mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	undef vector of the wrong type. LGTM'd by Nick Lewycky on IRC. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186224 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1015 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1015 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- InstCombineVectorOps.cpp -------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements instcombine for ExtractElement, InsertElement and
 | 
						|
// ShuffleVector.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstCombine.h"
 | 
						|
#include "llvm/Support/PatternMatch.h"
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
 | 
						|
/// is to leave as a vector operation.  isConstant indicates whether we're
 | 
						|
/// extracting one known element.  If false we're extracting a variable index.
 | 
						|
static bool CheapToScalarize(Value *V, bool isConstant) {
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    if (isConstant) return true;
 | 
						|
 | 
						|
    // If all elts are the same, we can extract it and use any of the values.
 | 
						|
    Constant *Op0 = C->getAggregateElement(0U);
 | 
						|
    for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; ++i)
 | 
						|
      if (C->getAggregateElement(i) != Op0)
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
 | 
						|
  // Insert element gets simplified to the inserted element or is deleted if
 | 
						|
  // this is constant idx extract element and its a constant idx insertelt.
 | 
						|
  if (I->getOpcode() == Instruction::InsertElement && isConstant &&
 | 
						|
      isa<ConstantInt>(I->getOperand(2)))
 | 
						|
    return true;
 | 
						|
  if (I->getOpcode() == Instruction::Load && I->hasOneUse())
 | 
						|
    return true;
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
 | 
						|
    if (BO->hasOneUse() &&
 | 
						|
        (CheapToScalarize(BO->getOperand(0), isConstant) ||
 | 
						|
         CheapToScalarize(BO->getOperand(1), isConstant)))
 | 
						|
      return true;
 | 
						|
  if (CmpInst *CI = dyn_cast<CmpInst>(I))
 | 
						|
    if (CI->hasOneUse() &&
 | 
						|
        (CheapToScalarize(CI->getOperand(0), isConstant) ||
 | 
						|
         CheapToScalarize(CI->getOperand(1), isConstant)))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// FindScalarElement - Given a vector and an element number, see if the scalar
 | 
						|
/// value is already around as a register, for example if it were inserted then
 | 
						|
/// extracted from the vector.
 | 
						|
static Value *FindScalarElement(Value *V, unsigned EltNo) {
 | 
						|
  assert(V->getType()->isVectorTy() && "Not looking at a vector?");
 | 
						|
  VectorType *VTy = cast<VectorType>(V->getType());
 | 
						|
  unsigned Width = VTy->getNumElements();
 | 
						|
  if (EltNo >= Width)  // Out of range access.
 | 
						|
    return UndefValue::get(VTy->getElementType());
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return C->getAggregateElement(EltNo);
 | 
						|
 | 
						|
  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
 | 
						|
    // If this is an insert to a variable element, we don't know what it is.
 | 
						|
    if (!isa<ConstantInt>(III->getOperand(2)))
 | 
						|
      return 0;
 | 
						|
    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
 | 
						|
 | 
						|
    // If this is an insert to the element we are looking for, return the
 | 
						|
    // inserted value.
 | 
						|
    if (EltNo == IIElt)
 | 
						|
      return III->getOperand(1);
 | 
						|
 | 
						|
    // Otherwise, the insertelement doesn't modify the value, recurse on its
 | 
						|
    // vector input.
 | 
						|
    return FindScalarElement(III->getOperand(0), EltNo);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
 | 
						|
    unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
 | 
						|
    int InEl = SVI->getMaskValue(EltNo);
 | 
						|
    if (InEl < 0)
 | 
						|
      return UndefValue::get(VTy->getElementType());
 | 
						|
    if (InEl < (int)LHSWidth)
 | 
						|
      return FindScalarElement(SVI->getOperand(0), InEl);
 | 
						|
    return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
 | 
						|
  }
 | 
						|
 | 
						|
  // Extract a value from a vector add operation with a constant zero.
 | 
						|
  Value *Val = 0; Constant *Con = 0;
 | 
						|
  if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) {
 | 
						|
    if (Con->getAggregateElement(EltNo)->isNullValue())
 | 
						|
      return FindScalarElement(Val, EltNo);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we don't know.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// If we have a PHI node with a vector type that has only 2 uses: feed
 | 
						|
// itself and be an operand of extractelemnt at a constant location,
 | 
						|
// try to replace the PHI of the vector type with a PHI of a scalar type
 | 
						|
Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
 | 
						|
  // Verify that the PHI node has exactly 2 uses. Otherwise return NULL.
 | 
						|
  if (!PN->hasNUses(2))
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  // If so, it's known at this point that one operand is PHI and the other is
 | 
						|
  // an extractelement node. Find the PHI user that is not the extractelement
 | 
						|
  // node.
