mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211569 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			898 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			898 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains functions (and a class) useful for working with scaled
 | |
| // numbers -- in particular, pairs of integers where one represents digits and
 | |
| // another represents a scale.  The functions are helpers and live in the
 | |
| // namespace ScaledNumbers.  The class ScaledNumber is useful for modelling
 | |
| // certain cost metrics that need simple, integer-like semantics that are easy
 | |
| // to reason about.
 | |
| //
 | |
| // These might remind you of soft-floats.  If you want one of those, you're in
 | |
| // the wrong place.  Look at include/llvm/ADT/APFloat.h instead.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_SUPPORT_SCALEDNUMBER_H
 | |
| #define LLVM_SUPPORT_SCALEDNUMBER_H
 | |
| 
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cstdint>
 | |
| #include <limits>
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| 
 | |
| namespace llvm {
 | |
| namespace ScaledNumbers {
 | |
| 
 | |
| /// \brief Maximum scale; same as APFloat for easy debug printing.
 | |
| const int32_t MaxScale = 16383;
 | |
| 
 | |
| /// \brief Maximum scale; same as APFloat for easy debug printing.
 | |
| const int32_t MinScale = -16382;
 | |
| 
 | |
| /// \brief Get the width of a number.
 | |
| template <class DigitsT> inline int getWidth() { return sizeof(DigitsT) * 8; }
 | |
| 
 | |
| /// \brief Conditionally round up a scaled number.
 | |
| ///
 | |
| /// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true.
 | |
| /// Always returns \c Scale unless there's an overflow, in which case it
 | |
| /// returns \c 1+Scale.
 | |
| ///
 | |
| /// \pre adding 1 to \c Scale will not overflow INT16_MAX.
 | |
| template <class DigitsT>
 | |
| inline std::pair<DigitsT, int16_t> getRounded(DigitsT Digits, int16_t Scale,
 | |
|                                               bool ShouldRound) {
 | |
|   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
 | |
| 
 | |
|   if (ShouldRound)
 | |
|     if (!++Digits)
 | |
|       // Overflow.
 | |
|       return std::make_pair(DigitsT(1) << (getWidth<DigitsT>() - 1), Scale + 1);
 | |
|   return std::make_pair(Digits, Scale);
 | |
| }
 | |
| 
 | |
| /// \brief Convenience helper for 32-bit rounding.
 | |
| inline std::pair<uint32_t, int16_t> getRounded32(uint32_t Digits, int16_t Scale,
 | |
|                                                  bool ShouldRound) {
 | |
|   return getRounded(Digits, Scale, ShouldRound);
 | |
| }
 | |
| 
 | |
| /// \brief Convenience helper for 64-bit rounding.
 | |
| inline std::pair<uint64_t, int16_t> getRounded64(uint64_t Digits, int16_t Scale,
 | |
|                                                  bool ShouldRound) {
 | |
|   return getRounded(Digits, Scale, ShouldRound);
 | |
| }
 | |
| 
 | |
| /// \brief Adjust a 64-bit scaled number down to the appropriate width.
 | |
| ///
 | |
| /// \pre Adding 64 to \c Scale will not overflow INT16_MAX.
 | |
| template <class DigitsT>
 | |
| inline std::pair<DigitsT, int16_t> getAdjusted(uint64_t Digits,
 | |
|                                                int16_t Scale = 0) {
 | |
|   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
 | |
| 
 | |
|   const int Width = getWidth<DigitsT>();
 | |
|   if (Width == 64 || Digits <= std::numeric_limits<DigitsT>::max())
 | |
|     return std::make_pair(Digits, Scale);
 | |
| 
 | |
|   // Shift right and round.
 | |
|   int Shift = 64 - Width - countLeadingZeros(Digits);
 | |
|   return getRounded<DigitsT>(Digits >> Shift, Scale + Shift,
 | |
|                              Digits & (UINT64_C(1) << (Shift - 1)));
 | |
| }
 | |
| 
 | |
| /// \brief Convenience helper for adjusting to 32 bits.
 | |
| inline std::pair<uint32_t, int16_t> getAdjusted32(uint64_t Digits,
 | |
|                                                   int16_t Scale = 0) {
 | |
|   return getAdjusted<uint32_t>(Digits, Scale);
 | |
| }
 | |
| 
 | |
| /// \brief Convenience helper for adjusting to 64 bits.
 | |
| inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits,
 | |
|                                                   int16_t Scale = 0) {
 | |
|   return getAdjusted<uint64_t>(Digits, Scale);
 | |
| }
 | |
| 
 | |
| /// \brief Multiply two 64-bit integers to create a 64-bit scaled number.
 | |
| ///
 | |
| /// Implemented with four 64-bit integer multiplies.
 | |
| std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS);
 | |
| 
 | |
| /// \brief Multiply two 32-bit integers to create a 32-bit scaled number.
 | |
| ///
 | |
| /// Implemented with one 64-bit integer multiply.
 | |
| template <class DigitsT>
 | |
| inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) {
 | |
|   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
 | |
| 
 | |
|   if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX))
 | |
|     return getAdjusted<DigitsT>(uint64_t(LHS) * RHS);
 | |
| 
 | |
|   return multiply64(LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// \brief Convenience helper for 32-bit product.
 | |
| inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) {
 | |
|   return getProduct(LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// \brief Convenience helper for 64-bit product.
 | |
| inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) {
 | |
|   return getProduct(LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// \brief Divide two 64-bit integers to create a 64-bit scaled number.
 | |
| ///
 | |
| /// Implemented with long division.
 | |
| ///
 | |
| /// \pre \c Dividend and \c Divisor are non-zero.
 | |
| std::pair<uint64_t, int16_t> divide64(uint64_t Dividend, uint64_t Divisor);
 | |
| 
 | |
| /// \brief Divide two 32-bit integers to create a 32-bit scaled number.
 | |
| ///
 | |
| /// Implemented with one 64-bit integer divide/remainder pair.
 | |
| ///
 | |
| /// \pre \c Dividend and \c Divisor are non-zero.
 | |
| std::pair<uint32_t, int16_t> divide32(uint32_t Dividend, uint32_t Divisor);
 | |
| 
 | |
| /// \brief Divide two 32-bit numbers to create a 32-bit scaled number.
 | |
| ///
 | |
| /// Implemented with one 64-bit integer divide/remainder pair.
 | |
| ///
 | |
| /// Returns \c (DigitsT_MAX, MaxScale) for divide-by-zero (0 for 0/0).
 | |
| template <class DigitsT>
 | |
| std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) {
 | |
|   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
 | |
|   static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8,
 | |
|                 "expected 32-bit or 64-bit digits");
 | |
| 
 | |
|   // Check for zero.
 | |
|   if (!Dividend)
 | |
|     return std::make_pair(0, 0);
 | |
|   if (!Divisor)
 | |
|     return std::make_pair(std::numeric_limits<DigitsT>::max(), MaxScale);
 | |
| 
 | |
|   if (getWidth<DigitsT>() == 64)
 | |
|     return divide64(Dividend, Divisor);
 | |
|   return divide32(Dividend, Divisor);
 | |
| }
 | |
| 
 | |
| /// \brief Convenience helper for 32-bit quotient.
 | |
| inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend,
 | |
|                                                   uint32_t Divisor) {
 | |
|   return getQuotient(Dividend, Divisor);
 | |
| }
 | |
| 
 | |
| /// \brief Convenience helper for 64-bit quotient.
 | |
| inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend,
 | |
|                                                   uint64_t Divisor) {
 | |
|   return getQuotient(Dividend, Divisor);
 | |
| }
 | |
| 
 | |
| /// \brief Implementation of getLg() and friends.
 | |
| ///
 | |
| /// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether
 | |
| /// this was rounded up (1), down (-1), or exact (0).
 | |
| ///
 | |
| /// Returns \c INT32_MIN when \c Digits is zero.
 | |
| template <class DigitsT>
 | |
| inline std::pair<int32_t, int> getLgImpl(DigitsT Digits, int16_t Scale) {
 | |
|   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
 | |
| 
 | |
|   if (!Digits)
 | |
|     return std::make_pair(INT32_MIN, 0);
 | |
| 
 | |
|   // Get the floor of the lg of Digits.
 | |
|   int32_t LocalFloor = sizeof(Digits) * 8 - countLeadingZeros(Digits) - 1;
 | |
| 
 | |
|   // Get the actual floor.
 | |
|   int32_t Floor = Scale + LocalFloor;
 | |
|   if (Digits == UINT64_C(1) << LocalFloor)
 | |
|     return std::make_pair(Floor, 0);
 | |
| 
 | |
|   // Round based on the next digit.
 | |
|   assert(LocalFloor >= 1);
 | |
|   bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
 | |
|   return std::make_pair(Floor + Round, Round ? 1 : -1);
 | |
| }
 | |
| 
 | |
| /// \brief Get the lg (rounded) of a scaled number.
 | |
| ///
 | |
| /// Get the lg of \c Digits*2^Scale.
 | |
| ///
 | |
| /// Returns \c INT32_MIN when \c Digits is zero.
 | |
| template <class DigitsT> int32_t getLg(DigitsT Digits, int16_t Scale) {
 | |
|   return getLgImpl(Digits, Scale).first;
 | |
| }
 | |
| 
 | |
| /// \brief Get the lg floor of a scaled number.
 | |
| ///
 | |
| /// Get the floor of the lg of \c Digits*2^Scale.
 | |
| ///
 | |
| /// Returns \c INT32_MIN when \c Digits is zero.
 | |
| template <class DigitsT> int32_t getLgFloor(DigitsT Digits, int16_t Scale) {
 | |
|   auto Lg = getLgImpl(Digits, Scale);
 | |
|   return Lg.first - (Lg.second > 0);
 | |
| }
 | |
| 
 | |
| /// \brief Get the lg ceiling of a scaled number.
 | |
| ///
 | |
| /// Get the ceiling of the lg of \c Digits*2^Scale.
 | |
| ///
 | |
| /// Returns \c INT32_MIN when \c Digits is zero.
