mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Thanks Alexey Samsonov. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187663 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1965 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1965 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
 | |
| // stores that can be put together into vector-stores. Next, it attempts to
 | |
| // construct vectorizable tree using the use-def chains. If a profitable tree
 | |
| // was found, the SLP vectorizer performs vectorization on the tree.
 | |
| //
 | |
| // The pass is inspired by the work described in the paper:
 | |
| //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| #define SV_NAME "slp-vectorizer"
 | |
| #define DEBUG_TYPE "SLP"
 | |
| 
 | |
| #include "llvm/Transforms/Vectorize.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/Verifier.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <map>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<int>
 | |
|     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
 | |
|                      cl::desc("Only vectorize if you gain more than this "
 | |
|                               "number "));
 | |
| namespace {
 | |
| 
 | |
| static const unsigned MinVecRegSize = 128;
 | |
| 
 | |
| static const unsigned RecursionMaxDepth = 12;
 | |
| 
 | |
| /// RAII pattern to save the insertion point of the IR builder.
 | |
| class BuilderLocGuard {
 | |
| public:
 | |
|   BuilderLocGuard(IRBuilder<> &B) : Builder(B), Loc(B.GetInsertPoint()),
 | |
|   DbgLoc(B.getCurrentDebugLocation()) {}
 | |
|   ~BuilderLocGuard() {
 | |
|     Builder.SetCurrentDebugLocation(DbgLoc);
 | |
|     if (Loc)
 | |
|       Builder.SetInsertPoint(Loc);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   // Prevent copying.
 | |
|   BuilderLocGuard(const BuilderLocGuard &);
 | |
|   BuilderLocGuard &operator=(const BuilderLocGuard &);
 | |
|   IRBuilder<> &Builder;
 | |
|   AssertingVH<Instruction> Loc;
 | |
|   DebugLoc DbgLoc;
 | |
| };
 | |
| 
 | |
| /// A helper class for numbering instructions in multible blocks.
 | |
| /// Numbers starts at zero for each basic block.
 | |
| struct BlockNumbering {
 | |
| 
 | |
|   BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
 | |
| 
 | |
|   BlockNumbering() : BB(0), Valid(false) {}
 | |
| 
 | |
|   void numberInstructions() {
 | |
|     unsigned Loc = 0;
 | |
|     InstrIdx.clear();
 | |
|     InstrVec.clear();
 | |
|     // Number the instructions in the block.
 | |
|     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|       InstrIdx[it] = Loc++;
 | |
|       InstrVec.push_back(it);
 | |
|       assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
 | |
|     }
 | |
|     Valid = true;
 | |
|   }
 | |
| 
 | |
|   int getIndex(Instruction *I) {
 | |
|     assert(I->getParent() == BB && "Invalid instruction");
 | |
|     if (!Valid)
 | |
|       numberInstructions();
 | |
|     assert(InstrIdx.count(I) && "Unknown instruction");
 | |
|     return InstrIdx[I];
 | |
|   }
 | |
| 
 | |
|   Instruction *getInstruction(unsigned loc) {
 | |
|     if (!Valid)
 | |
|       numberInstructions();
 | |
|     assert(InstrVec.size() > loc && "Invalid Index");
 | |
|     return InstrVec[loc];
 | |
|   }
 | |
| 
 | |
|   void forget() { Valid = false; }
 | |
| 
 | |
| private:
 | |
|   /// The block we are numbering.
 | |
|   BasicBlock *BB;
 | |
|   /// Is the block numbered.
 | |
|   bool Valid;
 | |
|   /// Maps instructions to numbers and back.
 | |
|   SmallDenseMap<Instruction *, int> InstrIdx;
 | |
|   /// Maps integers to Instructions.
 | |
|   SmallVector<Instruction *, 32> InstrVec;
 | |
| };
 | |
| 
 | |
| /// \returns the parent basic block if all of the instructions in \p VL
 | |
| /// are in the same block or null otherwise.
 | |
| static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
 | |
|   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | |
|   if (!I0)
 | |
|     return 0;
 | |
|   BasicBlock *BB = I0->getParent();
 | |
|   for (int i = 1, e = VL.size(); i < e; i++) {
 | |
|     Instruction *I = dyn_cast<Instruction>(VL[i]);
 | |
|     if (!I)
 | |
|       return 0;
 | |
| 
 | |
|     if (BB != I->getParent())
 | |
|       return 0;
 | |
|   }
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| /// \returns True if all of the values in \p VL are constants.
 | |
| static bool allConstant(ArrayRef<Value *> VL) {
 | |
|   for (unsigned i = 0, e = VL.size(); i < e; ++i)
 | |
|     if (!isa<Constant>(VL[i]))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \returns True if all of the values in \p VL are identical.
 | |
| static bool isSplat(ArrayRef<Value *> VL) {
 | |
|   for (unsigned i = 1, e = VL.size(); i < e; ++i)
 | |
|     if (VL[i] != VL[0])
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \returns The opcode if all of the Instructions in \p VL have the same
 | |
| /// opcode, or zero.
 | |
| static unsigned getSameOpcode(ArrayRef<Value *> VL) {
 | |
|   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | |
|   if (!I0)
 | |
|     return 0;
 | |
|   unsigned Opcode = I0->getOpcode();
 | |
|   for (int i = 1, e = VL.size(); i < e; i++) {
 | |
|     Instruction *I = dyn_cast<Instruction>(VL[i]);
 | |
|     if (!I || Opcode != I->getOpcode())
 | |
|       return 0;
 | |
|   }
 | |
|   return Opcode;
 | |
| }
 | |
| 
 | |
| /// \returns The type that all of the values in \p VL have or null if there
 | |
| /// are different types.
 | |
| static Type* getSameType(ArrayRef<Value *> VL) {
 | |
|   Type *Ty = VL[0]->getType();
 | |
|   for (int i = 1, e = VL.size(); i < e; i++)
 | |
|     if (VL[i]->getType() != Ty)
 | |
|       return 0;
 | |
| 
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| /// \returns True if the ExtractElement instructions in VL can be vectorized
 | |
| /// to use the original vector.
 | |
| static bool CanReuseExtract(ArrayRef<Value *> VL) {
 | |
|   assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
 | |
|   // Check if all of the extracts come from the same vector and from the
 | |
|   // correct offset.
 | |
|   Value *VL0 = VL[0];
 | |
|   ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
 | |
|   Value *Vec = E0->getOperand(0);
 | |
| 
 | |
|   // We have to extract from the same vector type.
 | |
|   unsigned NElts = Vec->getType()->getVectorNumElements();
 | |
| 
 | |
|   if (NElts != VL.size())
 | |
|     return false;
 | |
| 
 | |
|   // Check that all of the indices extract from the correct offset.
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
 | |
|   if (!CI || CI->getZExtValue())
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 1, e = VL.size(); i < e; ++i) {
 | |
|     ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
 | |
| 
 | |
|     if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Bottom Up SLP Vectorizer.
 | |
| class BoUpSLP {
 | |
| public:
 | |
|   typedef SmallVector<Value *, 8> ValueList;
 | |
|   typedef SmallVector<Instruction *, 16> InstrList;
 | |
|   typedef SmallPtrSet<Value *, 16> ValueSet;
 | |
|   typedef SmallVector<StoreInst *, 8> StoreList;
 | |
| 
 | |
|   BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
 | |
|           TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
 | |
|           DominatorTree *Dt) :
 | |
|     F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
 | |
|     Builder(Se->getContext()) {
 | |
|       // Setup the block numbering utility for all of the blocks in the
 | |
|       // function.
 | |
|       for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
 | |
|         BasicBlock *BB = it;
 | |
|         BlocksNumbers[BB] = BlockNumbering(BB);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   /// \brief Vectorize the tree that starts with the elements in \p VL.
 | |
|   void vectorizeTree();
 | |
| 
 | |
|   /// \returns the vectorization cost of the subtree that starts at \p VL.
 | |
|   /// A negative number means that this is profitable.
 | |
|   int getTreeCost();
 | |
| 
 | |
|   /// Construct a vectorizable tree that starts at \p Roots.
 | |
|   void buildTree(ArrayRef<Value *> Roots);
 | |
| 
 | |
|   /// Clear the internal data structures that are created by 'buildTree'.
