mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Actually use the `reference` typedef, and remove the private redefinition of `pointer` since it has no users. Using `reference` exposes a problem with r207257, which specified the wrong `value_type` to `iterator_facade_base` (fixed that too). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207270 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			246 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===---- ADT/SCCIterator.h - Strongly Connected Comp. Iter. ----*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| ///
 | |
| /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
 | |
| /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
 | |
| /// algorithm.
 | |
| ///
 | |
| /// The SCC iterator has the important property that if a node in SCC S1 has an
 | |
| /// edge to a node in SCC S2, then it visits S1 *after* S2.
 | |
| ///
 | |
| /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
 | |
| /// This requires some simple wrappers and is not supported yet.)
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ADT_SCCITERATOR_H
 | |
| #define LLVM_ADT_SCCITERATOR_H
 | |
| 
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/GraphTraits.h"
 | |
| #include "llvm/ADT/iterator.h"
 | |
| #include <vector>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// \brief Enumerate the SCCs of a directed graph in reverse topological order
 | |
| /// of the SCC DAG.
 | |
| ///
 | |
| /// This is implemented using Tarjan's DFS algorithm using an internal stack to
 | |
| /// build up a vector of nodes in a particular SCC. Note that it is a forward
 | |
| /// iterator and thus you cannot backtrack or re-visit nodes.
 | |
| template <class GraphT, class GT = GraphTraits<GraphT>>
 | |
| class scc_iterator
 | |
|     : public iterator_facade_base<
 | |
|           scc_iterator<GraphT, GT>, std::forward_iterator_tag,
 | |
|           const std::vector<typename GT::NodeType *>, ptrdiff_t> {
 | |
|   typedef typename GT::NodeType NodeType;
 | |
|   typedef typename GT::ChildIteratorType ChildItTy;
 | |
|   typedef std::vector<NodeType *> SccTy;
 | |
|   typedef typename scc_iterator::reference reference;
 | |
| 
 | |
|   /// Element of VisitStack during DFS.
 | |
|   struct StackElement {
 | |
|     NodeType *Node;       ///< The current node pointer.
 | |
|     ChildItTy NextChild;  ///< The next child, modified inplace during DFS.
 | |
|     unsigned MinVisited;  ///< Minimum uplink value of all children of Node.
 | |
| 
 | |
|     StackElement(NodeType *Node, const ChildItTy &Child, unsigned Min)
 | |
|       : Node(Node), NextChild(Child), MinVisited(Min) {}
 | |
| 
 | |
|     bool operator==(const StackElement &Other) const {
 | |
|       return Node == Other.Node &&
 | |
|              NextChild == Other.NextChild &&
 | |
|              MinVisited == Other.MinVisited;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// The visit counters used to detect when a complete SCC is on the stack.
 | |
|   /// visitNum is the global counter.
 | |
|   ///
 | |
|   /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
 | |
|   unsigned visitNum;
 | |
|   DenseMap<NodeType *, unsigned> nodeVisitNumbers;
 | |
| 
 | |
|   /// Stack holding nodes of the SCC.
 | |
|   std::vector<NodeType *> SCCNodeStack;
 | |
| 
 | |
|   /// The current SCC, retrieved using operator*().
 | |
|   SccTy CurrentSCC;
 | |
| 
 | |
|   /// DFS stack, Used to maintain the ordering.  The top contains the current
 | |
|   /// node, the next child to visit, and the minimum uplink value of all child
 | |
|   std::vector<StackElement> VisitStack;
 | |
| 
 | |
|   /// A single "visit" within the non-recursive DFS traversal.
 | |
|   void DFSVisitOne(NodeType *N);
 | |
| 
 | |
|   /// The stack-based DFS traversal; defined below.
 | |
|   void DFSVisitChildren();
 | |
| 
 | |
|   /// Compute the next SCC using the DFS traversal.
 | |
|   void GetNextSCC();
 | |
| 
 | |
|   scc_iterator(NodeType *entryN) : visitNum(0) {
 | |
|     DFSVisitOne(entryN);
 | |
|     GetNextSCC();
 | |
|   }
 | |
| 
 | |
|   /// End is when the DFS stack is empty.
 | |
|   scc_iterator() {}
 | |
| 
 | |
| public:
 | |
|   static scc_iterator begin(const GraphT &G) {
 | |
|     return scc_iterator(GT::getEntryNode(G));
 | |
|   }
 | |
|   static scc_iterator end(const GraphT &) { return scc_iterator(); }
 | |
| 
 | |
|   /// \brief Direct loop termination test which is more efficient than
 | |
|   /// comparison with \c end().
 | |
|   bool isAtEnd() const {
 | |
|     assert(!CurrentSCC.empty() || VisitStack.empty());
 | |
|     return CurrentSCC.empty();
 | |
|   }
 | |
| 
 | |
|   bool operator==(const scc_iterator &x) const {
 | |
|     return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
 | |
|   }
 | |
| 
 | |
|   scc_iterator &operator++() {
 | |
|     GetNextSCC();
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   reference operator*() const {
 | |
|     assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
 | |
|     return CurrentSCC;
 | |
|   }
 | |
| 
 | |
|   /// \brief Test if the current SCC has a loop.