 | |
| template <class DigitsT> int32_t getLgCeiling(DigitsT Digits, int16_t Scale) {
 | |
|   auto Lg = getLgImpl(Digits, Scale);
 | |
|   return Lg.first + (Lg.second < 0);
 | |
| }
 | |
| 
 | |
| /// \brief Implementation for comparing scaled numbers.
 | |
| ///
 | |
| /// Compare two 64-bit numbers with different scales.  Given that the scale of
 | |
| /// \c L is higher than that of \c R by \c ScaleDiff, compare them.  Return -1,
 | |
| /// 1, and 0 for less than, greater than, and equal, respectively.
 | |
| ///
 | |
| /// \pre 0 <= ScaleDiff < 64.
 | |
| int compareImpl(uint64_t L, uint64_t R, int ScaleDiff);
 | |
| 
 | |
| /// \brief Compare two scaled numbers.
 | |
| ///
 | |
| /// Compare two scaled numbers.  Returns 0 for equal, -1 for less than, and 1
 | |
| /// for greater than.
 | |
| template <class DigitsT>
 | |
| int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) {
 | |
|   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
 | |
| 
 | |
|   // Check for zero.
 | |
|   if (!LDigits)
 | |
|     return RDigits ? -1 : 0;
 | |
|   if (!RDigits)
 | |
|     return 1;
 | |
| 
 | |
|   // Check for the scale.  Use getLgFloor to be sure that the scale difference
 | |
|   // is always lower than 64.
 | |
|   int32_t lgL = getLgFloor(LDigits, LScale), lgR = getLgFloor(RDigits, RScale);
 | |
|   if (lgL != lgR)
 | |
|     return lgL < lgR ? -1 : 1;
 | |
| 
 | |
|   // Compare digits.
 | |
|   if (LScale < RScale)
 | |
|     return compareImpl(LDigits, RDigits, RScale - LScale);
 | |
| 
 | |
|   return -compareImpl(RDigits, LDigits, LScale - RScale);
 | |
| }
 | |
| 
 | |
| /// \brief Match scales of two numbers.
 | |
| ///
 | |
| /// Given two scaled numbers, match up their scales.  Change the digits and
 | |
| /// scales in place.  Shift the digits as necessary to form equivalent numbers,
 | |
| /// losing precision only when necessary.
 | |
| ///
 | |
| /// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of
 | |
| /// \c LScale (\c RScale) is unspecified.
 | |
| ///
 | |
| /// As a convenience, returns the matching scale.  If the output value of one
 | |
| /// number is zero, returns the scale of the other.  If both are zero, which
 | |
| /// scale is returned is unspecifed.
 | |
| template <class DigitsT>
 | |
| int16_t matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits,
 | |
|                     int16_t &RScale) {
 | |
|   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
 | |
| 
 | |
|   if (LScale < RScale)
 | |
|     // Swap arguments.
 | |
|     return matchScales(RDigits, RScale, LDigits, LScale);
 | |
|   if (!LDigits)
 | |
|     return RScale;
 | |
|   if (!RDigits || LScale == RScale)
 | |
|     return LScale;
 | |
| 
 | |
|   // Now LScale > RScale.  Get the difference.
 | |
|   int32_t ScaleDiff = int32_t(LScale) - RScale;
 | |
|   if (ScaleDiff >= 2 * getWidth<DigitsT>()) {
 | |
|     // Don't bother shifting.  RDigits will get zero-ed out anyway.
 | |
|     RDigits = 0;
 | |
|     return LScale;
 | |
|   }
 | |
| 
 | |
|   // Shift LDigits left as much as possible, then shift RDigits right.
 | |
|   int32_t ShiftL = std::min<int32_t>(countLeadingZeros(LDigits), ScaleDiff);
 | |
|   assert(ShiftL < getWidth<DigitsT>() && "can't shift more than width");
 | |
| 
 | |
|   int32_t ShiftR = ScaleDiff - ShiftL;
 | |
|   if (ShiftR >= getWidth<DigitsT>()) {
 | |
|     // Don't bother shifting.  RDigits will get zero-ed out anyway.
 | |
|     RDigits = 0;
 | |
|     return LScale;
 | |
|   }
 | |
| 
 | |
|   LDigits <<= ShiftL;
 | |
|   RDigits >>= ShiftR;
 | |
| 
 | |
|   LScale -= ShiftL;
 | |
|   RScale += ShiftR;
 | |
|   assert(LScale == RScale && "scales should match");
 | |
|   return LScale;
 | |
| }
 | |
| 
 | |
| /// \brief Get the sum of two scaled numbers.
 | |
| ///
 | |
| /// Get the sum of two scaled numbers with as much precision as possible.
 | |
| ///
 | |
| /// \pre Adding 1 to \c LScale (or \c RScale) will not overflow INT16_MAX.
 | |
| template <class DigitsT>
 | |
| std::pair<DigitsT, int16_t> getSum(DigitsT LDigits, int16_t LScale,
 | |
|                                    DigitsT RDigits, int16_t RScale) {
 | |
|   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
 | |
| 
 | |
|   // Check inputs up front.  This is only relevent if addition overflows, but
 | |
|   // testing here should catch more bugs.
 | |
|   assert(LScale < INT16_MAX && "scale too large");
 | |
|   assert(RScale < INT16_MAX && "scale too large");
 | |
| 
 | |
|   // Normalize digits to match scales.
 | |
|   int16_t Scale = matchScales(LDigits, LScale, RDigits, RScale);
 | |
| 
 | |
|   // Compute sum.
 | |
|   DigitsT Sum = LDigits + RDigits;
 | |
|   if (Sum >= RDigits)
 | |
|     return std::make_pair(Sum, Scale);
 | |
| 
 | |
|   // Adjust sum after arithmetic overflow.
 | |
|   DigitsT HighBit = DigitsT(1) << (getWidth<DigitsT>() - 1);
 | |
|   return std::make_pair(HighBit | Sum >> 1, Scale + 1);
 | |
| }
 | |
| 
 | |
| /// \brief Convenience helper for 32-bit sum.
 | |
| inline std::pair<uint32_t, int16_t> getSum32(uint32_t LDigits, int16_t LScale,
 | |
|                                              uint32_t RDigits, int16_t RScale) {
 | |
|   return getSum(LDigits, LScale, RDigits, RScale);
 | |
| }
 | |
| 
 | |
| /// \brief Convenience helper for 64-bit sum.
 | |
| inline std::pair<uint64_t, int16_t> getSum64(uint64_t LDigits, int16_t LScale,
 | |
|                                              uint64_t RDigits, int16_t RScale) {
 | |
|   return getSum(LDigits, LScale, RDigits, RScale);
 | |
| }
 | |
| 
 | |
| /// \brief Get the difference of two scaled numbers.
 | |
| ///
 | |
| /// Get LHS minus RHS with as much precision as possible.
 | |
| ///
 | |
| /// Returns \c (0, 0) if the RHS is larger than the LHS.
 | |
| template <class DigitsT>
 | |
| std::pair<DigitsT, int16_t> getDifference(DigitsT LDigits, int16_t LScale,
 | |
|                                           DigitsT RDigits, int16_t RScale) {
 | |
|   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
 | |
| 
 | |
|   // Normalize digits to match scales.
 | |
|   const DigitsT SavedRDigits = RDigits;
 | |
|   const int16_t SavedRScale = RScale;
 | |
|   matchScales(LDigits, LScale, RDigits, RScale);
 | |
| 
 | |
|   // Compute difference.
 | |
|   if (LDigits <= RDigits)
 | |
|     return std::make_pair(0, 0);
 | |
|   if (RDigits || !SavedRDigits)
 | |
|     return std::make_pair(LDigits - RDigits, LScale);
 | |
| 
 | |
|   // Check if RDigits just barely lost its last bit.  E.g., for 32-bit:
 | |
|   //
 | |
|   //   1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
 | |
|   const auto RLgFloor = getLgFloor(SavedRDigits, SavedRScale);
 | |
|   if (!compare(LDigits, LScale, DigitsT(1), RLgFloor + getWidth<DigitsT>()))
 | |
|     return std::make_pair(std::numeric_limits<DigitsT>::max(), RLgFloor);
 | |
| 
 | |
|   return std::make_pair(LDigits, LScale);
 | |
| }
 | |
| 
 | |
| /// \brief Convenience helper for 32-bit difference.
 | |
| inline std::pair<uint32_t, int16_t> getDifference32(uint32_t LDigits,
 | |
|                                                     int16_t LScale,
 | |
|                                                     uint32_t RDigits,
 | |
|                                                     int16_t RScale) {
 | |
|   return getDifference(LDigits, LScale, RDigits, RScale);
 | |
| }
 | |
| 
 | |
| /// \brief Convenience helper for 64-bit difference.
 | |
| inline std::pair<uint64_t, int16_t> getDifference64(uint64_t LDigits,
 | |
|                                                     int16_t LScale,
 | |
|                                                     uint64_t RDigits,
 | |
|                                                     int16_t RScale) {
 | |
|   return getDifference(LDigits, LScale, RDigits, RScale);
 | |
| }
 | |
| 
 | |
| } // end namespace ScaledNumbers
 | |
| } // end namespace llvm
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class raw_ostream;
 | |
| class ScaledNumberBase {
 | |
| public:
 | |
|   static const int DefaultPrecision = 10;
 | |
| 
 | |
|   static void dump(uint64_t D, int16_t E, int Width);
 | |
|   static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
 | |
|                             unsigned Precision);
 | |
|   static std::string toString(uint64_t D, int16_t E, int Width,
 | |
|                               unsigned Precision);
 | |
|   static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
 | |
|   static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
 | |
|   static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
 | |
| 
 | |
|   static std::pair<uint64_t, bool> splitSigned(int64_t N) {
 | |
|     if (N >= 0)
 | |
|       return std::make_pair(N, false);
 | |
|     uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
 | |
|     return std::make_pair(Unsigned, true);
 | |
|   }
 | |
|   static int64_t joinSigned(uint64_t U, bool IsNeg) {
 | |
|     if (U > uint64_t(INT64_MAX))
 | |
|       return IsNeg ? INT64_MIN : INT64_MAX;
 | |
|     return IsNeg ? -int64_t(U) : int64_t(U);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// \brief Simple representation of a scaled number.
 | |
| ///
 | |
| /// ScaledNumber is a number represented by digits and a scale.  It uses simple
 | |
| /// saturation arithmetic and every operation is well-defined for every value.
 | |
| /// It's somewhat similar in behaviour to a soft-float, but is *not* a
 | |
| /// replacement for one.  If you're doing numerics, look at \a APFloat instead.
 | |
| /// Nevertheless, we've found these semantics useful for modelling certain cost
 | |
| /// metrics.
 | |
| ///
 | |
| /// The number is split into a signed scale and unsigned digits.  The number
 | |
| /// represented is \c getDigits()*2^getScale().  In this way, the digits are
 | |
| /// much like the mantissa in the x87 long double, but there is no canonical
 | |
| /// form so the same number can be represented by many bit representations.
 | |
| ///
 | |
| /// ScaledNumber is templated on the underlying integer type for digits, which
 | |
| /// is expected to be unsigned.
 | |
| ///
 | |
| /// Unlike APFloat, ScaledNumber does not model architecture floating point
 | |
| /// behaviour -- while this might make it a little faster and easier to reason
 | |
| /// about, it certainly makes it more dangerous for general numerics.
 | |
| ///
 | |
| /// ScaledNumber is totally ordered.  However, there is no canonical form, so
 | |
| /// there are multiple representations of most scalars.  E.g.:
 | |
| ///
 | |
| ///     ScaledNumber(8u, 0) == ScaledNumber(4u, 1)
 | |
| ///     ScaledNumber(4u, 1) == ScaledNumber(2u, 2)
 | |
| ///     ScaledNumber(2u, 2) == ScaledNumber(1u, 3)
 | |
| ///
 | |
| /// ScaledNumber implements most arithmetic operations.  Precision is kept
 | |
| /// where possible.  Uses simple saturation arithmetic, so that operations
 | |
| /// saturate to 0.0 or getLargest() rather than under or overflowing.  It has
 | |
| /// some extra arithmetic for unit inversion.  0.0/0.0 is defined to be 0.0.
 | |
| /// Any other division by 0.0 is defined to be getLargest().
 | |
| ///
 | |
| /// As a convenience for modifying the exponent, left and right shifting are
 | |
| /// both implemented, and both interpret negative shifts as positive shifts in
 | |
| /// the opposite direction.
 | |
| ///
 | |
| /// Scales are limited to the range accepted by x87 long double.  This makes
 | |
| /// it trivial to add functionality to convert to APFloat (this is already
 | |
| /// relied on for the implementation of printing).
 | |
| ///
 | |
| /// Possible (and conflicting) future directions:
 | |
| ///
 | |
| ///  1. Turn this into a wrapper around \a APFloat.
 | |
| ///  2. Share the algorithm implementations with \a APFloat.
 | |
| ///  3. Allow \a ScaledNumber to represent a signed number.
 | |
| template <class DigitsT> class ScaledNumber : ScaledNumberBase {
 | |
| public:
 | |
|   static_assert(!std::numeric_limits<DigitsT>::is_signed,
 | |
|                 "only unsigned floats supported");
 | |
| 
 | |
|   typedef DigitsT DigitsType;
 | |
| 
 | |
| private:
 | |
|   typedef std::numeric_limits<DigitsType> DigitsLimits;
 | |
| 
 | |
|   static const int Width = sizeof(DigitsType) * 8;
 | |
|   static_assert(Width <= 64, "invalid integer width for digits");
 | |
| 
 | |
| private:
 | |
|   DigitsType Digits;
 | |
|   int16_t Scale;
 | |
| 
 | |
| public:
 | |
|   ScaledNumber() : Digits(0), Scale(0) {}
 | |
| 
 | |
|   ScaledNumber(DigitsType Digits, int16_t Scale)
 | |
|       : Digits(Digits), Scale(Scale) {}
 | |
| 
 | |
| private:
 | |
|   ScaledNumber(const std::pair<uint64_t, int16_t> &X)
 | |
|       : Digits(X.first), Scale(X.second) {}
 | |
| 
 | |
| public:
 | |
|   static ScaledNumber getZero() { return ScaledNumber(0, 0); }
 | |
|   static ScaledNumber getOne() { return ScaledNumber(1, 0); }
 | |
|   static ScaledNumber getLargest() {
 | |
|     return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale);
 | |
|   }
 | |
|   static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); }
 | |
|   static ScaledNumber getInverse(uint64_t N) {
 | |
|     return get(N).invert();
 | |
|   }
 | |
|   static ScaledNumber getFraction(DigitsType N, DigitsType D) {
 | |
|     return getQuotient(N, D);
 | |
|   }
 | |
| 
 | |
|   int16_t getScale() const { return Scale; }
 | |
|   DigitsType getDigits() const { return Digits; }
 | |
| 
 | |
|   /// \brief Convert to the given integer type.
 | |
|   ///
 | |
|   /// Convert to \c IntT using simple saturating arithmetic, truncating if
 | |
|   /// necessary.
 | |
|   template <class IntT> IntT toInt() const;
 | |
| 
 | |
|   bool isZero() const { return !Digits; }
 | |
|   bool isLargest() const { return *this == getLargest(); }
 | |
|   bool isOne() const {
 | |
|     if (Scale > 0 || Scale <= -Width)
 | |
|       return false;
 | |
|     return Digits == DigitsType(1) << -Scale;
 | |
|   }
 | |
| 
 | |
|   /// \brief The log base 2, rounded.
 | |
|   ///
 | |
|   /// Get the lg of the scalar.  lg 0 is defined to be INT32_MIN.
 | |
|   int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); }
 | |
| 
 | |
|   /// \brief The log base 2, rounded towards INT32_MIN.
 | |
|   ///
 | |
|   /// Get the lg floor.  lg 0 is defined to be INT32_MIN.
 | |
|   int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); }
 | |
| 
 | |
|   /// \brief The log base 2, rounded towards INT32_MAX.
 | |
|   ///
 | |
|   /// Get the lg ceiling.  lg 0 is defined to be INT32_MIN.
 | |
|   int32_t lgCeiling() const {
 | |
|     return ScaledNumbers::getLgCeiling(Digits, Scale);
 | |
|   }
 | |
| 
 | |
|   bool operator==(const ScaledNumber &X) const { return compare(X) == 0; }
 | |
|   bool operator<(const ScaledNumber &X) const { return compare(X) < 0; }
 | |
|   bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; }
 | |
|   bool operator>(const ScaledNumber &X) const { return compare(X) > 0; }
 | |
|   bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; }
 | |
|   bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; }
 | |
| 
 | |
|   bool operator!() const { return isZero(); }
 | |
| 
 | |
|   /// \brief Convert to a decimal representation in a string.
 | |
|   ///
 | |
|   /// Convert to a string.  Uses scientific notation for very large/small
 | |
|   /// numbers.  Scientific notation is used roughly for numbers outside of the
 | |
|   /// range 2^-64 through 2^64.
 | |
|   ///
 | |
|   /// \c Precision indicates the number of decimal digits of precision to use;
 | |
|   /// 0 requests the maximum available.
 | |
|   ///
 | |
|   /// As a special case to make debugging easier, if the number is small enough
 | |
|   /// to convert without scientific notation and has more than \c Precision
 | |
|   /// digits before the decimal place, it's printed accurately to the first
 | |
|   /// digit past zero.  E.g., assuming 10 digits of precision:
 | |
|   ///
 | |
|   ///     98765432198.7654... => 98765432198.8
 | |
|   ///      8765432198.7654... =>  8765432198.8
 | |
|   ///       765432198.7654... =>   765432198.8
 | |
|   ///        65432198.7654... =>    65432198.77
 | |
|   ///         5432198.7654... =>     5432198.765
 | |
|   std::string toString(unsigned Precision = DefaultPrecision) {
 | |
|     return ScaledNumberBase::toString(Digits, Scale, Width, Precision);
 | |
|   }
 | |
| 
 | |
|   /// \brief Print a decimal representation.
 | |
|   ///
 | |
|   /// Print a string.  See toString for documentation.
 | |
|   raw_ostream &print(raw_ostream &OS,
 | |
|                      unsigned Precision = DefaultPrecision) const {
 | |
|     return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision);
 | |
|   }
 | |
|   void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); }
 | |
| 
 | |
|   ScaledNumber &operator+=(const ScaledNumber &X) {
 | |
|     std::tie(Digits, Scale) =
 | |
|         ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale);
 | |
|     // Check for exponent past MaxScale.
 | |
|     if (Scale > ScaledNumbers::MaxScale)
 | |
|       *this = getLargest();
 | |
|     return *this;
 | |
|   }
 | |
|   ScaledNumber &operator-=(const ScaledNumber &X) {
 | |
|     std::tie(Digits, Scale) =
 | |
|         ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale);
 | |
|     return *this;
 | |
|   }
 | |
|   ScaledNumber &operator*=(const ScaledNumber &X);
 | |
|   ScaledNumber &operator/=(const ScaledNumber &X);
 | |
|   ScaledNumber &operator<<=(int16_t Shift) {
 | |
|     shiftLeft(Shift);
 | |
|     return *this;
 | |
|   }
 | |
|   ScaledNumber &operator>>=(int16_t Shift) {
 | |
|     shiftRight(Shift);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void shiftLeft(int32_t Shift);
 | |
|   void shiftRight(int32_t Shift);
 | |
| 
 | |
|   /// \brief Adjust two floats to have matching exponents.
 | |
|   ///
 | |
|   /// Adjust \c this and \c X to have matching exponents.  Returns the new \c X
 | |
|   /// by value.  Does nothing if \a isZero() for either.
 | |
|   ///
 | |
|   /// The value that compares smaller will lose precision, and possibly become
 | |
|   /// \a isZero().
 | |
|   ScaledNumber matchScales(ScaledNumber X) {
 | |
|     ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale);
 | |
|     return X;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// \brief Scale a large number accurately.
 | |
|   ///
 | |
|   /// Scale N (multiply it by this).  Uses full precision multiplication, even
 | |
|   /// if Width is smaller than 64, so information is not lost.
 | |
|   uint64_t scale(uint64_t N) const;
 | |
|   uint64_t scaleByInverse(uint64_t N) const {
 | |
|     // TODO: implement directly, rather than relying on inverse.  Inverse is
 | |
|     // expensive.
 | |
|     return inverse().scale(N);
 | |
|   }
 | |
|   int64_t scale(int64_t N) const {
 | |
|     std::pair<uint64_t, bool> Unsigned = splitSigned(N);
 | |
|     return joinSigned(scale(Unsigned.first), Unsigned.second);
 | |
|   }
 | |
|   int64_t scaleByInverse(int64_t N) const {
 | |
|     std::pair<uint64_t, bool> Unsigned = splitSigned(N);
 | |
|     return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
 | |
|   }
 | |
| 
 | |
|   int compare(const ScaledNumber &X) const {
 | |
|     return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale);
 | |
|   }
 | |
|   int compareTo(uint64_t N) const {
 | |
|     ScaledNumber Scaled = get(N);
 | |
|     int Compare = compare(Scaled);
 | |
|     if (Width == 64 || Compare != 0)
 | |
|       return Compare;
 | |
| 
 | |
|     // Check for precision loss.  We know *this == RoundTrip.
 | |
|     uint64_t RoundTrip = Scaled.template toInt<uint64_t>();
 | |
|     return N == RoundTrip ? 0 : RoundTrip < N ? -1 : 1;
 | |
|   }
 | |
|   int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
 | |
| 
 | |
|   ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; }
 | |
|   ScaledNumber inverse() const { return ScaledNumber(*this).invert(); }
 | |
| 
 | |
| private:
 | |
|   static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) {
 | |
|     return ScaledNumbers::getProduct(LHS, RHS);
 | |
|   }
 | |
|   static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) {
 | |
|     return ScaledNumbers::getQuotient(Dividend, Divisor);
 | |
|   }
 | |
| 
 | |
|   static int countLeadingZerosWidth(DigitsType Digits) {
 | |
|     if (Width == 64)
 | |
|       return countLeadingZeros64(Digits);
 | |
|     if (Width == 32)
 | |
|       return countLeadingZeros32(Digits);
 | |
|     return countLeadingZeros32(Digits) + Width - 32;
 | |
|   }
 | |
| 
 | |
|   /// \brief Adjust a number to width, rounding up if necessary.
 | |
|   ///
 | |
|   /// Should only be called for \c Shift close to zero.
 | |
|   ///
 | |
|   /// \pre Shift >= MinScale && Shift + 64 <= MaxScale.
 | |
|   static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) {
 | |
|     assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0");
 | |
|     assert(Shift <= ScaledNumbers::MaxScale - 64 &&
 | |
|            "Shift should be close to 0");
 | |
|     auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift);
 | |
|     return Adjusted;
 | |
|   }
 | |
| 
 | |
|   static ScaledNumber getRounded(ScaledNumber P, bool Round) {
 | |
|     // Saturate.
 | |
|     if (P.isLargest())
 | |
|       return P;
 | |
| 
 | |
|     return ScaledNumbers::getRounded(P.Digits, P.Scale, Round);
 | |
|   }
 | |
| };
 | |
| 
 | |
| #define SCALED_NUMBER_BOP(op, base)                                            \
 | |
|   template <class DigitsT>                                                     \
 | |
|   ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L,            \
 | |
|                                     const ScaledNumber<DigitsT> &R) {          \
 | |
|     return ScaledNumber<DigitsT>(L) base R;                                    \
 | |
|   }
 | |
| SCALED_NUMBER_BOP(+, += )
 | |
| SCALED_NUMBER_BOP(-, -= )
 | |
| SCALED_NUMBER_BOP(*, *= )
 | |
| SCALED_NUMBER_BOP(/, /= )
 | |
| SCALED_NUMBER_BOP(<<, <<= )
 | |
| SCALED_NUMBER_BOP(>>, >>= )
 | |
| #undef SCALED_NUMBER_BOP
 | |
| 
 | |
| template <class DigitsT>
 | |
| raw_ostream &operator<<(raw_ostream &OS, const ScaledNumber<DigitsT> &X) {
 | |
|   return X.print(OS, 10);
 | |
| }
 | |
| 
 | |
| #define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2)                              \
 | |
|   template <class DigitsT>                                                     \
 | |
|   bool operator op(const ScaledNumber<DigitsT> &L, T1 R) {                     \
 | |
|     return L.compareTo(T2(R)) op 0;                                            \
 | |
|   }                                                                            \
 | |
|   template <class DigitsT>                                                     \
 | |
|   bool operator op(T1 L, const ScaledNumber<DigitsT> &R) {                     \
 | |
|     return 0 op R.compareTo(T2(L));                                            \
 | |
|   }
 | |
| #define SCALED_NUMBER_COMPARE_TO(op)                                           \
 | |
|   SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t)                        \
 | |
|   SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t)                        \
 | |
|   SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t)                          \
 | |
|   SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t)
 | |
| SCALED_NUMBER_COMPARE_TO(< )
 | |
| SCALED_NUMBER_COMPARE_TO(> )
 | |
| SCALED_NUMBER_COMPARE_TO(== )
 | |
| SCALED_NUMBER_COMPARE_TO(!= )
 | |
| SCALED_NUMBER_COMPARE_TO(<= )
 | |
| SCALED_NUMBER_COMPARE_TO(>= )
 | |
| #undef SCALED_NUMBER_COMPARE_TO
 | |
| #undef SCALED_NUMBER_COMPARE_TO_TYPE
 | |
| 
 | |
| template <class DigitsT>
 | |
| uint64_t ScaledNumber<DigitsT>::scale(uint64_t N) const {
 | |
|   if (Width == 64 || N <= DigitsLimits::max())
 | |
|     return (get(N) * *this).template toInt<uint64_t>();
 | |
| 
 | |
|   // Defer to the 64-bit version.