 | |
|   void deleteTree() {
 | |
|     VectorizableTree.clear();
 | |
|     ScalarToTreeEntry.clear();
 | |
|     MustGather.clear();
 | |
|     ExternalUses.clear();
 | |
|     MemBarrierIgnoreList.clear();
 | |
|   }
 | |
| 
 | |
|   /// \returns true if the memory operations A and B are consecutive.
 | |
|   bool isConsecutiveAccess(Value *A, Value *B);
 | |
| 
 | |
|   /// \brief Perform LICM and CSE on the newly generated gather sequences.
 | |
|   void optimizeGatherSequence();
 | |
| private:
 | |
|   struct TreeEntry;
 | |
| 
 | |
|   /// \returns the cost of the vectorizable entry.
 | |
|   int getEntryCost(TreeEntry *E);
 | |
| 
 | |
|   /// This is the recursive part of buildTree.
 | |
|   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
 | |
| 
 | |
|   /// Vectorize a single entry in the tree.
 | |
|   Value *vectorizeTree(TreeEntry *E);
 | |
| 
 | |
|   /// Vectorize a single entry in the tree, starting in \p VL.
 | |
|   Value *vectorizeTree(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// \returns the pointer to the vectorized value if \p VL is already
 | |
|   /// vectorized, or NULL. They may happen in cycles.
 | |
|   Value *alreadyVectorized(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// \brief Take the pointer operand from the Load/Store instruction.
 | |
|   /// \returns NULL if this is not a valid Load/Store instruction.
 | |
|   static Value *getPointerOperand(Value *I);
 | |
| 
 | |
|   /// \brief Take the address space operand from the Load/Store instruction.
 | |
|   /// \returns -1 if this is not a valid Load/Store instruction.
 | |
|   static unsigned getAddressSpaceOperand(Value *I);
 | |
| 
 | |
|   /// \returns the scalarization cost for this type. Scalarization in this
 | |
|   /// context means the creation of vectors from a group of scalars.
 | |
|   int getGatherCost(Type *Ty);
 | |
| 
 | |
|   /// \returns the scalarization cost for this list of values. Assuming that
 | |
|   /// this subtree gets vectorized, we may need to extract the values from the
 | |
|   /// roots. This method calculates the cost of extracting the values.
 | |
|   int getGatherCost(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// \returns the AA location that is being access by the instruction.
 | |
|   AliasAnalysis::Location getLocation(Instruction *I);
 | |
| 
 | |
|   /// \brief Checks if it is possible to sink an instruction from
 | |
|   /// \p Src to \p Dst.
 | |
|   /// \returns the pointer to the barrier instruction if we can't sink.
 | |
|   Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
 | |
| 
 | |
|   /// \returns the index of the last instrucion in the BB from \p VL.
 | |
|   int getLastIndex(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// \returns the Instrucion in the bundle \p VL.
 | |
|   Instruction *getLastInstruction(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// \returns a vector from a collection of scalars in \p VL.
 | |
|   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
 | |
| 
 | |
|   struct TreeEntry {
 | |
|     TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0),
 | |
|     NeedToGather(0) {}
 | |
| 
 | |
|     /// \returns true if the scalars in VL are equal to this entry.
 | |
|     bool isSame(ArrayRef<Value *> VL) {
 | |
|       assert(VL.size() == Scalars.size() && "Invalid size");
 | |
|       for (int i = 0, e = VL.size(); i != e; ++i)
 | |
|         if (VL[i] != Scalars[i])
 | |
|           return false;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /// A vector of scalars.
 | |
|     ValueList Scalars;
 | |
| 
 | |
|     /// The Scalars are vectorized into this value. It is initialized to Null.
 | |
|     Value *VectorizedValue;
 | |
| 
 | |
|     /// The index in the basic block of the last scalar.
 | |
|     int LastScalarIndex;
 | |
| 
 | |
|     /// Do we need to gather this sequence ?
 | |
|     bool NeedToGather;
 | |
|   };
 | |
| 
 | |
|   /// Create a new VectorizableTree entry.
 | |
|   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
 | |
|     VectorizableTree.push_back(TreeEntry());
 | |
|     int idx = VectorizableTree.size() - 1;
 | |
|     TreeEntry *Last = &VectorizableTree[idx];
 | |
|     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
 | |
|     Last->NeedToGather = !Vectorized;
 | |
|     if (Vectorized) {
 | |
|       Last->LastScalarIndex = getLastIndex(VL);
 | |
|       for (int i = 0, e = VL.size(); i != e; ++i) {
 | |
|         assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
 | |
|         ScalarToTreeEntry[VL[i]] = idx;
 | |
|       }
 | |
|     } else {
 | |
|       Last->LastScalarIndex = 0;
 | |
|       MustGather.insert(VL.begin(), VL.end());
 | |
|     }
 | |
|     return Last;
 | |
|   }
 | |
| 
 | |
|   /// -- Vectorization State --
 | |
|   /// Holds all of the tree entries.
 | |
|   std::vector<TreeEntry> VectorizableTree;
 | |
| 
 | |
|   /// Maps a specific scalar to its tree entry.
 | |
|   SmallDenseMap<Value*, int> ScalarToTreeEntry;
 | |
| 
 | |
|   /// A list of scalars that we found that we need to keep as scalars.
 | |
|   ValueSet MustGather;
 | |
| 
 | |
|   /// This POD struct describes one external user in the vectorized tree.
 | |
|   struct ExternalUser {
 | |
|     ExternalUser (Value *S, llvm::User *U, int L) :
 | |
|       Scalar(S), User(U), Lane(L){};
 | |
|     // Which scalar in our function.
 | |
|     Value *Scalar;
 | |
|     // Which user that uses the scalar.
 | |
|     llvm::User *User;
 | |
|     // Which lane does the scalar belong to.
 | |
|     int Lane;
 | |
|   };
 | |
|   typedef SmallVector<ExternalUser, 16> UserList;
 | |
| 
 | |
|   /// A list of values that need to extracted out of the tree.
 | |
|   /// This list holds pairs of (Internal Scalar : External User).
 | |
|   UserList ExternalUses;
 | |
| 
 | |
|   /// A list of instructions to ignore while sinking
 | |
|   /// memory instructions. This map must be reset between runs of getCost.
 | |
|   ValueSet MemBarrierIgnoreList;
 | |
| 
 | |
|   /// Holds all of the instructions that we gathered.
 | |
|   SetVector<Instruction *> GatherSeq;
 | |
| 
 | |
|   /// Numbers instructions in different blocks.
 | |
|   DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
 | |
| 
 | |
|   // Analysis and block reference.
 | |
|   Function *F;
 | |
|   ScalarEvolution *SE;
 | |
|   DataLayout *DL;
 | |
|   TargetTransformInfo *TTI;
 | |
|   AliasAnalysis *AA;
 | |
|   LoopInfo *LI;
 | |
|   DominatorTree *DT;
 | |
|   /// Instruction builder to construct the vectorized tree.
 | |
|   IRBuilder<> Builder;
 | |
| };
 | |
| 
 | |
| void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
 | |
|   deleteTree();
 | |
|   if (!getSameType(Roots))
 | |
|     return;
 | |
|   buildTree_rec(Roots, 0);
 | |
| 
 | |
|   // Collect the values that we need to extract from the tree.
 | |
|   for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
 | |
|     TreeEntry *Entry = &VectorizableTree[EIdx];
 | |
| 
 | |
|     // For each lane:
 | |
|     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
 | |
|       Value *Scalar = Entry->Scalars[Lane];
 | |
| 
 | |
|       // No need to handle users of gathered values.
 | |
|       if (Entry->NeedToGather)
 | |
|         continue;
 | |
| 
 | |
|       for (Value::use_iterator User = Scalar->use_begin(),
 | |
|            UE = Scalar->use_end(); User != UE; ++User) {
 | |
|         DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n");
 | |
| 
 | |
|         bool Gathered = MustGather.count(*User);
 | |
| 
 | |
|         // Skip in-tree scalars that become vectors.
 | |
|         if (ScalarToTreeEntry.count(*User) && !Gathered) {
 | |
|           DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
 | |
|                 **User << ".\n");
 | |
|           int Idx = ScalarToTreeEntry[*User]; (void) Idx;
 | |
|           assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         if (!isa<Instruction>(*User))
 | |
|           continue;
 | |
| 
 | |
|         DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " <<
 | |
|               Lane << " from " << *Scalar << ".\n");
 | |
|         ExternalUses.push_back(ExternalUser(Scalar, *User, Lane));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
 | |
|   bool SameTy = getSameType(VL); (void)SameTy;
 | |
|   assert(SameTy && "Invalid types!");
 | |
| 
 | |
|   if (Depth == RecursionMaxDepth) {
 | |
|     DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
 | |
|     newTreeEntry(VL, false);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Don't handle vectors.
 | |
|   if (VL[0]->getType()->isVectorTy()) {
 | |
|     DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
 | |
|     newTreeEntry(VL, false);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | |
|     if (SI->getValueOperand()->getType()->isVectorTy()) {
 | |
|       DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
 | |
|       newTreeEntry(VL, false);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   // If all of the operands are identical or constant we have a simple solution.
 | |
|   if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) ||
 | |
|       !getSameOpcode(VL)) {
 | |
|     DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
 | |
|     newTreeEntry(VL, false);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We now know that this is a vector of instructions of the same type from
 | |
|   // the same block.
 | |
| 
 | |
|   // Check if this is a duplicate of another entry.
 | |
|   if (ScalarToTreeEntry.count(VL[0])) {
 | |
|     int Idx = ScalarToTreeEntry[VL[0]];
 | |
|     TreeEntry *E = &VectorizableTree[Idx];
 | |
|     for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | |
|       DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
 | |
|       if (E->Scalars[i] != VL[i]) {
 | |
|         DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
 | |
|         newTreeEntry(VL, false);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check that none of the instructions in the bundle are already in the tree.
 | |
|   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | |
|     if (ScalarToTreeEntry.count(VL[i])) {
 | |
|       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
 | |
|             ") is already in tree.\n");
 | |
|       newTreeEntry(VL, false);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If any of the scalars appears in the table OR it is marked as a value that
 | |
|   // needs to stat scalar then we need to gather the scalars.
 | |
|   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | |
|     if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
 | |
|       DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
 | |
|       newTreeEntry(VL, false);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that all of the users of the scalars that we want to vectorize are
 | |
|   // schedulable.
 | |
|   Instruction *VL0 = cast<Instruction>(VL[0]);
 | |
|   int MyLastIndex = getLastIndex(VL);
 | |
|   BasicBlock *BB = cast<Instruction>(VL0)->getParent();
 | |
| 
 | |
|   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | |
|     Instruction *Scalar = cast<Instruction>(VL[i]);
 | |
|     DEBUG(dbgs() << "SLP: Checking users of  " << *Scalar << ". \n");
 | |
|     for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end();
 | |
|          U != UE; ++U) {
 | |
|       DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n");
 | |
|       Instruction *User = dyn_cast<Instruction>(*U);
 | |
|       if (!User) {
 | |
|         DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
 | |
|         newTreeEntry(VL, false);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // We don't care if the user is in a different basic block.
 | |
|       BasicBlock *UserBlock = User->getParent();
 | |
|       if (UserBlock != BB) {
 | |
|         DEBUG(dbgs() << "SLP: User from a different basic block "
 | |
|               << *User << ". \n");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If this is a PHINode within this basic block then we can place the
 | |
|       // extract wherever we want.
 | |
|       if (isa<PHINode>(*User)) {
 | |
|         DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Check if this is a safe in-tree user.
 | |
|       if (ScalarToTreeEntry.count(User)) {
 | |
|         int Idx = ScalarToTreeEntry[User];
 | |
|         int VecLocation = VectorizableTree[Idx].LastScalarIndex;
 | |
|         if (VecLocation <= MyLastIndex) {
 | |
|           DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
 | |
|           newTreeEntry(VL, false);
 | |
|           return;
 | |
|         }
 | |
|         DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" <<
 | |
|               VecLocation << " vector value (" << *Scalar << ") at #"
 | |
|               << MyLastIndex << ".\n");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Make sure that we can schedule this unknown user.
 | |
|       BlockNumbering &BN = BlocksNumbers[BB];
 | |
|       int UserIndex = BN.getIndex(User);
 | |
|       if (UserIndex < MyLastIndex) {
 | |
| 
 | |
|         DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
 | |
|               << *User << ". \n");
 | |
|         newTreeEntry(VL, false);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that every instructions appears once in this bundle.
 | |
|   for (unsigned i = 0, e = VL.size(); i < e; ++i)
 | |
|     for (unsigned j = i+1; j < e; ++j)
 | |
|       if (VL[i] == VL[j]) {
 | |
|         DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
 | |
|         newTreeEntry(VL, false);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|   // Check that instructions in this bundle don't reference other instructions.
 | |
|   // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
 | |
|   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
 | |
|     for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
 | |
|          U != UE; ++U) {
 | |
|       for (unsigned j = 0; j < e; ++j) {
 | |
|         if (i != j && *U == VL[j]) {
 | |
|           DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n");
 | |
|           newTreeEntry(VL, false);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
 | |
| 
 | |
|   unsigned Opcode = getSameOpcode(VL);
 | |
| 
 | |
|   // Check if it is safe to sink the loads or the stores.
 | |
|   if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
 | |
|     Instruction *Last = getLastInstruction(VL);
 | |
| 
 | |
|     for (unsigned i = 0, e = VL.size(); i < e; ++i) {
 | |
|       if (VL[i] == Last)
 | |
|         continue;
 | |
|       Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
 | |
|       if (Barrier) {
 | |
|         DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
 | |
|               << "\n because of " << *Barrier << ".  Gathering.\n");
 | |
|         newTreeEntry(VL, false);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   switch (Opcode) {
 | |
|     case Instruction::PHI: {
 | |
|       PHINode *PH = dyn_cast<PHINode>(VL0);
 | |
|       newTreeEntry(VL, true);
 | |
|       DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
 | |
| 
 | |
|       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (unsigned j = 0; j < VL.size(); ++j)
 | |
|           Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth + 1);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::ExtractElement: {
 | |
|       bool Reuse = CanReuseExtract(VL);
 | |
|       if (Reuse) {
 | |
|         DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
 | |
|       }
 | |
|       newTreeEntry(VL, Reuse);
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::Load: {
 | |
|       // Check if the loads are consecutive or of we need to swizzle them.
 | |
|       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
 | |
|         if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
 | |
|           newTreeEntry(VL, false);
 | |
|           DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|       newTreeEntry(VL, true);
 | |
|       DEBUG(dbgs() << "SLP: added a vector of loads.\n");
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::BitCast: {
 | |
|       Type *SrcTy = VL0->getOperand(0)->getType();
 | |
|       for (unsigned i = 0; i < VL.size(); ++i) {
 | |
|         Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
 | |
|         if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
 | |
|           newTreeEntry(VL, false);
 | |
|           DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       newTreeEntry(VL, true);
 | |
|       DEBUG(dbgs() << "SLP: added a vector of casts.\n");
 | |
| 
 | |
|       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (unsigned j = 0; j < VL.size(); ++j)
 | |
|           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth+1);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::FCmp: {
 | |
|       // Check that all of the compares have the same predicate.
 | |
|       CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
 | |
|       Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
 | |
|       for (unsigned i = 1, e = VL.size(); i < e; ++i) {
 | |
|         CmpInst *Cmp = cast<CmpInst>(VL[i]);
 | |
|         if (Cmp->getPredicate() != P0 ||
 | |
|             Cmp->getOperand(0)->getType() != ComparedTy) {
 | |
|           newTreeEntry(VL, false);
 | |
|           DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       newTreeEntry(VL, true);
 | |
|       DEBUG(dbgs() << "SLP: added a vector of compares.\n");
 | |
| 
 | |
|       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (unsigned j = 0; j < VL.size(); ++j)
 | |
|           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth+1);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::Select:
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       newTreeEntry(VL, true);
 | |
|       DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
 | |
| 
 | |
|       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (unsigned j = 0; j < VL.size(); ++j)
 | |
|           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth+1);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::Store: {
 | |
|       // Check if the stores are consecutive or of we need to swizzle them.
 | |
|       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
 | |
|         if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
 | |
|           newTreeEntry(VL, false);
 | |
|           DEBUG(dbgs() << "SLP: Non consecutive store.\n");
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|       newTreeEntry(VL, true);
 | |
|       DEBUG(dbgs() << "SLP: added a vector of stores.\n");
 | |
| 
 | |
|       ValueList Operands;
 | |
|       for (unsigned j = 0; j < VL.size(); ++j)
 | |
|         Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
 | |
| 
 | |
|       // We can ignore these values because we are sinking them down.
 | |
|       MemBarrierIgnoreList.insert(VL.begin(), VL.end());
 | |
|       buildTree_rec(Operands, Depth + 1);
 | |
|       return;
 | |
|     }
 | |
|     default:
 | |
|       newTreeEntry(VL, false);
 | |
|       DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
 | |
|       return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| int BoUpSLP::getEntryCost(TreeEntry *E) {
 | |
|   ArrayRef<Value*> VL = E->Scalars;
 | |
| 
 | |
|   Type *ScalarTy = VL[0]->getType();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | |
|     ScalarTy = SI->getValueOperand()->getType();
 | |
|   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | |
| 
 | |
|   if (E->NeedToGather) {
 | |
|     if (allConstant(VL))
 | |
|       return 0;
 | |
|     if (isSplat(VL)) {
 | |
|       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
 | |
|     }
 | |
|     return getGatherCost(E->Scalars);
 | |
|   }
 | |
| 
 | |
|   assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) &&
 | |
|          "Invalid VL");
 | |
|   Instruction *VL0 = cast<Instruction>(VL[0]);
 | |
|   unsigned Opcode = VL0->getOpcode();
 | |
|   switch (Opcode) {
 | |
|     case Instruction::PHI: {
 | |
|       return 0;
 | |
|     }
 | |
|     case Instruction::ExtractElement: {
 | |
|       if (CanReuseExtract(VL))
 | |
|         return 0;
 | |
|       return getGatherCost(VecTy);
 | |
|     }
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::BitCast: {
 | |
|       Type *SrcTy = VL0->getOperand(0)->getType();
 | |
| 
 | |
|       // Calculate the cost of this instruction.
 | |
|       int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
 | |
|                                                          VL0->getType(), SrcTy);
 | |
| 
 | |
|       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
 | |
|       int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
 | |
|       return VecCost - ScalarCost;
 | |
|     }
 | |
|     case Instruction::FCmp:
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::Select:
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       // Calculate the cost of this instruction.
 | |
|       int ScalarCost = 0;
 | |
|       int VecCost = 0;
 | |
|       if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
 | |
|           Opcode == Instruction::Select) {
 | |
|         VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
 | |
|         ScalarCost = VecTy->getNumElements() *
 | |
|         TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
 | |
|         VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
 | |
|       } else {
 | |
|         ScalarCost = VecTy->getNumElements() *
 | |
|         TTI->getArithmeticInstrCost(Opcode, ScalarTy);
 | |
|         VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy);
 | |
|       }
 | |
|       return VecCost - ScalarCost;
 | |
|     }
 | |
|     case Instruction::Load: {
 | |
|       // Cost of wide load - cost of scalar loads.
 | |
|       int ScalarLdCost = VecTy->getNumElements() *
 | |
|       TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
 | |
|       int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
 | |
|       return VecLdCost - ScalarLdCost;
 | |
|     }
 | |
|     case Instruction::Store: {
 | |
|       // We know that we can merge the stores. Calculate the cost.
 | |
|       int ScalarStCost = VecTy->getNumElements() *
 | |
|       TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
 | |
|       int VecStCost = TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
 | |
|       return VecStCost - ScalarStCost;
 | |
|     }
 | |
|     default:
 | |
|       llvm_unreachable("Unknown instruction");
 | |
|   }
 | |
| }
 | |
| 
 | |
| int BoUpSLP::getTreeCost() {
 | |
|   int Cost = 0;
 | |
|   DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
 | |
|         VectorizableTree.size() << ".\n");
 | |
| 
 | |
|   // Don't vectorize tiny trees. Small load/store chains or consecutive stores
 | |
|   // of constants will be vectoried in SelectionDAG in MergeConsecutiveStores.
 | |
|   // The SelectionDAG vectorizer can only handle pairs (trees of height = 2).
 | |
|   if (VectorizableTree.size() < 3) {
 | |
|     if (!VectorizableTree.size()) {
 | |
|       assert(!ExternalUses.size() && "We should not have any external users");
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   unsigned BundleWidth = VectorizableTree[0].Scalars.size();
 | |
| 
 | |
|   for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
 | |
|     int C = getEntryCost(&VectorizableTree[i]);
 | |
|     DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
 | |
|           << *VectorizableTree[i].Scalars[0] << " .\n");
 | |
|     Cost += C;
 | |
|   }
 | |
| 
 | |
|   int ExtractCost = 0;
 | |
|   for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
 | |
|        I != E; ++I) {
 | |
| 
 | |
|     VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
 | |
|     ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
 | |
|                                            I->Lane);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
 | |
|   return  Cost + ExtractCost;
 | |
| }
 | |
| 
 | |
| int BoUpSLP::getGatherCost(Type *Ty) {
 | |
|   int Cost = 0;
 | |
|   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
 | |
|     Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
 | |
|   // Find the type of the operands in VL.
 | |
|   Type *ScalarTy = VL[0]->getType();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | |
|     ScalarTy = SI->getValueOperand()->getType();
 | |
|   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | |
|   // Find the cost of inserting/extracting values from the vector.
 | |
|   return getGatherCost(VecTy);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return AA->getLocation(SI);
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return AA->getLocation(LI);
 | |
|   return AliasAnalysis::Location();
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::getPointerOperand(Value *I) {
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return LI->getPointerOperand();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return SI->getPointerOperand();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
 | |
|   if (LoadInst *L = dyn_cast<LoadInst>(I))
 | |
|     return L->getPointerAddressSpace();
 | |
|   if (StoreInst *S = dyn_cast<StoreInst>(I))
 | |
|     return S->getPointerAddressSpace();
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
 | |
|   Value *PtrA = getPointerOperand(A);
 | |
|   Value *PtrB = getPointerOperand(B);
 | |
|   unsigned ASA = getAddressSpaceOperand(A);
 | |
|   unsigned ASB = getAddressSpaceOperand(B);
 | |
| 
 | |
|   // Check that the address spaces match and that the pointers are valid.
 | |
|   if (!PtrA || !PtrB || (ASA != ASB))
 | |
|     return false;
 | |
| 
 | |
|   // Make sure that A and B are different pointers of the same type.
 | |
|   if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
 | |
|     return false;
 | |
| 
 | |
|   // Calculate a constant offset from the base pointer without using SCEV
 | |
|   // in the supported cases.
 | |
|   // TODO: Add support for the case where one of the pointers is a GEP that
 | |
|   // uses the other pointer.
 | |
|   GetElementPtrInst *GepA = dyn_cast<GetElementPtrInst>(PtrA);
 | |
|   GetElementPtrInst *GepB = dyn_cast<GetElementPtrInst>(PtrB);
 | |
| 
 | |
|   unsigned BW = DL->getPointerSizeInBits(ASA);
 | |
|   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
 | |
|   int64_t Sz = DL->getTypeStoreSize(Ty);
 | |
| 
 | |
|   // Check if PtrA is the base and PtrB is a constant offset.
 | |
|   if (GepB && GepB->getPointerOperand() == PtrA) {
 | |
|     APInt Offset(BW, 0);
 | |
|     if (GepB->accumulateConstantOffset(*DL, Offset))
 | |
|       return Offset.getSExtValue() == Sz;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check if PtrB is the base and PtrA is a constant offset.
 | |
|   if (GepA && GepA->getPointerOperand() == PtrB) {
 | |
|     APInt Offset(BW, 0);
 | |
|     if (GepA->accumulateConstantOffset(*DL, Offset))
 | |
|       return Offset.getSExtValue() == -Sz;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If both pointers are GEPs:
 | |
|   if (GepA && GepB) {
 | |
|     // Check that they have the same base pointer and number of indices.