 | |
|   ///
 | |
|   /// If the SCC has more than one node, this is trivially true.  If not, it may
 | |
|   /// still contain a loop if the node has an edge back to itself.
 | |
|   bool hasLoop() const;
 | |
| 
 | |
|   /// This informs the \c scc_iterator that the specified \c Old node
 | |
|   /// has been deleted, and \c New is to be used in its place.
 | |
|   void ReplaceNode(NodeType *Old, NodeType *New) {
 | |
|     assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
 | |
|     nodeVisitNumbers[New] = nodeVisitNumbers[Old];
 | |
|     nodeVisitNumbers.erase(Old);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <class GraphT, class GT>
 | |
| void scc_iterator<GraphT, GT>::DFSVisitOne(NodeType *N) {
 | |
|   ++visitNum;
 | |
|   nodeVisitNumbers[N] = visitNum;
 | |
|   SCCNodeStack.push_back(N);
 | |
|   VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
 | |
| #if 0 // Enable if needed when debugging.
 | |
|   dbgs() << "TarjanSCC: Node " << N <<
 | |
|         " : visitNum = " << visitNum << "\n";
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <class GraphT, class GT>
 | |
| void scc_iterator<GraphT, GT>::DFSVisitChildren() {
 | |
|   assert(!VisitStack.empty());
 | |
|   while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
 | |
|     // TOS has at least one more child so continue DFS
 | |
|     NodeType *childN = *VisitStack.back().NextChild++;
 | |
|     typename DenseMap<NodeType *, unsigned>::iterator Visited =
 | |
|         nodeVisitNumbers.find(childN);
 | |
|     if (Visited == nodeVisitNumbers.end()) {
 | |
|       // this node has never been seen.
 | |
|       DFSVisitOne(childN);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     unsigned childNum = Visited->second;
 | |
|     if (VisitStack.back().MinVisited > childNum)
 | |
|       VisitStack.back().MinVisited = childNum;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
 | |
|   CurrentSCC.clear(); // Prepare to compute the next SCC
 | |
|   while (!VisitStack.empty()) {
 | |
|     DFSVisitChildren();
 | |
| 
 | |
|     // Pop the leaf on top of the VisitStack.
 | |
|     NodeType *visitingN = VisitStack.back().Node;
 | |
|     unsigned minVisitNum = VisitStack.back().MinVisited;
 | |
|     assert(VisitStack.back().NextChild == GT::child_end(visitingN));
 | |
|     VisitStack.pop_back();
 | |
| 
 | |
|     // Propagate MinVisitNum to parent so we can detect the SCC starting node.
 | |
|     if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
 | |
|       VisitStack.back().MinVisited = minVisitNum;
 | |
| 
 | |
| #if 0 // Enable if needed when debugging.
 | |
|     dbgs() << "TarjanSCC: Popped node " << visitingN <<
 | |
|           " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
 | |
|           nodeVisitNumbers[visitingN] << "\n";
 | |
| #endif
 | |
| 
 | |
|     if (minVisitNum != nodeVisitNumbers[visitingN])
 | |
|       continue;
 | |
| 
 | |
|     // A full SCC is on the SCCNodeStack!  It includes all nodes below
 | |
|     // visitingN on the stack.  Copy those nodes to CurrentSCC,
 | |
|     // reset their minVisit values, and return (this suspends
 | |
|     // the DFS traversal till the next ++).
 | |
|     do {
 | |
|       CurrentSCC.push_back(SCCNodeStack.back());
 | |
|       SCCNodeStack.pop_back();
 | |
|       nodeVisitNumbers[CurrentSCC.back()] = ~0U;
 | |
|     } while (CurrentSCC.back() != visitingN);
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class GraphT, class GT>
 | |
| bool scc_iterator<GraphT, GT>::hasLoop() const {
 | |
|     assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
 | |
|     if (CurrentSCC.size() > 1)
 | |
|       return true;
 | |
|     NodeType *N = CurrentSCC.front();
 | |
|     for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
 | |
|          ++CI)
 | |
|       if (*CI == N)
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| /// \brief Construct the begin iterator for a deduced graph type T.
 | |
| template <class T> scc_iterator<T> scc_begin(const T &G) {
 | |
|   return scc_iterator<T>::begin(G);
 | |
| }
 | |
| 
 | |
| /// \brief Construct the end iterator for a deduced graph type T.
 | |
| template <class T> scc_iterator<T> scc_end(const T &G) {
 | |
|   return scc_iterator<T>::end(G);
 | |
| }
 | |
| 
 | |
| /// \brief Construct the begin iterator for a deduced graph type T's Inverse<T>.
 | |
| template <class T> scc_iterator<Inverse<T> > scc_begin(const Inverse<T> &G) {
 | |
|   return scc_iterator<Inverse<T> >::begin(G);
 | |
| }
 | |
| 
 | |
| /// \brief Construct the end iterator for a deduced graph type T's Inverse<T>.
 | |
| template <class T> scc_iterator<Inverse<T> > scc_end(const Inverse<T> &G) {
 | |
|   return scc_iterator<Inverse<T> >::end(G);
 | |
| }
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |