mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14622 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			356 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			356 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- Expressions.cpp - Expression Analysis Utilities --------------------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a package of expression analysis utilties:
 | |
| //
 | |
| // ClassifyExpression: Analyze an expression to determine the complexity of the
 | |
| //   expression, and which other variables it depends on.  
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Expressions.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Type.h"
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| ExprType::ExprType(Value *Val) {
 | |
|   if (Val) 
 | |
|     if (ConstantInt *CPI = dyn_cast<ConstantInt>(Val)) {
 | |
|       Offset = CPI;
 | |
|       Var = 0;
 | |
|       ExprTy = Constant;
 | |
|       Scale = 0;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   Var = Val; Offset = 0;
 | |
|   ExprTy = Var ? Linear : Constant;
 | |
|   Scale = 0;
 | |
| }
 | |
| 
 | |
| ExprType::ExprType(const ConstantInt *scale, Value *var, 
 | |
| 		   const ConstantInt *offset) {
 | |
|   Scale = var ? scale : 0; Var = var; Offset = offset;
 | |
|   ExprTy = Scale ? ScaledLinear : (Var ? Linear : Constant);
 | |
|   if (Scale && Scale->isNullValue()) {  // Simplify 0*Var + const
 | |
|     Scale = 0; Var = 0;
 | |
|     ExprTy = Constant;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| const Type *ExprType::getExprType(const Type *Default) const {
 | |
|   if (Offset) return Offset->getType();
 | |
|   if (Scale) return Scale->getType();
 | |
|   return Var ? Var->getType() : Default;
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   class DefVal {
 | |
|     const ConstantInt * const Val;
 | |
|     const Type * const Ty;
 | |
|   protected:
 | |
|     inline DefVal(const ConstantInt *val, const Type *ty) : Val(val), Ty(ty) {}
 | |
|   public:
 | |
|     inline const Type *getType() const { return Ty; }
 | |
|     inline const ConstantInt *getVal() const { return Val; }
 | |
|     inline operator const ConstantInt * () const { return Val; }
 | |
|     inline const ConstantInt *operator->() const { return Val; }
 | |
|   };
 | |
|   
 | |
|   struct DefZero : public DefVal {
 | |
|     inline DefZero(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {}
 | |
|     inline DefZero(const ConstantInt *val) : DefVal(val, val->getType()) {}
 | |
|   };
 | |
|   
 | |
|   struct DefOne : public DefVal {
 | |
|     inline DefOne(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {}
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| // getUnsignedConstant - Return a constant value of the specified type.  If the
 | |
| // constant value is not valid for the specified type, return null.  This cannot
 | |
| // happen for values in the range of 0 to 127.
 | |
| //
 | |
| static ConstantInt *getUnsignedConstant(uint64_t V, const Type *Ty) {
 | |
|   if (isa<PointerType>(Ty)) Ty = Type::ULongTy;
 | |
|   if (Ty->isSigned()) {
 | |
|     // If this value is not a valid unsigned value for this type, return null!
 | |
|     if (V > 127 && ((int64_t)V < 0 ||
 | |
|                     !ConstantSInt::isValueValidForType(Ty, (int64_t)V)))
 | |
|       return 0;
 | |
|     return ConstantSInt::get(Ty, V);
 | |
|   } else {
 | |
|     // If this value is not a valid unsigned value for this type, return null!
 | |
|     if (V > 255 && !ConstantUInt::isValueValidForType(Ty, V))
 | |
|       return 0;
 | |
|     return ConstantUInt::get(Ty, V);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Add - Helper function to make later code simpler.  Basically it just adds
 | |
| // the two constants together, inserts the result into the constant pool, and
 | |
| // returns it.  Of course life is not simple, and this is no exception.  Factors
 | |
| // that complicate matters:
 | |
| //   1. Either argument may be null.  If this is the case, the null argument is
 | |
| //      treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
 | |
| //   2. Types get in the way.  We want to do arithmetic operations without
 | |
| //      regard for the underlying types.  It is assumed that the constants are
 | |
| //      integral constants.  The new value takes the type of the left argument.
 | |
| //   3. If DefOne is true, a null return value indicates a value of 1, if DefOne
 | |
| //      is false, a null return value indicates a value of 0.