 | |
|   return ScaledNumber<uint64_t>(Digits, Scale).scale(N);
 | |
| }
 | |
| 
 | |
| template <class DigitsT>
 | |
| template <class IntT>
 | |
| IntT ScaledNumber<DigitsT>::toInt() const {
 | |
|   typedef std::numeric_limits<IntT> Limits;
 | |
|   if (*this < 1)
 | |
|     return 0;
 | |
|   if (*this >= Limits::max())
 | |
|     return Limits::max();
 | |
| 
 | |
|   IntT N = Digits;
 | |
|   if (Scale > 0) {
 | |
|     assert(size_t(Scale) < sizeof(IntT) * 8);
 | |
|     return N << Scale;
 | |
|   }
 | |
|   if (Scale < 0) {
 | |
|     assert(size_t(-Scale) < sizeof(IntT) * 8);
 | |
|     return N >> -Scale;
 | |
|   }
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| template <class DigitsT>
 | |
| ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
 | |
| operator*=(const ScaledNumber &X) {
 | |
|   if (isZero())
 | |
|     return *this;
 | |
|   if (X.isZero())
 | |
|     return *this = X;
 | |
| 
 | |
|   // Save the exponents.
 | |
|   int32_t Scales = int32_t(Scale) + int32_t(X.Scale);
 | |
| 
 | |
|   // Get the raw product.
 | |
|   *this = getProduct(Digits, X.Digits);
 | |
| 
 | |
|   // Combine with exponents.
 | |
|   return *this <<= Scales;
 | |
| }
 | |
| template <class DigitsT>
 | |
| ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
 | |
| operator/=(const ScaledNumber &X) {
 | |
|   if (isZero())
 | |
|     return *this;
 | |
|   if (X.isZero())
 | |
|     return *this = getLargest();
 | |
| 
 | |
|   // Save the exponents.
 | |
|   int32_t Scales = int32_t(Scale) - int32_t(X.Scale);
 | |
| 
 | |
|   // Get the raw quotient.
 | |
|   *this = getQuotient(Digits, X.Digits);
 | |
| 
 | |
|   // Combine with exponents.
 | |
|   return *this <<= Scales;
 | |
| }
 | |
| template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) {
 | |
|   if (!Shift || isZero())
 | |
|     return;
 | |
|   assert(Shift != INT32_MIN);
 | |
|   if (Shift < 0) {
 | |
|     shiftRight(-Shift);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Shift as much as we can in the exponent.
 | |
|   int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale);
 | |
|   Scale += ScaleShift;
 | |
|   if (ScaleShift == Shift)
 | |
|     return;
 | |
| 
 | |
|   // Check this late, since it's rare.
 | |
|   if (isLargest())
 | |
|     return;
 | |
| 
 | |
|   // Shift the digits themselves.
 | |
|   Shift -= ScaleShift;
 | |
|   if (Shift > countLeadingZerosWidth(Digits)) {
 | |
|     // Saturate.
 | |
|     *this = getLargest();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Digits <<= Shift;
 | |
|   return;
 | |
| }
 | |
| 
 | |
| template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) {
 | |
|   if (!Shift || isZero())
 | |
|     return;
 | |
|   assert(Shift != INT32_MIN);
 | |
|   if (Shift < 0) {
 | |
|     shiftLeft(-Shift);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Shift as much as we can in the exponent.
 | |
|   int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale);
 | |
|   Scale -= ScaleShift;
 | |
|   if (ScaleShift == Shift)
 | |
|     return;
 | |
| 
 | |
|   // Shift the digits themselves.
 | |
|   Shift -= ScaleShift;
 | |
|   if (Shift >= Width) {
 | |
|     // Saturate.
 | |
|     *this = getZero();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Digits >>= Shift;
 | |
|   return;
 | |
| }
 | |
| 
 | |
| template <typename T> struct isPodLike;
 | |
| template <typename T> struct isPodLike<ScaledNumber<T>> {
 | |
|   static const bool value = true;
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| #endif
 |