 | 
						|
  Value::use_iterator iu = PN->use_begin();
 | 
						|
  Instruction *PHIUser = dyn_cast<Instruction>(*iu);
 | 
						|
  if (PHIUser == cast<Instruction>(&EI))
 | 
						|
    PHIUser = cast<Instruction>(*(++iu));
 | 
						|
 | 
						|
  // Verify that this PHI user has one use, which is the PHI itself,
 | 
						|
  // and that it is a binary operation which is cheap to scalarize.
 | 
						|
  // otherwise return NULL.
 | 
						|
  if (!PHIUser->hasOneUse() || !(PHIUser->use_back() == PN) ||
 | 
						|
      !(isa<BinaryOperator>(PHIUser)) || !CheapToScalarize(PHIUser, true))
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  // Create a scalar PHI node that will replace the vector PHI node
 | 
						|
  // just before the current PHI node.
 | 
						|
  PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
 | 
						|
      PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
 | 
						|
  // Scalarize each PHI operand.
 | 
						|
  for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
 | 
						|
    Value *PHIInVal = PN->getIncomingValue(i);
 | 
						|
    BasicBlock *inBB = PN->getIncomingBlock(i);
 | 
						|
    Value *Elt = EI.getIndexOperand();
 | 
						|
    // If the operand is the PHI induction variable:
 | 
						|
    if (PHIInVal == PHIUser) {
 | 
						|
      // Scalarize the binary operation. Its first operand is the
 | 
						|
      // scalar PHI and the second operand is extracted from the other
 | 
						|
      // vector operand.
 | 
						|
      BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
 | 
						|
      unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
 | 
						|
      Value *Op = InsertNewInstWith(
 | 
						|
          ExtractElementInst::Create(B0->getOperand(opId), Elt,
 | 
						|
                                     B0->getOperand(opId)->getName() + ".Elt"),
 | 
						|
          *B0);
 | 
						|
      Value *newPHIUser = InsertNewInstWith(
 | 
						|
          BinaryOperator::Create(B0->getOpcode(), scalarPHI, Op), *B0);
 | 
						|
      scalarPHI->addIncoming(newPHIUser, inBB);
 | 
						|
    } else {
 | 
						|
      // Scalarize PHI input:
 | 
						|
      Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
 | 
						|
      // Insert the new instruction into the predecessor basic block.
 | 
						|
      Instruction *pos = dyn_cast<Instruction>(PHIInVal);
 | 
						|
      BasicBlock::iterator InsertPos;
 | 
						|
      if (pos && !isa<PHINode>(pos)) {
 | 
						|
        InsertPos = pos;
 | 
						|
        ++InsertPos;
 | 
						|
      } else {
 | 
						|
        InsertPos = inBB->getFirstInsertionPt();
 | 
						|
      }
 | 
						|
 | 
						|
      InsertNewInstWith(newEI, *InsertPos);
 | 
						|
 | 
						|
      scalarPHI->addIncoming(newEI, inBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return ReplaceInstUsesWith(EI, scalarPHI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
 | 
						|
  // If vector val is constant with all elements the same, replace EI with
 | 
						|
  // that element.  We handle a known element # below.
 | 
						|
  if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
 | 
						|
    if (CheapToScalarize(C, false))
 | 
						|
      return ReplaceInstUsesWith(EI, C->getAggregateElement(0U));
 | 
						|
 | 
						|
  // If extracting a specified index from the vector, see if we can recursively
 | 
						|
  // find a previously computed scalar that was inserted into the vector.
 | 
						|
  if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
 | 
						|
    unsigned IndexVal = IdxC->getZExtValue();
 | 
						|
    unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
 | 
						|
 | 
						|
    // If this is extracting an invalid index, turn this into undef, to avoid
 | 
						|
    // crashing the code below.
 | 
						|
    if (IndexVal >= VectorWidth)
 | 
						|
      return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | 
						|
 | 
						|
    // This instruction only demands the single element from the input vector.
 | 
						|
    // If the input vector has a single use, simplify it based on this use
 | 
						|
    // property.
 | 
						|
    if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
 | 
						|
      APInt UndefElts(VectorWidth, 0);
 | 
						|
      APInt DemandedMask(VectorWidth, 0);
 | 
						|
      DemandedMask.setBit(IndexVal);
 | 
						|
      if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
 | 
						|
                                                DemandedMask, UndefElts)) {
 | 
						|
        EI.setOperand(0, V);
 | 
						|
        return &EI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
 | 
						|
      return ReplaceInstUsesWith(EI, Elt);
 | 
						|
 | 
						|
    // If the this extractelement is directly using a bitcast from a vector of
 | 
						|
    // the same number of elements, see if we can find the source element from
 | 
						|
    // it.  In this case, we will end up needing to bitcast the scalars.
 | 
						|
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
 | 
						|
      if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
 | 
						|
        if (VT->getNumElements() == VectorWidth)
 | 
						|
          if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
 | 
						|
            return new BitCastInst(Elt, EI.getType());
 | 
						|
    }
 | 
						|
 | 
						|
    // If there's a vector PHI feeding a scalar use through this extractelement
 | 
						|
    // instruction, try to scalarize the PHI.
