 
						|
      return 0;
 | 
						|
    case 7: {
 | 
						|
      unsigned MidSize = MidTy->getScalarSizeInBits();
 | 
						|
      // Check the address spaces first. If we know they are in the same address
 | 
						|
      // space, the pointer sizes must be the same so we can still fold this
 | 
						|
      // without knowing the actual sizes as long we know that the intermediate
 | 
						|
      // pointer is the largest possible pointer size.
 | 
						|
      if (MidSize == 64 &&
 | 
						|
          SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace())
 | 
						|
        return Instruction::BitCast;
 | 
						|
 | 
						|
      // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
 | 
						|
      if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
 | 
						|
        return 0;
 | 
						|
      unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
 | 
						|
      if (MidSize >= PtrSize)
 | 
						|
        return Instruction::BitCast;
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    case 8: {
 | 
						|
      // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
 | 
						|
      // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
 | 
						|
      // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
 | 
						|
      unsigned SrcSize = SrcTy->getScalarSizeInBits();
 | 
						|
      unsigned DstSize = DstTy->getScalarSizeInBits();
 | 
						|
      if (SrcSize == DstSize)
 | 
						|
        return Instruction::BitCast;
 | 
						|
      else if (SrcSize < DstSize)
 | 
						|
        return firstOp;
 | 
						|
      return secondOp;
 | 
						|
    }
 | 
						|
    case 9: // zext, sext -> zext, because sext can't sign extend after zext
 | 
						|
      return Instruction::ZExt;
 | 
						|
    case 10:
 | 
						|
      // fpext followed by ftrunc is allowed if the bit size returned to is
 | 
						|
      // the same as the original, in which case its just a bitcast
 | 
						|
      if (SrcTy == DstTy)
 | 
						|
        return Instruction::BitCast;
 | 
						|
      return 0; // If the types are not the same we can't eliminate it.
 | 
						|
    case 11: {
 | 
						|
      // bitcast followed by ptrtoint is allowed as long as the bitcast is a
 | 
						|
      // pointer to pointer cast, and the pointers are the same size.
 | 
						|
      PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy);
 | 
						|
      PointerType *MidPtrTy = dyn_cast<PointerType>(MidTy);
 | 
						|
      if (!SrcPtrTy || !MidPtrTy)
 | 
						|
        return 0;
 | 
						|
 | 
						|
      // If the address spaces are the same, we know they are the same size
 | 
						|
      // without size information
 | 
						|
      if (SrcPtrTy->getAddressSpace() == MidPtrTy->getAddressSpace())
 | 
						|
        return secondOp;
 | 
						|
 | 
						|
      if (!SrcIntPtrTy || !MidIntPtrTy)
 | 
						|
        return 0;
 | 
						|
 | 
						|
      if (SrcIntPtrTy->getScalarSizeInBits() ==
 | 
						|
          MidIntPtrTy->getScalarSizeInBits())
 | 
						|
        return secondOp;
 | 
						|
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    case 12: {
 | 
						|
      // inttoptr, bitcast -> inttoptr if bitcast is a ptr to ptr cast
 | 
						|
      // and the ptrs are to address spaces of the same size
 | 
						|
      PointerType *MidPtrTy = dyn_cast<PointerType>(MidTy);
 | 
						|
      PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy);
 | 
						|
      if (!MidPtrTy || !DstPtrTy)
 | 
						|
        return 0;
 | 
						|
 | 
						|
      if (MidPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
 | 
						|
        return firstOp;
 | 
						|
 | 
						|
      if (MidIntPtrTy &&
 | 
						|
          DstIntPtrTy &&
 | 
						|
          MidIntPtrTy->getScalarSizeInBits() ==
 | 
						|
          DstIntPtrTy->getScalarSizeInBits())
 | 
						|
        return firstOp;
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    case 13: {
 | 
						|
      // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
 | 
						|
      if (!MidIntPtrTy)
 | 
						|
        return 0;
 | 
						|
      unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
 | 
						|
      unsigned SrcSize = SrcTy->getScalarSizeInBits();
 | 
						|
      unsigned DstSize = DstTy->getScalarSizeInBits();
 | 
						|
      if (SrcSize <= PtrSize && SrcSize == DstSize)
 | 
						|
        return Instruction::BitCast;
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    case 99: 
 | 
						|
      // cast combination can't happen (error in input). This is for all cases
 | 
						|
      // where the MidTy is not the same for the two cast instructions.
 | 
						|
      llvm_unreachable("Invalid Cast Combination");
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Error in CastResults table!!!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 
 | 
						|
  const Twine &Name, Instruction *InsertBefore) {
 | 
						|
  assert(castIsValid(op, S, Ty) && "Invalid cast!");
 | 
						|
  // Construct and return the appropriate CastInst subclass
 | 
						|
  switch (op) {
 | 
						|
    case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
 | 
						|
    case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
 | 
						|
    case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
 | 
						|
    case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
 | 
						|
    case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
 | 
						|
    case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
 | 
						|
    case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
 | 
						|
    case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
 | 
						|
    case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
 | 
						|
    case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
 | 
						|
    case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
 | 
						|
    case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
 | 
						|
    default: llvm_unreachable("Invalid opcode provided");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
 | 
						|
  const Twine &Name, BasicBlock *InsertAtEnd) {
 | 
						|
  assert(castIsValid(op, S, Ty) && "Invalid cast!");
 | 
						|
  // Construct and return the appropriate CastInst subclass
 | 
						|
  switch (op) {
 | 
						|
    case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
 | 
						|
    case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
 | 
						|
    case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
 | 
						|
    case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
 | 
						|
    case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
 | 
						|
    case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
 | 
						|
    case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
 | 
						|
    case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
 | 
						|
    case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
 | 
						|
    case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
 | 
						|
    case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
 | 
						|
    case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
 | 
						|
    default: llvm_unreachable("Invalid opcode provided");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 
 | 
						|
                                        const Twine &Name,
 | 
						|
                                        Instruction *InsertBefore) {
 | 
						|
  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | 
						|
    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
 | 
						|
  return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
 | 
						|
}
 | 
						|
 | 
						|
CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 
 | 
						|
                                        const Twine &Name,
 | 
						|
                                        BasicBlock *InsertAtEnd) {
 | 
						|
  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | 
						|
    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
 | 
						|
  return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
 | 
						|
}
 | 
						|
 | 
						|
CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 
 | 
						|
                                        const Twine &Name,
 | 
						|
                                        Instruction *InsertBefore) {
 | 
						|
  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | 
						|
    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
 | 
						|
  return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
 | 
						|
}
 | 
						|
 | 
						|
CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 
 | 
						|
                                        const Twine &Name,
 | 
						|
                                        BasicBlock *InsertAtEnd) {
 | 
						|
  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | 
						|
    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
 | 
						|
  return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