 | |
| //
 | |
| static const ConstantInt *Add(const ConstantInt *Arg1,
 | |
|                               const ConstantInt *Arg2, bool DefOne) {
 | |
|   assert(Arg1 && Arg2 && "No null arguments should exist now!");
 | |
|   assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!");
 | |
| 
 | |
|   // Actually perform the computation now!
 | |
|   Constant *Result = ConstantExpr::get(Instruction::Add, (Constant*)Arg1,
 | |
|                                        (Constant*)Arg2);
 | |
|   ConstantInt *ResultI = cast<ConstantInt>(Result);
 | |
| 
 | |
|   // Check to see if the result is one of the special cases that we want to
 | |
|   // recognize...
 | |
|   if (ResultI->equalsInt(DefOne ? 1 : 0))
 | |
|     return 0;  // Yes it is, simply return null.
 | |
| 
 | |
|   return ResultI;
 | |
| }
 | |
| 
 | |
| static inline const ConstantInt *operator+(const DefZero &L, const DefZero &R) {
 | |
|   if (L == 0) return R;
 | |
|   if (R == 0) return L;
 | |
|   return Add(L, R, false);
 | |
| }
 | |
| 
 | |
| static inline const ConstantInt *operator+(const DefOne &L, const DefOne &R) {
 | |
|   if (L == 0) {
 | |
|     if (R == 0)
 | |
|       return getUnsignedConstant(2, L.getType());
 | |
|     else
 | |
|       return Add(getUnsignedConstant(1, L.getType()), R, true);
 | |
|   } else if (R == 0) {
 | |
|     return Add(L, getUnsignedConstant(1, L.getType()), true);
 | |
|   }
 | |
|   return Add(L, R, true);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Mul - Helper function to make later code simpler.  Basically it just
 | |
| // multiplies the two constants together, inserts the result into the constant
 | |
| // pool, and returns it.  Of course life is not simple, and this is no
 | |
| // exception.  Factors that complicate matters:
 | |
| //   1. Either argument may be null.  If this is the case, the null argument is
 | |
| //      treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
 | |
| //   2. Types get in the way.  We want to do arithmetic operations without
 | |
| //      regard for the underlying types.  It is assumed that the constants are
 | |
| //      integral constants.
 | |
| //   3. If DefOne is true, a null return value indicates a value of 1, if DefOne
 | |
| //      is false, a null return value indicates a value of 0.
 | |
| //
 | |
| static inline const ConstantInt *Mul(const ConstantInt *Arg1, 
 | |
|                                      const ConstantInt *Arg2, bool DefOne) {
 | |
|   assert(Arg1 && Arg2 && "No null arguments should exist now!");
 | |
|   assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!");
 | |
| 
 | |
|   // Actually perform the computation now!
 | |
|   Constant *Result = ConstantExpr::get(Instruction::Mul, (Constant*)Arg1,
 | |
|                                        (Constant*)Arg2);
 | |
|   assert(Result && Result->getType() == Arg1->getType() && 
 | |
| 	 "Couldn't perform multiplication!");
 | |
|   ConstantInt *ResultI = cast<ConstantInt>(Result);
 | |
| 
 | |
|   // Check to see if the result is one of the special cases that we want to
 | |
|   // recognize...
 | |
|   if (ResultI->equalsInt(DefOne ? 1 : 0))
 | |
|     return 0; // Yes it is, simply return null.
 | |
| 
 | |
|   return ResultI;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   inline const ConstantInt *operator*(const DefZero &L, const DefZero &R) {
 | |
|     if (L == 0 || R == 0) return 0;
 | |
|     return Mul(L, R, false);
 | |
|   }
 | |
|   inline const ConstantInt *operator*(const DefOne &L, const DefZero &R) {
 | |
|     if (R == 0) return getUnsignedConstant(0, L.getType());
 | |
|     if (L == 0) return R->equalsInt(1) ? 0 : R.getVal();
 | |
|     return Mul(L, R, true);
 | |
|   }
 | |
|   inline const ConstantInt *operator*(const DefZero &L, const DefOne &R) {
 | |
|     if (L == 0 || R == 0) return L.getVal();
 | |
|     return Mul(R, L, false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // handleAddition - Add two expressions together, creating a new expression that
 | |
| // represents the composite of the two...