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
 | 
						|
      Instruction *scalarPHI = scalarizePHI(EI, PN);
 | 
						|
      if (scalarPHI)
 | 
						|
        return scalarPHI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
 | 
						|
    // Push extractelement into predecessor operation if legal and
 | 
						|
    // profitable to do so
 | 
						|
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | 
						|
      if (I->hasOneUse() &&
 | 
						|
          CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
 | 
						|
        Value *newEI0 =
 | 
						|
          Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
 | 
						|
                                        EI.getName()+".lhs");
 | 
						|
        Value *newEI1 =
 | 
						|
          Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
 | 
						|
                                        EI.getName()+".rhs");
 | 
						|
        return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
 | 
						|
      }
 | 
						|
    } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
 | 
						|
      // Extracting the inserted element?
 | 
						|
      if (IE->getOperand(2) == EI.getOperand(1))
 | 
						|
        return ReplaceInstUsesWith(EI, IE->getOperand(1));
 | 
						|
      // If the inserted and extracted elements are constants, they must not
 | 
						|
      // be the same value, extract from the pre-inserted value instead.
 | 
						|
      if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
 | 
						|
        Worklist.AddValue(EI.getOperand(0));
 | 
						|
        EI.setOperand(0, IE->getOperand(0));
 | 
						|
        return &EI;
 | 
						|
      }
 | 
						|
    } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
 | 
						|
      // If this is extracting an element from a shufflevector, figure out where
 | 
						|
      // it came from and extract from the appropriate input element instead.
 | 
						|
      if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
 | 
						|
        int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
 | 
						|
        Value *Src;
 | 
						|
        unsigned LHSWidth =
 | 
						|
          SVI->getOperand(0)->getType()->getVectorNumElements();
 | 
						|
 | 
						|
        if (SrcIdx < 0)
 | 
						|
          return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | 
						|
        if (SrcIdx < (int)LHSWidth)
 | 
						|
          Src = SVI->getOperand(0);
 | 
						|
        else {
 | 
						|
          SrcIdx -= LHSWidth;
 | 
						|
          Src = SVI->getOperand(1);
 | 
						|
        }
 | 
						|
        Type *Int32Ty = Type::getInt32Ty(EI.getContext());
 | 
						|
        return ExtractElementInst::Create(Src,
 | 
						|
                                          ConstantInt::get(Int32Ty,
 | 
						|
                                                           SrcIdx, false));
 | 
						|
      }
 | 
						|
    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | 
						|
      // Canonicalize extractelement(cast) -> cast(extractelement)
 | 
						|
      // bitcasts can change the number of vector elements and they cost nothing
 | 
						|
      if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
 | 
						|
        Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
 | 
						|
                                                  EI.getIndexOperand());
 | 
						|
        Worklist.AddValue(EE);
 | 
						|
        return CastInst::Create(CI->getOpcode(), EE, EI.getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
 | 
						|
/// elements from either LHS or RHS, return the shuffle mask and true.
 | 
						|
/// Otherwise, return false.
 | 
						|
static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
 | 
						|
                                         SmallVectorImpl<Constant*> &Mask) {
 | 
						|
  assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
 | 
						|
         "Invalid CollectSingleShuffleElements");
 | 
						|
  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
 | 
						|
 | 
						|
  if (isa<UndefValue>(V)) {
 | 
						|
    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (V == LHS) {
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (V == RHS) {
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | 
						|
                                      i+NumElts));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | 
						|
    // If this is an insert of an extract from some other vector, include it.
 | 
						|
    Value *VecOp    = IEI->getOperand(0);
 | 
						|
    Value *ScalarOp = IEI->getOperand(1);
 | 
						|
    Value *IdxOp    = IEI->getOperand(2);
 | 
						|
 | 
						|
    if (!isa<ConstantInt>(IdxOp))
 | 
						|
      return false;
 | 
						|
    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | 
						|
 | 
						|
    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
 | 
						|
      // Okay, we can handle this if the vector we are insertinting into is
 | 
						|
      // transitively ok.
 | 
						|
      if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | 
						|
        // If so, update the mask to reflect the inserted undef.
 | 
						|
        Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
 | 
						|
      if (isa<ConstantInt>(EI->getOperand(1)) &&
 | 
						|
          EI->getOperand(0)->getType() == V->getType()) {
 | 
						|
        unsigned ExtractedIdx =
 | 
						|
        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | 
						|
 | 
						|
        // This must be extracting from either LHS or RHS.
 | 
						|
        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
 | 
						|
          // Okay, we can handle this if the vector we are insertinting into is
 | 
						|
          // transitively ok.
 | 
						|
          if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | 
						|
            // If so, update the mask to reflect the inserted value.
 | 
						|
            if (EI->getOperand(0) == LHS) {
 | 
						|
              Mask[InsertedIdx % NumElts] =
 | 
						|
              ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | 
						|
                               ExtractedIdx);
 | 
						|
            } else {
 | 
						|
              assert(EI->getOperand(0) == RHS);
 | 
						|
              Mask[InsertedIdx % NumElts] =
 | 
						|
              ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | 
						|
                               ExtractedIdx+NumElts);
 | 
						|
            }
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // TODO: Handle shufflevector here!
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
 | 
						|
/// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask
 | 
						|
/// that computes V and the LHS value of the shuffle.
 | 
						|
static Value *CollectShuffleElements(Value *V, SmallVectorImpl<Constant*> &Mask,
 | 
						|
                                     Value *&RHS) {
 | 
						|
  assert(V->getType()->isVectorTy() &&
 | 
						|
         (RHS == 0 || V->getType() == RHS->getType()) &&
 | 
						|
         "Invalid shuffle!");
 | 
						|
  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
 | 
						|
 | 
						|
  if (isa<UndefValue>(V)) {
 | 
						|
    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ConstantAggregateZero>(V)) {
 | 
						|
    Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | 
						|
    // If this is an insert of an extract from some other vector, include it.
 | 
						|
    Value *VecOp    = IEI->getOperand(0);
 | 
						|
    Value *ScalarOp = IEI->getOperand(1);
 | 
						|
    Value *IdxOp    = IEI->getOperand(2);
 | 
						|
 | 
						|
    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | 
						|
      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
 | 
						|
          EI->getOperand(0)->getType() == V->getType()) {
 | 
						|
        unsigned ExtractedIdx =
 | 
						|
          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | 
						|
        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | 
						|
 | 
						|
        // Either the extracted from or inserted into vector must be RHSVec,
 | 
						|
        // otherwise we'd end up with a shuffle of three inputs.
 | 
						|
        if (EI->getOperand(0) == RHS || RHS == 0) {
 | 
						|
          RHS = EI->getOperand(0);
 | 
						|
          Value *V = CollectShuffleElements(VecOp, Mask, RHS);
 | 
						|
          Mask[InsertedIdx % NumElts] =
 | 
						|
            ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | 
						|
                             NumElts+ExtractedIdx);
 | 
						|
          return V;
 | 
						|
        }
 | 
						|
 | 
						|
        if (VecOp == RHS) {
 | 
						|
          Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
 | 
						|
          // Update Mask to reflect that `ScalarOp' has been inserted at
 | 
						|
          // position `InsertedIdx' within the vector returned by IEI.
 | 
						|
          Mask[InsertedIdx % NumElts] = Mask[ExtractedIdx];
 | 
						|
 | 
						|
          // Everything but the extracted element is replaced with the RHS.
 | 
						|
          for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
            if (i != InsertedIdx)
 | 
						|
              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | 
						|
                                         NumElts+i);
 | 
						|
          }
 | 
						|
          return V;
 | 
						|
        }
 | 
						|
 | 
						|
        // If this insertelement is a chain that comes from exactly these two
 | 
						|
        // vectors, return the vector and the effective shuffle.
 | 
						|
        if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
 | 
						|
          return EI->getOperand(0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // TODO: Handle shufflevector here!
 | 
						|
 | 
						|
  // Otherwise, can't do anything fancy.  Return an identity vector.
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
    Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
 | 
						|
  Value *VecOp    = IE.getOperand(0);
 | 
						|
  Value *ScalarOp = IE.getOperand(1);
 | 
						|
  Value *IdxOp    = IE.getOperand(2);
 | 
						|
 | 
						|
  // Inserting an undef or into an undefined place, remove this.
 | 
						|
  if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
 | 
						|
    ReplaceInstUsesWith(IE, VecOp);
 | 
						|
 | 
						|
  // If the inserted element was extracted from some other vector, and if the
 | 
						|
  // indexes are constant, try to turn this into a shufflevector operation.
 | 
						|
  if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | 
						|
    if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
 | 
						|
        EI->getOperand(0)->getType() == IE.getType()) {
 | 
						|
      unsigned NumVectorElts = IE.getType()->getNumElements();
 | 
						|
      unsigned ExtractedIdx =
 | 
						|
        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | 
						|
      unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | 
						|
 | 
						|
      if (ExtractedIdx >= NumVectorElts) // Out of range extract.
 | 
						|
        return ReplaceInstUsesWith(IE, VecOp);
 | 
						|
 | 
						|
      if (InsertedIdx >= NumVectorElts)  // Out of range insert.
 | 
						|
        return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
 | 
						|
 | 
						|
      // If we are extracting a value from a vector, then inserting it right
 | 
						|
      // back into the same place, just use the input vector.
 | 
						|
      if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
 | 
						|
        return ReplaceInstUsesWith(IE, VecOp);
 | 
						|
 | 
						|
      // If this insertelement isn't used by some other insertelement, turn it
 | 
						|
      // (and any insertelements it points to), into one big shuffle.
 | 
						|
      if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
 | 
						|
        SmallVector<Constant*, 16> Mask;
 | 
						|
        Value *RHS = 0;
 | 
						|
        Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
 | 
						|
        if (RHS == 0) RHS = UndefValue::get(LHS->getType());
 | 
						|
        // We now have a shuffle of LHS, RHS, Mask.
 | 
						|
        return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
 | 
						|
  APInt UndefElts(VWidth, 0);
 | 
						|
  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | 
						|
  if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
 | 
						|
    if (V != &IE)
 | 
						|
      return ReplaceInstUsesWith(IE, V);
 | 
						|
    return &IE;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if we can evaluate the specified expression tree if the vector
 | 
						|
/// elements were shuffled in a different order.
 | 
						|
static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
 | 
						|
                                unsigned Depth = 5) {
 | 
						|
  // We can always reorder the elements of a constant.
 | 
						|
  if (isa<Constant>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We won't reorder vector arguments. No IPO here.
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
 | 
						|
  // Two users may expect different orders of the elements. Don't try it.
 | 
						|
  if (!I->hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Depth == 0) return false;
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor:
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::FCmp:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
        if (!CanEvaluateShuffled(I->getOperand(i), Mask, Depth-1))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    case Instruction::InsertElement: {
 | 
						|
      ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
 | 
						|
      if (!CI) return false;
 | 
						|
      int ElementNumber = CI->getLimitedValue();
 | 
						|
 | 
						|
      // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
 | 
						|
      // can't put an element into multiple indices.
 | 
						|
      bool SeenOnce = false;
 | 
						|
      for (int i = 0, e = Mask.size(); i != e; ++i) {
 | 
						|
        if (Mask[i] == ElementNumber) {
 | 
						|
          if (SeenOnce)
 | 
						|
            return false;
 | 
						|
          SeenOnce = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Rebuild a new instruction just like 'I' but with the new operands given.
 | 
						|
/// In the event of type mismatch, the type of the operands is correct.
 | 
						|
static Value *BuildNew(Instruction *I, ArrayRef<Value*> NewOps) {
 | 
						|
  // We don't want to use the IRBuilder here because we want the replacement
 | 
						|
  // instructions to appear next to 'I', not the builder's insertion point.
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor: {
 | 
						|
      BinaryOperator *BO = cast<BinaryOperator>(I);
 | 
						|
      assert(NewOps.size() == 2 && "binary operator with #ops != 2");
 | 
						|
      BinaryOperator *New =
 | 
						|
          BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
 | 
						|
                                 NewOps[0], NewOps[1], "", BO);
 | 
						|
      if (isa<OverflowingBinaryOperator>(BO)) {
 | 
						|
        New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
 | 
						|
        New->setHasNoSignedWrap(BO->hasNoSignedWrap());
 | 
						|
      }
 | 
						|
      if (isa<PossiblyExactOperator>(BO)) {
 | 
						|
        New->setIsExact(BO->isExact());
 | 
						|
      }
 | 
						|
      return New;
 | 
						|
    }
 | 
						|
    case Instruction::ICmp:
 | 
						|
      assert(NewOps.size() == 2 && "icmp with #ops != 2");
 | 
						|
      return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
 | 
						|
                          NewOps[0], NewOps[1]);
 | 
						|
    case Instruction::FCmp:
 | 
						|
      assert(NewOps.size() == 2 && "fcmp with #ops != 2");
 | 
						|
      return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
 | 
						|
                          NewOps[0], NewOps[1]);
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt: {
 | 
						|
      // It's possible that the mask has a different number of elements from
 | 
						|
      // the original cast. We recompute the destination type to match the mask.
 | 
						|
      Type *DestTy =
 | 
						|
          VectorType::get(I->getType()->getScalarType(),
 | 
						|
                          NewOps[0]->getType()->getVectorNumElements());
 | 
						|
      assert(NewOps.size() == 1 && "cast with #ops != 1");
 | 
						|
      return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
 | 
						|
                              "", I);
 | 
						|
    }
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      Value *Ptr = NewOps[0];
 | 
						|
      ArrayRef<Value*> Idx = NewOps.slice(1);
 | 
						|
      GetElementPtrInst *GEP = GetElementPtrInst::Create(Ptr, Idx, "", I);
 | 
						|
      GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
 | 
						|
      return GEP;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  llvm_unreachable("failed to rebuild vector instructions");
 | 
						|
}
 | 
						|
 | 
						|
Value *
 | 
						|
InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
 | 
						|
  // Mask.size() does not need to be equal to the number of vector elements.
