mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Store `User::NumOperands` (and `MDNode::NumOperands`) in `Value`. On 64-bit host architectures, this reduces `sizeof(User)` and all subclasses by 8, and has no effect on `sizeof(Value)` (or, incidentally, on `sizeof(MDNode)`). On 32-bit host architectures, this increases `sizeof(Value)` by 4. However, it has no effect on `sizeof(User)` and `sizeof(MDNode)`, so the only concrete subclasses of `Value` that actually see the increase are `BasicBlock`, `Argument`, `InlineAsm`, and `MDString`. Moreover, I'll be shocked and confused if this causes a tangible memory regression. This has no functionality change (other than memory footprint). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219845 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			726 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			726 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file declares the Value class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_IR_VALUE_H
 | |
| #define LLVM_IR_VALUE_H
 | |
| 
 | |
| #include "llvm-c/Core.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/Support/CBindingWrapping.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class APInt;
 | |
| class Argument;
 | |
| class AssemblyAnnotationWriter;
 | |
| class BasicBlock;
 | |
| class Constant;
 | |
| class DataLayout;
 | |
| class Function;
 | |
| class GlobalAlias;
 | |
| class GlobalObject;
 | |
| class GlobalValue;
 | |
| class GlobalVariable;
 | |
| class InlineAsm;
 | |
| class Instruction;
 | |
| class LLVMContext;
 | |
| class MDNode;
 | |
| class Module;
 | |
| class StringRef;
 | |
| class Twine;
 | |
| class Type;
 | |
| class ValueHandleBase;
 | |
| class ValueSymbolTable;
 | |
| class raw_ostream;
 | |
| 
 | |
| template<typename ValueTy> class StringMapEntry;
 | |
| typedef StringMapEntry<Value*> ValueName;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                 Value Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// \brief LLVM Value Representation
 | |
| ///
 | |
| /// This is a very important LLVM class. It is the base class of all values
 | |
| /// computed by a program that may be used as operands to other values. Value is
 | |
| /// the super class of other important classes such as Instruction and Function.
 | |
| /// All Values have a Type. Type is not a subclass of Value. Some values can
 | |
| /// have a name and they belong to some Module.  Setting the name on the Value
 | |
| /// automatically updates the module's symbol table.
 | |
| ///
 | |
| /// Every value has a "use list" that keeps track of which other Values are
 | |
| /// using this Value.  A Value can also have an arbitrary number of ValueHandle
 | |
| /// objects that watch it and listen to RAUW and Destroy events.  See
 | |
| /// llvm/IR/ValueHandle.h for details.
 | |
| class Value {
 | |
|   Type *VTy;
 | |
|   Use *UseList;
 | |
| 
 | |
|   friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
 | |
|   friend class ValueHandleBase;
 | |
|   ValueName *Name;
 | |
| 
 | |
|   const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
 | |
|   unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
 | |
| protected:
 | |
|   /// \brief Hold subclass data that can be dropped.
 | |
|   ///
 | |
|   /// This member is similar to SubclassData, however it is for holding
 | |
|   /// information which may be used to aid optimization, but which may be
 | |
|   /// cleared to zero without affecting conservative interpretation.
 | |
|   unsigned char SubclassOptionalData : 7;
 | |
| 
 | |
| private:
 | |
|   /// \brief Hold arbitrary subclass data.
 | |
|   ///
 | |
|   /// This member is defined by this class, but is not used for anything.
 | |
|   /// Subclasses can use it to hold whatever state they find useful.  This
 | |
|   /// field is initialized to zero by the ctor.
 | |
|   unsigned short SubclassData;
 | |
| 
 | |
| protected:
 | |
|   /// \brief The number of operands in the subclass.
 | |
|   ///
 | |
|   /// This member is defined by this class, but not used for anything.
 | |
|   /// Subclasses can use it to store their number of operands, if they have
 | |
|   /// any.
 | |
|   ///
 | |
|   /// This is stored here to save space in User on 64-bit hosts.  Since most
 | |
|   /// instances of Value have operands, 32-bit hosts aren't significantly
 | |
|   /// affected.
 | |
|   unsigned NumOperands;
 | |
| 
 | |
| private:
 | |
|   template <typename UseT> // UseT == 'Use' or 'const Use'
 | |
|   class use_iterator_impl
 | |
|       : public std::iterator<std::forward_iterator_tag, UseT *, ptrdiff_t> {
 | |
|     typedef std::iterator<std::forward_iterator_tag, UseT *, ptrdiff_t> super;
 | |
| 
 | |
|     UseT *U;
 | |
|     explicit use_iterator_impl(UseT *u) : U(u) {}
 | |
|     friend class Value;
 | |
| 
 | |
|   public:
 | |
|     typedef typename super::reference reference;
 | |
|     typedef typename super::pointer pointer;
 | |
| 
 | |
|     use_iterator_impl() : U() {}
 | |
| 
 | |
|     bool operator==(const use_iterator_impl &x) const { return U == x.U; }
 | |
|     bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
 | |
| 
 | |
|     use_iterator_impl &operator++() { // Preincrement
 | |
|       assert(U && "Cannot increment end iterator!");
 | |
|       U = U->getNext();
 | |
|       return *this;
 | |
|     }
 | |
|     use_iterator_impl operator++(int) { // Postincrement
 | |
|       auto tmp = *this;
 | |
|       ++*this;
 | |
|       return tmp;
 | |
|     }
 | |
| 
 | |
|     UseT &operator*() const {
 | |
|       assert(U && "Cannot dereference end iterator!");
 | |
|       return *U;
 | |
|     }
 | |
| 
 | |
|     UseT *operator->() const { return &operator*(); }
 | |
| 
 | |
|     operator use_iterator_impl<const UseT>() const {
 | |
|       return use_iterator_impl<const UseT>(U);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template <typename UserTy> // UserTy == 'User' or 'const User'
 | |
|   class user_iterator_impl
 | |
|       : public std::iterator<std::forward_iterator_tag, UserTy *, ptrdiff_t> {
 | |
|     typedef std::iterator<std::forward_iterator_tag, UserTy *, ptrdiff_t> super;
 | |
| 
 | |
|     use_iterator_impl<Use> UI;
 | |
|     explicit user_iterator_impl(Use *U) : UI(U) {}
 | |
|     friend class Value;
 | |
| 
 | |
|   public:
 | |
|     typedef typename super::reference reference;
 | |
|     typedef typename super::pointer pointer;
 | |
| 
 | |
|     user_iterator_impl() {}
 | |
| 
 | |
|     bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
 | |
|     bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
 | |
| 
 | |
|     /// \brief Returns true if this iterator is equal to user_end() on the value.
 | |
|     bool atEnd() const { return *this == user_iterator_impl(); }
 | |
| 
 | |
|     user_iterator_impl &operator++() { // Preincrement
 | |
|       ++UI;
 | |
|       return *this;
 | |
|     }
 | |
|     user_iterator_impl operator++(int) { // Postincrement
 | |
|       auto tmp = *this;
 | |
|       ++*this;
 | |
|       return tmp;
 | |
|     }
 | |
| 
 | |
|     // Retrieve a pointer to the current User.
 | |
|     UserTy *operator*() const {
 | |
|       return UI->getUser();
 | |
|     }
 | |
| 
 | |
|     UserTy *operator->() const { return operator*(); }
 | |
| 
 | |
|     operator user_iterator_impl<const UserTy>() const {
 | |
|       return user_iterator_impl<const UserTy>(*UI);
 | |
|     }
 | |
| 
 | |
|     Use &getUse() const { return *UI; }
 | |
| 
 | |
|     /// \brief Return the operand # of this use in its User.
 | |
|     ///
 | |
|     /// FIXME: Replace all callers with a direct call to Use::getOperandNo.
 | |
|     unsigned getOperandNo() const { return UI->getOperandNo(); }
 | |
|   };
 | |
| 
 | |
|   void operator=(const Value &) LLVM_DELETED_FUNCTION;
 | |
|   Value(const Value &) LLVM_DELETED_FUNCTION;
 | |
| 
 | |
| protected:
 | |
|   Value(Type *Ty, unsigned scid);
 | |
| public:
 | |
|   virtual ~Value();
 | |
| 
 | |
|   /// \brief Support for debugging, callable in GDB: V->dump()
 | |
|   void dump() const;
 | |
| 
 | |
|   /// \brief Implement operator<< on Value.
 | |
|   void print(raw_ostream &O) const;
 | |
| 
 | |
|   /// \brief Print the name of this Value out to the specified raw_ostream.
 | |
|   ///
 | |
|   /// This is useful when you just want to print 'int %reg126', not the
 | |
|   /// instruction that generated it. If you specify a Module for context, then
 | |
|   /// even constanst get pretty-printed; for example, the type of a null
 | |
|   /// pointer is printed symbolically.
 | |
|   void printAsOperand(raw_ostream &O, bool PrintType = true,
 | |
|                       const Module *M = nullptr) const;
 | |
| 
 | |
|   /// \brief All values are typed, get the type of this value.
 | |
|   Type *getType() const { return VTy; }
 | |
| 
 | |
|   /// \brief All values hold a context through their type.
 | |
|   LLVMContext &getContext() const;
 | |
| 
 | |
|   // \brief All values can potentially be named.
 | |
|   bool hasName() const { return Name != nullptr && SubclassID != MDStringVal; }
 | |
|   ValueName *getValueName() const { return Name; }
 | |
|   void setValueName(ValueName *VN) { Name = VN; }
 | |
| 
 | |
|   /// \brief Return a constant reference to the value's name.
 | |
|   ///
 | |
|   /// This is cheap and guaranteed to return the same reference as long as the
 | |
|   /// value is not modified.
 | |
|   StringRef getName() const;
 | |
| 
 | |
|   /// \brief Change the name of the value.
 | |
|   ///
 | |
|   /// Choose a new unique name if the provided name is taken.
 | |
|   ///
 | |
|   /// \param Name The new name; or "" if the value's name should be removed.
 | |
|   void setName(const Twine &Name);
 | |
| 
 | |
| 
 | |
|   /// \brief Transfer the name from V to this value.
 | |
|   ///
 | |
|   /// After taking V's name, sets V's name to empty.
 | |
|   ///
 | |
|   /// \note It is an error to call V->takeName(V).
 | |
|   void takeName(Value *V);
 | |
| 
 | |
|   /// \brief Change all uses of this to point to a new Value.
 | |
|   ///
 | |
|   /// Go through the uses list for this definition and make each use point to
 | |
|   /// "V" instead of "this".  After this completes, 'this's use list is
 | |
|   /// guaranteed to be empty.
 | |
|   void replaceAllUsesWith(Value *V);
 | |
| 
 | |
|   //----------------------------------------------------------------------
 | |
|   // Methods for handling the chain of uses of this Value.
 | |
|   //
 | |
|   bool               use_empty() const { return UseList == nullptr; }
 | |
| 
 | |
|   typedef use_iterator_impl<Use>       use_iterator;
 | |
|   typedef use_iterator_impl<const Use> const_use_iterator;
 | |
|   use_iterator       use_begin()       { return use_iterator(UseList); }
 | |
|   const_use_iterator use_begin() const { return const_use_iterator(UseList); }
 | |
|   use_iterator       use_end()         { return use_iterator();   }
 | |
|   const_use_iterator use_end()   const { return const_use_iterator();   }
 | |
|   iterator_range<use_iterator> uses() {
 | |
|     return iterator_range<use_iterator>(use_begin(), use_end());
 | |
|   }
 | |
|   iterator_range<const_use_iterator> uses() const {
 | |
|     return iterator_range<const_use_iterator>(use_begin(), use_end());
 | |
|   }
 | |
| 
 | |
|   typedef user_iterator_impl<User>       user_iterator;
 | |
|   typedef user_iterator_impl<const User> const_user_iterator;
 | |
|   user_iterator       user_begin()       { return user_iterator(UseList); }
 | |
|   const_user_iterator user_begin() const { return const_user_iterator(UseList); }
 | |
|   user_iterator       user_end()         { return user_iterator();   }
 | |
|   const_user_iterator user_end()   const { return const_user_iterator();   }
 | |
|   User               *user_back()        { return *user_begin(); }
 | |
|   const User         *user_back()  const { return *user_begin(); }
 | |
|   iterator_range<user_iterator> users() {
 | |
|     return iterator_range<user_iterator>(user_begin(), user_end());
 | |
|   }
 | |
|   iterator_range<const_user_iterator> users() const {
 | |
|     return iterator_range<const_user_iterator>(user_begin(), user_end());
 | |
|   }
 | |
| 
 | |
|   /// \brief Return true if there is exactly one user of this value.
 | |
|   ///
 | |
|   /// This is specialized because it is a common request and does not require
 | |
|   /// traversing the whole use list.
 | |
|   bool hasOneUse() const {
 | |
|     const_use_iterator I = use_begin(), E = use_end();
 | |
|     if (I == E) return false;
 | |
|     return ++I == E;
 | |
|   }
 | |
| 
 | |
|   /// \brief Return true if this Value has exactly N users.
 | |
|   bool hasNUses(unsigned N) const;
 | |
| 
 | |
|   /// \brief Return true if this value has N users or more.
 | |
|   ///
 | |
|   /// This is logically equivalent to getNumUses() >= N.
 | |
|   bool hasNUsesOrMore(unsigned N) const;
 | |
| 
 | |
|   /// \brief Check if this value is used in the specified basic block.
 | |
|   bool isUsedInBasicBlock(const BasicBlock *BB) const;
 | |
| 
 | |
|   /// \brief This method computes the number of uses of this Value.
 | |
|   ///
 | |
|   /// This is a linear time operation.  Use hasOneUse, hasNUses, or
 | |
|   /// hasNUsesOrMore to check for specific values.
 | |
|   unsigned getNumUses() const;
 | |
| 
 | |
|   /// \brief This method should only be used by the Use class.
 | |
|   void addUse(Use &U) { U.addToList(&UseList); }
 | |
| 
 | |
|   /// \brief Concrete subclass of this.
 | |
|   ///
 | |
|   /// An enumeration for keeping track of the concrete subclass of Value that
 | |
|   /// is actually instantiated. Values of this enumeration are kept in the
 | |
|   /// Value classes SubclassID field. They are used for concrete type
 | |
|   /// identification.
 | |
|   enum ValueTy {
 | |
|     ArgumentVal,              // This is an instance of Argument
 | |
|     BasicBlockVal,            // This is an instance of BasicBlock
 | |
|     FunctionVal,              // This is an instance of Function
 | |
|     GlobalAliasVal,           // This is an instance of GlobalAlias
 | |
|     GlobalVariableVal,        // This is an instance of GlobalVariable
 | |
|     UndefValueVal,            // This is an instance of UndefValue
 | |
|     BlockAddressVal,          // This is an instance of BlockAddress
 | |
|     ConstantExprVal,          // This is an instance of ConstantExpr
 | |
|     ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
 | |
|     ConstantDataArrayVal,     // This is an instance of ConstantDataArray
 | |
|     ConstantDataVectorVal,    // This is an instance of ConstantDataVector
 | |
|     ConstantIntVal,           // This is an instance of ConstantInt
 | |
|     ConstantFPVal,            // This is an instance of ConstantFP
 | |
|     ConstantArrayVal,         // This is an instance of ConstantArray
 | |
|     ConstantStructVal,        // This is an instance of ConstantStruct
 | |
|     ConstantVectorVal,        // This is an instance of ConstantVector
 | |
|     ConstantPointerNullVal,   // This is an instance of ConstantPointerNull
 | |
|     MDNodeVal,                // This is an instance of MDNode
 | |
|     MDStringVal,              // This is an instance of MDString
 | |
|     InlineAsmVal,             // This is an instance of InlineAsm
 | |
|     InstructionVal,           // This is an instance of Instruction
 | |
|     // Enum values starting at InstructionVal are used for Instructions;
 | |
|     // don't add new values here!
 | |
| 
 | |
|     // Markers:
 | |
|     ConstantFirstVal = FunctionVal,
 | |
|     ConstantLastVal  = ConstantPointerNullVal
 | |
|   };
 | |
| 
 | |
|   /// \brief Return an ID for the concrete type of this object.
 | |
|   ///
 | |
|   /// This is used to implement the classof checks.  This should not be used
 | |
|   /// for any other purpose, as the values may change as LLVM evolves.  Also,
 | |
|   /// note that for instructions, the Instruction's opcode is added to
 | |
|   /// InstructionVal. So this means three things:
 | |
|   /// # there is no value with code InstructionVal (no opcode==0).
 | |
|   /// # there are more possible values for the value type than in ValueTy enum.
 | |
|   /// # the InstructionVal enumerator must be the highest valued enumerator in
 | |
|   ///   the ValueTy enum.
 | |
|   unsigned getValueID() const {
 | |
|     return SubclassID;
 | |
|   }
 | |
| 
 | |
|   /// \brief Return the raw optional flags value contained in this value.
 | |
|   ///
 | |
|   /// This should only be used when testing two Values for equivalence.
 | |
|   unsigned getRawSubclassOptionalData() const {
 | |
|     return SubclassOptionalData;
 | |
|   }
 | |
| 
 | |
|   /// \brief Clear the optional flags contained in this value.
 | |
|   void clearSubclassOptionalData() {
 | |
|     SubclassOptionalData = 0;
 | |
|   }
 | |
| 
 | |
|   /// \brief Check the optional flags for equality.
 | |
|   bool hasSameSubclassOptionalData(const Value *V) const {
 | |
|     return SubclassOptionalData == V->SubclassOptionalData;
 | |
|   }
 | |
| 
 | |
|   /// \brief Clear any optional flags not set in the given Value.
 | |
|   void intersectOptionalDataWith(const Value *V) {
 | |
|     SubclassOptionalData &= V->SubclassOptionalData;
 | |
|   }
 | |
| 
 | |
|   /// \brief Return true if there is a value handle associated with this value.
 | |
|   bool hasValueHandle() const { return HasValueHandle; }
 | |
| 
 | |
|   /// \brief Strip off pointer casts, all-zero GEPs, and aliases.
 | |
|   ///
 | |
|   /// Returns the original uncasted value.  If this is called on a non-pointer
 | |
|   /// value, it returns 'this'.
 | |
|   Value *stripPointerCasts();
 | |
|   const Value *stripPointerCasts() const {
 | |
|     return const_cast<Value*>(this)->stripPointerCasts();
 | |
|   }
 | |
| 
 | |
|   /// \brief Strip off pointer casts and all-zero GEPs.
 | |
|   ///
 | |
|   /// Returns the original uncasted value.  If this is called on a non-pointer
 | |
|   /// value, it returns 'this'.
 | |
|   Value *stripPointerCastsNoFollowAliases();
 | |
|   const Value *stripPointerCastsNoFollowAliases() const {
 | |
|     return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases();
 | |
|   }
 | |
| 
 | |
|   /// \brief Strip off pointer casts and all-constant inbounds GEPs.
 | |
|   ///
 | |
|   /// Returns the original pointer value.  If this is called on a non-pointer
 | |
|   /// value, it returns 'this'.
 | |
|   Value *stripInBoundsConstantOffsets();
 | |
|   const Value *stripInBoundsConstantOffsets() const {
 | |
|     return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
 | |
|   }
 | |
| 
 | |
|   /// \brief Accumulate offsets from \a stripInBoundsConstantOffsets().
 | |
|   ///
 | |
|   /// Stores the resulting constant offset stripped into the APInt provided.
 | |
|   /// The provided APInt will be extended or truncated as needed to be the
 | |
|   /// correct bitwidth for an offset of this pointer type.
 | |
|   ///
 | |
|   /// If this is called on a non-pointer value, it returns 'this'.
 | |
|   Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
 | |
|                                                    APInt &Offset);
 | |
|   const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
 | |
|                                                          APInt &Offset) const {
 | |
|     return const_cast<Value *>(this)
 | |
|         ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
 | |
|   }
 | |
| 
 | |
|   /// \brief Strip off pointer casts and inbounds GEPs.
 | |
|   ///
 | |
|   /// Returns the original pointer value.  If this is called on a non-pointer
 | |
|   /// value, it returns 'this'.
 | |
|   Value *stripInBoundsOffsets();
 | |
|   const Value *stripInBoundsOffsets() const {
 | |
|     return const_cast<Value*>(this)->stripInBoundsOffsets();
 | |
|   }
 | |
| 
 | |
|   /// \brief Check if this is always a dereferenceable pointer.
 | |
|   ///
 | |
|   /// Test if this value is always a pointer to allocated and suitably aligned
 | |
|   /// memory for a simple load or store.
 | |
|   bool isDereferenceablePointer(const DataLayout *DL = nullptr) const;
 | |
| 
 | |
|   /// \brief Translate PHI node to its predecessor from the given basic block.
 | |
|   ///
 | |
|   /// If this value is a PHI node with CurBB as its parent, return the value in
 | |
|   /// the PHI node corresponding to PredBB.  If not, return ourself.  This is
 | |
|   /// useful if you want to know the value something has in a predecessor
 | |
|   /// block.
 | |
|   Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
 | |
| 
 | |
|   const Value *DoPHITranslation(const BasicBlock *CurBB,
 | |
|                                 const BasicBlock *PredBB) const{
 | |
|     return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
 | |
|   }
 | |
| 
 | |
|   /// \brief The maximum alignment for instructions.
 | |
|   ///
 | |
|   /// This is the greatest alignment value supported by load, store, and alloca
 | |
|   /// instructions, and global values.
 | |
|   static const unsigned MaximumAlignment = 1u << 29;
 | |
| 
 | |
|   /// \brief Mutate the type of this Value to be of the specified type.
 | |
|   ///
 | |
|   /// Note that this is an extremely dangerous operation which can create
 | |
|   /// completely invalid IR very easily.  It is strongly recommended that you
 | |
|   /// recreate IR objects with the right types instead of mutating them in
 | |
|   /// place.
 | |
|   void mutateType(Type *Ty) {
 | |
|     VTy = Ty;
 | |
|   }
 | |
| 
 | |
|   /// \brief Sort the use-list.
 | |
|   ///
 | |
|   /// Sorts the Value's use-list by Cmp using a stable mergesort.  Cmp is
 | |
|   /// expected to compare two \a Use references.
 | |
|   template <class Compare> void sortUseList(Compare Cmp);
 | |
| 
 | |
|   /// \brief Reverse the use-list.
 | |
|   void reverseUseList();
 | |
| 
 | |
| private:
 | |
|   /// \brief Merge two lists together.
 | |
|   ///
 | |
|   /// Merges \c L and \c R using \c Cmp.  To enable stable sorts, always pushes
 | |
|   /// "equal" items from L before items from R.
 | |
|   ///
 | |
|   /// \return the first element in the list.
 | |
|   ///
 | |
|   /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
 | |
|   template <class Compare>
 | |
|   static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
 | |
|     Use *Merged;
 | |
|     mergeUseListsImpl(L, R, &Merged, Cmp);
 | |
|     return Merged;
 | |
|   }
 | |
| 
 | |
|   /// \brief Tail-recursive helper for \a mergeUseLists().
 | |
|   ///
 | |
|   /// \param[out] Next the first element in the list.
 | |
|   template <class Compare>
 | |
|   static void mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp);
 | |
| 
 | |
| protected:
 | |
|   unsigned short getSubclassDataFromValue() const { return SubclassData; }
 | |
|   void setValueSubclassData(unsigned short D) { SubclassData = D; }
 | |
| };
 | |
| 
 | |
| inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
 | |
|   V.print(OS);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| void Use::set(Value *V) {
 | |
|   if (Val) removeFromList();
 | |
|   Val = V;
 | |
|   if (V) V->addUse(*this);
 | |
| }
 | |
| 
 | |
| template <class Compare> void Value::sortUseList(Compare Cmp) {
 | |
|   if (!UseList || !UseList->Next)
 | |
|     // No need to sort 0 or 1 uses.
 | |
|     return;
 | |
| 
 | |
|   // Note: this function completely ignores Prev pointers until the end when
 | |
|   // they're fixed en masse.
 | |
| 
 | |
|   // Create a binomial vector of sorted lists, visiting uses one at a time and
 | |
|   // merging lists as necessary.
 | |
|   const unsigned MaxSlots = 32;
 | |
|   Use *Slots[MaxSlots];
 | |
| 
 | |
|   // Collect the first use, turning it into a single-item list.
 | |
|   Use *Next = UseList->Next;
 | |
|   UseList->Next = nullptr;
 | |
|   unsigned NumSlots = 1;
 | |
|   Slots[0] = UseList;
 | |
| 
 | |
|   // Collect all but the last use.
 | |
|   while (Next->Next) {
 | |
|     Use *Current = Next;
 | |
|     Next = Current->Next;
 | |
| 
 | |
|     // Turn Current into a single-item list.
 | |
|     Current->Next = nullptr;
 | |
| 
 | |
|     // Save Current in the first available slot, merging on collisions.
 | |
|     unsigned I;
 | |
|     for (I = 0; I < NumSlots; ++I) {
 | |
|       if (!Slots[I])
 | |
|         break;
 | |
| 
 | |
|       // Merge two lists, doubling the size of Current and emptying slot I.
 | |
|       //
 | |
|       // Since the uses in Slots[I] originally preceded those in Current, send
 | |
|       // Slots[I] in as the left parameter to maintain a stable sort.
 | |
|       Current = mergeUseLists(Slots[I], Current, Cmp);
 | |
|       Slots[I] = nullptr;
 | |
|     }
 | |
|     // Check if this is a new slot.
 | |
|     if (I == NumSlots) {
 | |
|       ++NumSlots;
 | |
|       assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
 | |
|     }
 | |
| 
 | |
|     // Found an open slot.
 | |
|     Slots[I] = Current;
 | |
|   }
 | |
| 
 | |
|   // Merge all the lists together.
 | |
|   assert(Next && "Expected one more Use");
 | |
|   assert(!Next->Next && "Expected only one Use");
 | |
|   UseList = Next;
 | |
|   for (unsigned I = 0; I < NumSlots; ++I)
 | |
|     if (Slots[I])
 | |
|       // Since the uses in Slots[I] originally preceded those in UseList, send
 | |
|       // Slots[I] in as the left parameter to maintain a stable sort.
 | |
|       UseList = mergeUseLists(Slots[I], UseList, Cmp);
 | |
| 
 | |
|   // Fix the Prev pointers.
 | |
|   for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
 | |
|     I->setPrev(Prev);
 | |
|     Prev = &I->Next;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class Compare>
 | |
| void Value::mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp) {
 | |
|   if (!L) {
 | |
|     *Next = R;
 | |
|     return;
 | |
|   }
 | |
|   if (!R) {
 | |
|     *Next = L;
 | |
|     return;
 | |
|   }
 | |
|   if (Cmp(*R, *L)) {
 | |
|     *Next = R;
 | |
|     mergeUseListsImpl(L, R->Next, &R->Next, Cmp);
 | |
|     return;
 | |
|   }
 | |
|   *Next = L;
 | |
|   mergeUseListsImpl(L->Next, R, &L->Next, Cmp);
 | |
| }
 | |
| 
 | |
| // isa - Provide some specializations of isa so that we don't have to include
 | |
| // the subtype header files to test to see if the value is a subclass...
 | |
| //
 | |
| template <> struct isa_impl<Constant, Value> {
 | |
|   static inline bool doit(const Value &Val) {
 | |
|     return Val.getValueID() >= Value::ConstantFirstVal &&
 | |
|       Val.getValueID() <= Value::ConstantLastVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct isa_impl<Argument, Value> {
 | |
|   static inline bool doit (const Value &Val) {
 | |
|     return Val.getValueID() == Value::ArgumentVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct isa_impl<InlineAsm, Value> {
 | |
|   static inline bool doit(const Value &Val) {
 | |
|     return Val.getValueID() == Value::InlineAsmVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct isa_impl<Instruction, Value> {
 | |
|   static inline bool doit(const Value &Val) {
 | |
|     return Val.getValueID() >= Value::InstructionVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct isa_impl<BasicBlock, Value> {
 | |
|   static inline bool doit(const Value &Val) {
 | |
|     return Val.getValueID() == Value::BasicBlockVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct isa_impl<Function, Value> {
 | |
|   static inline bool doit(const Value &Val) {
 | |
|     return Val.getValueID() == Value::FunctionVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct isa_impl<GlobalVariable, Value> {
 | |
|   static inline bool doit(const Value &Val) {
 | |
|     return Val.getValueID() == Value::GlobalVariableVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct isa_impl<GlobalAlias, Value> {
 | |
|   static inline bool doit(const Value &Val) {
 | |
|     return Val.getValueID() == Value::GlobalAliasVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct isa_impl<GlobalValue, Value> {
 | |
|   static inline bool doit(const Value &Val) {
 | |
|     return isa<GlobalObject>(Val) || isa<GlobalAlias>(Val);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct isa_impl<GlobalObject, Value> {
 | |
|   static inline bool doit(const Value &Val) {
 | |
|     return isa<GlobalVariable>(Val) || isa<Function>(Val);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct isa_impl<MDNode, Value> {
 | |
|   static inline bool doit(const Value &Val) {
 | |
|     return Val.getValueID() == Value::MDNodeVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Value* is only 4-byte aligned.
 | |
| template<>
 | |
| class PointerLikeTypeTraits<Value*> {
 | |
|   typedef Value* PT;
 | |
| public:
 | |
|   static inline void *getAsVoidPointer(PT P) { return P; }
 | |
|   static inline PT getFromVoidPointer(void *P) {
 | |
|     return static_cast<PT>(P);
 | |
|   }
 | |
|   enum { NumLowBitsAvailable = 2 };
 | |
| };
 | |
| 
 | |
| // Create wrappers for C Binding types (see CBindingWrapping.h).
 | |
| DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
 | |
| 
 | |
| /* Specialized opaque value conversions.
 | |
|  */
 | |
| inline Value **unwrap(LLVMValueRef *Vals) {
 | |
|   return reinterpret_cast<Value**>(Vals);
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
 | |
| #ifdef DEBUG
 | |
|   for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
 | |
|     cast<T>(*I);
 | |
| #endif
 | |
|   (void)Length;
 | |
|   return reinterpret_cast<T**>(Vals);
 | |
| }
 | |
| 
 | |
| inline LLVMValueRef *wrap(const Value **Vals) {
 | |
|   return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
 | |
| }
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |