mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4389 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1188 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1188 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PhyRegAlloc.cpp ---------------------------------------------------===//
 | |
| // 
 | |
| //  Register allocation for LLVM.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/RegisterAllocation.h"
 | |
| #include "llvm/CodeGen/RegAllocCommon.h"
 | |
| #include "llvm/CodeGen/IGNode.h"
 | |
| #include "llvm/CodeGen/PhyRegAlloc.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrAnnot.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/Analysis/LiveVar/FunctionLiveVarInfo.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/MachineFrameInfo.h"
 | |
| #include "llvm/Target/MachineInstrInfo.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/iOther.h"
 | |
| #include "Support/STLExtras.h"
 | |
| #include "Support/CommandLine.h"
 | |
| #include <math.h>
 | |
| using std::cerr;
 | |
| using std::vector;
 | |
| 
 | |
| RegAllocDebugLevel_t DEBUG_RA;
 | |
| 
 | |
| static cl::opt<RegAllocDebugLevel_t, true>
 | |
| DRA_opt("dregalloc", cl::Hidden, cl::location(DEBUG_RA),
 | |
|         cl::desc("enable register allocation debugging information"),
 | |
|         cl::values(
 | |
|   clEnumValN(RA_DEBUG_None   ,     "n", "disable debug output"),
 | |
|   clEnumValN(RA_DEBUG_Results,     "y", "debug output for allocation results"),
 | |
|   clEnumValN(RA_DEBUG_Coloring,    "c", "debug output for graph coloring step"),
 | |
|   clEnumValN(RA_DEBUG_Interference,"ig","debug output for interference graphs"),
 | |
|   clEnumValN(RA_DEBUG_LiveRanges , "lr","debug output for live ranges"),
 | |
|   clEnumValN(RA_DEBUG_Verbose,     "v", "extra debug output"),
 | |
|                    0));
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // RegisterAllocation pass front end...
 | |
| //----------------------------------------------------------------------------
 | |
| namespace {
 | |
|   class RegisterAllocator : public FunctionPass {
 | |
|     TargetMachine &Target;
 | |
|   public:
 | |
|     inline RegisterAllocator(TargetMachine &T) : Target(T) {}
 | |
| 
 | |
|     const char *getPassName() const { return "Register Allocation"; }
 | |
|     
 | |
|     bool runOnFunction(Function &F) {
 | |
|       if (DEBUG_RA)
 | |
|         cerr << "\n********* Function "<< F.getName() << " ***********\n";
 | |
|       
 | |
|       PhyRegAlloc PRA(&F, Target, &getAnalysis<FunctionLiveVarInfo>(),
 | |
|                       &getAnalysis<LoopInfo>());
 | |
|       PRA.allocateRegisters();
 | |
|       
 | |
|       if (DEBUG_RA) cerr << "\nRegister allocation complete!\n";
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addRequired<FunctionLiveVarInfo>();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| Pass *getRegisterAllocator(TargetMachine &T) {
 | |
|   return new RegisterAllocator(T);
 | |
| }
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // Constructor: Init local composite objects and create register classes.
 | |
| //----------------------------------------------------------------------------
 | |
| PhyRegAlloc::PhyRegAlloc(Function *F, const TargetMachine& tm, 
 | |
| 			 FunctionLiveVarInfo *Lvi, LoopInfo *LDC) 
 | |
|   :  TM(tm), Fn(F), MF(MachineFunction::get(F)), LVI(Lvi),
 | |
|      LRI(F, tm, RegClassList), MRI(tm.getRegInfo()),
 | |
|      NumOfRegClasses(MRI.getNumOfRegClasses()), LoopDepthCalc(LDC) {
 | |
| 
 | |
|   // create each RegisterClass and put in RegClassList
 | |
|   //
 | |
|   for (unsigned rc=0; rc != NumOfRegClasses; rc++)  
 | |
|     RegClassList.push_back(new RegClass(F, MRI.getMachineRegClass(rc),
 | |
|                                         &ResColList));
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // Destructor: Deletes register classes
 | |
| //----------------------------------------------------------------------------
 | |
| PhyRegAlloc::~PhyRegAlloc() { 
 | |
|   for ( unsigned rc=0; rc < NumOfRegClasses; rc++)
 | |
|     delete RegClassList[rc];
 | |
| 
 | |
|   AddedInstrMap.clear();
 | |
| } 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // This method initally creates interference graphs (one in each reg class)
 | |
| // and IGNodeList (one in each IG). The actual nodes will be pushed later. 
 | |
| //----------------------------------------------------------------------------
 | |
| void PhyRegAlloc::createIGNodeListsAndIGs() {
 | |
|   if (DEBUG_RA >= RA_DEBUG_LiveRanges) cerr << "Creating LR lists ...\n";
 | |
| 
 | |
|   // hash map iterator
 | |
|   LiveRangeMapType::const_iterator HMI = LRI.getLiveRangeMap()->begin();   
 | |
| 
 | |
|   // hash map end
 | |
|   LiveRangeMapType::const_iterator HMIEnd = LRI.getLiveRangeMap()->end();   
 | |
| 
 | |
|   for (; HMI != HMIEnd ; ++HMI ) {
 | |
|     if (HMI->first) { 
 | |
|       LiveRange *L = HMI->second;   // get the LiveRange
 | |
|       if (!L) { 
 | |
|         if (DEBUG_RA)
 | |
|           cerr << "\n**** ?!?WARNING: NULL LIVE RANGE FOUND FOR: "
 | |
|                << RAV(HMI->first) << "****\n";
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // if the Value * is not null, and LR is not yet written to the IGNodeList
 | |
|       if (!(L->getUserIGNode())  ) {  
 | |
|         RegClass *const RC =           // RegClass of first value in the LR
 | |
|           RegClassList[ L->getRegClass()->getID() ];
 | |
|         RC->addLRToIG(L);              // add this LR to an IG
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   // init RegClassList
 | |
|   for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)  
 | |
|     RegClassList[rc]->createInterferenceGraph();
 | |
| 
 | |
|   if (DEBUG_RA >= RA_DEBUG_LiveRanges) cerr << "LRLists Created!\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // This method will add all interferences at for a given instruction.
 | |
| // Interence occurs only if the LR of Def (Inst or Arg) is of the same reg 
 | |
| // class as that of live var. The live var passed to this function is the 
 | |
| // LVset AFTER the instruction
 | |
| //----------------------------------------------------------------------------
 | |
| 
 | |
| void PhyRegAlloc::addInterference(const Value *Def, 
 | |
| 				  const ValueSet *LVSet,
 | |
| 				  bool isCallInst) {
 | |
| 
 | |
|   ValueSet::const_iterator LIt = LVSet->begin();
 | |
| 
 | |
|   // get the live range of instruction
 | |
|   //
 | |
|   const LiveRange *const LROfDef = LRI.getLiveRangeForValue( Def );   
 | |
| 
 | |
|   IGNode *const IGNodeOfDef = LROfDef->getUserIGNode();
 | |
|   assert( IGNodeOfDef );
 | |
| 
 | |
|   RegClass *const RCOfDef = LROfDef->getRegClass(); 
 | |
| 
 | |
|   // for each live var in live variable set
 | |
|   //
 | |
|   for ( ; LIt != LVSet->end(); ++LIt) {
 | |
| 
 | |
|     if (DEBUG_RA >= RA_DEBUG_Verbose)
 | |
|       cerr << "< Def=" << RAV(Def) << ", Lvar=" << RAV(*LIt) << "> ";
 | |
| 
 | |
|     //  get the live range corresponding to live var
 | |
|     // 
 | |
|     LiveRange *LROfVar = LRI.getLiveRangeForValue(*LIt);
 | |
| 
 | |
|     // LROfVar can be null if it is a const since a const 
 | |
|     // doesn't have a dominating def - see Assumptions above
 | |
|     //
 | |
|     if (LROfVar)
 | |
|       if (LROfDef != LROfVar)                  // do not set interf for same LR
 | |
|         if (RCOfDef == LROfVar->getRegClass()) // 2 reg classes are the same
 | |
|           RCOfDef->setInterference( LROfDef, LROfVar);  
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // For a call instruction, this method sets the CallInterference flag in 
 | |
| // the LR of each variable live int the Live Variable Set live after the
 | |
| // call instruction (except the return value of the call instruction - since
 | |
| // the return value does not interfere with that call itself).
 | |
| //----------------------------------------------------------------------------
 | |
| 
 | |
| void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst, 
 | |
| 				       const ValueSet *LVSetAft) {
 | |
| 
 | |
|   if (DEBUG_RA >= RA_DEBUG_Interference)
 | |
|     cerr << "\n For call inst: " << *MInst;
 | |
| 
 | |
|   ValueSet::const_iterator LIt = LVSetAft->begin();
 | |
| 
 | |
|   // for each live var in live variable set after machine inst
 | |
|   //
 | |
|   for ( ; LIt != LVSetAft->end(); ++LIt) {
 | |
| 
 | |
|     //  get the live range corresponding to live var
 | |
|     //
 | |
|     LiveRange *const LR = LRI.getLiveRangeForValue(*LIt ); 
 | |
| 
 | |
|     // LR can be null if it is a const since a const 
 | |
|     // doesn't have a dominating def - see Assumptions above
 | |
|     //
 | |
|     if (LR ) {  
 | |
|       if (DEBUG_RA >= RA_DEBUG_Interference) {
 | |
|         cerr << "\n\tLR after Call: ";
 | |
|         printSet(*LR);
 | |
|       }
 | |
|       LR->setCallInterference();
 | |
|       if (DEBUG_RA >= RA_DEBUG_Interference) {
 | |
| 	cerr << "\n  ++After adding call interference for LR: " ;
 | |
| 	printSet(*LR);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   // Now find the LR of the return value of the call
 | |
|   // We do this because, we look at the LV set *after* the instruction
 | |
|   // to determine, which LRs must be saved across calls. The return value
 | |
|   // of the call is live in this set - but it does not interfere with call
 | |
|   // (i.e., we can allocate a volatile register to the return value)
 | |
|   //
 | |
|   CallArgsDescriptor* argDesc = CallArgsDescriptor::get(MInst);
 | |
|   
 | |
|   if (const Value *RetVal = argDesc->getReturnValue()) {
 | |
|     LiveRange *RetValLR = LRI.getLiveRangeForValue( RetVal );
 | |
|     assert( RetValLR && "No LR for RetValue of call");
 | |
|     RetValLR->clearCallInterference();
 | |
|   }
 | |
| 
 | |
|   // If the CALL is an indirect call, find the LR of the function pointer.
 | |
|   // That has a call interference because it conflicts with outgoing args.
 | |
|   if (const Value *AddrVal = argDesc->getIndirectFuncPtr()) {
 | |
|     LiveRange *AddrValLR = LRI.getLiveRangeForValue( AddrVal );
 | |
|     assert( AddrValLR && "No LR for indirect addr val of call");
 | |
|     AddrValLR->setCallInterference();
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // This method will walk thru code and create interferences in the IG of
 | |
| // each RegClass. Also, this method calculates the spill cost of each
 | |
| // Live Range (it is done in this method to save another pass over the code).
 | |
| //----------------------------------------------------------------------------
 | |
| void PhyRegAlloc::buildInterferenceGraphs()
 | |
| {
 | |
| 
 | |
|   if (DEBUG_RA >= RA_DEBUG_Interference)
 | |
|     cerr << "Creating interference graphs ...\n";
 | |
| 
 | |
|   unsigned BBLoopDepthCost;
 | |
|   for (MachineFunction::iterator BBI = MF.begin(), BBE = MF.end();
 | |
|        BBI != BBE; ++BBI) {
 | |
|     const MachineBasicBlock &MBB = *BBI;
 | |
|     const BasicBlock *BB = MBB.getBasicBlock();
 | |
| 
 | |
|     // find the 10^(loop_depth) of this BB 
 | |
|     //
 | |
|     BBLoopDepthCost = (unsigned)pow(10.0, LoopDepthCalc->getLoopDepth(BB));
 | |
| 
 | |
|     // get the iterator for machine instructions
 | |
|     //
 | |
|     MachineBasicBlock::const_iterator MII = MBB.begin();
 | |
| 
 | |
|     // iterate over all the machine instructions in BB
 | |
|     //
 | |
|     for ( ; MII != MBB.end(); ++MII) {
 | |
|       const MachineInstr *MInst = *MII;
 | |
| 
 | |
|       // get the LV set after the instruction
 | |
|       //
 | |
|       const ValueSet &LVSetAI = LVI->getLiveVarSetAfterMInst(MInst, BB);
 | |
|       bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpCode());
 | |
| 
 | |
|       if (isCallInst ) {
 | |
| 	// set the isCallInterference flag of each live range wich extends
 | |
| 	// accross this call instruction. This information is used by graph
 | |
| 	// coloring algo to avoid allocating volatile colors to live ranges
 | |
| 	// that span across calls (since they have to be saved/restored)
 | |
| 	//
 | |
| 	setCallInterferences(MInst, &LVSetAI);
 | |
|       }
 | |
| 
 | |
|       // iterate over all MI operands to find defs
 | |
|       //
 | |
|       for (MachineInstr::const_val_op_iterator OpI = MInst->begin(),
 | |
|              OpE = MInst->end(); OpI != OpE; ++OpI) {
 | |
|        	if (OpI.isDef())    // create a new LR iff this operand is a def
 | |
| 	  addInterference(*OpI, &LVSetAI, isCallInst);
 | |
| 
 | |
| 	// Calculate the spill cost of each live range
 | |
| 	//
 | |
| 	LiveRange *LR = LRI.getLiveRangeForValue(*OpI);
 | |
| 	if (LR) LR->addSpillCost(BBLoopDepthCost);
 | |
|       } 
 | |
| 
 | |
| 
 | |
|       // if there are multiple defs in this instruction e.g. in SETX
 | |
|       //   
 | |
|       if (TM.getInstrInfo().isPseudoInstr(MInst->getOpCode()))
 | |
|       	addInterf4PseudoInstr(MInst);
 | |
| 
 | |
| 
 | |
|       // Also add interference for any implicit definitions in a machine
 | |
|       // instr (currently, only calls have this).
 | |
|       //
 | |
|       unsigned NumOfImpRefs =  MInst->getNumImplicitRefs();
 | |
|       if ( NumOfImpRefs > 0 ) {
 | |
| 	for (unsigned z=0; z < NumOfImpRefs; z++) 
 | |
| 	  if (MInst->implicitRefIsDefined(z) )
 | |
| 	    addInterference( MInst->getImplicitRef(z), &LVSetAI, isCallInst );
 | |
|       }
 | |
| 
 | |
| 
 | |
|     } // for all machine instructions in BB
 | |
|   } // for all BBs in function
 | |
| 
 | |
| 
 | |
|   // add interferences for function arguments. Since there are no explict 
 | |
|   // defs in the function for args, we have to add them manually
 | |
|   //  
 | |
|   addInterferencesForArgs();          
 | |
| 
 | |
|   if (DEBUG_RA >= RA_DEBUG_Interference)
 | |
|     cerr << "Interference graphs calculated!\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //--------------------------------------------------------------------------
 | |
| // Pseudo instructions will be exapnded to multiple instructions by the
 | |
| // assembler. Consequently, all the opernds must get distinct registers.
 | |
| // Therefore, we mark all operands of a pseudo instruction as they interfere
 | |
| // with one another.
 | |
| //--------------------------------------------------------------------------
 | |
| void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) {
 | |
| 
 | |
|   bool setInterf = false;
 | |
| 
 | |
|   // iterate over  MI operands to find defs
 | |
|   //
 | |
|   for (MachineInstr::const_val_op_iterator It1 = MInst->begin(),
 | |
|          ItE = MInst->end(); It1 != ItE; ++It1) {
 | |
|     const LiveRange *LROfOp1 = LRI.getLiveRangeForValue(*It1); 
 | |
|     assert((LROfOp1 || !It1.isDef()) && "No LR for Def in PSEUDO insruction");
 | |
| 
 | |
|     MachineInstr::const_val_op_iterator It2 = It1;
 | |
|     for (++It2; It2 != ItE; ++It2) {
 | |
|       const LiveRange *LROfOp2 = LRI.getLiveRangeForValue(*It2); 
 | |
| 
 | |
|       if (LROfOp2) {
 | |
| 	RegClass *RCOfOp1 = LROfOp1->getRegClass(); 
 | |
| 	RegClass *RCOfOp2 = LROfOp2->getRegClass(); 
 | |
|  
 | |
| 	if (RCOfOp1 == RCOfOp2 ){ 
 | |
| 	  RCOfOp1->setInterference( LROfOp1, LROfOp2 );  
 | |
| 	  setInterf = true;
 | |
| 	}
 | |
|       } // if Op2 has a LR
 | |
|     } // for all other defs in machine instr
 | |
|   } // for all operands in an instruction
 | |
| 
 | |
|   if (!setInterf && MInst->getNumOperands() > 2) {
 | |
|     cerr << "\nInterf not set for any operand in pseudo instr:\n";
 | |
|     cerr << *MInst;
 | |
|     assert(0 && "Interf not set for pseudo instr with > 2 operands" );
 | |
|   }
 | |
| } 
 | |
| 
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // This method will add interferences for incoming arguments to a function.
 | |
| //----------------------------------------------------------------------------
 | |
| 
 | |
| void PhyRegAlloc::addInterferencesForArgs() {
 | |
|   // get the InSet of root BB
 | |
|   const ValueSet &InSet = LVI->getInSetOfBB(&Fn->front());  
 | |
| 
 | |
|   for (Function::const_aiterator AI = Fn->abegin(); AI != Fn->aend(); ++AI) {
 | |
|     // add interferences between args and LVars at start 
 | |
|     addInterference(AI, &InSet, false);
 | |
|     
 | |
|     if (DEBUG_RA >= RA_DEBUG_Interference)
 | |
|       cerr << " - %% adding interference for  argument " << RAV(AI) << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // This method is called after register allocation is complete to set the
 | |
| // allocated reisters in the machine code. This code will add register numbers
 | |
| // to MachineOperands that contain a Value. Also it calls target specific
 | |
| // methods to produce caller saving instructions. At the end, it adds all
 | |
| // additional instructions produced by the register allocator to the 
 | |
| // instruction stream. 
 | |
| //----------------------------------------------------------------------------
 | |
| 
 | |
| //-----------------------------
 | |
| // Utility functions used below
 | |
| //-----------------------------
 | |
| inline void
 | |
| InsertBefore(MachineInstr* newMI,
 | |
|              MachineBasicBlock& MBB,
 | |
|              MachineBasicBlock::iterator& MII)
 | |
| {
 | |
|   MII = MBB.insert(MII, newMI);
 | |
|   ++MII;
 | |
| }
 | |
| 
 | |
| inline void
 | |
| InsertAfter(MachineInstr* newMI,
 | |
|             MachineBasicBlock& MBB,
 | |
|             MachineBasicBlock::iterator& MII)
 | |
| {
 | |
|   ++MII;    // insert before the next instruction
 | |
|   MII = MBB.insert(MII, newMI);
 | |
| }
 | |
| 
 | |
| inline void
 | |
| SubstituteInPlace(MachineInstr* newMI,
 | |
|                   MachineBasicBlock& MBB,
 | |
|                   MachineBasicBlock::iterator MII)
 | |
| {
 | |
|   *MII = newMI;
 | |
| }
 | |
| 
 | |
| inline void
 | |
| PrependInstructions(vector<MachineInstr *> &IBef,
 | |
|                     MachineBasicBlock& MBB,
 | |
|                     MachineBasicBlock::iterator& MII,
 | |
|                     const std::string& msg)
 | |
| {
 | |
|   if (!IBef.empty())
 | |
|     {
 | |
|       MachineInstr* OrigMI = *MII;
 | |
|       std::vector<MachineInstr *>::iterator AdIt; 
 | |
|       for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt)
 | |
|         {
 | |
|           if (DEBUG_RA) {
 | |
|             if (OrigMI) cerr << "For MInst:\n  " << *OrigMI;
 | |
|             cerr << msg << "PREPENDed instr:\n  " << **AdIt << "\n";
 | |
|           }
 | |
|           InsertBefore(*AdIt, MBB, MII);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| inline void
 | |
| AppendInstructions(std::vector<MachineInstr *> &IAft,
 | |
|                    MachineBasicBlock& MBB,
 | |
|                    MachineBasicBlock::iterator& MII,
 | |
|                    const std::string& msg)
 | |
| {
 | |
|   if (!IAft.empty())
 | |
|     {
 | |
|       MachineInstr* OrigMI = *MII;
 | |
|       std::vector<MachineInstr *>::iterator AdIt; 
 | |
|       for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt )
 | |
|         {
 | |
|           if (DEBUG_RA) {
 | |
|             if (OrigMI) cerr << "For MInst:\n  " << *OrigMI;
 | |
|             cerr << msg << "APPENDed instr:\n  "  << **AdIt << "\n";
 | |
|           }
 | |
|           InsertAfter(*AdIt, MBB, MII);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void PhyRegAlloc::updateMachineCode() {
 | |
|   // Insert any instructions needed at method entry
 | |
|   MachineBasicBlock::iterator MII = MF.front().begin();
 | |
|   PrependInstructions(AddedInstrAtEntry.InstrnsBefore, MF.front(), MII,
 | |
|                       "At function entry: \n");
 | |
|   assert(AddedInstrAtEntry.InstrnsAfter.empty() &&
 | |
|          "InstrsAfter should be unnecessary since we are just inserting at "
 | |
|          "the function entry point here.");
 | |
|   
 | |
|   for (MachineFunction::iterator BBI = MF.begin(), BBE = MF.end();
 | |
|        BBI != BBE; ++BBI) {
 | |
| 
 | |
|     // iterate over all the machine instructions in BB
 | |
|     MachineBasicBlock &MBB = *BBI;
 | |
|     for (MachineBasicBlock::iterator MII = MBB.begin();
 | |
|          MII != MBB.end(); ++MII) {  
 | |
| 
 | |
|       MachineInstr *MInst = *MII; 
 | |
|       unsigned Opcode =  MInst->getOpCode();
 | |
|     
 | |
|       // do not process Phis
 | |
|       if (TM.getInstrInfo().isDummyPhiInstr(Opcode))
 | |
| 	continue;
 | |
| 
 | |
|       // Reset tmp stack positions so they can be reused for each machine instr.
 | |
|       MF.popAllTempValues(TM);  
 | |
| 	
 | |
|       // Now insert speical instructions (if necessary) for call/return
 | |
|       // instructions. 
 | |
|       //
 | |
|       if (TM.getInstrInfo().isCall(Opcode) ||
 | |
|           TM.getInstrInfo().isReturn(Opcode)) {
 | |
|         AddedInstrns &AI = AddedInstrMap[MInst];
 | |
| 	
 | |
|         if (TM.getInstrInfo().isCall(Opcode))
 | |
|           MRI.colorCallArgs(MInst, LRI, &AI, *this, MBB.getBasicBlock());
 | |
|         else if (TM.getInstrInfo().isReturn(Opcode))
 | |
|           MRI.colorRetValue(MInst, LRI, &AI);
 | |
|       }
 | |
|       
 | |
|       // Set the registers for operands in the machine instruction
 | |
|       // if a register was successfully allocated.  If not, insert
 | |
|       // code to spill the register value.
 | |
|       // 
 | |
|       for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum)
 | |
|         {
 | |
|           MachineOperand& Op = MInst->getOperand(OpNum);
 | |
|           if (Op.getType() ==  MachineOperand::MO_VirtualRegister || 
 | |
|               Op.getType() ==  MachineOperand::MO_CCRegister)
 | |
|             {
 | |
|               const Value *const Val =  Op.getVRegValue();
 | |
|           
 | |
|               LiveRange *const LR = LRI.getLiveRangeForValue(Val);
 | |
|               if (!LR)              // consts or labels will have no live range
 | |
|                 {
 | |
|                   // if register is not allocated, mark register as invalid
 | |
|                   if (Op.getAllocatedRegNum() == -1)
 | |
|                     MInst->SetRegForOperand(OpNum, MRI.getInvalidRegNum()); 
 | |
|                   continue;
 | |
|                 }
 | |
|           
 | |
|               if (LR->hasColor())
 | |
|                 MInst->SetRegForOperand(OpNum,
 | |
|                                 MRI.getUnifiedRegNum(LR->getRegClass()->getID(),
 | |
|                                                      LR->getColor()));
 | |
|               else
 | |
|                 // LR did NOT receive a color (register). Insert spill code.
 | |
|                 insertCode4SpilledLR(LR, MInst, MBB.getBasicBlock(), OpNum);
 | |
|             }
 | |
|         } // for each operand
 | |
| 
 | |
|       // Now add instructions that the register allocator inserts before/after 
 | |
|       // this machine instructions (done only for calls/rets/incoming args)
 | |
|       // We do this here, to ensure that spill for an instruction is inserted
 | |
|       // closest as possible to an instruction (see above insertCode4Spill...)
 | |
|       // 
 | |
|       // First, if the instruction in the delay slot of a branch needs
 | |
|       // instructions inserted, move it out of the delay slot and before the
 | |
|       // branch because putting code before or after it would be VERY BAD!
 | |
|       // 
 | |
|       unsigned bumpIteratorBy = 0;
 | |
|       if (MII != MBB.begin())
 | |
|         if (unsigned predDelaySlots =
 | |
|             TM.getInstrInfo().getNumDelaySlots((*(MII-1))->getOpCode()))
 | |
|           {
 | |
|             assert(predDelaySlots==1 && "Not handling multiple delay slots!");
 | |
|             if (TM.getInstrInfo().isBranch((*(MII-1))->getOpCode())
 | |
|                 && (AddedInstrMap.count(MInst) ||
 | |
|                     AddedInstrMap[MInst].InstrnsAfter.size() > 0))
 | |
|             {
 | |
|               // Current instruction is in the delay slot of a branch and it
 | |
|               // needs spill code inserted before or after it.
 | |
|               // Move it before the preceding branch.
 | |
|               InsertBefore(MInst, MBB, --MII);
 | |
|               MachineInstr* nopI =
 | |
|                 new MachineInstr(TM.getInstrInfo().getNOPOpCode());
 | |
|               SubstituteInPlace(nopI, MBB, MII+1); // replace orig with NOP
 | |
|               --MII;                  // point to MInst in new location
 | |
|               bumpIteratorBy = 2;     // later skip the branch and the NOP!
 | |
|             }
 | |
|           }
 | |
| 
 | |
|       // If there are instructions to be added, *before* this machine
 | |
|       // instruction, add them now.
 | |
|       //      
 | |
|       if (AddedInstrMap.count(MInst)) {
 | |
|         PrependInstructions(AddedInstrMap[MInst].InstrnsBefore, MBB, MII,"");
 | |
|       }
 | |
|       
 | |
|       // If there are instructions to be added *after* this machine
 | |
|       // instruction, add them now
 | |
|       //
 | |
|       if (!AddedInstrMap[MInst].InstrnsAfter.empty()) {
 | |
| 
 | |
| 	// if there are delay slots for this instruction, the instructions
 | |
| 	// added after it must really go after the delayed instruction(s)
 | |
| 	// So, we move the InstrAfter of the current instruction to the 
 | |
| 	// corresponding delayed instruction
 | |
| 	if (unsigned delay =
 | |
|             TM.getInstrInfo().getNumDelaySlots(MInst->getOpCode())) { 
 | |
|           
 | |
|           // Delayed instructions are typically branches or calls.  Let's make
 | |
|           // sure this is not a branch, otherwise "insert-after" is meaningless,
 | |
|           // and should never happen for any reason (spill code, register
 | |
|           // restores, etc.).
 | |
|           assert(! TM.getInstrInfo().isBranch(MInst->getOpCode()) &&
 | |
|                  ! TM.getInstrInfo().isReturn(MInst->getOpCode()) &&
 | |
|                  "INTERNAL ERROR: Register allocator should not be inserting "
 | |
|                  "any code after a branch or return!");
 | |
| 
 | |
| 	  move2DelayedInstr(MInst,  *(MII+delay) );
 | |
| 	}
 | |
| 	else {
 | |
| 	  // Here we can add the "instructions after" to the current
 | |
| 	  // instruction since there are no delay slots for this instruction
 | |
| 	  AppendInstructions(AddedInstrMap[MInst].InstrnsAfter, MBB, MII,"");
 | |
| 	}  // if not delay
 | |
|       }
 | |
| 
 | |
|       // If we mucked with the instruction order above, adjust the loop iterator
 | |
|       if (bumpIteratorBy)
 | |
|         MII = MII + bumpIteratorBy;
 | |
| 
 | |
|     } // for each machine instruction
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // This method inserts spill code for AN operand whose LR was spilled.
 | |
| // This method may be called several times for a single machine instruction
 | |
| // if it contains many spilled operands. Each time it is called, it finds
 | |
| // a register which is not live at that instruction and also which is not
 | |
| // used by other spilled operands of the same instruction. Then it uses
 | |
| // this register temporarily to accomodate the spilled value.
 | |
| //----------------------------------------------------------------------------
 | |
| void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR, 
 | |
| 				       MachineInstr *MInst,
 | |
| 				       const BasicBlock *BB,
 | |
| 				       const unsigned OpNum) {
 | |
| 
 | |
|   assert((! TM.getInstrInfo().isCall(MInst->getOpCode()) || OpNum == 0) &&
 | |
|          "Outgoing arg of a call must be handled elsewhere (func arg ok)");
 | |
|   assert(! TM.getInstrInfo().isReturn(MInst->getOpCode()) &&
 | |
| 	 "Return value of a ret must be handled elsewhere");
 | |
| 
 | |
|   MachineOperand& Op = MInst->getOperand(OpNum);
 | |
|   bool isDef =  MInst->operandIsDefined(OpNum);
 | |
|   bool isDefAndUse =  MInst->operandIsDefinedAndUsed(OpNum);
 | |
|   unsigned RegType = MRI.getRegType( LR );
 | |
|   int SpillOff = LR->getSpillOffFromFP();
 | |
|   RegClass *RC = LR->getRegClass();
 | |
|   const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB);
 | |
| 
 | |
|   MF.pushTempValue(TM, MRI.getSpilledRegSize(RegType) );
 | |
|   
 | |
|   vector<MachineInstr*> MIBef, MIAft;
 | |
|   vector<MachineInstr*> AdIMid;
 | |
|   
 | |
|   // Choose a register to hold the spilled value.  This may insert code
 | |
|   // before and after MInst to free up the value.  If so, this code should
 | |
|   // be first and last in the spill sequence before/after MInst.
 | |
|   int TmpRegU = getUsableUniRegAtMI(RegType, &LVSetBef, MInst, MIBef, MIAft);
 | |
|   
 | |
|   // Set the operand first so that it this register does not get used
 | |
|   // as a scratch register for later calls to getUsableUniRegAtMI below
 | |
|   MInst->SetRegForOperand(OpNum, TmpRegU);
 | |
|   
 | |
|   // get the added instructions for this instruction
 | |
|   AddedInstrns &AI = AddedInstrMap[MInst];
 | |
| 
 | |
|   // We may need a scratch register to copy the spilled value to/from memory.
 | |
|   // This may itself have to insert code to free up a scratch register.  
 | |
|   // Any such code should go before (after) the spill code for a load (store).
 | |
|   int scratchRegType = -1;
 | |
|   int scratchReg = -1;
 | |
|   if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
 | |
|     {
 | |
|       scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef,
 | |
|                                        MInst, MIBef, MIAft);
 | |
|       assert(scratchReg != MRI.getInvalidRegNum());
 | |
|       MInst->insertUsedReg(scratchReg); 
 | |
|     }
 | |
|   
 | |
|   if (!isDef || isDefAndUse) {
 | |
|     // for a USE, we have to load the value of LR from stack to a TmpReg
 | |
|     // and use the TmpReg as one operand of instruction
 | |
|     
 | |
|     // actual loading instruction(s)
 | |
|     MRI.cpMem2RegMI(AdIMid, MRI.getFramePointer(), SpillOff, TmpRegU, RegType,
 | |
|                     scratchReg);
 | |
|     
 | |
|     // the actual load should be after the instructions to free up TmpRegU
 | |
|     MIBef.insert(MIBef.end(), AdIMid.begin(), AdIMid.end());
 | |
|     AdIMid.clear();
 | |
|   }
 | |
|   
 | |
|   if (isDef) {   // if this is a Def
 | |
|     // for a DEF, we have to store the value produced by this instruction
 | |
|     // on the stack position allocated for this LR
 | |
|     
 | |
|     // actual storing instruction(s)
 | |
|     MRI.cpReg2MemMI(AdIMid, TmpRegU, MRI.getFramePointer(), SpillOff, RegType,
 | |
|                     scratchReg);
 | |
|     
 | |
|     MIAft.insert(MIAft.begin(), AdIMid.begin(), AdIMid.end());
 | |
|   }  // if !DEF
 | |
|   
 | |
|   // Finally, insert the entire spill code sequences before/after MInst
 | |
|   AI.InstrnsBefore.insert(AI.InstrnsBefore.end(), MIBef.begin(), MIBef.end());
 | |
|   AI.InstrnsAfter.insert(AI.InstrnsAfter.begin(), MIAft.begin(), MIAft.end());
 | |
|   
 | |
|   if (DEBUG_RA) {
 | |
|     cerr << "\nFor Inst:\n  " << *MInst;
 | |
|     cerr << "SPILLED LR# " << LR->getUserIGNode()->getIndex();
 | |
|     cerr << "; added Instructions:";
 | |
|     for_each(MIBef.begin(), MIBef.end(), std::mem_fun(&MachineInstr::dump));
 | |
|     for_each(MIAft.begin(), MIAft.end(), std::mem_fun(&MachineInstr::dump));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // We can use the following method to get a temporary register to be used
 | |
| // BEFORE any given machine instruction. If there is a register available,
 | |
| // this method will simply return that register and set MIBef = MIAft = NULL.
 | |
| // Otherwise, it will return a register and MIAft and MIBef will contain
 | |
| // two instructions used to free up this returned register.
 | |
| // Returned register number is the UNIFIED register number
 | |
| //----------------------------------------------------------------------------
 | |
| 
 | |
| int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
 | |
|                                      const ValueSet *LVSetBef,
 | |
|                                      MachineInstr *MInst, 
 | |
|                                      std::vector<MachineInstr*>& MIBef,
 | |
|                                      std::vector<MachineInstr*>& MIAft) {
 | |
|   
 | |
|   RegClass* RC = getRegClassByID(MRI.getRegClassIDOfRegType(RegType));
 | |
|   
 | |
|   int RegU =  getUnusedUniRegAtMI(RC, MInst, LVSetBef);
 | |
|   
 | |
|   if (RegU == -1) {
 | |
|     // we couldn't find an unused register. Generate code to free up a reg by
 | |
|     // saving it on stack and restoring after the instruction
 | |
|     
 | |
|     int TmpOff = MF.pushTempValue(TM,  MRI.getSpilledRegSize(RegType) );
 | |
|     
 | |
|     RegU = getUniRegNotUsedByThisInst(RC, MInst);
 | |
|     
 | |
|     // Check if we need a scratch register to copy this register to memory.
 | |
|     int scratchRegType = -1;
 | |
|     if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
 | |
|       {
 | |
|         int scratchReg = getUsableUniRegAtMI(scratchRegType, LVSetBef,
 | |
|                                              MInst, MIBef, MIAft);
 | |
|         assert(scratchReg != MRI.getInvalidRegNum());
 | |
|         
 | |
|         // We may as well hold the value in the scratch register instead
 | |
|         // of copying it to memory and back.  But we have to mark the
 | |
|         // register as used by this instruction, so it does not get used
 | |
|         // as a scratch reg. by another operand or anyone else.
 | |
|         MInst->insertUsedReg(scratchReg); 
 | |
|         MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType);
 | |
|         MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType);
 | |
|       }
 | |
|     else
 | |
|       { // the register can be copied directly to/from memory so do it.
 | |
|         MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType);
 | |
|         MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType);
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   return RegU;
 | |
| }
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // This method is called to get a new unused register that can be used to
 | |
| // accomodate a spilled value. 
 | |
| // This method may be called several times for a single machine instruction
 | |
| // if it contains many spilled operands. Each time it is called, it finds
 | |
| // a register which is not live at that instruction and also which is not
 | |
| // used by other spilled operands of the same instruction.
 | |
| // Return register number is relative to the register class. NOT
 | |
| // unified number
 | |
| //----------------------------------------------------------------------------
 | |
| int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, 
 | |
| 				  const MachineInstr *MInst, 
 | |
| 				  const ValueSet *LVSetBef) {
 | |
| 
 | |
|   unsigned NumAvailRegs =  RC->getNumOfAvailRegs();
 | |
|   
 | |
|   std::vector<bool> &IsColorUsedArr = RC->getIsColorUsedArr();
 | |
|   
 | |
|   for (unsigned i=0; i <  NumAvailRegs; i++)     // Reset array
 | |
|       IsColorUsedArr[i] = false;
 | |
|       
 | |
|   ValueSet::const_iterator LIt = LVSetBef->begin();
 | |
| 
 | |
|   // for each live var in live variable set after machine inst
 | |
|   for ( ; LIt != LVSetBef->end(); ++LIt) {
 | |
| 
 | |
|    //  get the live range corresponding to live var
 | |
|     LiveRange *const LRofLV = LRI.getLiveRangeForValue(*LIt );    
 | |
| 
 | |
|     // LR can be null if it is a const since a const 
 | |
|     // doesn't have a dominating def - see Assumptions above
 | |
|     if (LRofLV && LRofLV->getRegClass() == RC && LRofLV->hasColor() ) 
 | |
|       IsColorUsedArr[ LRofLV->getColor() ] = true;
 | |
|   }
 | |
| 
 | |
|   // It is possible that one operand of this MInst was already spilled
 | |
|   // and it received some register temporarily. If that's the case,
 | |
|   // it is recorded in machine operand. We must skip such registers.
 | |
| 
 | |
|   setRelRegsUsedByThisInst(RC, MInst);
 | |
| 
 | |
|   for (unsigned c=0; c < NumAvailRegs; c++)   // find first unused color
 | |
|      if (!IsColorUsedArr[c])
 | |
|        return MRI.getUnifiedRegNum(RC->getID(), c);
 | |
|   
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // Get any other register in a register class, other than what is used
 | |
| // by operands of a machine instruction. Returns the unified reg number.
 | |
| //----------------------------------------------------------------------------
 | |
| int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC, 
 | |
|                                             const MachineInstr *MInst) {
 | |
| 
 | |
|   vector<bool> &IsColorUsedArr = RC->getIsColorUsedArr();
 | |
|   unsigned NumAvailRegs =  RC->getNumOfAvailRegs();
 | |
| 
 | |
|   for (unsigned i=0; i < NumAvailRegs ; i++)   // Reset array
 | |
|     IsColorUsedArr[i] = false;
 | |
| 
 | |
|   setRelRegsUsedByThisInst(RC, MInst);
 | |
| 
 | |
|   for (unsigned c=0; c < RC->getNumOfAvailRegs(); c++)// find first unused color
 | |
|     if (!IsColorUsedArr[c])
 | |
|       return  MRI.getUnifiedRegNum(RC->getID(), c);
 | |
| 
 | |
|   assert(0 && "FATAL: No free register could be found in reg class!!");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // This method modifies the IsColorUsedArr of the register class passed to it.
 | |
| // It sets the bits corresponding to the registers used by this machine
 | |
| // instructions. Both explicit and implicit operands are set.
 | |
| //----------------------------------------------------------------------------
 | |
| void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, 
 | |
|                                            const MachineInstr *MInst ) {
 | |
| 
 | |
|   vector<bool> &IsColorUsedArr = RC->getIsColorUsedArr();
 | |
|   
 | |
|   // Add the registers already marked as used by the instruction. 
 | |
|   // This should include any scratch registers that are used to save
 | |
|   // values across the instruction (e.g., for saving state register values).
 | |
|   const vector<bool> ®sUsed = MInst->getRegsUsed();
 | |
|   for (unsigned i = 0, e = regsUsed.size(); i != e; ++i)
 | |
|     if (regsUsed[i]) {
 | |
|       unsigned classId = 0;
 | |
|       int classRegNum = MRI.getClassRegNum(i, classId);
 | |
|       if (RC->getID() == classId)
 | |
|         {
 | |
|           assert(classRegNum < (int) IsColorUsedArr.size() &&
 | |
|                  "Illegal register number for this reg class?");
 | |
|           IsColorUsedArr[classRegNum] = true;
 | |
|         }
 | |
|     }
 | |
|   
 | |
|   // Now add registers allocated to the live ranges of values used in
 | |
|   // the instruction.  These are not yet recorded in the instruction.
 | |
|   for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum)
 | |
|     {
 | |
|       const MachineOperand& Op = MInst->getOperand(OpNum);
 | |
|       
 | |
|       if (MInst->getOperandType(OpNum) == MachineOperand::MO_VirtualRegister || 
 | |
|           MInst->getOperandType(OpNum) == MachineOperand::MO_CCRegister)
 | |
|         if (const Value* Val = Op.getVRegValue())
 | |
|           if (MRI.getRegClassIDOfValue(Val) == RC->getID())
 | |
|             if (Op.getAllocatedRegNum() == -1)
 | |
|               if (LiveRange *LROfVal = LRI.getLiveRangeForValue(Val))
 | |
|                 if (LROfVal->hasColor() )
 | |
|                   // this operand is in a LR that received a color
 | |
|                   IsColorUsedArr[LROfVal->getColor()] = true;
 | |
|     }
 | |
|   
 | |
|   // If there are implicit references, mark their allocated regs as well
 | |
|   // 
 | |
|   for (unsigned z=0; z < MInst->getNumImplicitRefs(); z++)
 | |
|     if (const LiveRange*
 | |
|         LRofImpRef = LRI.getLiveRangeForValue(MInst->getImplicitRef(z)))    
 | |
|       if (LRofImpRef->hasColor())
 | |
|         // this implicit reference is in a LR that received a color
 | |
|         IsColorUsedArr[LRofImpRef->getColor()] = true;
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // If there are delay slots for an instruction, the instructions
 | |
| // added after it must really go after the delayed instruction(s).
 | |
| // So, we move the InstrAfter of that instruction to the 
 | |
| // corresponding delayed instruction using the following method.
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI,
 | |
|                                     const MachineInstr *DelayedMI) {
 | |
| 
 | |
|   // "added after" instructions of the original instr
 | |
|   std::vector<MachineInstr *> &OrigAft = AddedInstrMap[OrigMI].InstrnsAfter;
 | |
| 
 | |
|   // "added instructions" of the delayed instr
 | |
|   AddedInstrns &DelayAdI = AddedInstrMap[DelayedMI];
 | |
| 
 | |
|   // "added after" instructions of the delayed instr
 | |
|   std::vector<MachineInstr *> &DelayedAft = DelayAdI.InstrnsAfter;
 | |
| 
 | |
|   // go thru all the "added after instructions" of the original instruction
 | |
|   // and append them to the "addded after instructions" of the delayed
 | |
|   // instructions
 | |
|   DelayedAft.insert(DelayedAft.end(), OrigAft.begin(), OrigAft.end());
 | |
| 
 | |
|   // empty the "added after instructions" of the original instruction
 | |
|   OrigAft.clear();
 | |
| }
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // This method prints the code with registers after register allocation is
 | |
| // complete.
 | |
| //----------------------------------------------------------------------------
 | |
| void PhyRegAlloc::printMachineCode()
 | |
| {
 | |
| 
 | |
|   cerr << "\n;************** Function " << Fn->getName()
 | |
|        << " *****************\n";
 | |
| 
 | |
|   for (MachineFunction::iterator BBI = MF.begin(), BBE = MF.end();
 | |
|        BBI != BBE; ++BBI) {
 | |
|     cerr << "\n"; printLabel(BBI->getBasicBlock()); cerr << ": ";
 | |
| 
 | |
|     // get the iterator for machine instructions
 | |
|     MachineBasicBlock& MBB = *BBI;
 | |
|     MachineBasicBlock::iterator MII = MBB.begin();
 | |
| 
 | |
|     // iterate over all the machine instructions in BB
 | |
|     for ( ; MII != MBB.end(); ++MII) {  
 | |
|       MachineInstr *MInst = *MII; 
 | |
| 
 | |
|       cerr << "\n\t";
 | |
|       cerr << TM.getInstrInfo().getName(MInst->getOpCode());
 | |
| 
 | |
|       for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
 | |
| 	MachineOperand& Op = MInst->getOperand(OpNum);
 | |
| 
 | |
| 	if (Op.getType() ==  MachineOperand::MO_VirtualRegister || 
 | |
| 	    Op.getType() ==  MachineOperand::MO_CCRegister /*|| 
 | |
| 	    Op.getType() ==  MachineOperand::MO_PCRelativeDisp*/ ) {
 | |
| 
 | |
| 	  const Value *const Val = Op.getVRegValue () ;
 | |
| 	  // ****this code is temporary till NULL Values are fixed
 | |
| 	  if (! Val ) {
 | |
| 	    cerr << "\t<*NULL*>";
 | |
| 	    continue;
 | |
| 	  }
 | |
| 
 | |
| 	  // if a label or a constant
 | |
| 	  if (isa<BasicBlock>(Val)) {
 | |
| 	    cerr << "\t"; printLabel(	Op.getVRegValue	() );
 | |
| 	  } else {
 | |
| 	    // else it must be a register value
 | |
| 	    const int RegNum = Op.getAllocatedRegNum();
 | |
| 
 | |
| 	    cerr << "\t" << "%" << MRI.getUnifiedRegName( RegNum );
 | |
| 	    if (Val->hasName() )
 | |
| 	      cerr << "(" << Val->getName() << ")";
 | |
| 	    else 
 | |
| 	      cerr << "(" << Val << ")";
 | |
| 
 | |
| 	    if (Op.opIsDef() )
 | |
| 	      cerr << "*";
 | |
| 
 | |
| 	    const LiveRange *LROfVal = LRI.getLiveRangeForValue(Val);
 | |
| 	    if (LROfVal )
 | |
| 	      if (LROfVal->hasSpillOffset() )
 | |
| 		cerr << "$";
 | |
| 	  }
 | |
| 
 | |
| 	} 
 | |
| 	else if (Op.getType() ==  MachineOperand::MO_MachineRegister) {
 | |
| 	  cerr << "\t" << "%" << MRI.getUnifiedRegName(Op.getMachineRegNum());
 | |
| 	}
 | |
| 
 | |
| 	else 
 | |
| 	  cerr << "\t" << Op;      // use dump field
 | |
|       }
 | |
| 
 | |
|     
 | |
| 
 | |
|       unsigned NumOfImpRefs =  MInst->getNumImplicitRefs();
 | |
|       if (NumOfImpRefs > 0) {
 | |
| 	cerr << "\tImplicit:";
 | |
| 
 | |
| 	for (unsigned z=0; z < NumOfImpRefs; z++)
 | |
| 	  cerr << RAV(MInst->getImplicitRef(z)) << "\t";
 | |
|       }
 | |
| 
 | |
|     } // for all machine instructions
 | |
| 
 | |
|     cerr << "\n";
 | |
| 
 | |
|   } // for all BBs
 | |
| 
 | |
|   cerr << "\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| void PhyRegAlloc::colorIncomingArgs()
 | |
| {
 | |
|   MRI.colorMethodArgs(Fn, LRI, &AddedInstrAtEntry);
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // Used to generate a label for a basic block
 | |
| //----------------------------------------------------------------------------
 | |
| void PhyRegAlloc::printLabel(const Value *Val) {
 | |
|   if (Val->hasName())
 | |
|     cerr  << Val->getName();
 | |
|   else
 | |
|     cerr << "Label" << Val;
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // This method calls setSugColorUsable method of each live range. This
 | |
| // will determine whether the suggested color of LR is  really usable.
 | |
| // A suggested color is not usable when the suggested color is volatile
 | |
| // AND when there are call interferences
 | |
| //----------------------------------------------------------------------------
 | |
| 
 | |
| void PhyRegAlloc::markUnusableSugColors()
 | |
| {
 | |
|   // hash map iterator
 | |
|   LiveRangeMapType::const_iterator HMI = (LRI.getLiveRangeMap())->begin();   
 | |
|   LiveRangeMapType::const_iterator HMIEnd = (LRI.getLiveRangeMap())->end();   
 | |
| 
 | |
|     for (; HMI != HMIEnd ; ++HMI ) {
 | |
|       if (HMI->first) { 
 | |
| 	LiveRange *L = HMI->second;      // get the LiveRange
 | |
| 	if (L) { 
 | |
| 	  if (L->hasSuggestedColor()) {
 | |
| 	    int RCID = L->getRegClass()->getID();
 | |
| 	    if (MRI.isRegVolatile( RCID,  L->getSuggestedColor()) &&
 | |
| 		L->isCallInterference() )
 | |
| 	      L->setSuggestedColorUsable( false );
 | |
| 	    else
 | |
| 	      L->setSuggestedColorUsable( true );
 | |
| 	  }
 | |
| 	} // if L->hasSuggestedColor()
 | |
|       }
 | |
|     } // for all LR's in hash map
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // The following method will set the stack offsets of the live ranges that
 | |
| // are decided to be spillled. This must be called just after coloring the
 | |
| // LRs using the graph coloring algo. For each live range that is spilled,
 | |
| // this method allocate a new spill position on the stack.
 | |
| //----------------------------------------------------------------------------
 | |
| 
 | |
| void PhyRegAlloc::allocateStackSpace4SpilledLRs() {
 | |
|   if (DEBUG_RA) cerr << "\nSetting LR stack offsets for spills...\n";
 | |
| 
 | |
|   LiveRangeMapType::const_iterator HMI    = LRI.getLiveRangeMap()->begin();   
 | |
|   LiveRangeMapType::const_iterator HMIEnd = LRI.getLiveRangeMap()->end();   
 | |
| 
 | |
|   for ( ; HMI != HMIEnd ; ++HMI) {
 | |
|     if (HMI->first && HMI->second) {
 | |
|       LiveRange *L = HMI->second;      // get the LiveRange
 | |
|       if (!L->hasColor()) {   //  NOTE: ** allocating the size of long Type **
 | |
|         int stackOffset = MF.allocateSpilledValue(TM, Type::LongTy);
 | |
|         L->setSpillOffFromFP(stackOffset);
 | |
|         if (DEBUG_RA)
 | |
|           cerr << "  LR# " << L->getUserIGNode()->getIndex()
 | |
|                << ": stack-offset = " << stackOffset << "\n";
 | |
|       }
 | |
|     }
 | |
|   } // for all LR's in hash map
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // The entry pont to Register Allocation
 | |
| //----------------------------------------------------------------------------
 | |
| 
 | |
| void PhyRegAlloc::allocateRegisters()
 | |
| {
 | |
| 
 | |
|   // make sure that we put all register classes into the RegClassList 
 | |
|   // before we call constructLiveRanges (now done in the constructor of 
 | |
|   // PhyRegAlloc class).
 | |
|   //
 | |
|   LRI.constructLiveRanges();            // create LR info
 | |
| 
 | |
|   if (DEBUG_RA >= RA_DEBUG_LiveRanges)
 | |
|     LRI.printLiveRanges();
 | |
|   
 | |
|   createIGNodeListsAndIGs();            // create IGNode list and IGs
 | |
| 
 | |
|   buildInterferenceGraphs();            // build IGs in all reg classes
 | |
|   
 | |
|   
 | |
|   if (DEBUG_RA >= RA_DEBUG_LiveRanges) {
 | |
|     // print all LRs in all reg classes
 | |
|     for ( unsigned rc=0; rc < NumOfRegClasses  ; rc++)  
 | |
|       RegClassList[rc]->printIGNodeList(); 
 | |
|     
 | |
|     // print IGs in all register classes
 | |
|     for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)  
 | |
|       RegClassList[rc]->printIG();       
 | |
|   }
 | |
| 
 | |
|   LRI.coalesceLRs();                    // coalesce all live ranges
 | |
| 
 | |
|   if (DEBUG_RA >= RA_DEBUG_LiveRanges) {
 | |
|     // print all LRs in all reg classes
 | |
|     for (unsigned rc=0; rc < NumOfRegClasses; rc++)
 | |
|       RegClassList[rc]->printIGNodeList();
 | |
|     
 | |
|     // print IGs in all register classes
 | |
|     for (unsigned rc=0; rc < NumOfRegClasses; rc++)
 | |
|       RegClassList[rc]->printIG();
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // mark un-usable suggested color before graph coloring algorithm.
 | |
|   // When this is done, the graph coloring algo will not reserve
 | |
|   // suggested color unnecessarily - they can be used by another LR
 | |
|   //
 | |
|   markUnusableSugColors(); 
 | |
| 
 | |
|   // color all register classes using the graph coloring algo
 | |
|   for (unsigned rc=0; rc < NumOfRegClasses ; rc++)  
 | |
|     RegClassList[rc]->colorAllRegs();    
 | |
| 
 | |
|   // Atter grpah coloring, if some LRs did not receive a color (i.e, spilled)
 | |
|   // a poistion for such spilled LRs
 | |
|   //
 | |
|   allocateStackSpace4SpilledLRs();
 | |
| 
 | |
|   MF.popAllTempValues(TM);  // TODO **Check
 | |
| 
 | |
|   // color incoming args - if the correct color was not received
 | |
|   // insert code to copy to the correct register
 | |
|   //
 | |
|   colorIncomingArgs();
 | |
| 
 | |
|   // Now update the machine code with register names and add any 
 | |
|   // additional code inserted by the register allocator to the instruction
 | |
|   // stream
 | |
|   //
 | |
|   updateMachineCode(); 
 | |
| 
 | |
|   if (DEBUG_RA) {
 | |
|     cerr << "\n**** Machine Code After Register Allocation:\n\n";
 | |
|     MF.dump();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 |