 | 
						|
 | 
						|
  assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
 | 
						|
  if (isa<UndefValue>(V)) {
 | 
						|
    return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
 | 
						|
                                           Mask.size()));
 | 
						|
  }
 | 
						|
  if (isa<ConstantAggregateZero>(V)) {
 | 
						|
    return ConstantAggregateZero::get(
 | 
						|
               VectorType::get(V->getType()->getScalarType(),
 | 
						|
                               Mask.size()));
 | 
						|
  }
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    SmallVector<Constant *, 16> MaskValues;
 | 
						|
    for (int i = 0, e = Mask.size(); i != e; ++i) {
 | 
						|
      if (Mask[i] == -1)
 | 
						|
        MaskValues.push_back(UndefValue::get(Builder->getInt32Ty()));
 | 
						|
      else
 | 
						|
        MaskValues.push_back(Builder->getInt32(Mask[i]));
 | 
						|
    }
 | 
						|
    return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
 | 
						|
                                          ConstantVector::get(MaskValues));
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *I = cast<Instruction>(V);
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor:
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::FCmp:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::Select:
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      SmallVector<Value*, 8> NewOps;
 | 
						|
      bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
 | 
						|
      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
        Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
 | 
						|
        NewOps.push_back(V);
 | 
						|
        NeedsRebuild |= (V != I->getOperand(i));
 | 
						|
      }
 | 
						|
      if (NeedsRebuild) {
 | 
						|
        return BuildNew(I, NewOps);
 | 
						|
      }
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
    case Instruction::InsertElement: {
 | 
						|
      int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
 | 
						|
 | 
						|
      // The insertelement was inserting at Element. Figure out which element
 | 
						|
      // that becomes after shuffling. The answer is guaranteed to be unique
 | 
						|
      // by CanEvaluateShuffled.
 | 
						|
      bool Found = false;
 | 
						|
      int Index = 0;
 | 
						|
      for (int e = Mask.size(); Index != e; ++Index) {
 | 
						|
        if (Mask[Index] == Element) {
 | 
						|
          Found = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!Found)
 | 
						|
        return UndefValue::get(
 | 
						|
            VectorType::get(V->getType()->getScalarType(), Mask.size()));
 | 
						|
 | 
						|
      Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
 | 
						|
      return InsertElementInst::Create(V, I->getOperand(1),
 | 
						|
                                       Builder->getInt32(Index), "", I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  llvm_unreachable("failed to reorder elements of vector instruction!");
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
 | 
						|
  Value *LHS = SVI.getOperand(0);
 | 
						|
  Value *RHS = SVI.getOperand(1);
 | 
						|
  SmallVector<int, 16> Mask = SVI.getShuffleMask();
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Undefined shuffle mask -> undefined value.
 | 
						|
  if (isa<UndefValue>(SVI.getOperand(2)))
 | 
						|
    return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
 | 
						|
 | 
						|
  unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
 | 
						|
 | 
						|
  APInt UndefElts(VWidth, 0);
 | 
						|
  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | 
						|
  if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
 | 
						|
    if (V != &SVI)
 | 
						|
      return ReplaceInstUsesWith(SVI, V);
 | 
						|
    LHS = SVI.getOperand(0);
 | 
						|
    RHS = SVI.getOperand(1);
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
 | 
						|
 | 
						|
  // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
 | 
						|
  // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
 | 
						|
  if (LHS == RHS || isa<UndefValue>(LHS)) {
 | 
						|
    if (isa<UndefValue>(LHS) && LHS == RHS) {
 | 
						|
      // shuffle(undef,undef,mask) -> undef.
 | 
						|
      Value *Result = (VWidth == LHSWidth)
 | 
						|
                      ? LHS : UndefValue::get(SVI.getType());
 | 
						|
      return ReplaceInstUsesWith(SVI, Result);
 | 
						|
    }
 | 
						|
 | 
						|
    // Remap any references to RHS to use LHS.
 | 
						|
    SmallVector<Constant*, 16> Elts;
 | 
						|
    for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
 | 
						|
      if (Mask[i] < 0) {
 | 
						|
        Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
 | 
						|
          (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
 | 
						|
        Mask[i] = -1;     // Turn into undef.
 | 
						|
        Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
 | 
						|
      } else {
 | 
						|
        Mask[i] = Mask[i] % e;  // Force to LHS.
 | 
						|
        Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
 | 
						|
                                        Mask[i]));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    SVI.setOperand(0, SVI.getOperand(1));
 | 
						|
    SVI.setOperand(1, UndefValue::get(RHS->getType()));
 | 
						|
    SVI.setOperand(2, ConstantVector::get(Elts));
 | 
						|
    LHS = SVI.getOperand(0);
 | 
						|
    RHS = SVI.getOperand(1);
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VWidth == LHSWidth) {
 | 
						|
    // Analyze the shuffle, are the LHS or RHS and identity shuffles?