 | 
						|
}
 | 
						|
 | 
						|
CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
 | 
						|
                                         const Twine &Name,
 | 
						|
                                         Instruction *InsertBefore) {
 | 
						|
  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | 
						|
    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
 | 
						|
  return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
 | 
						|
}
 | 
						|
 | 
						|
CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
 | 
						|
                                         const Twine &Name, 
 | 
						|
                                         BasicBlock *InsertAtEnd) {
 | 
						|
  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | 
						|
    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
 | 
						|
  return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
 | 
						|
}
 | 
						|
 | 
						|
CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
 | 
						|
                                      const Twine &Name,
 | 
						|
                                      BasicBlock *InsertAtEnd) {
 | 
						|
  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
 | 
						|
  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
 | 
						|
         "Invalid cast");
 | 
						|
  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
 | 
						|
  assert((!Ty->isVectorTy() ||
 | 
						|
          Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
 | 
						|
         "Invalid cast");
 | 
						|
 | 
						|
  if (Ty->isIntOrIntVectorTy())
 | 
						|
    return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
 | 
						|
  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Create a BitCast or a PtrToInt cast instruction
 | 
						|
CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
 | 
						|
                                      const Twine &Name,
 | 
						|
                                      Instruction *InsertBefore) {
 | 
						|
  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
 | 
						|
  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
 | 
						|
         "Invalid cast");
 | 
						|
  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
 | 
						|
  assert((!Ty->isVectorTy() ||
 | 
						|
          Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
 | 
						|
         "Invalid cast");
 | 
						|
 | 
						|
  if (Ty->isIntOrIntVectorTy())
 | 
						|
    return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
 | 
						|
  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
 | 
						|
}
 | 
						|
 | 
						|
CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 
 | 
						|
                                      bool isSigned, const Twine &Name,
 | 
						|
                                      Instruction *InsertBefore) {
 | 
						|
  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
 | 
						|
         "Invalid integer cast");
 | 
						|
  unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | 
						|
  unsigned DstBits = Ty->getScalarSizeInBits();
 | 
						|
  Instruction::CastOps opcode =
 | 
						|
    (SrcBits == DstBits ? Instruction::BitCast :
 | 
						|
     (SrcBits > DstBits ? Instruction::Trunc :
 | 
						|
      (isSigned ? Instruction::SExt : Instruction::ZExt)));
 | 
						|
  return Create(opcode, C, Ty, Name, InsertBefore);
 | 
						|
}
 | 
						|
 | 
						|
CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 
 | 
						|
                                      bool isSigned, const Twine &Name,
 | 
						|
                                      BasicBlock *InsertAtEnd) {
 | 
						|
  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
 | 
						|
         "Invalid cast");
 | 
						|
  unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | 
						|
  unsigned DstBits = Ty->getScalarSizeInBits();
 | 
						|
  Instruction::CastOps opcode =
 | 
						|
    (SrcBits == DstBits ? Instruction::BitCast :
 | 
						|
     (SrcBits > DstBits ? Instruction::Trunc :
 | 
						|
      (isSigned ? Instruction::SExt : Instruction::ZExt)));
 | 
						|
  return Create(opcode, C, Ty, Name, InsertAtEnd);
 | 
						|
}
 | 
						|
 | 
						|
CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 
 | 
						|
                                 const Twine &Name, 
 | 
						|
                                 Instruction *InsertBefore) {
 | 
						|
  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
 | 
						|
         "Invalid cast");
 | 
						|
  unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | 
						|
  unsigned DstBits = Ty->getScalarSizeInBits();
 | 
						|
  Instruction::CastOps opcode =
 | 
						|
    (SrcBits == DstBits ? Instruction::BitCast :
 | 
						|
     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
 | 
						|
  return Create(opcode, C, Ty, Name, InsertBefore);
 | 
						|
}
 | 
						|
 | 
						|
CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 
 | 
						|
                                 const Twine &Name, 
 | 
						|
                                 BasicBlock *InsertAtEnd) {
 | 
						|
  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
 | 
						|
         "Invalid cast");
 | 
						|
  unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | 
						|
  unsigned DstBits = Ty->getScalarSizeInBits();
 | 
						|
  Instruction::CastOps opcode =
 | 
						|
    (SrcBits == DstBits ? Instruction::BitCast :
 | 
						|
     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
 | 
						|
  return Create(opcode, C, Ty, Name, InsertAtEnd);
 | 
						|
}
 | 
						|
 | 
						|
// Check whether it is valid to call getCastOpcode for these types.
 | 
						|
// This routine must be kept in sync with getCastOpcode.
 | 
						|
bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
 | 
						|
  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (SrcTy == DestTy)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
 | 
						|
    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
 | 
						|
      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
 | 
						|
        // An element by element cast.  Valid if casting the elements is valid.
 | 
						|
        SrcTy = SrcVecTy->getElementType();
 | 
						|
        DestTy = DestVecTy->getElementType();
 | 
						|
      }
 | 
						|
 | 
						|
  // Get the bit sizes, we'll need these
 | 
						|
  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
 | 
						|
  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
 | 
						|
 | 
						|
  // Run through the possibilities ...
 | 
						|
  if (DestTy->isIntegerTy()) {               // Casting to integral
 | 
						|
    if (SrcTy->isIntegerTy()) {                // Casting from integral
 | 
						|
        return true;
 | 
						|
    } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
 | 
						|
      return true;
 | 
						|
    } else if (SrcTy->isVectorTy()) {          // Casting from vector
 | 
						|
      return DestBits == SrcBits;
 | 
						|
    } else {                                   // Casting from something else
 | 
						|
      return SrcTy->isPointerTy();
 | 
						|
    }
 | 
						|
  } else if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
 | 
						|
    if (SrcTy->isIntegerTy()) {                // Casting from integral
 | 
						|
      return true;
 | 
						|
    } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
 | 
						|
      return true;
 | 
						|
    } else if (SrcTy->isVectorTy()) {          // Casting from vector
 | 
						|
      return DestBits == SrcBits;
 | 
						|
    } else {                                   // Casting from something else
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } else if (DestTy->isVectorTy()) {         // Casting to vector
 | 
						|
    return DestBits == SrcBits;
 | 
						|
  } else if (DestTy->isPointerTy()) {        // Casting to pointer
 | 
						|
    if (SrcTy->isPointerTy()) {                // Casting from pointer
 | 
						|
      return true;
 | 
						|
    } else if (SrcTy->isIntegerTy()) {         // Casting from integral
 | 
						|
      return true;
 | 
						|
    } else {                                   // Casting from something else
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } else if (DestTy->isX86_MMXTy()) {
 | 
						|
    if (SrcTy->isVectorTy()) {
 | 
						|
      return DestBits == SrcBits;       // 64-bit vector to MMX
 | 
						|
    } else {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } else {                                   // Casting to something else
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
 | 
						|
  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (SrcTy == DestTy)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
 | 
						|
    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
 | 
						|
      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
 | 
						|
        // An element by element cast. Valid if casting the elements is valid.
 | 
						|
        SrcTy = SrcVecTy->getElementType();
 | 
						|
        DestTy = DestVecTy->getElementType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
 | 
						|
    if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
 | 
						|
      return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
 | 
						|
  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
 | 
						|
 | 
						|
  // Could still have vectors of pointers if the number of elements doesn't
 | 
						|
  // match
 | 
						|
  if (SrcBits == 0 || DestBits == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (SrcBits != DestBits)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Provide a way to get a "cast" where the cast opcode is inferred from the
 | 
						|
// types and size of the operand. This, basically, is a parallel of the
 | 
						|
// logic in the castIsValid function below.  This axiom should hold:
 | 
						|
//   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
 | 
						|
// should not assert in castIsValid. In other words, this produces a "correct"
 | 
						|
// casting opcode for the arguments passed to it.
 | 
						|
// This routine must be kept in sync with isCastable.
 | 
						|
Instruction::CastOps
 | 
						|
CastInst::getCastOpcode(
 | 
						|
  const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
 | 
						|
  Type *SrcTy = Src->getType();
 | 
						|
 | 
						|
  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
 | 
						|
         "Only first class types are castable!");
 | 
						|
 | 
						|
  if (SrcTy == DestTy)
 | 
						|
    return BitCast;
 | 
						|
 | 
						|
  // FIXME: Check address space sizes here
 | 
						|
  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
 | 
						|
    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
 | 
						|
      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
 | 
						|
        // An element by element cast.  Find the appropriate opcode based on the
 | 
						|
        // element types.
 | 
						|
        SrcTy = SrcVecTy->getElementType();
 | 
						|
        DestTy = DestVecTy->getElementType();
 | 
						|
      }
 | 
						|
 | 
						|
  // Get the bit sizes, we'll need these
 | 
						|
  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
 | 
						|
  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
 | 
						|
 | 
						|
  // Run through the possibilities ...
 | 
						|
  if (DestTy->isIntegerTy()) {                      // Casting to integral
 | 
						|
    if (SrcTy->isIntegerTy()) {                     // Casting from integral
 | 
						|
      if (DestBits < SrcBits)
 | 
						|
        return Trunc;                               // int -> smaller int
 | 
						|
      else if (DestBits > SrcBits) {                // its an extension
 | 
						|
        if (SrcIsSigned)
 | 
						|
          return SExt;                              // signed -> SEXT
 | 
						|
        else
 | 
						|
          return ZExt;                              // unsigned -> ZEXT
 | 
						|
      } else {
 | 
						|
        return BitCast;                             // Same size, No-op cast
 | 
						|
      }
 | 
						|
    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
 | 
						|
      if (DestIsSigned) 
 | 
						|
        return FPToSI;                              // FP -> sint
 | 
						|
      else
 | 
						|
        return FPToUI;                              // FP -> uint 
 | 
						|
    } else if (SrcTy->isVectorTy()) {
 | 
						|
      assert(DestBits == SrcBits &&
 | 
						|
             "Casting vector to integer of different width");
 | 
						|
      return BitCast;                             // Same size, no-op cast
 | 
						|
    } else {
 | 
						|
      assert(SrcTy->isPointerTy() &&
 | 
						|
             "Casting from a value that is not first-class type");
 | 
						|
      return PtrToInt;                              // ptr -> int
 | 
						|
    }
 | 
						|
  } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
 | 
						|
    if (SrcTy->isIntegerTy()) {                     // Casting from integral
 | 
						|
      if (SrcIsSigned)
 | 
						|
        return SIToFP;                              // sint -> FP
 | 
						|
      else
 | 
						|
        return UIToFP;                              // uint -> FP
 | 
						|
    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
 | 
						|
      if (DestBits < SrcBits) {
 | 
						|
        return FPTrunc;                             // FP -> smaller FP
 | 
						|
      } else if (DestBits > SrcBits) {
 | 
						|
        return FPExt;                               // FP -> larger FP
 | 
						|
      } else  {
 | 
						|
        return BitCast;                             // same size, no-op cast
 | 
						|
      }
 | 
						|
    } else if (SrcTy->isVectorTy()) {
 | 
						|
      assert(DestBits == SrcBits &&
 | 
						|
             "Casting vector to floating point of different width");
 | 
						|
      return BitCast;                             // same size, no-op cast
 | 
						|
    }
 | 
						|
    llvm_unreachable("Casting pointer or non-first class to float");
 | 
						|
  } else if (DestTy->isVectorTy()) {
 | 
						|
    assert(DestBits == SrcBits &&
 | 
						|
           "Illegal cast to vector (wrong type or size)");
 | 
						|
    return BitCast;
 | 
						|
  } else if (DestTy->isPointerTy()) {
 | 
						|
    if (SrcTy->isPointerTy()) {
 | 
						|
      // TODO: Address space pointer sizes may not match
 | 
						|
      return BitCast;                               // ptr -> ptr
 | 
						|
    } else if (SrcTy->isIntegerTy()) {
 | 
						|
      return IntToPtr;                              // int -> ptr
 | 
						|
    }
 | 
						|
    llvm_unreachable("Casting pointer to other than pointer or int");
 | 
						|
  } else if (DestTy->isX86_MMXTy()) {
 | 
						|
    if (SrcTy->isVectorTy()) {
 | 
						|
      assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
 | 
						|
      return BitCast;                               // 64-bit vector to MMX
 | 
						|
    }
 | 
						|
    llvm_unreachable("Illegal cast to X86_MMX");
 | 
						|
  }
 | 
						|
  llvm_unreachable("Casting to type that is not first-class");
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                    CastInst SubClass Constructors
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Check that the construction parameters for a CastInst are correct. This
 | 
						|
/// could be broken out into the separate constructors but it is useful to have
 | 
						|
/// it in one place and to eliminate the redundant code for getting the sizes
 | 
						|
/// of the types involved.
 | 
						|
bool 
 | 
						|
CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
 | 
						|
 | 
						|
  // Check for type sanity on the arguments
 | 
						|
  Type *SrcTy = S->getType();
 | 
						|
 | 
						|
  // If this is a cast to the same type then it's trivially true.
 | 
						|
  if (SrcTy == DstTy)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
 | 
						|
      SrcTy->isAggregateType() || DstTy->isAggregateType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the size of the types in bits, we'll need this later
 | 
						|
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | 
						|
  unsigned DstBitSize = DstTy->getScalarSizeInBits();
 | 
						|
 | 
						|
  // If these are vector types, get the lengths of the vectors (using zero for
 | 
						|
  // scalar types means that checking that vector lengths match also checks that
 | 
						|
  // scalars are not being converted to vectors or vectors to scalars).
 | 
						|
  unsigned SrcLength = SrcTy->isVectorTy() ?
 | 
						|
    cast<VectorType>(SrcTy)->getNumElements() : 0;
 | 
						|
  unsigned DstLength = DstTy->isVectorTy() ?
 | 
						|
    cast<VectorType>(DstTy)->getNumElements() : 0;
 | 
						|
 | 
						|
  // Switch on the opcode provided
 | 
						|
  switch (op) {
 | 
						|
  default: return false; // This is an input error
 | 
						|
  case Instruction::Trunc:
 | 
						|
    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
 | 
						|
      SrcLength == DstLength && SrcBitSize > DstBitSize;
 | 
						|
  case Instruction::ZExt:
 | 
						|
    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
 | 
						|
      SrcLength == DstLength && SrcBitSize < DstBitSize;
 | 
						|
  case Instruction::SExt: 
 | 
						|
    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
 | 
						|
      SrcLength == DstLength && SrcBitSize < DstBitSize;
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
 | 
						|
      SrcLength == DstLength && SrcBitSize > DstBitSize;
 | 
						|
  case Instruction::FPExt:
 | 
						|
    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
 | 
						|
      SrcLength == DstLength && SrcBitSize < DstBitSize;
 | 
						|
  case Instruction::UIToFP:
 | 
						|
  case Instruction::SIToFP:
 | 
						|
    return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
 | 
						|
      SrcLength == DstLength;
 | 
						|
  case Instruction::FPToUI:
 | 
						|
  case Instruction::FPToSI:
 | 
						|
    return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
 | 
						|
      SrcLength == DstLength;
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
 | 
						|
      return false;
 | 
						|
    if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
 | 
						|
      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
 | 
						|
        return false;
 | 
						|
    return SrcTy->getScalarType()->isPointerTy() &&
 | 
						|
           DstTy->getScalarType()->isIntegerTy();
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
 | 
						|
      return false;
 | 
						|
    if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
 | 
						|
      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
 | 
						|
        return false;
 | 
						|
    return SrcTy->getScalarType()->isIntegerTy() &&
 | 
						|
           DstTy->getScalarType()->isPointerTy();
 | 
						|
  case Instruction::BitCast:
 | 
						|
    // BitCast implies a no-op cast of type only. No bits change.
 | 
						|
    // However, you can't cast pointers to anything but pointers.
 | 
						|
    if (SrcTy->isPointerTy() != DstTy->isPointerTy())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
 | 
						|
    // these cases, the cast is okay if the source and destination bit widths
 | 
						|
    // are identical.
 | 
						|
    return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
TruncInst::TruncInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | 
						|
) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
 | 
						|
}
 | 
						|
 | 
						|
TruncInst::TruncInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | 
						|
) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
 | 
						|
}
 | 
						|
 | 
						|
ZExtInst::ZExtInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | 
						|
)  : CastInst(Ty, ZExt, S, Name, InsertBefore) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
 | 
						|
}
 | 
						|
 | 
						|
ZExtInst::ZExtInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | 
						|
)  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
 | 
						|
}
 | 
						|
SExtInst::SExtInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | 
						|
) : CastInst(Ty, SExt, S, Name, InsertBefore) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
 | 
						|
}
 | 
						|
 | 
						|
SExtInst::SExtInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | 
						|
)  : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
 | 
						|
}
 | 
						|
 | 
						|
FPTruncInst::FPTruncInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | 
						|
) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
 | 
						|
}
 | 
						|
 | 
						|
FPTruncInst::FPTruncInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | 
						|
) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
 | 
						|
}
 | 
						|
 | 
						|
FPExtInst::FPExtInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | 
						|
) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
 | 
						|
}
 | 
						|
 | 
						|
FPExtInst::FPExtInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | 
						|
) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
 | 
						|
}
 | 
						|
 | 
						|
UIToFPInst::UIToFPInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | 
						|
) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
 | 
						|
}
 | 
						|
 | 
						|
UIToFPInst::UIToFPInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | 
						|
) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
 | 
						|
}
 | 
						|
 | 
						|
SIToFPInst::SIToFPInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | 
						|
) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
 | 
						|
}
 | 
						|
 | 
						|
SIToFPInst::SIToFPInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | 
						|
) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
 | 
						|
}
 | 
						|
 | 
						|
FPToUIInst::FPToUIInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | 
						|
) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
 | 
						|
}
 | 
						|
 | 
						|
FPToUIInst::FPToUIInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | 
						|
) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
 | 
						|
}
 | 
						|
 | 
						|
FPToSIInst::FPToSIInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | 
						|
) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
 | 
						|
}
 | 
						|
 | 
						|
FPToSIInst::FPToSIInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | 
						|
) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
 | 
						|
}
 | 
						|
 | 
						|
PtrToIntInst::PtrToIntInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | 
						|
) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
 | 
						|
}
 | 
						|
 | 
						|
PtrToIntInst::PtrToIntInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | 
						|
) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
 | 
						|
}
 | 
						|
 | 
						|
IntToPtrInst::IntToPtrInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | 
						|
) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
 | 
						|
}
 | 
						|
 | 
						|
IntToPtrInst::IntToPtrInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | 
						|
) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
 | 
						|
}
 | 
						|
 | 
						|
BitCastInst::BitCastInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | 
						|
) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
 | 
						|
}
 | 
						|
 | 
						|
BitCastInst::BitCastInst(
 | 
						|
  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | 
						|
) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 
 | 
						|
  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                               CmpInst Classes
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void CmpInst::anchor() {}
 | 
						|
 | 
						|
CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
 | 
						|
                 Value *LHS, Value *RHS, const Twine &Name,
 | 
						|
                 Instruction *InsertBefore)
 | 
						|
  : Instruction(ty, op,
 | 
						|
                OperandTraits<CmpInst>::op_begin(this),
 | 
						|
                OperandTraits<CmpInst>::operands(this),
 | 
						|
                InsertBefore) {
 | 
						|
    Op<0>() = LHS;
 | 
						|
    Op<1>() = RHS;
 | 
						|
  setPredicate((Predicate)predicate);
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
 | 
						|
                 Value *LHS, Value *RHS, const Twine &Name,
 | 
						|
                 BasicBlock *InsertAtEnd)
 | 
						|
  : Instruction(ty, op,
 | 
						|
                OperandTraits<CmpInst>::op_begin(this),
 | 
						|
                OperandTraits<CmpInst>::operands(this),
 | 
						|
                InsertAtEnd) {
 | 
						|
  Op<0>() = LHS;
 | 
						|
  Op<1>() = RHS;
 | 
						|
  setPredicate((Predicate)predicate);
 | 
						|
  setName(Name);
 | 
						|
}
 | 
						|
 | 
						|
CmpInst *
 | 
						|
CmpInst::Create(OtherOps Op, unsigned short predicate,
 | 
						|
                Value *S1, Value *S2, 
 | 
						|
                const Twine &Name, Instruction *InsertBefore) {
 | 
						|
  if (Op == Instruction::ICmp) {
 | 
						|
    if (InsertBefore)
 | 
						|
      return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
 | 
						|
                          S1, S2, Name);
 | 
						|
    else
 | 
						|
      return new ICmpInst(CmpInst::Predicate(predicate),
 | 
						|
                          S1, S2, Name);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (InsertBefore)
 | 
						|
    return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
 | 
						|
                        S1, S2, Name);
 | 
						|
  else
 | 
						|
    return new FCmpInst(CmpInst::Predicate(predicate),
 | 
						|
                        S1, S2, Name);
 | 
						|
}
 | 
						|
 | 
						|
CmpInst *
 | 
						|
CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, 
 | 
						|
                const Twine &Name, BasicBlock *InsertAtEnd) {
 | 
						|
  if (Op == Instruction::ICmp) {
 | 
						|
    return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
 | 
						|
                        S1, S2, Name);
 | 
						|
  }
 | 
						|
  return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
 | 
						|
                      S1, S2, Name);
 | 
						|
}
 | 
						|
 | 
						|
void CmpInst::swapOperands() {
 | 
						|
  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
 | 
						|
    IC->swapOperands();
 | 
						|
  else
 | 
						|
    cast<FCmpInst>(this)->swapOperands();
 | 
						|
}
 | 
						|
 | 
						|
bool CmpInst::isCommutative() const {
 | 
						|
  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
 | 
						|
    return IC->isCommutative();
 | 
						|
  return cast<FCmpInst>(this)->isCommutative();
 | 
						|
}
 | 
						|
 | 
						|
bool CmpInst::isEquality() const {
 | 
						|
  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
 | 
						|
    return IC->isEquality();
 | 
						|
  return cast<FCmpInst>(this)->isEquality();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
 | 
						|
  switch (pred) {
 | 
						|
    default: llvm_unreachable("Unknown cmp predicate!");
 | 
						|
    case ICMP_EQ: return ICMP_NE;
 | 
						|
    case ICMP_NE: return ICMP_EQ;
 | 
						|
    case ICMP_UGT: return ICMP_ULE;
 | 
						|
    case ICMP_ULT: return ICMP_UGE;
 | 
						|
    case ICMP_UGE: return ICMP_ULT;
 | 
						|
    case ICMP_ULE: return ICMP_UGT;
 | 
						|
    case ICMP_SGT: return ICMP_SLE;
 | 
						|
    case ICMP_SLT: return ICMP_SGE;
 | 
						|
    case ICMP_SGE: return ICMP_SLT;
 | 
						|
    case ICMP_SLE: return ICMP_SGT;
 | 
						|
 | 
						|
    case FCMP_OEQ: return FCMP_UNE;
 | 
						|
    case FCMP_ONE: return FCMP_UEQ;
 | 
						|
    case FCMP_OGT: return FCMP_ULE;
 | 
						|
    case FCMP_OLT: return FCMP_UGE;
 | 
						|
    case FCMP_OGE: return FCMP_ULT;
 | 
						|
    case FCMP_OLE: return FCMP_UGT;
 | 
						|
    case FCMP_UEQ: return FCMP_ONE;
 | 
						|
    case FCMP_UNE: return FCMP_OEQ;
 | 
						|
    case FCMP_UGT: return FCMP_OLE;
 | 
						|
    case FCMP_ULT: return FCMP_OGE;
 | 
						|
    case FCMP_UGE: return FCMP_OLT;
 | 
						|
    case FCMP_ULE: return FCMP_OGT;
 | 
						|
    case FCMP_ORD: return FCMP_UNO;
 | 
						|
    case FCMP_UNO: return FCMP_ORD;
 | 
						|
    case FCMP_TRUE: return FCMP_FALSE;
 | 
						|
    case FCMP_FALSE: return FCMP_TRUE;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
 | 
						|
  switch (pred) {
 | 
						|
    default: llvm_unreachable("Unknown icmp predicate!");
 | 
						|
    case ICMP_EQ: case ICMP_NE: 
 | 
						|
    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 
 | 
						|
       return pred;
 | 
						|
    case ICMP_UGT: return ICMP_SGT;
 | 
						|
    case ICMP_ULT: return ICMP_SLT;
 | 
						|
    case ICMP_UGE: return ICMP_SGE;
 | 
						|
    case ICMP_ULE: return ICMP_SLE;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
 | 
						|
  switch (pred) {
 | 
						|
    default: llvm_unreachable("Unknown icmp predicate!");
 | 
						|
    case ICMP_EQ: case ICMP_NE: 
 | 
						|
    case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 
 | 
						|
       return pred;
 | 
						|
    case ICMP_SGT: return ICMP_UGT;
 | 
						|
    case ICMP_SLT: return ICMP_ULT;
 | 
						|
    case ICMP_SGE: return ICMP_UGE;
 | 
						|
    case ICMP_SLE: return ICMP_ULE;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize a set of values that all satisfy the condition with C.
 | 
						|
///
 | 
						|
ConstantRange 
 | 
						|
ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
 | 
						|
  APInt Lower(C);
 | 
						|
  APInt Upper(C);
 | 
						|
  uint32_t BitWidth = C.getBitWidth();
 | 
						|
  switch (pred) {
 | 
						|
  default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
 | 
						|
  case ICmpInst::ICMP_EQ: ++Upper; break;
 | 
						|
  case ICmpInst::ICMP_NE: ++Lower; break;
 | 
						|
  case ICmpInst::ICMP_ULT:
 | 
						|
    Lower = APInt::getMinValue(BitWidth);
 | 
						|
    // Check for an empty-set condition.
 | 
						|
    if (Lower == Upper)
 | 
						|
      return ConstantRange(BitWidth, /*isFullSet=*/false);
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_SLT:
 | 
						|
    Lower = APInt::getSignedMinValue(BitWidth);
 | 
						|
    // Check for an empty-set condition.
 | 
						|
    if (Lower == Upper)
 | 
						|
      return ConstantRange(BitWidth, /*isFullSet=*/false);
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_UGT: 
 | 
						|
    ++Lower; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
 | 
						|
    // Check for an empty-set condition.
 | 
						|
    if (Lower == Upper)
 | 
						|
      return ConstantRange(BitWidth, /*isFullSet=*/false);
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_SGT:
 | 
						|
    ++Lower; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
 | 
						|
    // Check for an empty-set condition.
 | 
						|
    if (Lower == Upper)
 | 
						|
      return ConstantRange(BitWidth, /*isFullSet=*/false);
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_ULE: 
 | 
						|
    Lower = APInt::getMinValue(BitWidth); ++Upper; 
 | 
						|
    // Check for a full-set condition.
 | 
						|
    if (Lower == Upper)
 | 
						|
      return ConstantRange(BitWidth, /*isFullSet=*/true);
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_SLE: 
 | 
						|
    Lower = APInt::getSignedMinValue(BitWidth); ++Upper; 
 | 
						|
    // Check for a full-set condition.
 | 
						|
    if (Lower == Upper)
 | 
						|
      return ConstantRange(BitWidth, /*isFullSet=*/true);
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_UGE:
 | 
						|
    Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
 | 
						|
    // Check for a full-set condition.
 | 
						|
    if (Lower == Upper)
 | 
						|
      return ConstantRange(BitWidth, /*isFullSet=*/true);
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_SGE:
 | 
						|
    Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
 | 
						|
    // Check for a full-set condition.
 | 
						|
    if (Lower == Upper)
 | 
						|
      return ConstantRange(BitWidth, /*isFullSet=*/true);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return ConstantRange(Lower, Upper);
 | 
						|
}
 | 
						|
 | 
						|
CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
 | 
						|
  switch (pred) {
 | 
						|
    default: llvm_unreachable("Unknown cmp predicate!");
 | 
						|
    case ICMP_EQ: case ICMP_NE:
 | 
						|
      return pred;
 | 
						|
    case ICMP_SGT: return ICMP_SLT;
 | 
						|
    case ICMP_SLT: return ICMP_SGT;
 | 
						|
    case ICMP_SGE: return ICMP_SLE;
 | 
						|
    case ICMP_SLE: return ICMP_SGE;
 | 
						|
    case ICMP_UGT: return ICMP_ULT;
 | 
						|
    case ICMP_ULT: return ICMP_UGT;
 | 
						|
    case ICMP_UGE: return ICMP_ULE;
 | 
						|
    case ICMP_ULE: return ICMP_UGE;
 | 
						|
  
 | 
						|
    case FCMP_FALSE: case FCMP_TRUE:
 | 
						|
    case FCMP_OEQ: case FCMP_ONE:
 | 
						|
    case FCMP_UEQ: case FCMP_UNE:
 | 
						|
    case FCMP_ORD: case FCMP_UNO:
 | 
						|
      return pred;
 | 
						|
    case FCMP_OGT: return FCMP_OLT;
 | 
						|
    case FCMP_OLT: return FCMP_OGT;
 | 
						|
    case FCMP_OGE: return FCMP_OLE;
 | 
						|
    case FCMP_OLE: return FCMP_OGE;
 | 
						|
    case FCMP_UGT: return FCMP_ULT;
 | 
						|
    case FCMP_ULT: return FCMP_UGT;
 | 
						|
    case FCMP_UGE: return FCMP_ULE;
 | 
						|
    case FCMP_ULE: return FCMP_UGE;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool CmpInst::isUnsigned(unsigned short predicate) {
 | 
						|
  switch (predicate) {
 | 
						|
    default: return false;
 | 
						|
    case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 
 | 
						|
    case ICmpInst::ICMP_UGE: return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool CmpInst::isSigned(unsigned short predicate) {
 | 
						|
  switch (predicate) {
 | 
						|
    default: return false;
 | 
						|
    case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 
 | 
						|
    case ICmpInst::ICMP_SGE: return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool CmpInst::isOrdered(unsigned short predicate) {
 | 
						|
  switch (predicate) {
 | 
						|
    default: return false;
 | 
						|
    case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 
 | 
						|
    case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 
 | 
						|
    case FCmpInst::FCMP_ORD: return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
      
 | 
						|
bool CmpInst::isUnordered(unsigned short predicate) {
 | 
						|
  switch (predicate) {
 | 
						|
    default: return false;
 | 
						|
    case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 
 | 
						|
    case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 
 | 
						|
    case FCmpInst::FCMP_UNO: return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
 | 
						|
  switch(predicate) {
 | 
						|
    default: return false;
 | 
						|
    case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
 | 
						|
    case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
 | 
						|
  switch(predicate) {
 | 
						|
  case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
 | 
						|
  case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
 | 
						|
  default: return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        SwitchInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
 | 
						|
  assert(Value && Default && NumReserved);
 | 
						|
  ReservedSpace = NumReserved;
 | 
						|
  NumOperands = 2;
 | 
						|
  OperandList = allocHungoffUses(ReservedSpace);
 | 
						|
 | 
						|
  OperandList[0] = Value;
 | 
						|
  OperandList[1] = Default;
 | 
						|
}
 | 
						|
 | 
						|
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
 | 
						|
/// switch on and a default destination.  The number of additional cases can
 | 
						|
/// be specified here to make memory allocation more efficient.  This
 | 
						|
/// constructor can also autoinsert before another instruction.
 | 
						|
SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
 | 
						|
                       Instruction *InsertBefore)
 | 
						|
  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
 | 
						|
                   0, 0, InsertBefore) {
 | 
						|
  init(Value, Default, 2+NumCases*2);
 | 
						|
}
 | 
						|
 | 
						|
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
 | 
						|
/// switch on and a default destination.  The number of additional cases can
 | 
						|
/// be specified here to make memory allocation more efficient.  This
 | 
						|
/// constructor also autoinserts at the end of the specified BasicBlock.
 | 
						|
SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
 | 
						|
                       BasicBlock *InsertAtEnd)
 | 
						|
  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
 | 
						|
                   0, 0, InsertAtEnd) {
 | 
						|
  init(Value, Default, 2+NumCases*2);
 | 
						|
}
 | 
						|
 | 
						|
SwitchInst::SwitchInst(const SwitchInst &SI)
 | 
						|
  : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
 | 
						|
  init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
 | 
						|
  NumOperands = SI.getNumOperands();
 | 
						|
  Use *OL = OperandList, *InOL = SI.OperandList;
 | 
						|
  for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
 | 
						|
    OL[i] = InOL[i];
 | 
						|
    OL[i+1] = InOL[i+1];
 | 
						|
  }
 | 
						|
  TheSubsets = SI.TheSubsets;
 | 
						|
  SubclassOptionalData = SI.SubclassOptionalData;
 | 
						|
}
 | 
						|
 | 
						|
SwitchInst::~SwitchInst() {
 | 
						|
  dropHungoffUses();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// addCase - Add an entry to the switch instruction...
 | 
						|
///
 | 
						|
void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
 | 
						|
  IntegersSubsetToBB Mapping;
 | 
						|
  
 | 
						|
  // FIXME: Currently we work with ConstantInt based cases.
 | 
						|
  // So inititalize IntItem container directly from ConstantInt.
 | 
						|
  Mapping.add(IntItem::fromConstantInt(OnVal));
 | 
						|
  IntegersSubset CaseRanges = Mapping.getCase();
 | 
						|
  addCase(CaseRanges, Dest);
 | 
						|
}
 | 
						|
 | 
						|
void SwitchInst::addCase(IntegersSubset& OnVal, BasicBlock *Dest) {
 | 
						|
  unsigned NewCaseIdx = getNumCases(); 
 | 
						|
  unsigned OpNo = NumOperands;
 | 
						|
  if (OpNo+2 > ReservedSpace)
 | 
						|
    growOperands();  // Get more space!
 | 
						|
  // Initialize some new operands.
 | 
						|
  assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
 | 
						|
  NumOperands = OpNo+2;
 | 
						|
 | 
						|
  SubsetsIt TheSubsetsIt = TheSubsets.insert(TheSubsets.end(), OnVal);
 | 
						|
  
 | 
						|
  CaseIt Case(this, NewCaseIdx, TheSubsetsIt);
 | 
						|
  Case.updateCaseValueOperand(OnVal);
 | 
						|
  Case.setSuccessor(Dest);
 | 
						|
}
 | 
						|
 | 
						|
/// removeCase - This method removes the specified case and its successor
 | 
						|
/// from the switch instruction.