 | |
|     if (GepA->getPointerOperand() != GepB->getPointerOperand() ||
 | |
|         GepA->getNumIndices() != GepB->getNumIndices())
 | |
|       return false;
 | |
| 
 | |
|     // Try to strip the geps. This makes SCEV faster.
 | |
|     // Make sure that all of the indices except for the last are identical.
 | |
|     int LastIdx = GepA->getNumIndices();
 | |
|     for (int i = 0; i < LastIdx - 1; i++) {
 | |
|       if (GepA->getOperand(i+1) != GepB->getOperand(i+1))
 | |
|           return false;
 | |
|     }
 | |
| 
 | |
|     PtrA = GepA->getOperand(LastIdx);
 | |
|     PtrB = GepB->getOperand(LastIdx);
 | |
|     Sz = 1;
 | |
|   }
 | |
| 
 | |
|   ConstantInt *CA = dyn_cast<ConstantInt>(PtrA);
 | |
|   ConstantInt *CB = dyn_cast<ConstantInt>(PtrB);
 | |
|   if (CA && CB) {
 | |
|     return (CA->getSExtValue() + Sz == CB->getSExtValue());
 | |
|   }
 | |
| 
 | |
|   // Calculate the distance.
 | |
|   const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
 | |
|   const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
 | |
|   const SCEV *C = SE->getConstant(PtrSCEVA->getType(), Sz);
 | |
|   const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
 | |
|   return X == PtrSCEVB;
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
 | |
|   assert(Src->getParent() == Dst->getParent() && "Not the same BB");
 | |
|   BasicBlock::iterator I = Src, E = Dst;
 | |
|   /// Scan all of the instruction from SRC to DST and check if
 | |
|   /// the source may alias.
 | |
|   for (++I; I != E; ++I) {
 | |
|     // Ignore store instructions that are marked as 'ignore'.
 | |
|     if (MemBarrierIgnoreList.count(I))
 | |
|       continue;
 | |
|     if (Src->mayWriteToMemory()) /* Write */ {
 | |
|       if (!I->mayReadOrWriteMemory())
 | |
|         continue;
 | |
|     } else /* Read */ {
 | |
|       if (!I->mayWriteToMemory())
 | |
|         continue;
 | |
|     }
 | |
|     AliasAnalysis::Location A = getLocation(&*I);
 | |
|     AliasAnalysis::Location B = getLocation(Src);
 | |
| 
 | |
|     if (!A.Ptr || !B.Ptr || AA->alias(A, B))
 | |
|       return I;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
 | |
|   BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
 | |
|   assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
 | |
|   BlockNumbering &BN = BlocksNumbers[BB];
 | |
| 
 | |
|   int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
 | |
|   for (unsigned i = 0, e = VL.size(); i < e; ++i)
 | |
|     MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
 | |
|   return MaxIdx;
 | |
| }
 | |
| 
 | |
| Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
 | |
|   BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
 | |
|   assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
 | |
|   BlockNumbering &BN = BlocksNumbers[BB];
 | |
| 
 | |
|   int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
 | |
|   for (unsigned i = 1, e = VL.size(); i < e; ++i)
 | |
|     MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
 | |
|   Instruction *I = BN.getInstruction(MaxIdx);
 | |
|   assert(I && "bad location");
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
 | |
|   Value *Vec = UndefValue::get(Ty);
 | |
|   // Generate the 'InsertElement' instruction.
 | |
|   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
 | |
|     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
 | |
|     if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
 | |
|       GatherSeq.insert(Insrt);
 | |
| 
 | |
|       // Add to our 'need-to-extract' list.
 | |
|       if (ScalarToTreeEntry.count(VL[i])) {
 | |
|         int Idx = ScalarToTreeEntry[VL[i]];
 | |
|         TreeEntry *E = &VectorizableTree[Idx];
 | |
|         // Find which lane we need to extract.
 | |
|         int FoundLane = -1;
 | |
|         for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
 | |
|           // Is this the lane of the scalar that we are looking for ?
 | |
|           if (E->Scalars[Lane] == VL[i]) {
 | |
|             FoundLane = Lane;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         assert(FoundLane >= 0 && "Could not find the correct lane");
 | |
|         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Vec;
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) {
 | |
|   if (ScalarToTreeEntry.count(VL[0])) {
 | |
|     int Idx = ScalarToTreeEntry[VL[0]];
 | |
|     TreeEntry *En = &VectorizableTree[Idx];
 | |
|     if (En->isSame(VL) && En->VectorizedValue)
 | |
|       return En->VectorizedValue;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
 | |
|   if (ScalarToTreeEntry.count(VL[0])) {
 | |
|     int Idx = ScalarToTreeEntry[VL[0]];
 | |
|     TreeEntry *E = &VectorizableTree[Idx];
 | |
|     if (E->isSame(VL))
 | |
|       return vectorizeTree(E);
 | |
|   }
 | |
| 
 | |
|   Type *ScalarTy = VL[0]->getType();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | |
|     ScalarTy = SI->getValueOperand()->getType();
 | |
|   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | |
| 
 | |
|   return Gather(VL, VecTy);
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
 | |
|   BuilderLocGuard Guard(Builder);
 | |
| 
 | |
|   if (E->VectorizedValue) {
 | |
|     DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
 | |
|     return E->VectorizedValue;
 | |
|   }
 | |
| 
 | |
|   Type *ScalarTy = E->Scalars[0]->getType();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(E->Scalars[0]))
 | |
|     ScalarTy = SI->getValueOperand()->getType();
 | |
|   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
 | |
| 
 | |
|   if (E->NeedToGather) {
 | |
|     return Gather(E->Scalars, VecTy);
 | |
|   }
 | |
| 
 | |
|   Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
 | |
|   unsigned Opcode = VL0->getOpcode();
 | |
|   assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode");
 | |
| 
 | |
|   switch (Opcode) {
 | |
|     case Instruction::PHI: {
 | |
|       PHINode *PH = dyn_cast<PHINode>(VL0);
 | |
|       Builder.SetInsertPoint(PH->getParent()->getFirstInsertionPt());
 | |
|       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
 | |
|       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
 | |
|       E->VectorizedValue = NewPhi;
 | |
| 
 | |
|       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         BasicBlock *IBB = PH->getIncomingBlock(i);
 | |
| 
 | |
|         // Prepare the operand vector.