 | |
| //
 | |
| static ExprType handleAddition(ExprType Left, ExprType Right, Value *V) {
 | |
|   const Type *Ty = V->getType();
 | |
|   if (Left.ExprTy > Right.ExprTy)
 | |
|     std::swap(Left, Right);   // Make left be simpler than right
 | |
| 
 | |
|   switch (Left.ExprTy) {
 | |
|   case ExprType::Constant:
 | |
|         return ExprType(Right.Scale, Right.Var,
 | |
| 			DefZero(Right.Offset, Ty) + DefZero(Left.Offset, Ty));
 | |
|   case ExprType::Linear:              // RHS side must be linear or scaled
 | |
|   case ExprType::ScaledLinear:        // RHS must be scaled
 | |
|     if (Left.Var != Right.Var)        // Are they the same variables?
 | |
|       return V;                       //   if not, we don't know anything!
 | |
| 
 | |
|     return ExprType(DefOne(Left.Scale  , Ty) + DefOne(Right.Scale , Ty),
 | |
| 		    Right.Var,
 | |
| 		    DefZero(Left.Offset, Ty) + DefZero(Right.Offset, Ty));
 | |
|   default:
 | |
|     assert(0 && "Dont' know how to handle this case!");
 | |
|     return ExprType();
 | |
|   }
 | |
| }
 | |
| 
 | |
| // negate - Negate the value of the specified expression...
 | |
| //
 | |
| static inline ExprType negate(const ExprType &E, Value *V) {
 | |
|   const Type *Ty = V->getType();
 | |
|   ConstantInt *Zero   = getUnsignedConstant(0, Ty);
 | |
|   ConstantInt *One    = getUnsignedConstant(1, Ty);
 | |
|   ConstantInt *NegOne = cast<ConstantInt>(ConstantExpr::get(Instruction::Sub,
 | |
|                                                             Zero, One));
 | |
|   if (NegOne == 0) return V;  // Couldn't subtract values...
 | |
| 
 | |
|   return ExprType(DefOne (E.Scale , Ty) * NegOne, E.Var,
 | |
| 		  DefZero(E.Offset, Ty) * NegOne);
 | |
| }
 | |
| 
 | |
| 
 | |
| // ClassifyExpr: Analyze an expression to determine the complexity of the
 | |
| // expression, and which other values it depends on.
 | |
| //
 | |
| // Note that this analysis cannot get into infinite loops because it treats PHI
 | |
| // nodes as being an unknown linear expression.
 | |
| //
 | |
| ExprType llvm::ClassifyExpr(Value *Expr) {
 | |
|   assert(Expr != 0 && "Can't classify a null expression!");
 | |
|   if (Expr->getType()->isFloatingPoint())
 | |
|     return Expr;   // FIXME: Can't handle FP expressions
 | |
| 
 | |
|   if (Constant *C = dyn_cast<Constant>(Expr)) {
 | |
|     if (ConstantInt *CPI = dyn_cast<ConstantInt>(cast<Constant>(Expr)))
 | |
|       // It's an integral constant!
 | |
|       return ExprType(CPI->isNullValue() ? 0 : CPI);
 | |
|     return Expr;
 | |
|   } else if (!isa<Instruction>(Expr)) {
 | |
|     return Expr;
 | |
|   }
 | |
| 
 | |
|   
 | |
|   Instruction *I = cast<Instruction>(Expr);
 | |
|   const Type *Ty = I->getType();
 | |
| 
 | |
|   switch (I->getOpcode()) {       // Handle each instruction type separately
 | |
|   case Instruction::Add: {
 | |
|     ExprType Left (ClassifyExpr(I->getOperand(0)));
 | |
|     ExprType Right(ClassifyExpr(I->getOperand(1)));
 | |
|     return handleAddition(Left, Right, I);
 | |
|   }  // end case Instruction::Add
 | |
| 
 | |
|   case Instruction::Sub: {
 | |
|     ExprType Left (ClassifyExpr(I->getOperand(0)));
 | |
|     ExprType Right(ClassifyExpr(I->getOperand(1)));
 | |
|     ExprType RightNeg = negate(Right, I);
 | |
|     if (RightNeg.Var == I && !RightNeg.Offset && !RightNeg.Scale)
 | |
|       return I;   // Could not negate value...