 | 
						|
void SwitchInst::removeCase(CaseIt& i) {
 | 
						|
  unsigned idx = i.getCaseIndex();
 | 
						|
  
 | 
						|
  assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
 | 
						|
 | 
						|
  unsigned NumOps = getNumOperands();
 | 
						|
  Use *OL = OperandList;
 | 
						|
 | 
						|
  // Overwrite this case with the end of the list.
 | 
						|
  if (2 + (idx + 1) * 2 != NumOps) {
 | 
						|
    OL[2 + idx * 2] = OL[NumOps - 2];
 | 
						|
    OL[2 + idx * 2 + 1] = OL[NumOps - 1];
 | 
						|
  }
 | 
						|
 | 
						|
  // Nuke the last value.
 | 
						|
  OL[NumOps-2].set(0);
 | 
						|
  OL[NumOps-2+1].set(0);
 | 
						|
 | 
						|
  // Do the same with TheCases collection:
 | 
						|
  if (i.SubsetIt != --TheSubsets.end()) {
 | 
						|
    *i.SubsetIt = TheSubsets.back();
 | 
						|
    TheSubsets.pop_back();
 | 
						|
  } else {
 | 
						|
    TheSubsets.pop_back();
 | 
						|
    i.SubsetIt = TheSubsets.end();
 | 
						|
  }
 | 
						|
  
 | 
						|
  NumOperands = NumOps-2;
 | 
						|
}
 | 
						|
 | 
						|
/// growOperands - grow operands - This grows the operand list in response
 | 
						|
/// to a push_back style of operation.  This grows the number of ops by 3 times.
 | 
						|
///
 | 
						|
void SwitchInst::growOperands() {
 | 
						|
  unsigned e = getNumOperands();
 | 
						|
  unsigned NumOps = e*3;
 | 
						|
 | 
						|
  ReservedSpace = NumOps;
 | 
						|
  Use *NewOps = allocHungoffUses(NumOps);
 | 
						|
  Use *OldOps = OperandList;
 | 
						|
  for (unsigned i = 0; i != e; ++i) {
 | 
						|
      NewOps[i] = OldOps[i];
 | 
						|
  }
 | 
						|
  OperandList = NewOps;
 | 
						|
  Use::zap(OldOps, OldOps + e, true);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
 | 
						|
  return getSuccessor(idx);
 | 
						|
}
 | 
						|
unsigned SwitchInst::getNumSuccessorsV() const {
 | 
						|
  return getNumSuccessors();
 | 
						|
}
 | 
						|
void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
 | 
						|
  setSuccessor(idx, B);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        IndirectBrInst Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void IndirectBrInst::init(Value *Address, unsigned NumDests) {
 | 
						|
  assert(Address && Address->getType()->isPointerTy() &&
 | 
						|
         "Address of indirectbr must be a pointer");
 | 
						|
  ReservedSpace = 1+NumDests;
 | 
						|
  NumOperands = 1;
 | 
						|
  OperandList = allocHungoffUses(ReservedSpace);
 | 
						|
  
 | 
						|
  OperandList[0] = Address;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// growOperands - grow operands - This grows the operand list in response
 | 
						|
/// to a push_back style of operation.  This grows the number of ops by 2 times.
 | 
						|
///
 | 
						|
void IndirectBrInst::growOperands() {
 | 
						|
  unsigned e = getNumOperands();
 | 
						|
  unsigned NumOps = e*2;
 | 
						|
  
 | 
						|
  ReservedSpace = NumOps;
 | 
						|
  Use *NewOps = allocHungoffUses(NumOps);
 | 
						|
  Use *OldOps = OperandList;
 | 
						|
  for (unsigned i = 0; i != e; ++i)
 | 
						|
    NewOps[i] = OldOps[i];
 | 
						|
  OperandList = NewOps;
 | 
						|
  Use::zap(OldOps, OldOps + e, true);
 | 
						|
}
 | 
						|
 | 
						|
IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
 | 
						|
                               Instruction *InsertBefore)
 | 
						|
: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
 | 
						|
                 0, 0, InsertBefore) {
 | 
						|
  init(Address, NumCases);
 | 
						|
}
 | 
						|
 | 
						|
IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
 | 
						|
                               BasicBlock *InsertAtEnd)
 | 
						|
: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
 | 
						|
                 0, 0, InsertAtEnd) {
 | 
						|
  init(Address, NumCases);
 | 
						|
}
 | 
						|
 | 
						|
IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
 | 
						|
  : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
 | 
						|
                   allocHungoffUses(IBI.getNumOperands()),
 | 
						|
                   IBI.getNumOperands()) {
 | 
						|
  Use *OL = OperandList, *InOL = IBI.OperandList;
 | 
						|
  for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
 | 
						|
    OL[i] = InOL[i];
 | 
						|
  SubclassOptionalData = IBI.SubclassOptionalData;
 | 
						|
}
 | 
						|
 | 
						|
IndirectBrInst::~IndirectBrInst() {
 | 
						|
  dropHungoffUses();
 | 
						|
}
 | 
						|
 | 
						|
/// addDestination - Add a destination.
 | 
						|
///
 | 
						|
void IndirectBrInst::addDestination(BasicBlock *DestBB) {
 | 
						|
  unsigned OpNo = NumOperands;
 | 
						|
  if (OpNo+1 > ReservedSpace)
 | 
						|
    growOperands();  // Get more space!
 | 
						|
  // Initialize some new operands.
 | 
						|
  assert(OpNo < ReservedSpace && "Growing didn't work!");
 | 
						|
  NumOperands = OpNo+1;
 | 
						|
  OperandList[OpNo] = DestBB;
 | 
						|
}
 | 
						|
 | 
						|
/// removeDestination - This method removes the specified successor from the
 | 
						|
/// indirectbr instruction.
 | 
						|
void IndirectBrInst::removeDestination(unsigned idx) {
 | 
						|
  assert(idx < getNumOperands()-1 && "Successor index out of range!");
 | 
						|
  
 | 
						|
  unsigned NumOps = getNumOperands();
 | 
						|
  Use *OL = OperandList;
 | 
						|
 | 
						|
  // Replace this value with the last one.
 | 
						|
  OL[idx+1] = OL[NumOps-1];
 | 
						|
  
 | 
						|
  // Nuke the last value.
 | 
						|
  OL[NumOps-1].set(0);
 | 
						|
  NumOperands = NumOps-1;
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
 | 
						|
  return getSuccessor(idx);
 | 
						|
}
 | 
						|
unsigned IndirectBrInst::getNumSuccessorsV() const {
 | 
						|
  return getNumSuccessors();
 | 
						|
}
 | 
						|
void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
 | 
						|
  setSuccessor(idx, B);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           clone_impl() implementations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Define these methods here so vtables don't get emitted into every translation
 | 
						|
// unit that uses these classes.
 | 
						|
 | 
						|
GetElementPtrInst *GetElementPtrInst::clone_impl() const {
 | 
						|
  return new (getNumOperands()) GetElementPtrInst(*this);
 | 
						|
}
 | 
						|
 | 
						|
BinaryOperator *BinaryOperator::clone_impl() const {
 | 
						|
  return Create(getOpcode(), Op<0>(), Op<1>());
 | 
						|
}
 | 
						|
 | 
						|
FCmpInst* FCmpInst::clone_impl() const {
 | 
						|
  return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
 | 
						|
}
 | 
						|
 | 
						|
ICmpInst* ICmpInst::clone_impl() const {
 | 
						|
  return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
 | 
						|
}
 | 
						|
 | 
						|
ExtractValueInst *ExtractValueInst::clone_impl() const {
 | 
						|
  return new ExtractValueInst(*this);
 | 
						|
}
 | 
						|
 | 
						|
InsertValueInst *InsertValueInst::clone_impl() const {
 | 
						|
  return new InsertValueInst(*this);
 | 
						|
}
 | 
						|
 | 
						|
AllocaInst *AllocaInst::clone_impl() const {
 | 
						|
  return new AllocaInst(getAllocatedType(),
 | 
						|
                        (Value*)getOperand(0),
 | 
						|
                        getAlignment());
 | 
						|
}
 | 
						|
 | 
						|
LoadInst *LoadInst::clone_impl() const {
 | 
						|
  return new LoadInst(getOperand(0), Twine(), isVolatile(),
 | 
						|
                      getAlignment(), getOrdering(), getSynchScope());
 | 
						|
}
 | 
						|
 | 
						|
StoreInst *StoreInst::clone_impl() const {
 | 
						|
  return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
 | 
						|
                       getAlignment(), getOrdering(), getSynchScope());
 | 
						|
  
 | 
						|
}
 | 
						|
 | 
						|
AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
 | 
						|
  AtomicCmpXchgInst *Result =
 | 
						|
    new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
 | 
						|
                          getOrdering(), getSynchScope());
 | 
						|
  Result->setVolatile(isVolatile());
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
AtomicRMWInst *AtomicRMWInst::clone_impl() const {
 | 
						|
  AtomicRMWInst *Result =
 | 
						|
    new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
 | 
						|
                      getOrdering(), getSynchScope());
 | 
						|
  Result->setVolatile(isVolatile());
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
FenceInst *FenceInst::clone_impl() const {
 | 
						|
  return new FenceInst(getContext(), getOrdering(), getSynchScope());
 | 
						|
}
 | 
						|
 | 
						|
TruncInst *TruncInst::clone_impl() const {
 | 
						|
  return new TruncInst(getOperand(0), getType());
 | 
						|
}
 | 
						|
 | 
						|
ZExtInst *ZExtInst::clone_impl() const {
 | 
						|
  return new ZExtInst(getOperand(0), getType());
 | 
						|
}
 | 
						|
 | 
						|
SExtInst *SExtInst::clone_impl() const {
 | 
						|
  return new SExtInst(getOperand(0), getType());
 | 
						|
}
 | 
						|
 | 
						|
FPTruncInst *FPTruncInst::clone_impl() const {
 | 
						|
  return new FPTruncInst(getOperand(0), getType());
 | 
						|
}
 | 
						|
 | 
						|
FPExtInst *FPExtInst::clone_impl() const {
 | 
						|
  return new FPExtInst(getOperand(0), getType());
 | 
						|
}
 | 
						|
 | 
						|
UIToFPInst *UIToFPInst::clone_impl() const {
 | 
						|
  return new UIToFPInst(getOperand(0), getType());
 | 
						|
}
 | 
						|
 | 
						|
SIToFPInst *SIToFPInst::clone_impl() const {
 | 
						|
  return new SIToFPInst(getOperand(0), getType());
 | 
						|
}
 | 
						|
 | 
						|
FPToUIInst *FPToUIInst::clone_impl() const {
 | 
						|
  return new FPToUIInst(getOperand(0), getType());
 | 
						|
}
 | 
						|
 | 
						|
FPToSIInst *FPToSIInst::clone_impl() const {
 | 
						|
  return new FPToSIInst(getOperand(0), getType());
 | 
						|
}
 | 
						|
 | 
						|
PtrToIntInst *PtrToIntInst::clone_impl() const {
 | 
						|
  return new PtrToIntInst(getOperand(0), getType());
 | 
						|
}
 | 
						|
 | 
						|
IntToPtrInst *IntToPtrInst::clone_impl() const {
 | 
						|
  return new IntToPtrInst(getOperand(0), getType());
 | 
						|
}
 | 
						|
 | 
						|
BitCastInst *BitCastInst::clone_impl() const {
 | 
						|
  return new BitCastInst(getOperand(0), getType());
 | 
						|
}
 | 
						|
 | 
						|
CallInst *CallInst::clone_impl() const {
 | 
						|
  return  new(getNumOperands()) CallInst(*this);
 | 
						|
}
 | 
						|
 | 
						|
SelectInst *SelectInst::clone_impl() const {
 | 
						|
  return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
 | 
						|
}
 | 
						|
 | 
						|
VAArgInst *VAArgInst::clone_impl() const {
 | 
						|
  return new VAArgInst(getOperand(0), getType());
 | 
						|
}
 | 
						|
 | 
						|
ExtractElementInst *ExtractElementInst::clone_impl() const {
 | 
						|
  return ExtractElementInst::Create(getOperand(0), getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
InsertElementInst *InsertElementInst::clone_impl() const {
 | 
						|
  return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
 | 
						|
}
 | 
						|
 | 
						|
ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
 | 
						|
  return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
 | 
						|
}
 | 
						|
 | 
						|
PHINode *PHINode::clone_impl() const {
 | 
						|
  return new PHINode(*this);
 | 
						|
}
 | 
						|
 | 
						|
LandingPadInst *LandingPadInst::clone_impl() const {
 | 
						|
  return new LandingPadInst(*this);
 | 
						|
}
 | 
						|
 | 
						|
ReturnInst *ReturnInst::clone_impl() const {
 | 
						|
  return new(getNumOperands()) ReturnInst(*this);
 | 
						|
}
 | 
						|
 | 
						|
BranchInst *BranchInst::clone_impl() const {
 | 
						|
  return new(getNumOperands()) BranchInst(*this);
 | 
						|
}
 | 
						|
 | 
						|
SwitchInst *SwitchInst::clone_impl() const {
 | 
						|
  return new SwitchInst(*this);
 | 
						|
}
 | 
						|
 | 
						|
IndirectBrInst *IndirectBrInst::clone_impl() const {
 | 
						|
  return new IndirectBrInst(*this);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
InvokeInst *InvokeInst::clone_impl() const {
 | 
						|
  return new(getNumOperands()) InvokeInst(*this);
 | 
						|
}
 | 
						|
 | 
						|
ResumeInst *ResumeInst::clone_impl() const {
 | 
						|
  return new(1) ResumeInst(*this);
 | 
						|
}
 | 
						|
 | 
						|
UnreachableInst *UnreachableInst::clone_impl() const {
 | 
						|
  LLVMContext &Context = getContext();
 | 
						|
  return new UnreachableInst(Context);
 | 
						|
}
 |