 | 
						|
    bool isLHSID = true, isRHSID = true;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
 | 
						|
      if (Mask[i] < 0) continue;  // Ignore undef values.
 | 
						|
      // Is this an identity shuffle of the LHS value?
 | 
						|
      isLHSID &= (Mask[i] == (int)i);
 | 
						|
 | 
						|
      // Is this an identity shuffle of the RHS value?
 | 
						|
      isRHSID &= (Mask[i]-e == i);
 | 
						|
    }
 | 
						|
 | 
						|
    // Eliminate identity shuffles.
 | 
						|
    if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
 | 
						|
    if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
 | 
						|
    Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
 | 
						|
    return ReplaceInstUsesWith(SVI, V);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the LHS is a shufflevector itself, see if we can combine it with this
 | 
						|
  // one without producing an unusual shuffle.
 | 
						|
  // Cases that might be simplified:
 | 
						|
  // 1.
 | 
						|
  // x1=shuffle(v1,v2,mask1)
 | 
						|
  //  x=shuffle(x1,undef,mask)
 | 
						|
  //        ==>
 | 
						|
  //  x=shuffle(v1,undef,newMask)
 | 
						|
  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
 | 
						|
  // 2.
 | 
						|
  // x1=shuffle(v1,undef,mask1)
 | 
						|
  //  x=shuffle(x1,x2,mask)
 | 
						|
  // where v1.size() == mask1.size()
 | 
						|
  //        ==>
 | 
						|
  //  x=shuffle(v1,x2,newMask)
 | 
						|
  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
 | 
						|
  // 3.
 | 
						|
  // x2=shuffle(v2,undef,mask2)
 | 
						|
  //  x=shuffle(x1,x2,mask)
 | 
						|
  // where v2.size() == mask2.size()
 | 
						|
  //        ==>
 | 
						|
  //  x=shuffle(x1,v2,newMask)
 | 
						|
  // newMask[i] = (mask[i] < x1.size())
 | 
						|
  //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
 | 
						|
  // 4.
 | 
						|
  // x1=shuffle(v1,undef,mask1)
 | 
						|
  // x2=shuffle(v2,undef,mask2)
 | 
						|
  //  x=shuffle(x1,x2,mask)
 | 
						|
  // where v1.size() == v2.size()
 | 
						|
  //        ==>
 | 
						|
  //  x=shuffle(v1,v2,newMask)
 | 
						|
  // newMask[i] = (mask[i] < x1.size())
 | 
						|
  //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
 | 
						|
  //
 | 
						|
  // Here we are really conservative:
 | 
						|
  // we are absolutely afraid of producing a shuffle mask not in the input
 | 
						|
  // program, because the code gen may not be smart enough to turn a merged
 | 
						|
  // shuffle into two specific shuffles: it may produce worse code.  As such,
 | 
						|
  // we only merge two shuffles if the result is either a splat or one of the
 | 
						|
  // input shuffle masks.  In this case, merging the shuffles just removes
 | 
						|
  // one instruction, which we know is safe.  This is good for things like
 | 
						|
  // turning: (splat(splat)) -> splat, or
 | 
						|
  // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
 | 
						|
  ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
 | 
						|
  ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
 | 
						|
  if (LHSShuffle)
 | 
						|
    if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
 | 
						|
      LHSShuffle = NULL;
 | 
						|
  if (RHSShuffle)
 | 
						|
    if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
 | 
						|
      RHSShuffle = NULL;
 | 
						|
  if (!LHSShuffle && !RHSShuffle)
 | 
						|
    return MadeChange ? &SVI : 0;
 | 
						|
 | 
						|
  Value* LHSOp0 = NULL;
 | 
						|
  Value* LHSOp1 = NULL;
 | 
						|
  Value* RHSOp0 = NULL;
 | 
						|
  unsigned LHSOp0Width = 0;
 | 
						|
  unsigned RHSOp0Width = 0;
 | 
						|
  if (LHSShuffle) {
 | 
						|
    LHSOp0 = LHSShuffle->getOperand(0);
 | 
						|
    LHSOp1 = LHSShuffle->getOperand(1);
 | 
						|
    LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
 | 
						|
  }
 | 
						|
  if (RHSShuffle) {
 | 
						|
    RHSOp0 = RHSShuffle->getOperand(0);
 | 
						|
    RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
 | 
						|
  }
 | 
						|
  Value* newLHS = LHS;
 | 
						|
  Value* newRHS = RHS;
 | 
						|
  if (LHSShuffle) {
 | 
						|
    // case 1
 | 
						|
    if (isa<UndefValue>(RHS)) {
 | 
						|
      newLHS = LHSOp0;
 | 
						|
      newRHS = LHSOp1;
 | 
						|
    }
 | 
						|
    // case 2 or 4
 | 
						|
    else if (LHSOp0Width == LHSWidth) {
 | 
						|
      newLHS = LHSOp0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // case 3 or 4
 | 
						|
  if (RHSShuffle && RHSOp0Width == LHSWidth) {
 | 
						|
    newRHS = RHSOp0;
 | 
						|
  }
 | 
						|
  // case 4
 | 
						|
  if (LHSOp0 == RHSOp0) {
 | 
						|
    newLHS = LHSOp0;
 | 
						|
    newRHS = NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  if (newLHS == LHS && newRHS == RHS)
 | 
						|
    return MadeChange ? &SVI : 0;
 | 
						|
 | 
						|
  SmallVector<int, 16> LHSMask;
 | 
						|
  SmallVector<int, 16> RHSMask;
 | 
						|
  if (newLHS != LHS)
 | 
						|
    LHSMask = LHSShuffle->getShuffleMask();
 | 
						|
  if (RHSShuffle && newRHS != RHS)
 | 
						|
    RHSMask = RHSShuffle->getShuffleMask();
 | 
						|
 | 
						|
  unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
 | 
						|
  SmallVector<int, 16> newMask;
 | 
						|
  bool isSplat = true;
 | 
						|
  int SplatElt = -1;
 | 
						|
  // Create a new mask for the new ShuffleVectorInst so that the new
 | 
						|
  // ShuffleVectorInst is equivalent to the original one.
 | 
						|
  for (unsigned i = 0; i < VWidth; ++i) {
 | 
						|
    int eltMask;
 | 
						|
    if (Mask[i] < 0) {
 | 
						|
      // This element is an undef value.
 | 
						|
      eltMask = -1;
 | 
						|
    } else if (Mask[i] < (int)LHSWidth) {
 | 
						|
      // This element is from left hand side vector operand.
 | 
						|
      //
 | 
						|
      // If LHS is going to be replaced (case 1, 2, or 4), calculate the
 | 
						|
      // new mask value for the element.
 | 
						|
      if (newLHS != LHS) {
 | 
						|
        eltMask = LHSMask[Mask[i]];
 | 
						|
        // If the value selected is an undef value, explicitly specify it
 | 
						|
        // with a -1 mask value.
 | 
						|
        if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
 | 
						|
          eltMask = -1;
 | 
						|
      } else
 | 
						|
        eltMask = Mask[i];
 | 
						|
    } else {
 | 
						|
      // This element is from right hand side vector operand
 | 
						|
      //
 | 
						|
      // If the value selected is an undef value, explicitly specify it
 | 
						|
      // with a -1 mask value. (case 1)
 | 
						|
      if (isa<UndefValue>(RHS))
 | 
						|
        eltMask = -1;
 | 
						|
      // If RHS is going to be replaced (case 3 or 4), calculate the
 | 
						|
      // new mask value for the element.
 | 
						|
      else if (newRHS != RHS) {
 | 
						|
        eltMask = RHSMask[Mask[i]-LHSWidth];
 | 
						|
        // If the value selected is an undef value, explicitly specify it
 | 
						|
        // with a -1 mask value.
 | 
						|
        if (eltMask >= (int)RHSOp0Width) {
 | 
						|
          assert(isa<UndefValue>(RHSShuffle->getOperand(1))
 | 
						|
                 && "should have been check above");
 | 
						|
          eltMask = -1;
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        eltMask = Mask[i]-LHSWidth;
 | 
						|
 | 
						|
      // If LHS's width is changed, shift the mask value accordingly.
 | 
						|
      // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
 | 
						|
      // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
 | 
						|
      // If newRHS == newLHS, we want to remap any references from newRHS to
 | 
						|
      // newLHS so that we can properly identify splats that may occur due to
 | 
						|
      // obfuscation accross the two vectors.
 | 
						|
      if (eltMask >= 0 && newRHS != NULL && newLHS != newRHS)
 | 
						|
        eltMask += newLHSWidth;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check if this could still be a splat.
 | 
						|
    if (eltMask >= 0) {
 | 
						|
      if (SplatElt >= 0 && SplatElt != eltMask)
 | 
						|
        isSplat = false;
 | 
						|
      SplatElt = eltMask;
 | 
						|
    }
 | 
						|
 | 
						|
    newMask.push_back(eltMask);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the result mask is equal to one of the original shuffle masks,
 | 
						|
  // or is a splat, do the replacement.
 | 
						|
  if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
 | 
						|
    SmallVector<Constant*, 16> Elts;
 | 
						|
    Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
 | 
						|
    for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
 | 
						|
      if (newMask[i] < 0) {
 | 
						|
        Elts.push_back(UndefValue::get(Int32Ty));
 | 
						|
      } else {
 | 
						|
        Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (newRHS == NULL)
 | 
						|
      newRHS = UndefValue::get(newLHS->getType());
 | 
						|
    return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange ? &SVI : 0;
 | 
						|
}
 |