 | |
|         for (unsigned j = 0; j < E->Scalars.size(); ++j)
 | |
|           Operands.push_back(cast<PHINode>(E->Scalars[j])->
 | |
|                              getIncomingValueForBlock(IBB));
 | |
| 
 | |
|         Builder.SetInsertPoint(IBB->getTerminator());
 | |
|         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
 | |
|         Value *Vec = vectorizeTree(Operands);
 | |
|         NewPhi->addIncoming(Vec, IBB);
 | |
|       }
 | |
| 
 | |
|       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
 | |
|              "Invalid number of incoming values");
 | |
|       return NewPhi;
 | |
|     }
 | |
| 
 | |
|     case Instruction::ExtractElement: {
 | |
|       if (CanReuseExtract(E->Scalars)) {
 | |
|         Value *V = VL0->getOperand(0);
 | |
|         E->VectorizedValue = V;
 | |
|         return V;
 | |
|       }
 | |
|       return Gather(E->Scalars, VecTy);
 | |
|     }
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::BitCast: {
 | |
|       ValueList INVL;
 | |
|       for (int i = 0, e = E->Scalars.size(); i < e; ++i)
 | |
|         INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
 | |
| 
 | |
|       Builder.SetInsertPoint(getLastInstruction(E->Scalars));
 | |
|       Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
 | |
| 
 | |
|       Value *InVec = vectorizeTree(INVL);
 | |
| 
 | |
|       if (Value *V = alreadyVectorized(E->Scalars))
 | |
|         return V;
 | |
| 
 | |
|       CastInst *CI = dyn_cast<CastInst>(VL0);
 | |
|       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
 | |
|       E->VectorizedValue = V;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::FCmp:
 | |
|     case Instruction::ICmp: {
 | |
|       ValueList LHSV, RHSV;
 | |
|       for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
 | |
|         LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
 | |
|         RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
 | |
|       }
 | |
| 
 | |
|       Builder.SetInsertPoint(getLastInstruction(E->Scalars));
 | |
|       Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
 | |
| 
 | |
|       Value *L = vectorizeTree(LHSV);
 | |
|       Value *R = vectorizeTree(RHSV);
 | |
| 
 | |
|       if (Value *V = alreadyVectorized(E->Scalars))
 | |
|         return V;
 | |
| 
 | |
|       CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
 | |
|       Value *V;
 | |
|       if (Opcode == Instruction::FCmp)
 | |
|         V = Builder.CreateFCmp(P0, L, R);
 | |
|       else
 | |
|         V = Builder.CreateICmp(P0, L, R);
 | |
| 
 | |
|       E->VectorizedValue = V;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::Select: {
 | |
|       ValueList TrueVec, FalseVec, CondVec;
 | |
|       for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
 | |
|         CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
 | |
|         TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
 | |
|         FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
 | |
|       }
 | |
| 
 | |
|       Builder.SetInsertPoint(getLastInstruction(E->Scalars));
 | |
|       Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
 | |
| 
 | |
|       Value *Cond = vectorizeTree(CondVec);
 | |
|       Value *True = vectorizeTree(TrueVec);
 | |
|       Value *False = vectorizeTree(FalseVec);
 | |
| 
 | |
|       if (Value *V = alreadyVectorized(E->Scalars))
 | |
|         return V;
 | |
|       
 | |
|       Value *V = Builder.CreateSelect(Cond, True, False);
 | |
|       E->VectorizedValue = V;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       ValueList LHSVL, RHSVL;
 | |
|       for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
 | |
|         LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
 | |
|         RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
 | |
|       }
 | |
| 
 | |
|       Builder.SetInsertPoint(getLastInstruction(E->Scalars));
 | |
|       Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
 | |
| 
 | |
|       Value *LHS = vectorizeTree(LHSVL);
 | |
|       Value *RHS = vectorizeTree(RHSVL);
 | |
| 
 | |
|       if (LHS == RHS && isa<Instruction>(LHS)) {
 | |
|         assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
 | |
|       }
 | |
| 
 | |
|       if (Value *V = alreadyVectorized(E->Scalars))
 | |
|         return V;
 | |
| 
 | |
|       BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
 | |
|       Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
 | |
|       E->VectorizedValue = V;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::Load: {
 | |
|       // Loads are inserted at the head of the tree because we don't want to
 | |
|       // sink them all the way down past store instructions.
 | |
|       Builder.SetInsertPoint(getLastInstruction(E->Scalars));
 | |
|       Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
 | |
| 
 | |
|       LoadInst *LI = cast<LoadInst>(VL0);
 | |
|       Value *VecPtr =
 | |
|       Builder.CreateBitCast(LI->getPointerOperand(), VecTy->getPointerTo());
 | |
|       unsigned Alignment = LI->getAlignment();
 | |
|       LI = Builder.CreateLoad(VecPtr);
 | |
|       LI->setAlignment(Alignment);
 | |
|       E->VectorizedValue = LI;
 | |
|       return LI;
 | |
|     }
 | |
|     case Instruction::Store: {
 | |
|       StoreInst *SI = cast<StoreInst>(VL0);
 | |
|       unsigned Alignment = SI->getAlignment();
 | |
| 
 | |
|       ValueList ValueOp;
 | |
|       for (int i = 0, e = E->Scalars.size(); i < e; ++i)
 | |
|         ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
 | |
| 
 | |
|       Builder.SetInsertPoint(getLastInstruction(E->Scalars));
 | |
|       Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
 | |
| 
 | |
|       Value *VecValue = vectorizeTree(ValueOp);
 | |
|       Value *VecPtr =
 | |
|       Builder.CreateBitCast(SI->getPointerOperand(), VecTy->getPointerTo());
 | |
|       StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
 | |
|       S->setAlignment(Alignment);
 | |
|       E->VectorizedValue = S;
 | |
|       return S;
 | |
|     }
 | |
|     default:
 | |
|     llvm_unreachable("unknown inst");
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void BoUpSLP::vectorizeTree() {
 | |
|   Builder.SetInsertPoint(F->getEntryBlock().begin());
 | |
|   vectorizeTree(&VectorizableTree[0]);
 | |
| 
 | |
|   DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
 | |
| 
 | |
|   // Extract all of the elements with the external uses.
 | |
|   for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
 | |
|        it != e; ++it) {
 | |
|     Value *Scalar = it->Scalar;
 | |
|     llvm::User *User = it->User;
 | |
| 
 | |
|     // Skip users that we already RAUW. This happens when one instruction
 | |
|     // has multiple uses of the same value.
 | |
|     if (std::find(Scalar->use_begin(), Scalar->use_end(), User) ==
 | |
|         Scalar->use_end())
 | |
|       continue;
 | |
|     assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
 | |
| 
 | |
|     int Idx = ScalarToTreeEntry[Scalar];
 | |
|     TreeEntry *E = &VectorizableTree[Idx];
 | |
|     assert(!E->NeedToGather && "Extracting from a gather list");
 | |
| 
 | |
|     Value *Vec = E->VectorizedValue;
 | |
|     assert(Vec && "Can't find vectorizable value");
 | |
| 
 | |
|     Value *Lane = Builder.getInt32(it->Lane);
 | |
|     // Generate extracts for out-of-tree users.
 | |
|     // Find the insertion point for the extractelement lane.
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(Vec)) {
 | |
|       Builder.SetInsertPoint(PN->getParent()->getFirstInsertionPt());
 | |
|       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | |
|       User->replaceUsesOfWith(Scalar, Ex);
 | |
|     } else if (isa<Instruction>(Vec)){
 | |
|       if (PHINode *PH = dyn_cast<PHINode>(User)) {
 | |
|         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
 | |
|           if (PH->getIncomingValue(i) == Scalar) {
 | |
|             Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
 | |
|             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | |
|             PH->setOperand(i, Ex);
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         Builder.SetInsertPoint(cast<Instruction>(User));
 | |
|         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | |
|         User->replaceUsesOfWith(Scalar, Ex);
 | |
|      }
 | |
|     } else {
 | |
|       Builder.SetInsertPoint(F->getEntryBlock().begin());
 | |
|       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | |
|       User->replaceUsesOfWith(Scalar, Ex);
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
 | |
|   }
 | |
| 
 | |
|   // For each vectorized value:
 | |
|   for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
 | |
|     TreeEntry *Entry = &VectorizableTree[EIdx];
 | |
| 
 | |
|     // For each lane:
 | |
|     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
 | |
|       Value *Scalar = Entry->Scalars[Lane];
 | |
| 
 | |
|       // No need to handle users of gathered values.
 | |
|       if (Entry->NeedToGather)
 | |
|         continue;
 | |
| 
 | |
|       assert(Entry->VectorizedValue && "Can't find vectorizable value");
 | |
| 
 | |
|       Type *Ty = Scalar->getType();
 | |
|       if (!Ty->isVoidTy()) {
 | |
|         for (Value::use_iterator User = Scalar->use_begin(),
 | |
|              UE = Scalar->use_end(); User != UE; ++User) {
 | |
|           DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
 | |
|           assert(!MustGather.count(*User) &&
 | |
|                  "Replacing gathered value with undef");
 | |
|           assert(ScalarToTreeEntry.count(*User) &&
 | |
|                  "Replacing out-of-tree value with undef");
 | |
|         }
 | |
|         Value *Undef = UndefValue::get(Ty);
 | |
|         Scalar->replaceAllUsesWith(Undef);
 | |
|       }
 | |
|       DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
 | |
|       cast<Instruction>(Scalar)->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
 | |
|     BlocksNumbers[it].forget();
 | |
|   }
 | |
|   Builder.ClearInsertionPoint();
 | |
| }
 | |
| 
 | |
| void BoUpSLP::optimizeGatherSequence() {
 | |
|   DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
 | |
|         << " gather sequences instructions.\n");
 | |
|   // LICM InsertElementInst sequences.
 | |
|   for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
 | |
|        e = GatherSeq.end(); it != e; ++it) {
 | |
|     InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
 | |
| 
 | |
|     if (!Insert)
 | |
|       continue;
 | |
| 
 | |
|     // Check if this block is inside a loop.
 | |
|     Loop *L = LI->getLoopFor(Insert->getParent());
 | |
|     if (!L)
 | |
|       continue;
 | |
| 
 | |
|     // Check if it has a preheader.
 | |
|     BasicBlock *PreHeader = L->getLoopPreheader();
 | |
|     if (!PreHeader)
 | |
|       continue;
 | |
| 
 | |
|     // If the vector or the element that we insert into it are
 | |
|     // instructions that are defined in this basic block then we can't
 | |
|     // hoist this instruction.
 | |
|     Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
 | |
|     Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
 | |
|     if (CurrVec && L->contains(CurrVec))
 | |
|       continue;
 | |
|     if (NewElem && L->contains(NewElem))
 | |
|       continue;
 | |
| 
 | |
|     // We can hoist this instruction. Move it to the pre-header.
 | |
|     Insert->moveBefore(PreHeader->getTerminator());
 | |
|   }
 | |
| 
 | |
|   // Perform O(N^2) search over the gather sequences and merge identical
 | |
|   // instructions. TODO: We can further optimize this scan if we split the
 | |
|   // instructions into different buckets based on the insert lane.
 | |
|   SmallPtrSet<Instruction*, 16> Visited;
 | |
|   SmallVector<Instruction*, 16> ToRemove;
 | |
|   ReversePostOrderTraversal<Function*> RPOT(F);
 | |
|   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
 | |
|        E = RPOT.end(); I != E; ++I) {
 | |
|     BasicBlock *BB = *I;
 | |
|     // For all instructions in the function:
 | |
|     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|       Instruction *In = it;
 | |
|       if ((!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) ||
 | |
|           !GatherSeq.count(In))
 | |
|         continue;
 | |
| 
 | |
|       // Check if we can replace this instruction with any of the
 | |
|       // visited instructions.
 | |
|       for (SmallPtrSet<Instruction*, 16>::iterator v = Visited.begin(),
 | |
|            ve = Visited.end(); v != ve; ++v) {
 | |
|         if (In->isIdenticalTo(*v) &&
 | |
|             DT->dominates((*v)->getParent(), In->getParent())) {
 | |
|           In->replaceAllUsesWith(*v);
 | |
|           ToRemove.push_back(In);
 | |
|           In = 0;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (In)
 | |
|         Visited.insert(In);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Erase all of the instructions that we RAUWed.
 | |
|   for (SmallVectorImpl<Instruction *>::iterator v = ToRemove.begin(),
 | |
|        ve = ToRemove.end(); v != ve; ++v) {
 | |
|     assert((*v)->getNumUses() == 0 && "Can't remove instructions with uses");
 | |
|     (*v)->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// The SLPVectorizer Pass.
 | |
| struct SLPVectorizer : public FunctionPass {
 | |
|   typedef SmallVector<StoreInst *, 8> StoreList;
 | |
|   typedef MapVector<Value *, StoreList> StoreListMap;
 | |
| 
 | |
|   /// Pass identification, replacement for typeid
 | |
|   static char ID;
 | |
| 
 | |
|   explicit SLPVectorizer() : FunctionPass(ID) {
 | |
|     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   ScalarEvolution *SE;
 | |
|   DataLayout *DL;
 | |
|   TargetTransformInfo *TTI;
 | |
|   AliasAnalysis *AA;
 | |
|   LoopInfo *LI;
 | |
|   DominatorTree *DT;
 | |
| 
 | |
|   virtual bool runOnFunction(Function &F) {
 | |
|     SE = &getAnalysis<ScalarEvolution>();
 | |
|     DL = getAnalysisIfAvailable<DataLayout>();
 | |
|     TTI = &getAnalysis<TargetTransformInfo>();
 | |
|     AA = &getAnalysis<AliasAnalysis>();
 | |
|     LI = &getAnalysis<LoopInfo>();
 | |
|     DT = &getAnalysis<DominatorTree>();
 | |
| 
 | |
|     StoreRefs.clear();
 | |
|     bool Changed = false;
 | |
| 
 | |
|     // Must have DataLayout. We can't require it because some tests run w/o
 | |
|     // triple.
 | |
|     if (!DL)
 | |
|       return false;
 | |
| 
 | |
|     // Don't vectorize when the attribute NoImplicitFloat is used.
 | |
|     if (F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
 | |
|                                        Attribute::NoImplicitFloat))
 | |
|       return false;
 | |
| 
 | |
|     DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
 | |
| 
 | |
|     // Use the bollom up slp vectorizer to construct chains that start with
 | |
|     // he store instructions.
 | |
|     BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT);
 | |
| 
 | |
|     // Scan the blocks in the function in post order.
 | |
|     for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
 | |
|          e = po_end(&F.getEntryBlock()); it != e; ++it) {
 | |
|       BasicBlock *BB = *it;
 | |
| 
 | |
|       // Vectorize trees that end at stores.
 | |
|       if (unsigned count = collectStores(BB, R)) {
 | |
|         (void)count;
 | |
|         DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
 | |
|         Changed |= vectorizeStoreChains(R);
 | |
|       }
 | |
| 
 | |
|       // Vectorize trees that end at reductions.
 | |
|       Changed |= vectorizeChainsInBlock(BB, R);
 | |
|     }
 | |
| 
 | |
|     if (Changed) {
 | |
|       R.optimizeGatherSequence();
 | |
|       DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
 | |
|       DEBUG(verifyFunction(F));
 | |
|     }
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     FunctionPass::getAnalysisUsage(AU);
 | |
|     AU.addRequired<ScalarEvolution>();
 | |
|     AU.addRequired<AliasAnalysis>();
 | |
|     AU.addRequired<TargetTransformInfo>();
 | |
|     AU.addRequired<LoopInfo>();
 | |
|     AU.addRequired<DominatorTree>();
 | |
|     AU.addPreserved<LoopInfo>();
 | |
|     AU.addPreserved<DominatorTree>();
 | |
|     AU.setPreservesCFG();
 | |
|   }
 | |
| 
 | |
| private:
 | |
| 
 | |
|   /// \brief Collect memory references and sort them according to their base
 | |
|   /// object. We sort the stores to their base objects to reduce the cost of the
 | |
|   /// quadratic search on the stores. TODO: We can further reduce this cost
 | |
|   /// if we flush the chain creation every time we run into a memory barrier.
 | |
|   unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
 | |
| 
 | |
|   /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
 | |
|   bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
 | |
| 
 | |
|   /// \brief Try to vectorize a list of operands.
 | |
|   /// \returns true if a value was vectorized.
 | |
|   bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
 | |
| 
 | |
|   /// \brief Try to vectorize a chain that may start at the operands of \V;
 | |
|   bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
 | |
| 
 | |
|   /// \brief Vectorize the stores that were collected in StoreRefs.
 | |
|   bool vectorizeStoreChains(BoUpSLP &R);
 | |
| 
 | |
|   /// \brief Scan the basic block and look for patterns that are likely to start
 | |
|   /// a vectorization chain.
 | |
|   bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
 | |
| 
 | |
|   bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
 | |
|                            BoUpSLP &R);
 | |
| 
 | |
|   bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
 | |
|                        BoUpSLP &R);
 | |
| private:
 | |
|   StoreListMap StoreRefs;
 | |
| };
 | |
| 
 | |
| bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
 | |
|                                           int CostThreshold, BoUpSLP &R) {
 | |
|   unsigned ChainLen = Chain.size();
 | |
|   DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
 | |
|         << "\n");
 | |
|   Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
 | |
|   unsigned Sz = DL->getTypeSizeInBits(StoreTy);
 | |
|   unsigned VF = MinVecRegSize / Sz;
 | |
| 
 | |
|   if (!isPowerOf2_32(Sz) || VF < 2)
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   // Look for profitable vectorizable trees at all offsets, starting at zero.
 | |
|   for (unsigned i = 0, e = ChainLen; i < e; ++i) {
 | |
|     if (i + VF > e)
 | |
|       break;
 | |
|     DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
 | |
|           << "\n");
 | |
|     ArrayRef<Value *> Operands = Chain.slice(i, VF);
 | |
| 
 | |
|     R.buildTree(Operands);
 | |
| 
 | |
|     int Cost = R.getTreeCost();
 | |
| 
 | |
|     DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
 | |
|     if (Cost < CostThreshold) {
 | |
|       DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
 | |
|       R.vectorizeTree();
 | |
| 
 | |
|       // Move to the next bundle.
 | |
|       i += VF - 1;
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|     return Changed;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
 | |
|                                     int costThreshold, BoUpSLP &R) {
 | |
|   SetVector<Value *> Heads, Tails;
 | |
|   SmallDenseMap<Value *, Value *> ConsecutiveChain;
 | |
| 
 | |
|   // We may run into multiple chains that merge into a single chain. We mark the
 | |
|   // stores that we vectorized so that we don't visit the same store twice.
 | |
|   BoUpSLP::ValueSet VectorizedStores;
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Do a quadratic search on all of the given stores and find
 | |
|   // all of the pairs of stores that follow each other.
 | |
|   for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
 | |
|     for (unsigned j = 0; j < e; ++j) {
 | |
|       if (i == j)
 | |
|         continue;
 | |
| 
 | |
|       if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
 | |
|         Tails.insert(Stores[j]);
 | |
|         Heads.insert(Stores[i]);
 | |
|         ConsecutiveChain[Stores[i]] = Stores[j];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For stores that start but don't end a link in the chain:
 | |
|   for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
 | |
|        it != e; ++it) {
 | |
|     if (Tails.count(*it))
 | |
|       continue;
 | |
| 
 | |
|     // We found a store instr that starts a chain. Now follow the chain and try
 | |
|     // to vectorize it.
 | |
|     BoUpSLP::ValueList Operands;
 | |
|     Value *I = *it;
 | |
|     // Collect the chain into a list.
 | |
|     while (Tails.count(I) || Heads.count(I)) {
 | |
|       if (VectorizedStores.count(I))
 | |
|         break;
 | |
|       Operands.push_back(I);
 | |
|       // Move to the next value in the chain.
 | |
|       I = ConsecutiveChain[I];
 | |
|     }
 | |
| 
 | |
|     bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
 | |
| 
 | |
|     // Mark the vectorized stores so that we don't vectorize them again.
 | |
|     if (Vectorized)
 | |
|       VectorizedStores.insert(Operands.begin(), Operands.end());
 | |
|     Changed |= Vectorized;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
 | |
|   unsigned count = 0;
 | |
|   StoreRefs.clear();
 | |
|   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|     StoreInst *SI = dyn_cast<StoreInst>(it);
 | |
|     if (!SI)
 | |
|       continue;
 | |
| 
 | |
|     // Check that the pointer points to scalars.
 | |
|     Type *Ty = SI->getValueOperand()->getType();
 | |
|     if (Ty->isAggregateType() || Ty->isVectorTy())
 | |
|       return 0;
 | |
| 
 | |
|     // Find the base of the GEP.
 | |
|     Value *Ptr = SI->getPointerOperand();
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
 | |
|       Ptr = GEP->getPointerOperand();
 | |
| 
 | |
|     // Save the store locations.
 | |
|     StoreRefs[Ptr].push_back(SI);
 | |
|     count++;
 | |
|   }
 | |
|   return count;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
 | |
|   if (!A || !B)
 | |
|     return false;
 | |
|   Value *VL[] = { A, B };
 | |
|   return tryToVectorizeList(VL, R);
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
 | |
|   if (VL.size() < 2)
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
 | |
| 
 | |
|   // Check that all of the parts are scalar instructions of the same type.
 | |
|   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | |
|   if (!I0)
 | |
|     return 0;
 | |
| 
 | |
|   unsigned Opcode0 = I0->getOpcode();
 | |
| 
 | |
|   for (int i = 0, e = VL.size(); i < e; ++i) {
 | |
|     Type *Ty = VL[i]->getType();
 | |
|     if (Ty->isAggregateType() || Ty->isVectorTy())
 | |
|       return 0;
 | |
|     Instruction *Inst = dyn_cast<Instruction>(VL[i]);
 | |
|     if (!Inst || Inst->getOpcode() != Opcode0)
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   R.buildTree(VL);
 | |
|   int Cost = R.getTreeCost();
 | |
| 
 | |
|   if (Cost >= -SLPCostThreshold)
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n");
 | |
|   R.vectorizeTree();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
 | |
|   if (!V)
 | |
|     return false;
 | |
| 
 | |
|   // Try to vectorize V.
 | |
|   if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
 | |
|     return true;
 | |
| 
 | |
|   BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
 | |
|   BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
 | |
|   // Try to skip B.
 | |
|   if (B && B->hasOneUse()) {
 | |
|     BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
 | |
|     BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
 | |
|     if (tryToVectorizePair(A, B0, R)) {
 | |
|       B->moveBefore(V);
 | |
|       return true;
 | |
|     }
 | |
|     if (tryToVectorizePair(A, B1, R)) {
 | |
|       B->moveBefore(V);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try to skip A.
 | |
|   if (A && A->hasOneUse()) {
 | |
|     BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
 | |
|     BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
 | |
|     if (tryToVectorizePair(A0, B, R)) {
 | |
|       A->moveBefore(V);
 | |
|       return true;
 | |
|     }
 | |
|     if (tryToVectorizePair(A1, B, R)) {
 | |
|       A->moveBefore(V);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
 | |
|   bool Changed = false;
 | |
|   SmallVector<Value *, 4> Incoming;
 | |
|   // Collect the incoming values from the PHIs.
 | |
|   for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
 | |
|        ++instr) {
 | |
|     PHINode *P = dyn_cast<PHINode>(instr);
 | |
| 
 | |
|     if (!P)
 | |
|       break;
 | |
| 
 | |
|     // Stop constructing the list when you reach a different type.
 | |
|     if (Incoming.size() && P->getType() != Incoming[0]->getType()) {
 | |
|       Changed |= tryToVectorizeList(Incoming, R);
 | |
|       Incoming.clear();
 | |
|     }
 | |
| 
 | |
|     Incoming.push_back(P);
 | |
|   }
 | |
| 
 | |
|   if (Incoming.size() > 1)
 | |
|     Changed |= tryToVectorizeList(Incoming, R);
 | |
| 
 | |
|   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|     if (isa<DbgInfoIntrinsic>(it))
 | |
|       continue;
 | |
| 
 | |
|     // Try to vectorize reductions that use PHINodes.
 | |
|     if (PHINode *P = dyn_cast<PHINode>(it)) {
 | |
|       // Check that the PHI is a reduction PHI.
 | |
|       if (P->getNumIncomingValues() != 2)
 | |
|         return Changed;
 | |
|       Value *Rdx =
 | |
|           (P->getIncomingBlock(0) == BB
 | |
|                ? (P->getIncomingValue(0))
 | |
|                : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
 | |
|       // Check if this is a Binary Operator.
 | |
|       BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
 | |
|       if (!BI)
 | |
|         continue;
 | |
| 
 | |
|       Value *Inst = BI->getOperand(0);
 | |
|       if (Inst == P)
 | |
|         Inst = BI->getOperand(1);
 | |
| 
 | |
|       Changed |= tryToVectorize(dyn_cast<BinaryOperator>(Inst), R);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Try to vectorize trees that start at compare instructions.
 | |
|     if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
 | |
|       if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
 | |
|         Changed |= true;
 | |
|         continue;
 | |
|       }
 | |
|       for (int i = 0; i < 2; ++i)
 | |
|         if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i)))
 | |
|           Changed |=
 | |
|               tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R);
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
 | |
|   bool Changed = false;
 | |
|   // Attempt to sort and vectorize each of the store-groups.
 | |
|   for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
 | |
|        it != e; ++it) {
 | |
|     if (it->second.size() < 2)
 | |
|       continue;
 | |
| 
 | |
|     DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
 | |
|           << it->second.size() << ".\n");
 | |
| 
 | |
|     // Process the stores in chunks of 16.
 | |
|     for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
 | |
|       unsigned Len = std::min<unsigned>(CE - CI, 16);
 | |
|       ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
 | |
|       Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char SLPVectorizer::ID = 0;
 | |
| static const char lv_name[] = "SLP Vectorizer";
 | |
| INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
 | |
| 
 | |
| namespace llvm {
 | |
| Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
 | |
| }
 |