 | |
|     return handleAddition(Left, RightNeg, I);
 | |
|   }  // end case Instruction::Sub
 | |
| 
 | |
|   case Instruction::Shl: { 
 | |
|     ExprType Right(ClassifyExpr(I->getOperand(1)));
 | |
|     if (Right.ExprTy != ExprType::Constant) break;
 | |
|     ExprType Left(ClassifyExpr(I->getOperand(0)));
 | |
|     if (Right.Offset == 0) return Left;   // shl x, 0 = x
 | |
|     assert(Right.Offset->getType() == Type::UByteTy &&
 | |
| 	   "Shift amount must always be a unsigned byte!");
 | |
|     uint64_t ShiftAmount = cast<ConstantUInt>(Right.Offset)->getValue();
 | |
|     ConstantInt *Multiplier = getUnsignedConstant(1ULL << ShiftAmount, Ty);
 | |
| 
 | |
|     // We don't know how to classify it if they are shifting by more than what
 | |
|     // is reasonable.  In most cases, the result will be zero, but there is one
 | |
|     // class of cases where it is not, so we cannot optimize without checking
 | |
|     // for it.  The case is when you are shifting a signed value by 1 less than
 | |
|     // the number of bits in the value.  For example:
 | |
|     //    %X = shl sbyte %Y, ubyte 7
 | |
|     // will try to form an sbyte multiplier of 128, which will give a null
 | |
|     // multiplier, even though the result is not 0.  Until we can check for this
 | |
|     // case, be conservative.  TODO.
 | |
|     //
 | |
|     if (Multiplier == 0)
 | |
|       return Expr;
 | |
| 
 | |
|     return ExprType(DefOne(Left.Scale, Ty) * Multiplier, Left.Var,
 | |
| 		    DefZero(Left.Offset, Ty) * Multiplier);
 | |
|   }  // end case Instruction::Shl
 | |
| 
 | |
|   case Instruction::Mul: {
 | |
|     ExprType Left (ClassifyExpr(I->getOperand(0)));
 | |
|     ExprType Right(ClassifyExpr(I->getOperand(1)));
 | |
|     if (Left.ExprTy > Right.ExprTy)
 | |
|       std::swap(Left, Right);   // Make left be simpler than right
 | |
| 
 | |
|     if (Left.ExprTy != ExprType::Constant)  // RHS must be > constant
 | |
|       return I;         // Quadratic eqn! :(
 | |
| 
 | |
|     const ConstantInt *Offs = Left.Offset;
 | |
|     if (Offs == 0) return ExprType();
 | |
|     return ExprType( DefOne(Right.Scale , Ty) * Offs, Right.Var,
 | |
| 		    DefZero(Right.Offset, Ty) * Offs);
 | |
|   } // end case Instruction::Mul
 | |
| 
 | |
|   case Instruction::Cast: {
 | |
|     ExprType Src(ClassifyExpr(I->getOperand(0)));
 | |
|     const Type *DestTy = I->getType();
 | |
|     if (isa<PointerType>(DestTy))
 | |
|       DestTy = Type::ULongTy;  // Pointer types are represented as ulong
 | |
| 
 | |
|     const Type *SrcValTy = Src.getExprType(0);
 | |
|     if (!SrcValTy) return I;
 | |
|     if (!SrcValTy->isLosslesslyConvertibleTo(DestTy)) {
 | |
|       if (Src.ExprTy != ExprType::Constant)
 | |
|         return I;  // Converting cast, and not a constant value...
 | |
|     }
 | |
| 
 | |
|     const ConstantInt *Offset = Src.Offset;
 | |
|     const ConstantInt *Scale  = Src.Scale;
 | |
|     if (Offset) {
 | |
|       const Constant *CPV = ConstantExpr::getCast((Constant*)Offset, DestTy);
 | |
|       if (!isa<ConstantInt>(CPV)) return I;
 | |
|       Offset = cast<ConstantInt>(CPV);
 | |
|     }
 | |
|     if (Scale) {
 | |
|       const Constant *CPV = ConstantExpr::getCast((Constant*)Scale, DestTy);
 | |
|       if (!CPV) return I;
 | |
|       Scale = cast<ConstantInt>(CPV);
 | |
|     }
 | |
|     return ExprType(Scale, Src.Var, Offset);
 | |
|   } // end case Instruction::Cast
 | |
|     // TODO: Handle SUB, SHR?
 | |
| 
 | |
|   }  // end switch
 | |
| 
 | |
|   // Otherwise, I don't know anything about this value!
 | |
|   return I;
 | |
| }
 |