mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	the alignment when promoting allocations. This implements InstCombine/cast.ll:test32 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@30682 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			8175 lines
		
	
	
		
			336 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			8175 lines
		
	
	
		
			336 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // InstructionCombining - Combine instructions to form fewer, simple
 | |
| // instructions.  This pass does not modify the CFG This pass is where algebraic
 | |
| // simplification happens.
 | |
| //
 | |
| // This pass combines things like:
 | |
| //    %Y = add int %X, 1
 | |
| //    %Z = add int %Y, 1
 | |
| // into:
 | |
| //    %Z = add int %X, 2
 | |
| //
 | |
| // This is a simple worklist driven algorithm.
 | |
| //
 | |
| // This pass guarantees that the following canonicalizations are performed on
 | |
| // the program:
 | |
| //    1. If a binary operator has a constant operand, it is moved to the RHS
 | |
| //    2. Bitwise operators with constant operands are always grouped so that
 | |
| //       shifts are performed first, then or's, then and's, then xor's.
 | |
| //    3. SetCC instructions are converted from <,>,<=,>= to ==,!= if possible
 | |
| //    4. All SetCC instructions on boolean values are replaced with logical ops
 | |
| //    5. add X, X is represented as (X*2) => (X << 1)
 | |
| //    6. Multiplies with a power-of-two constant argument are transformed into
 | |
| //       shifts.
 | |
| //   ... etc.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/PatternMatch.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <algorithm>
 | |
| #include <iostream>
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumCombined ("instcombine", "Number of insts combined");
 | |
|   Statistic<> NumConstProp("instcombine", "Number of constant folds");
 | |
|   Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated");
 | |
|   Statistic<> NumDeadStore("instcombine", "Number of dead stores eliminated");
 | |
|   Statistic<> NumSunkInst ("instcombine", "Number of instructions sunk");
 | |
| 
 | |
|   class VISIBILITY_HIDDEN InstCombiner
 | |
|     : public FunctionPass,
 | |
|       public InstVisitor<InstCombiner, Instruction*> {
 | |
|     // Worklist of all of the instructions that need to be simplified.
 | |
|     std::vector<Instruction*> WorkList;
 | |
|     TargetData *TD;
 | |
| 
 | |
|     /// AddUsersToWorkList - When an instruction is simplified, add all users of
 | |
|     /// the instruction to the work lists because they might get more simplified
 | |
|     /// now.
 | |
|     ///
 | |
|     void AddUsersToWorkList(Value &I) {
 | |
|       for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
 | |
|            UI != UE; ++UI)
 | |
|         WorkList.push_back(cast<Instruction>(*UI));
 | |
|     }
 | |
| 
 | |
|     /// AddUsesToWorkList - When an instruction is simplified, add operands to
 | |
|     /// the work lists because they might get more simplified now.
 | |
|     ///
 | |
|     void AddUsesToWorkList(Instruction &I) {
 | |
|       for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
 | |
|         if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
 | |
|           WorkList.push_back(Op);
 | |
|     }
 | |
| 
 | |
|     // removeFromWorkList - remove all instances of I from the worklist.
 | |
|     void removeFromWorkList(Instruction *I);
 | |
|   public:
 | |
|     virtual bool runOnFunction(Function &F);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<TargetData>();
 | |
|       AU.addPreservedID(LCSSAID);
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
| 
 | |
|     TargetData &getTargetData() const { return *TD; }
 | |
| 
 | |
|     // Visitation implementation - Implement instruction combining for different
 | |
|     // instruction types.  The semantics are as follows:
 | |
|     // Return Value:
 | |
|     //    null        - No change was made
 | |
|     //     I          - Change was made, I is still valid, I may be dead though
 | |
|     //   otherwise    - Change was made, replace I with returned instruction
 | |
|     //
 | |
|     Instruction *visitAdd(BinaryOperator &I);
 | |
|     Instruction *visitSub(BinaryOperator &I);
 | |
|     Instruction *visitMul(BinaryOperator &I);
 | |
|     Instruction *visitDiv(BinaryOperator &I);
 | |
|     Instruction *visitRem(BinaryOperator &I);
 | |
|     Instruction *visitAnd(BinaryOperator &I);
 | |
|     Instruction *visitOr (BinaryOperator &I);
 | |
|     Instruction *visitXor(BinaryOperator &I);
 | |
|     Instruction *visitSetCondInst(SetCondInst &I);
 | |
|     Instruction *visitSetCondInstWithCastAndCast(SetCondInst &SCI);
 | |
| 
 | |
|     Instruction *FoldGEPSetCC(User *GEPLHS, Value *RHS,
 | |
|                               Instruction::BinaryOps Cond, Instruction &I);
 | |
|     Instruction *visitShiftInst(ShiftInst &I);
 | |
|     Instruction *FoldShiftByConstant(Value *Op0, ConstantUInt *Op1,
 | |
|                                      ShiftInst &I);
 | |
|     Instruction *visitCastInst(CastInst &CI);
 | |
|     Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
 | |
|                                 Instruction *FI);
 | |
|     Instruction *visitSelectInst(SelectInst &CI);
 | |
|     Instruction *visitCallInst(CallInst &CI);
 | |
|     Instruction *visitInvokeInst(InvokeInst &II);
 | |
|     Instruction *visitPHINode(PHINode &PN);
 | |
|     Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
 | |
|     Instruction *visitAllocationInst(AllocationInst &AI);
 | |
|     Instruction *visitFreeInst(FreeInst &FI);
 | |
|     Instruction *visitLoadInst(LoadInst &LI);
 | |
|     Instruction *visitStoreInst(StoreInst &SI);
 | |
|     Instruction *visitBranchInst(BranchInst &BI);
 | |
|     Instruction *visitSwitchInst(SwitchInst &SI);
 | |
|     Instruction *visitInsertElementInst(InsertElementInst &IE);
 | |
|     Instruction *visitExtractElementInst(ExtractElementInst &EI);
 | |
|     Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
 | |
| 
 | |
|     // visitInstruction - Specify what to return for unhandled instructions...
 | |
|     Instruction *visitInstruction(Instruction &I) { return 0; }
 | |
| 
 | |
|   private:
 | |
|     Instruction *visitCallSite(CallSite CS);
 | |
|     bool transformConstExprCastCall(CallSite CS);
 | |
| 
 | |
|   public:
 | |
|     // InsertNewInstBefore - insert an instruction New before instruction Old
 | |
|     // in the program.  Add the new instruction to the worklist.
 | |
|     //
 | |
|     Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
 | |
|       assert(New && New->getParent() == 0 &&
 | |
|              "New instruction already inserted into a basic block!");
 | |
|       BasicBlock *BB = Old.getParent();
 | |
|       BB->getInstList().insert(&Old, New);  // Insert inst
 | |
|       WorkList.push_back(New);              // Add to worklist
 | |
|       return New;
 | |
|     }
 | |
| 
 | |
|     /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
 | |
|     /// This also adds the cast to the worklist.  Finally, this returns the
 | |
|     /// cast.
 | |
|     Value *InsertCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
 | |
|       if (V->getType() == Ty) return V;
 | |
| 
 | |
|       if (Constant *CV = dyn_cast<Constant>(V))
 | |
|         return ConstantExpr::getCast(CV, Ty);
 | |
|       
 | |
|       Instruction *C = new CastInst(V, Ty, V->getName(), &Pos);
 | |
|       WorkList.push_back(C);
 | |
|       return C;
 | |
|     }
 | |
| 
 | |
|     // ReplaceInstUsesWith - This method is to be used when an instruction is
 | |
|     // found to be dead, replacable with another preexisting expression.  Here
 | |
|     // we add all uses of I to the worklist, replace all uses of I with the new
 | |
|     // value, then return I, so that the inst combiner will know that I was
 | |
|     // modified.
 | |
|     //
 | |
|     Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
 | |
|       AddUsersToWorkList(I);         // Add all modified instrs to worklist
 | |
|       if (&I != V) {
 | |
|         I.replaceAllUsesWith(V);
 | |
|         return &I;
 | |
|       } else {
 | |
|         // If we are replacing the instruction with itself, this must be in a
 | |
|         // segment of unreachable code, so just clobber the instruction.
 | |
|         I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | |
|         return &I;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // UpdateValueUsesWith - This method is to be used when an value is
 | |
|     // found to be replacable with another preexisting expression or was
 | |
|     // updated.  Here we add all uses of I to the worklist, replace all uses of
 | |
|     // I with the new value (unless the instruction was just updated), then
 | |
|     // return true, so that the inst combiner will know that I was modified.
 | |
|     //
 | |
|     bool UpdateValueUsesWith(Value *Old, Value *New) {
 | |
|       AddUsersToWorkList(*Old);         // Add all modified instrs to worklist
 | |
|       if (Old != New)
 | |
|         Old->replaceAllUsesWith(New);
 | |
|       if (Instruction *I = dyn_cast<Instruction>(Old))
 | |
|         WorkList.push_back(I);
 | |
|       if (Instruction *I = dyn_cast<Instruction>(New))
 | |
|         WorkList.push_back(I);
 | |
|       return true;
 | |
|     }
 | |
|     
 | |
|     // EraseInstFromFunction - When dealing with an instruction that has side
 | |
|     // effects or produces a void value, we can't rely on DCE to delete the
 | |
|     // instruction.  Instead, visit methods should return the value returned by
 | |
|     // this function.
 | |
|     Instruction *EraseInstFromFunction(Instruction &I) {
 | |
|       assert(I.use_empty() && "Cannot erase instruction that is used!");
 | |
|       AddUsesToWorkList(I);
 | |
|       removeFromWorkList(&I);
 | |
|       I.eraseFromParent();
 | |
|       return 0;  // Don't do anything with FI
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
 | |
|     /// InsertBefore instruction.  This is specialized a bit to avoid inserting
 | |
|     /// casts that are known to not do anything...
 | |
|     ///
 | |
|     Value *InsertOperandCastBefore(Value *V, const Type *DestTy,
 | |
|                                    Instruction *InsertBefore);
 | |
| 
 | |
|     // SimplifyCommutative - This performs a few simplifications for commutative
 | |
|     // operators.
 | |
|     bool SimplifyCommutative(BinaryOperator &I);
 | |
| 
 | |
|     bool SimplifyDemandedBits(Value *V, uint64_t Mask, 
 | |
|                               uint64_t &KnownZero, uint64_t &KnownOne,
 | |
|                               unsigned Depth = 0);
 | |
| 
 | |
|     // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
 | |
|     // PHI node as operand #0, see if we can fold the instruction into the PHI
 | |
|     // (which is only possible if all operands to the PHI are constants).
 | |
|     Instruction *FoldOpIntoPhi(Instruction &I);
 | |
| 
 | |
|     // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
 | |
|     // operator and they all are only used by the PHI, PHI together their
 | |
|     // inputs, and do the operation once, to the result of the PHI.
 | |
|     Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
 | |
| 
 | |
|     Instruction *OptAndOp(Instruction *Op, ConstantIntegral *OpRHS,
 | |
|                           ConstantIntegral *AndRHS, BinaryOperator &TheAnd);
 | |
|     
 | |
|     Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantIntegral *Mask,
 | |
|                               bool isSub, Instruction &I);
 | |
|     Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
 | |
|                                  bool Inside, Instruction &IB);
 | |
|     Instruction *PromoteCastOfAllocation(CastInst &CI, AllocationInst &AI);
 | |
|     Instruction *MatchBSwap(BinaryOperator &I);
 | |
| 
 | |
|     Value *EvaluateInDifferentType(Value *V, const Type *Ty);
 | |
|   };
 | |
| 
 | |
|   RegisterPass<InstCombiner> X("instcombine", "Combine redundant instructions");
 | |
| }
 | |
| 
 | |
| // getComplexity:  Assign a complexity or rank value to LLVM Values...
 | |
| //   0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
 | |
| static unsigned getComplexity(Value *V) {
 | |
|   if (isa<Instruction>(V)) {
 | |
|     if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
 | |
|       return 3;
 | |
|     return 4;
 | |
|   }
 | |
|   if (isa<Argument>(V)) return 3;
 | |
|   return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
 | |
| }
 | |
| 
 | |
| // isOnlyUse - Return true if this instruction will be deleted if we stop using
 | |
| // it.
 | |
| static bool isOnlyUse(Value *V) {
 | |
|   return V->hasOneUse() || isa<Constant>(V);
 | |
| }
 | |
| 
 | |
| // getPromotedType - Return the specified type promoted as it would be to pass
 | |
| // though a va_arg area...
 | |
| static const Type *getPromotedType(const Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::SByteTyID:
 | |
|   case Type::ShortTyID:  return Type::IntTy;
 | |
|   case Type::UByteTyID:
 | |
|   case Type::UShortTyID: return Type::UIntTy;
 | |
|   case Type::FloatTyID:  return Type::DoubleTy;
 | |
|   default:               return Ty;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isCast - If the specified operand is a CastInst or a constant expr cast,
 | |
| /// return the operand value, otherwise return null.
 | |
| static Value *isCast(Value *V) {
 | |
|   if (CastInst *I = dyn_cast<CastInst>(V))
 | |
|     return I->getOperand(0);
 | |
|   else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|     if (CE->getOpcode() == Instruction::Cast)
 | |
|       return CE->getOperand(0);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| enum CastType {
 | |
|   Noop     = 0,
 | |
|   Truncate = 1,
 | |
|   Signext  = 2,
 | |
|   Zeroext  = 3
 | |
| };
 | |
| 
 | |
| /// getCastType - In the future, we will split the cast instruction into these
 | |
| /// various types.  Until then, we have to do the analysis here.
 | |
| static CastType getCastType(const Type *Src, const Type *Dest) {
 | |
|   assert(Src->isIntegral() && Dest->isIntegral() &&
 | |
|          "Only works on integral types!");
 | |
|   unsigned SrcSize = Src->getPrimitiveSizeInBits();
 | |
|   unsigned DestSize = Dest->getPrimitiveSizeInBits();
 | |
|   
 | |
|   if (SrcSize == DestSize) return Noop;
 | |
|   if (SrcSize > DestSize)  return Truncate;
 | |
|   if (Src->isSigned()) return Signext;
 | |
|   return Zeroext;
 | |
| }
 | |
| 
 | |
| 
 | |
| // isEliminableCastOfCast - Return true if it is valid to eliminate the CI
 | |
| // instruction.
 | |
| //
 | |
| static bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy,
 | |
|                                    const Type *DstTy, TargetData *TD) {
 | |
|   
 | |
|   // It is legal to eliminate the instruction if casting A->B->A if the sizes
 | |
|   // are identical and the bits don't get reinterpreted (for example
 | |
|   // int->float->int would not be allowed).
 | |
|   if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
 | |
|     return true;
 | |
|   
 | |
|   // If we are casting between pointer and integer types, treat pointers as
 | |
|   // integers of the appropriate size for the code below.
 | |
|   if (isa<PointerType>(SrcTy)) SrcTy = TD->getIntPtrType();
 | |
|   if (isa<PointerType>(MidTy)) MidTy = TD->getIntPtrType();
 | |
|   if (isa<PointerType>(DstTy)) DstTy = TD->getIntPtrType();
 | |
|   
 | |
|   // Allow free casting and conversion of sizes as long as the sign doesn't
 | |
|   // change...
 | |
|   if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
 | |
|     CastType FirstCast = getCastType(SrcTy, MidTy);
 | |
|     CastType SecondCast = getCastType(MidTy, DstTy);
 | |
|     
 | |
|     // Capture the effect of these two casts.  If the result is a legal cast,
 | |
|     // the CastType is stored here, otherwise a special code is used.
 | |
|     static const unsigned CastResult[] = {
 | |
|       // First cast is noop
 | |
|       0, 1, 2, 3,
 | |
|       // First cast is a truncate
 | |
|       1, 1, 4, 4,         // trunc->extend is not safe to eliminate
 | |
|                           // First cast is a sign ext
 | |
|       2, 5, 2, 4,         // signext->zeroext never ok
 | |
|                           // First cast is a zero ext
 | |
|       3, 5, 3, 3,
 | |
|     };
 | |
|     
 | |
|     unsigned Result = CastResult[FirstCast*4+SecondCast];
 | |
|     switch (Result) {
 | |
|     default: assert(0 && "Illegal table value!");
 | |
|     case 0:
 | |
|     case 1:
 | |
|     case 2:
 | |
|     case 3:
 | |
|       // FIXME: in the future, when LLVM has explicit sign/zeroextends and
 | |
|       // truncates, we could eliminate more casts.
 | |
|       return (unsigned)getCastType(SrcTy, DstTy) == Result;
 | |
|     case 4:
 | |
|       return false;  // Not possible to eliminate this here.
 | |
|     case 5:
 | |
|       // Sign or zero extend followed by truncate is always ok if the result
 | |
|       // is a truncate or noop.
 | |
|       CastType ResultCast = getCastType(SrcTy, DstTy);
 | |
|       if (ResultCast == Noop || ResultCast == Truncate)
 | |
|         return true;
 | |
|         // Otherwise we are still growing the value, we are only safe if the
 | |
|         // result will match the sign/zeroextendness of the result.
 | |
|         return ResultCast == FirstCast;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If this is a cast from 'float -> double -> integer', cast from
 | |
|   // 'float -> integer' directly, as the value isn't changed by the 
 | |
|   // float->double conversion.
 | |
|   if (SrcTy->isFloatingPoint() && MidTy->isFloatingPoint() &&
 | |
|       DstTy->isIntegral() && 
 | |
|       SrcTy->getPrimitiveSize() < MidTy->getPrimitiveSize())
 | |
|     return true;
 | |
|   
 | |
|   // Packed type conversions don't modify bits.
 | |
|   if (isa<PackedType>(SrcTy) && isa<PackedType>(MidTy) &&isa<PackedType>(DstTy))
 | |
|     return true;
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
 | |
| /// in any code being generated.  It does not require codegen if V is simple
 | |
| /// enough or if the cast can be folded into other casts.
 | |
| static bool ValueRequiresCast(const Value *V, const Type *Ty, TargetData *TD) {
 | |
|   if (V->getType() == Ty || isa<Constant>(V)) return false;
 | |
|   
 | |
|   // If this is a noop cast, it isn't real codegen.
 | |
|   if (V->getType()->isLosslesslyConvertibleTo(Ty))
 | |
|     return false;
 | |
| 
 | |
|   // If this is another cast that can be eliminated, it isn't codegen either.
 | |
|   if (const CastInst *CI = dyn_cast<CastInst>(V))
 | |
|     if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty,
 | |
|                                TD))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
 | |
| /// InsertBefore instruction.  This is specialized a bit to avoid inserting
 | |
| /// casts that are known to not do anything...
 | |
| ///
 | |
| Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy,
 | |
|                                              Instruction *InsertBefore) {
 | |
|   if (V->getType() == DestTy) return V;
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return ConstantExpr::getCast(C, DestTy);
 | |
|   
 | |
|   CastInst *CI = new CastInst(V, DestTy, V->getName());
 | |
|   InsertNewInstBefore(CI, *InsertBefore);
 | |
|   return CI;
 | |
| }
 | |
| 
 | |
| // SimplifyCommutative - This performs a few simplifications for commutative
 | |
| // operators:
 | |
| //
 | |
| //  1. Order operands such that they are listed from right (least complex) to
 | |
| //     left (most complex).  This puts constants before unary operators before
 | |
| //     binary operators.
 | |
| //
 | |
| //  2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
 | |
| //  3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | |
| //
 | |
| bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
 | |
|   bool Changed = false;
 | |
|   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
 | |
|     Changed = !I.swapOperands();
 | |
| 
 | |
|   if (!I.isAssociative()) return Changed;
 | |
|   Instruction::BinaryOps Opcode = I.getOpcode();
 | |
|   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
 | |
|     if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
 | |
|       if (isa<Constant>(I.getOperand(1))) {
 | |
|         Constant *Folded = ConstantExpr::get(I.getOpcode(),
 | |
|                                              cast<Constant>(I.getOperand(1)),
 | |
|                                              cast<Constant>(Op->getOperand(1)));
 | |
|         I.setOperand(0, Op->getOperand(0));
 | |
|         I.setOperand(1, Folded);
 | |
|         return true;
 | |
|       } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
 | |
|         if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
 | |
|             isOnlyUse(Op) && isOnlyUse(Op1)) {
 | |
|           Constant *C1 = cast<Constant>(Op->getOperand(1));
 | |
|           Constant *C2 = cast<Constant>(Op1->getOperand(1));
 | |
| 
 | |
|           // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | |
|           Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
 | |
|           Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
 | |
|                                                     Op1->getOperand(0),
 | |
|                                                     Op1->getName(), &I);
 | |
|           WorkList.push_back(New);
 | |
|           I.setOperand(0, New);
 | |
|           I.setOperand(1, Folded);
 | |
|           return true;
 | |
|         }
 | |
|     }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
 | |
| // if the LHS is a constant zero (which is the 'negate' form).
 | |
| //
 | |
| static inline Value *dyn_castNegVal(Value *V) {
 | |
|   if (BinaryOperator::isNeg(V))
 | |
|     return BinaryOperator::getNegArgument(V);
 | |
| 
 | |
|   // Constants can be considered to be negated values if they can be folded.
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
 | |
|     return ConstantExpr::getNeg(C);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static inline Value *dyn_castNotVal(Value *V) {
 | |
|   if (BinaryOperator::isNot(V))
 | |
|     return BinaryOperator::getNotArgument(V);
 | |
| 
 | |
|   // Constants can be considered to be not'ed values...
 | |
|   if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(V))
 | |
|     return ConstantExpr::getNot(C);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // dyn_castFoldableMul - If this value is a multiply that can be folded into
 | |
| // other computations (because it has a constant operand), return the
 | |
| // non-constant operand of the multiply, and set CST to point to the multiplier.
 | |
| // Otherwise, return null.
 | |
| //
 | |
| static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
 | |
|   if (V->hasOneUse() && V->getType()->isInteger())
 | |
|     if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|       if (I->getOpcode() == Instruction::Mul)
 | |
|         if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
 | |
|           return I->getOperand(0);
 | |
|       if (I->getOpcode() == Instruction::Shl)
 | |
|         if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
 | |
|           // The multiplier is really 1 << CST.
 | |
|           Constant *One = ConstantInt::get(V->getType(), 1);
 | |
|           CST = cast<ConstantInt>(ConstantExpr::getShl(One, CST));
 | |
|           return I->getOperand(0);
 | |
|         }
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
 | |
| /// expression, return it.
 | |
| static User *dyn_castGetElementPtr(Value *V) {
 | |
|   if (isa<GetElementPtrInst>(V)) return cast<User>(V);
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|     if (CE->getOpcode() == Instruction::GetElementPtr)
 | |
|       return cast<User>(V);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // AddOne, SubOne - Add or subtract a constant one from an integer constant...
 | |
| static ConstantInt *AddOne(ConstantInt *C) {
 | |
|   return cast<ConstantInt>(ConstantExpr::getAdd(C,
 | |
|                                          ConstantInt::get(C->getType(), 1)));
 | |
| }
 | |
| static ConstantInt *SubOne(ConstantInt *C) {
 | |
|   return cast<ConstantInt>(ConstantExpr::getSub(C,
 | |
|                                          ConstantInt::get(C->getType(), 1)));
 | |
| }
 | |
| 
 | |
| /// GetConstantInType - Return a ConstantInt with the specified type and value.
 | |
| ///
 | |
| static ConstantIntegral *GetConstantInType(const Type *Ty, uint64_t Val) {
 | |
|   if (Ty->isUnsigned())
 | |
|     return ConstantUInt::get(Ty, Val);
 | |
|   else if (Ty->getTypeID() == Type::BoolTyID)
 | |
|     return ConstantBool::get(Val);
 | |
|   int64_t SVal = Val;
 | |
|   SVal <<= 64-Ty->getPrimitiveSizeInBits();
 | |
|   SVal >>= 64-Ty->getPrimitiveSizeInBits();
 | |
|   return ConstantSInt::get(Ty, SVal);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ComputeMaskedBits - Determine which of the bits specified in Mask are
 | |
| /// known to be either zero or one and return them in the KnownZero/KnownOne
 | |
| /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
 | |
| /// processing.
 | |
| static void ComputeMaskedBits(Value *V, uint64_t Mask, uint64_t &KnownZero,
 | |
|                               uint64_t &KnownOne, unsigned Depth = 0) {
 | |
|   // Note, we cannot consider 'undef' to be "IsZero" here.  The problem is that
 | |
|   // we cannot optimize based on the assumption that it is zero without changing
 | |
|   // it to be an explicit zero.  If we don't change it to zero, other code could
 | |
|   // optimized based on the contradictory assumption that it is non-zero.
 | |
|   // Because instcombine aggressively folds operations with undef args anyway,
 | |
|   // this won't lose us code quality.
 | |
|   if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V)) {
 | |
|     // We know all of the bits for a constant!
 | |
|     KnownOne = CI->getZExtValue() & Mask;
 | |
|     KnownZero = ~KnownOne & Mask;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   KnownZero = KnownOne = 0;   // Don't know anything.
 | |
|   if (Depth == 6 || Mask == 0)
 | |
|     return;  // Limit search depth.
 | |
| 
 | |
|   uint64_t KnownZero2, KnownOne2;
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return;
 | |
| 
 | |
|   Mask &= V->getType()->getIntegralTypeMask();
 | |
|   
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::And:
 | |
|     // If either the LHS or the RHS are Zero, the result is zero.
 | |
|     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     Mask &= ~KnownZero;
 | |
|     ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     KnownZero |= KnownZero2;
 | |
|     return;
 | |
|   case Instruction::Or:
 | |
|     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     Mask &= ~KnownOne;
 | |
|     ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     KnownZero &= KnownZero2;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     KnownOne |= KnownOne2;
 | |
|     return;
 | |
|   case Instruction::Xor: {
 | |
|     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
 | |
|     KnownZero = KnownZeroOut;
 | |
|     return;
 | |
|   }
 | |
|   case Instruction::Select:
 | |
|     ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
| 
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     return;
 | |
|   case Instruction::Cast: {
 | |
|     const Type *SrcTy = I->getOperand(0)->getType();
 | |
|     if (!SrcTy->isIntegral()) return;
 | |
|     
 | |
|     // If this is an integer truncate or noop, just look in the input.
 | |
|     if (SrcTy->getPrimitiveSizeInBits() >= 
 | |
|            I->getType()->getPrimitiveSizeInBits()) {
 | |
|       ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Sign or Zero extension.  Compute the bits in the result that are not
 | |
|     // present in the input.
 | |
|     uint64_t NotIn = ~SrcTy->getIntegralTypeMask();
 | |
|     uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn;
 | |
|       
 | |
|     // Handle zero extension.
 | |
|     if (!SrcTy->isSigned()) {
 | |
|       Mask &= SrcTy->getIntegralTypeMask();
 | |
|       ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       // The top bits are known to be zero.
 | |
|       KnownZero |= NewBits;
 | |
|     } else {
 | |
|       // Sign extension.
 | |
|       Mask &= SrcTy->getIntegralTypeMask();
 | |
|       ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
| 
 | |
|       // If the sign bit of the input is known set or clear, then we know the
 | |
|       // top bits of the result.
 | |
|       uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
 | |
|       if (KnownZero & InSignBit) {          // Input sign bit known zero
 | |
|         KnownZero |= NewBits;
 | |
|         KnownOne &= ~NewBits;
 | |
|       } else if (KnownOne & InSignBit) {    // Input sign bit known set
 | |
|         KnownOne |= NewBits;
 | |
|         KnownZero &= ~NewBits;
 | |
|       } else {                              // Input sign bit unknown
 | |
|         KnownZero &= ~NewBits;
 | |
|         KnownOne &= ~NewBits;
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case Instruction::Shl:
 | |
|     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
 | |
|     if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
 | |
|       Mask >>= SA->getValue();
 | |
|       ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero <<= SA->getValue();
 | |
|       KnownOne  <<= SA->getValue();
 | |
|       KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Shr:
 | |
|     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
 | |
|     if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
 | |
|       // Compute the new bits that are at the top now.
 | |
|       uint64_t HighBits = (1ULL << SA->getValue())-1;
 | |
|       HighBits <<= I->getType()->getPrimitiveSizeInBits()-SA->getValue();
 | |
|       
 | |
|       if (I->getType()->isUnsigned()) {   // Unsigned shift right.
 | |
|         Mask <<= SA->getValue();
 | |
|         ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
 | |
|         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 
 | |
|         KnownZero >>= SA->getValue();
 | |
|         KnownOne  >>= SA->getValue();
 | |
|         KnownZero |= HighBits;  // high bits known zero.
 | |
|       } else {
 | |
|         Mask <<= SA->getValue();
 | |
|         ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
 | |
|         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 
 | |
|         KnownZero >>= SA->getValue();
 | |
|         KnownOne  >>= SA->getValue();
 | |
|         
 | |
|         // Handle the sign bits.
 | |
|         uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
 | |
|         SignBit >>= SA->getValue();  // Adjust to where it is now in the mask.
 | |
|         
 | |
|         if (KnownZero & SignBit) {       // New bits are known zero.
 | |
|           KnownZero |= HighBits;
 | |
|         } else if (KnownOne & SignBit) { // New bits are known one.
 | |
|           KnownOne |= HighBits;
 | |
|         }
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
 | |
| /// this predicate to simplify operations downstream.  Mask is known to be zero
 | |
| /// for bits that V cannot have.
 | |
| static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) {
 | |
|   uint64_t KnownZero, KnownOne;
 | |
|   ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
 | |
|   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|   return (KnownZero & Mask) == Mask;
 | |
| }
 | |
| 
 | |
| /// ShrinkDemandedConstant - Check to see if the specified operand of the 
 | |
| /// specified instruction is a constant integer.  If so, check to see if there
 | |
| /// are any bits set in the constant that are not demanded.  If so, shrink the
 | |
| /// constant and return true.
 | |
| static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 
 | |
|                                    uint64_t Demanded) {
 | |
|   ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
 | |
|   if (!OpC) return false;
 | |
| 
 | |
|   // If there are no bits set that aren't demanded, nothing to do.
 | |
|   if ((~Demanded & OpC->getZExtValue()) == 0)
 | |
|     return false;
 | |
| 
 | |
|   // This is producing any bits that are not needed, shrink the RHS.
 | |
|   uint64_t Val = Demanded & OpC->getZExtValue();
 | |
|   I->setOperand(OpNo, GetConstantInType(OpC->getType(), Val));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a 
 | |
| // set of known zero and one bits, compute the maximum and minimum values that
 | |
| // could have the specified known zero and known one bits, returning them in
 | |
| // min/max.
 | |
| static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
 | |
|                                                    uint64_t KnownZero,
 | |
|                                                    uint64_t KnownOne,
 | |
|                                                    int64_t &Min, int64_t &Max) {
 | |
|   uint64_t TypeBits = Ty->getIntegralTypeMask();
 | |
|   uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
 | |
| 
 | |
|   uint64_t SignBit = 1ULL << (Ty->getPrimitiveSizeInBits()-1);
 | |
|   
 | |
|   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
 | |
|   // bit if it is unknown.
 | |
|   Min = KnownOne;
 | |
|   Max = KnownOne|UnknownBits;
 | |
|   
 | |
|   if (SignBit & UnknownBits) { // Sign bit is unknown
 | |
|     Min |= SignBit;
 | |
|     Max &= ~SignBit;
 | |
|   }
 | |
|   
 | |
|   // Sign extend the min/max values.
 | |
|   int ShAmt = 64-Ty->getPrimitiveSizeInBits();
 | |
|   Min = (Min << ShAmt) >> ShAmt;
 | |
|   Max = (Max << ShAmt) >> ShAmt;
 | |
| }
 | |
| 
 | |
| // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
 | |
| // a set of known zero and one bits, compute the maximum and minimum values that
 | |
| // could have the specified known zero and known one bits, returning them in
 | |
| // min/max.
 | |
| static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
 | |
|                                                      uint64_t KnownZero,
 | |
|                                                      uint64_t KnownOne,
 | |
|                                                      uint64_t &Min,
 | |
|                                                      uint64_t &Max) {
 | |
|   uint64_t TypeBits = Ty->getIntegralTypeMask();
 | |
|   uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
 | |
|   
 | |
|   // The minimum value is when the unknown bits are all zeros.
 | |
|   Min = KnownOne;
 | |
|   // The maximum value is when the unknown bits are all ones.
 | |
|   Max = KnownOne|UnknownBits;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SimplifyDemandedBits - Look at V.  At this point, we know that only the
 | |
| /// DemandedMask bits of the result of V are ever used downstream.  If we can
 | |
| /// use this information to simplify V, do so and return true.  Otherwise,
 | |
| /// analyze the expression and return a mask of KnownOne and KnownZero bits for
 | |
| /// the expression (used to simplify the caller).  The KnownZero/One bits may
 | |
| /// only be accurate for those bits in the DemandedMask.
 | |
| bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t DemandedMask,
 | |
|                                         uint64_t &KnownZero, uint64_t &KnownOne,
 | |
|                                         unsigned Depth) {
 | |
|   if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V)) {
 | |
|     // We know all of the bits for a constant!
 | |
|     KnownOne = CI->getZExtValue() & DemandedMask;
 | |
|     KnownZero = ~KnownOne & DemandedMask;
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   KnownZero = KnownOne = 0;
 | |
|   if (!V->hasOneUse()) {    // Other users may use these bits.
 | |
|     if (Depth != 0) {       // Not at the root.
 | |
|       // Just compute the KnownZero/KnownOne bits to simplify things downstream.
 | |
|       ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
 | |
|       return false;
 | |
|     }
 | |
|     // If this is the root being simplified, allow it to have multiple uses,
 | |
|     // just set the DemandedMask to all bits.
 | |
|     DemandedMask = V->getType()->getIntegralTypeMask();
 | |
|   } else if (DemandedMask == 0) {   // Not demanding any bits from V.
 | |
|     if (V != UndefValue::get(V->getType()))
 | |
|       return UpdateValueUsesWith(V, UndefValue::get(V->getType()));
 | |
|     return false;
 | |
|   } else if (Depth == 6) {        // Limit search depth.
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;        // Only analyze instructions.
 | |
| 
 | |
|   DemandedMask &= V->getType()->getIntegralTypeMask();
 | |
|   
 | |
|   uint64_t KnownZero2, KnownOne2;
 | |
|   switch (I->getOpcode()) {
 | |
|   default: break;
 | |
|   case Instruction::And:
 | |
|     // If either the LHS or the RHS are Zero, the result is zero.
 | |
|     if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
 | |
|                              KnownZero, KnownOne, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
| 
 | |
|     // If something is known zero on the RHS, the bits aren't demanded on the
 | |
|     // LHS.
 | |
|     if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownZero,
 | |
|                              KnownZero2, KnownOne2, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
| 
 | |
|     // If all of the demanded bits are known one on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'and'.
 | |
|     if ((DemandedMask & ~KnownZero2 & KnownOne) == (DemandedMask & ~KnownZero2))
 | |
|       return UpdateValueUsesWith(I, I->getOperand(0));
 | |
|     if ((DemandedMask & ~KnownZero & KnownOne2) == (DemandedMask & ~KnownZero))
 | |
|       return UpdateValueUsesWith(I, I->getOperand(1));
 | |
|     
 | |
|     // If all of the demanded bits in the inputs are known zeros, return zero.
 | |
|     if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
 | |
|       return UpdateValueUsesWith(I, Constant::getNullValue(I->getType()));
 | |
|       
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~KnownZero2))
 | |
|       return UpdateValueUsesWith(I, I);
 | |
|       
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     KnownZero |= KnownZero2;
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, 
 | |
|                              KnownZero, KnownOne, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownOne, 
 | |
|                              KnownZero2, KnownOne2, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'or'.
 | |
|     if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
 | |
|       return UpdateValueUsesWith(I, I->getOperand(0));
 | |
|     if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
 | |
|       return UpdateValueUsesWith(I, I->getOperand(1));
 | |
| 
 | |
|     // If all of the potentially set bits on one side are known to be set on
 | |
|     // the other side, just use the 'other' side.
 | |
|     if ((DemandedMask & (~KnownZero) & KnownOne2) == 
 | |
|         (DemandedMask & (~KnownZero)))
 | |
|       return UpdateValueUsesWith(I, I->getOperand(0));
 | |
|     if ((DemandedMask & (~KnownZero2) & KnownOne) == 
 | |
|         (DemandedMask & (~KnownZero2)))
 | |
|       return UpdateValueUsesWith(I, I->getOperand(1));
 | |
|         
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (ShrinkDemandedConstant(I, 1, DemandedMask))
 | |
|       return UpdateValueUsesWith(I, I);
 | |
|           
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     KnownZero &= KnownZero2;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     KnownOne |= KnownOne2;
 | |
|     break;
 | |
|   case Instruction::Xor: {
 | |
|     if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
 | |
|                              KnownZero, KnownOne, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, 
 | |
|                              KnownZero2, KnownOne2, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'xor'.
 | |
|     if ((DemandedMask & KnownZero) == DemandedMask)
 | |
|       return UpdateValueUsesWith(I, I->getOperand(0));
 | |
|     if ((DemandedMask & KnownZero2) == DemandedMask)
 | |
|       return UpdateValueUsesWith(I, I->getOperand(1));
 | |
|     
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     uint64_t KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
 | |
|     
 | |
|     // If all of the unknown bits are known to be zero on one side or the other
 | |
|     // (but not both) turn this into an *inclusive* or.
 | |
|     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
 | |
|     if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut)) {
 | |
|       if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits) {
 | |
|         Instruction *Or =
 | |
|           BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
 | |
|                                    I->getName());
 | |
|         InsertNewInstBefore(Or, *I);
 | |
|         return UpdateValueUsesWith(I, Or);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If all of the demanded bits on one side are known, and all of the set
 | |
|     // bits on that side are also known to be set on the other side, turn this
 | |
|     // into an AND, as we know the bits will be cleared.
 | |
|     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | |
|     if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
 | |
|       if ((KnownOne & KnownOne2) == KnownOne) {
 | |
|         Constant *AndC = GetConstantInType(I->getType(), 
 | |
|                                            ~KnownOne & DemandedMask);
 | |
|         Instruction *And = 
 | |
|           BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
 | |
|         InsertNewInstBefore(And, *I);
 | |
|         return UpdateValueUsesWith(I, And);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
 | |
|     if (ShrinkDemandedConstant(I, 1, DemandedMask))
 | |
|       return UpdateValueUsesWith(I, I);
 | |
|     
 | |
|     KnownZero = KnownZeroOut;
 | |
|     KnownOne  = KnownOneOut;
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Select:
 | |
|     if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
 | |
|                              KnownZero, KnownOne, Depth+1))
 | |
|       return true;
 | |
|     if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, 
 | |
|                              KnownZero2, KnownOne2, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If the operands are constants, see if we can simplify them.
 | |
|     if (ShrinkDemandedConstant(I, 1, DemandedMask))
 | |
|       return UpdateValueUsesWith(I, I);
 | |
|     if (ShrinkDemandedConstant(I, 2, DemandedMask))
 | |
|       return UpdateValueUsesWith(I, I);
 | |
|     
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     break;
 | |
|   case Instruction::Cast: {
 | |
|     const Type *SrcTy = I->getOperand(0)->getType();
 | |
|     if (!SrcTy->isIntegral()) return false;
 | |
|     
 | |
|     // If this is an integer truncate or noop, just look in the input.
 | |
|     if (SrcTy->getPrimitiveSizeInBits() >= 
 | |
|         I->getType()->getPrimitiveSizeInBits()) {
 | |
|       // Cast to bool is a comparison against 0, which demands all bits.  We
 | |
|       // can't propagate anything useful up.
 | |
|       if (I->getType() == Type::BoolTy)
 | |
|         break;
 | |
|       
 | |
|       if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
 | |
|                                KnownZero, KnownOne, Depth+1))
 | |
|         return true;
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     // Sign or Zero extension.  Compute the bits in the result that are not
 | |
|     // present in the input.
 | |
|     uint64_t NotIn = ~SrcTy->getIntegralTypeMask();
 | |
|     uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn;
 | |
|     
 | |
|     // Handle zero extension.
 | |
|     if (!SrcTy->isSigned()) {
 | |
|       DemandedMask &= SrcTy->getIntegralTypeMask();
 | |
|       if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
 | |
|                                KnownZero, KnownOne, Depth+1))
 | |
|         return true;
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       // The top bits are known to be zero.
 | |
|       KnownZero |= NewBits;
 | |
|     } else {
 | |
|       // Sign extension.
 | |
|       uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
 | |
|       int64_t InputDemandedBits = DemandedMask & SrcTy->getIntegralTypeMask();
 | |
| 
 | |
|       // If any of the sign extended bits are demanded, we know that the sign
 | |
|       // bit is demanded.
 | |
|       if (NewBits & DemandedMask)
 | |
|         InputDemandedBits |= InSignBit;
 | |
|       
 | |
|       if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
 | |
|                                KnownZero, KnownOne, Depth+1))
 | |
|         return true;
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       
 | |
|       // If the sign bit of the input is known set or clear, then we know the
 | |
|       // top bits of the result.
 | |
| 
 | |
|       // If the input sign bit is known zero, or if the NewBits are not demanded
 | |
|       // convert this into a zero extension.
 | |
|       if ((KnownZero & InSignBit) || (NewBits & ~DemandedMask) == NewBits) {
 | |
|         // Convert to unsigned first.
 | |
|         Instruction *NewVal;
 | |
|         NewVal = new CastInst(I->getOperand(0), SrcTy->getUnsignedVersion(),
 | |
|                               I->getOperand(0)->getName());
 | |
|         InsertNewInstBefore(NewVal, *I);
 | |
|         // Then cast that to the destination type.
 | |
|         NewVal = new CastInst(NewVal, I->getType(), I->getName());
 | |
|         InsertNewInstBefore(NewVal, *I);
 | |
|         return UpdateValueUsesWith(I, NewVal);
 | |
|       } else if (KnownOne & InSignBit) {    // Input sign bit known set
 | |
|         KnownOne |= NewBits;
 | |
|         KnownZero &= ~NewBits;
 | |
|       } else {                              // Input sign bit unknown
 | |
|         KnownZero &= ~NewBits;
 | |
|         KnownOne &= ~NewBits;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Shl:
 | |
|     if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
 | |
|       if (SimplifyDemandedBits(I->getOperand(0), DemandedMask >> SA->getValue(), 
 | |
|                                KnownZero, KnownOne, Depth+1))
 | |
|         return true;
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero <<= SA->getValue();
 | |
|       KnownOne  <<= SA->getValue();
 | |
|       KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Shr:
 | |
|     // If this is an arithmetic shift right and only the low-bit is set, we can
 | |
|     // always convert this into a logical shr, even if the shift amount is
 | |
|     // variable.  The low bit of the shift cannot be an input sign bit unless
 | |
|     // the shift amount is >= the size of the datatype, which is undefined.
 | |
|     if (DemandedMask == 1 && I->getType()->isSigned()) {
 | |
|       // Convert the input to unsigned.
 | |
|       Instruction *NewVal = new CastInst(I->getOperand(0), 
 | |
|                                          I->getType()->getUnsignedVersion(),
 | |
|                                          I->getOperand(0)->getName());
 | |
|       InsertNewInstBefore(NewVal, *I);
 | |
|       // Perform the unsigned shift right.
 | |
|       NewVal = new ShiftInst(Instruction::Shr, NewVal, I->getOperand(1),
 | |
|                              I->getName());
 | |
|       InsertNewInstBefore(NewVal, *I);
 | |
|       // Then cast that to the destination type.
 | |
|       NewVal = new CastInst(NewVal, I->getType(), I->getName());
 | |
|       InsertNewInstBefore(NewVal, *I);
 | |
|       return UpdateValueUsesWith(I, NewVal);
 | |
|     }    
 | |
|     
 | |
|     if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
 | |
|       unsigned ShAmt = SA->getValue();
 | |
|       
 | |
|       // Compute the new bits that are at the top now.
 | |
|       uint64_t HighBits = (1ULL << ShAmt)-1;
 | |
|       HighBits <<= I->getType()->getPrimitiveSizeInBits() - ShAmt;
 | |
|       uint64_t TypeMask = I->getType()->getIntegralTypeMask();
 | |
|       if (I->getType()->isUnsigned()) {   // Unsigned shift right.
 | |
|         if (SimplifyDemandedBits(I->getOperand(0),
 | |
|                                  (DemandedMask << ShAmt) & TypeMask,
 | |
|                                  KnownZero, KnownOne, Depth+1))
 | |
|           return true;
 | |
|         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|         KnownZero &= TypeMask;
 | |
|         KnownOne  &= TypeMask;
 | |
|         KnownZero >>= ShAmt;
 | |
|         KnownOne  >>= ShAmt;
 | |
|         KnownZero |= HighBits;  // high bits known zero.
 | |
|       } else {                            // Signed shift right.
 | |
|         if (SimplifyDemandedBits(I->getOperand(0),
 | |
|                                  (DemandedMask << ShAmt) & TypeMask,
 | |
|                                  KnownZero, KnownOne, Depth+1))
 | |
|           return true;
 | |
|         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|         KnownZero &= TypeMask;
 | |
|         KnownOne  &= TypeMask;
 | |
|         KnownZero >>= SA->getValue();
 | |
|         KnownOne  >>= SA->getValue();
 | |
|         
 | |
|         // Handle the sign bits.
 | |
|         uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
 | |
|         SignBit >>= SA->getValue();  // Adjust to where it is now in the mask.
 | |
|         
 | |
|         // If the input sign bit is known to be zero, or if none of the top bits
 | |
|         // are demanded, turn this into an unsigned shift right.
 | |
|         if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
 | |
|           // Convert the input to unsigned.
 | |
|           Instruction *NewVal;
 | |
|           NewVal = new CastInst(I->getOperand(0), 
 | |
|                                 I->getType()->getUnsignedVersion(),
 | |
|                                 I->getOperand(0)->getName());
 | |
|           InsertNewInstBefore(NewVal, *I);
 | |
|           // Perform the unsigned shift right.
 | |
|           NewVal = new ShiftInst(Instruction::Shr, NewVal, SA, I->getName());
 | |
|           InsertNewInstBefore(NewVal, *I);
 | |
|           // Then cast that to the destination type.
 | |
|           NewVal = new CastInst(NewVal, I->getType(), I->getName());
 | |
|           InsertNewInstBefore(NewVal, *I);
 | |
|           return UpdateValueUsesWith(I, NewVal);
 | |
|         } else if (KnownOne & SignBit) { // New bits are known one.
 | |
|           KnownOne |= HighBits;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // If the client is only demanding bits that we know, return the known
 | |
|   // constant.
 | |
|   if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
 | |
|     return UpdateValueUsesWith(I, GetConstantInType(I->getType(), KnownOne));
 | |
|   return false;
 | |
| }  
 | |
| 
 | |
| // isTrueWhenEqual - Return true if the specified setcondinst instruction is
 | |
| // true when both operands are equal...
 | |
| //
 | |
| static bool isTrueWhenEqual(Instruction &I) {
 | |
|   return I.getOpcode() == Instruction::SetEQ ||
 | |
|          I.getOpcode() == Instruction::SetGE ||
 | |
|          I.getOpcode() == Instruction::SetLE;
 | |
| }
 | |
| 
 | |
| /// AssociativeOpt - Perform an optimization on an associative operator.  This
 | |
| /// function is designed to check a chain of associative operators for a
 | |
| /// potential to apply a certain optimization.  Since the optimization may be
 | |
| /// applicable if the expression was reassociated, this checks the chain, then
 | |
| /// reassociates the expression as necessary to expose the optimization
 | |
| /// opportunity.  This makes use of a special Functor, which must define
 | |
| /// 'shouldApply' and 'apply' methods.
 | |
| ///
 | |
| template<typename Functor>
 | |
| Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
 | |
|   unsigned Opcode = Root.getOpcode();
 | |
|   Value *LHS = Root.getOperand(0);
 | |
| 
 | |
|   // Quick check, see if the immediate LHS matches...
 | |
|   if (F.shouldApply(LHS))
 | |
|     return F.apply(Root);
 | |
| 
 | |
|   // Otherwise, if the LHS is not of the same opcode as the root, return.
 | |
|   Instruction *LHSI = dyn_cast<Instruction>(LHS);
 | |
|   while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
 | |
|     // Should we apply this transform to the RHS?
 | |
|     bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
 | |
| 
 | |
|     // If not to the RHS, check to see if we should apply to the LHS...
 | |
|     if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
 | |
|       cast<BinaryOperator>(LHSI)->swapOperands();   // Make the LHS the RHS
 | |
|       ShouldApply = true;
 | |
|     }
 | |
| 
 | |
|     // If the functor wants to apply the optimization to the RHS of LHSI,
 | |
|     // reassociate the expression from ((? op A) op B) to (? op (A op B))
 | |
|     if (ShouldApply) {
 | |
|       BasicBlock *BB = Root.getParent();
 | |
| 
 | |
|       // Now all of the instructions are in the current basic block, go ahead
 | |
|       // and perform the reassociation.
 | |
|       Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
 | |
| 
 | |
|       // First move the selected RHS to the LHS of the root...
 | |
|       Root.setOperand(0, LHSI->getOperand(1));
 | |
| 
 | |
|       // Make what used to be the LHS of the root be the user of the root...
 | |
|       Value *ExtraOperand = TmpLHSI->getOperand(1);
 | |
|       if (&Root == TmpLHSI) {
 | |
|         Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
 | |
|         return 0;
 | |
|       }
 | |
|       Root.replaceAllUsesWith(TmpLHSI);          // Users now use TmpLHSI
 | |
|       TmpLHSI->setOperand(1, &Root);             // TmpLHSI now uses the root
 | |
|       TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
 | |
|       BasicBlock::iterator ARI = &Root; ++ARI;
 | |
|       BB->getInstList().insert(ARI, TmpLHSI);    // Move TmpLHSI to after Root
 | |
|       ARI = Root;
 | |
| 
 | |
|       // Now propagate the ExtraOperand down the chain of instructions until we
 | |
|       // get to LHSI.
 | |
|       while (TmpLHSI != LHSI) {
 | |
|         Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
 | |
|         // Move the instruction to immediately before the chain we are
 | |
|         // constructing to avoid breaking dominance properties.
 | |
|         NextLHSI->getParent()->getInstList().remove(NextLHSI);
 | |
|         BB->getInstList().insert(ARI, NextLHSI);
 | |
|         ARI = NextLHSI;
 | |
| 
 | |
|         Value *NextOp = NextLHSI->getOperand(1);
 | |
|         NextLHSI->setOperand(1, ExtraOperand);
 | |
|         TmpLHSI = NextLHSI;
 | |
|         ExtraOperand = NextOp;
 | |
|       }
 | |
| 
 | |
|       // Now that the instructions are reassociated, have the functor perform
 | |
|       // the transformation...
 | |
|       return F.apply(Root);
 | |
|     }
 | |
| 
 | |
|     LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // AddRHS - Implements: X + X --> X << 1
 | |
| struct AddRHS {
 | |
|   Value *RHS;
 | |
|   AddRHS(Value *rhs) : RHS(rhs) {}
 | |
|   bool shouldApply(Value *LHS) const { return LHS == RHS; }
 | |
|   Instruction *apply(BinaryOperator &Add) const {
 | |
|     return new ShiftInst(Instruction::Shl, Add.getOperand(0),
 | |
|                          ConstantInt::get(Type::UByteTy, 1));
 | |
|   }
 | |
| };
 | |
| 
 | |
| // AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
 | |
| //                 iff C1&C2 == 0
 | |
| struct AddMaskingAnd {
 | |
|   Constant *C2;
 | |
|   AddMaskingAnd(Constant *c) : C2(c) {}
 | |
|   bool shouldApply(Value *LHS) const {
 | |
|     ConstantInt *C1;
 | |
|     return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
 | |
|            ConstantExpr::getAnd(C1, C2)->isNullValue();
 | |
|   }
 | |
|   Instruction *apply(BinaryOperator &Add) const {
 | |
|     return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
 | |
|   }
 | |
| };
 | |
| 
 | |
| static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
 | |
|                                              InstCombiner *IC) {
 | |
|   if (isa<CastInst>(I)) {
 | |
|     if (Constant *SOC = dyn_cast<Constant>(SO))
 | |
|       return ConstantExpr::getCast(SOC, I.getType());
 | |
| 
 | |
|     return IC->InsertNewInstBefore(new CastInst(SO, I.getType(),
 | |
|                                                 SO->getName() + ".cast"), I);
 | |
|   }
 | |
| 
 | |
|   // Figure out if the constant is the left or the right argument.
 | |
|   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
 | |
|   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
 | |
| 
 | |
|   if (Constant *SOC = dyn_cast<Constant>(SO)) {
 | |
|     if (ConstIsRHS)
 | |
|       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
 | |
|     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
 | |
|   }
 | |
| 
 | |
|   Value *Op0 = SO, *Op1 = ConstOperand;
 | |
|   if (!ConstIsRHS)
 | |
|     std::swap(Op0, Op1);
 | |
|   Instruction *New;
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
 | |
|     New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
 | |
|   else if (ShiftInst *SI = dyn_cast<ShiftInst>(&I))
 | |
|     New = new ShiftInst(SI->getOpcode(), Op0, Op1, SO->getName()+".sh");
 | |
|   else {
 | |
|     assert(0 && "Unknown binary instruction type!");
 | |
|     abort();
 | |
|   }
 | |
|   return IC->InsertNewInstBefore(New, I);
 | |
| }
 | |
| 
 | |
| // FoldOpIntoSelect - Given an instruction with a select as one operand and a
 | |
| // constant as the other operand, try to fold the binary operator into the
 | |
| // select arguments.  This also works for Cast instructions, which obviously do
 | |
| // not have a second operand.
 | |
| static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
 | |
|                                      InstCombiner *IC) {
 | |
|   // Don't modify shared select instructions
 | |
|   if (!SI->hasOneUse()) return 0;
 | |
|   Value *TV = SI->getOperand(1);
 | |
|   Value *FV = SI->getOperand(2);
 | |
| 
 | |
|   if (isa<Constant>(TV) || isa<Constant>(FV)) {
 | |
|     // Bool selects with constant operands can be folded to logical ops.
 | |
|     if (SI->getType() == Type::BoolTy) return 0;
 | |
| 
 | |
|     Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
 | |
|     Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
 | |
| 
 | |
|     return new SelectInst(SI->getCondition(), SelectTrueVal,
 | |
|                           SelectFalseVal);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
 | |
| /// node as operand #0, see if we can fold the instruction into the PHI (which
 | |
| /// is only possible if all operands to the PHI are constants).
 | |
| Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
 | |
|   PHINode *PN = cast<PHINode>(I.getOperand(0));
 | |
|   unsigned NumPHIValues = PN->getNumIncomingValues();
 | |
|   if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
 | |
| 
 | |
|   // Check to see if all of the operands of the PHI are constants.  If there is
 | |
|   // one non-constant value, remember the BB it is.  If there is more than one
 | |
|   // bail out.
 | |
|   BasicBlock *NonConstBB = 0;
 | |
|   for (unsigned i = 0; i != NumPHIValues; ++i)
 | |
|     if (!isa<Constant>(PN->getIncomingValue(i))) {
 | |
|       if (NonConstBB) return 0;  // More than one non-const value.
 | |
|       NonConstBB = PN->getIncomingBlock(i);
 | |
|       
 | |
|       // If the incoming non-constant value is in I's block, we have an infinite
 | |
|       // loop.
 | |
|       if (NonConstBB == I.getParent())
 | |
|         return 0;
 | |
|     }
 | |
|   
 | |
|   // If there is exactly one non-constant value, we can insert a copy of the
 | |
|   // operation in that block.  However, if this is a critical edge, we would be
 | |
|   // inserting the computation one some other paths (e.g. inside a loop).  Only
 | |
|   // do this if the pred block is unconditionally branching into the phi block.
 | |
|   if (NonConstBB) {
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
 | |
|     if (!BI || !BI->isUnconditional()) return 0;
 | |
|   }
 | |
| 
 | |
|   // Okay, we can do the transformation: create the new PHI node.
 | |
|   PHINode *NewPN = new PHINode(I.getType(), I.getName());
 | |
|   I.setName("");
 | |
|   NewPN->reserveOperandSpace(PN->getNumOperands()/2);
 | |
|   InsertNewInstBefore(NewPN, *PN);
 | |
| 
 | |
|   // Next, add all of the operands to the PHI.
 | |
|   if (I.getNumOperands() == 2) {
 | |
|     Constant *C = cast<Constant>(I.getOperand(1));
 | |
|     for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|       Value *InV;
 | |
|       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
 | |
|         InV = ConstantExpr::get(I.getOpcode(), InC, C);
 | |
|       } else {
 | |
|         assert(PN->getIncomingBlock(i) == NonConstBB);
 | |
|         if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) 
 | |
|           InV = BinaryOperator::create(BO->getOpcode(),
 | |
|                                        PN->getIncomingValue(i), C, "phitmp",
 | |
|                                        NonConstBB->getTerminator());
 | |
|         else if (ShiftInst *SI = dyn_cast<ShiftInst>(&I))
 | |
|           InV = new ShiftInst(SI->getOpcode(),
 | |
|                               PN->getIncomingValue(i), C, "phitmp",
 | |
|                               NonConstBB->getTerminator());
 | |
|         else
 | |
|           assert(0 && "Unknown binop!");
 | |
|         
 | |
|         WorkList.push_back(cast<Instruction>(InV));
 | |
|       }
 | |
|       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | |
|     }
 | |
|   } else {
 | |
|     assert(isa<CastInst>(I) && "Unary op should be a cast!");
 | |
|     const Type *RetTy = I.getType();
 | |
|     for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|       Value *InV;
 | |
|       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
 | |
|         InV = ConstantExpr::getCast(InC, RetTy);
 | |
|       } else {
 | |
|         assert(PN->getIncomingBlock(i) == NonConstBB);
 | |
|         InV = new CastInst(PN->getIncomingValue(i), I.getType(), "phitmp",
 | |
|                            NonConstBB->getTerminator());
 | |
|         WorkList.push_back(cast<Instruction>(InV));
 | |
|       }
 | |
|       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | |
|     }
 | |
|   }
 | |
|   return ReplaceInstUsesWith(I, NewPN);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
| 
 | |
|   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | |
|     // X + undef -> undef
 | |
|     if (isa<UndefValue>(RHS))
 | |
|       return ReplaceInstUsesWith(I, RHS);
 | |
| 
 | |
|     // X + 0 --> X
 | |
|     if (!I.getType()->isFloatingPoint()) { // NOTE: -0 + +0 = +0.
 | |
|       if (RHSC->isNullValue())
 | |
|         return ReplaceInstUsesWith(I, LHS);
 | |
|     } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
 | |
|       if (CFP->isExactlyValue(-0.0))
 | |
|         return ReplaceInstUsesWith(I, LHS);
 | |
|     }
 | |
| 
 | |
|     // X + (signbit) --> X ^ signbit
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
 | |
|       uint64_t Val = CI->getZExtValue();
 | |
|       if (Val == (1ULL << (CI->getType()->getPrimitiveSizeInBits()-1)))
 | |
|         return BinaryOperator::createXor(LHS, RHS);
 | |
|     }
 | |
| 
 | |
|     if (isa<PHINode>(LHS))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|     
 | |
|     ConstantInt *XorRHS = 0;
 | |
|     Value *XorLHS = 0;
 | |
|     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
 | |
|       unsigned TySizeBits = I.getType()->getPrimitiveSizeInBits();
 | |
|       int64_t  RHSSExt = cast<ConstantInt>(RHSC)->getSExtValue();
 | |
|       uint64_t RHSZExt = cast<ConstantInt>(RHSC)->getZExtValue();
 | |
|       
 | |
|       uint64_t C0080Val = 1ULL << 31;
 | |
|       int64_t CFF80Val = -C0080Val;
 | |
|       unsigned Size = 32;
 | |
|       do {
 | |
|         if (TySizeBits > Size) {
 | |
|           bool Found = false;
 | |
|           // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
 | |
|           // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
 | |
|           if (RHSSExt == CFF80Val) {
 | |
|             if (XorRHS->getZExtValue() == C0080Val)
 | |
|               Found = true;
 | |
|           } else if (RHSZExt == C0080Val) {
 | |
|             if (XorRHS->getSExtValue() == CFF80Val)
 | |
|               Found = true;
 | |
|           }
 | |
|           if (Found) {
 | |
|             // This is a sign extend if the top bits are known zero.
 | |
|             uint64_t Mask = ~0ULL;
 | |
|             Mask <<= 64-(TySizeBits-Size);
 | |
|             Mask &= XorLHS->getType()->getIntegralTypeMask();
 | |
|             if (!MaskedValueIsZero(XorLHS, Mask))
 | |
|               Size = 0;  // Not a sign ext, but can't be any others either.
 | |
|             goto FoundSExt;
 | |
|           }
 | |
|         }
 | |
|         Size >>= 1;
 | |
|         C0080Val >>= Size;
 | |
|         CFF80Val >>= Size;
 | |
|       } while (Size >= 8);
 | |
|       
 | |
| FoundSExt:
 | |
|       const Type *MiddleType = 0;
 | |
|       switch (Size) {
 | |
|       default: break;
 | |
|       case 32: MiddleType = Type::IntTy; break;
 | |
|       case 16: MiddleType = Type::ShortTy; break;
 | |
|       case 8:  MiddleType = Type::SByteTy; break;
 | |
|       }
 | |
|       if (MiddleType) {
 | |
|         Instruction *NewTrunc = new CastInst(XorLHS, MiddleType, "sext");
 | |
|         InsertNewInstBefore(NewTrunc, I);
 | |
|         return new CastInst(NewTrunc, I.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // X + X --> X << 1
 | |
|   if (I.getType()->isInteger()) {
 | |
|     if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
 | |
| 
 | |
|     if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
 | |
|       if (RHSI->getOpcode() == Instruction::Sub)
 | |
|         if (LHS == RHSI->getOperand(1))                   // A + (B - A) --> B
 | |
|           return ReplaceInstUsesWith(I, RHSI->getOperand(0));
 | |
|     }
 | |
|     if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
 | |
|       if (LHSI->getOpcode() == Instruction::Sub)
 | |
|         if (RHS == LHSI->getOperand(1))                   // (B - A) + A --> B
 | |
|           return ReplaceInstUsesWith(I, LHSI->getOperand(0));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // -A + B  -->  B - A
 | |
|   if (Value *V = dyn_castNegVal(LHS))
 | |
|     return BinaryOperator::createSub(RHS, V);
 | |
| 
 | |
|   // A + -B  -->  A - B
 | |
|   if (!isa<Constant>(RHS))
 | |
|     if (Value *V = dyn_castNegVal(RHS))
 | |
|       return BinaryOperator::createSub(LHS, V);
 | |
| 
 | |
| 
 | |
|   ConstantInt *C2;
 | |
|   if (Value *X = dyn_castFoldableMul(LHS, C2)) {
 | |
|     if (X == RHS)   // X*C + X --> X * (C+1)
 | |
|       return BinaryOperator::createMul(RHS, AddOne(C2));
 | |
| 
 | |
|     // X*C1 + X*C2 --> X * (C1+C2)
 | |
|     ConstantInt *C1;
 | |
|     if (X == dyn_castFoldableMul(RHS, C1))
 | |
|       return BinaryOperator::createMul(X, ConstantExpr::getAdd(C1, C2));
 | |
|   }
 | |
| 
 | |
|   // X + X*C --> X * (C+1)
 | |
|   if (dyn_castFoldableMul(RHS, C2) == LHS)
 | |
|     return BinaryOperator::createMul(LHS, AddOne(C2));
 | |
| 
 | |
| 
 | |
|   // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
 | |
|   if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
 | |
|     if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R;
 | |
| 
 | |
|   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
 | |
|     Value *X = 0;
 | |
|     if (match(LHS, m_Not(m_Value(X)))) {   // ~X + C --> (C-1) - X
 | |
|       Constant *C= ConstantExpr::getSub(CRHS, ConstantInt::get(I.getType(), 1));
 | |
|       return BinaryOperator::createSub(C, X);
 | |
|     }
 | |
| 
 | |
|     // (X & FF00) + xx00  -> (X+xx00) & FF00
 | |
|     if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
 | |
|       Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
 | |
|       if (Anded == CRHS) {
 | |
|         // See if all bits from the first bit set in the Add RHS up are included
 | |
|         // in the mask.  First, get the rightmost bit.
 | |
|         uint64_t AddRHSV = CRHS->getRawValue();
 | |
| 
 | |
|         // Form a mask of all bits from the lowest bit added through the top.
 | |
|         uint64_t AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1);
 | |
|         AddRHSHighBits &= C2->getType()->getIntegralTypeMask();
 | |
| 
 | |
|         // See if the and mask includes all of these bits.
 | |
|         uint64_t AddRHSHighBitsAnd = AddRHSHighBits & C2->getRawValue();
 | |
| 
 | |
|         if (AddRHSHighBits == AddRHSHighBitsAnd) {
 | |
|           // Okay, the xform is safe.  Insert the new add pronto.
 | |
|           Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
 | |
|                                                             LHS->getName()), I);
 | |
|           return BinaryOperator::createAnd(NewAdd, C2);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant add into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
|   }
 | |
| 
 | |
|   // add (cast *A to intptrtype) B -> cast (GEP (cast *A to sbyte*) B) -> intptrtype
 | |
|   {
 | |
|     CastInst* CI = dyn_cast<CastInst>(LHS);
 | |
|     Value* Other = RHS;
 | |
|     if (!CI) {
 | |
|       CI = dyn_cast<CastInst>(RHS);
 | |
|       Other = LHS;
 | |
|     }
 | |
|     if (CI && CI->getType()->isSized() && 
 | |
|         (CI->getType()->getPrimitiveSize() == 
 | |
|          TD->getIntPtrType()->getPrimitiveSize()) 
 | |
|         && isa<PointerType>(CI->getOperand(0)->getType())) {
 | |
|       Value* I2 = InsertCastBefore(CI->getOperand(0),
 | |
|                                    PointerType::get(Type::SByteTy), I);
 | |
|       I2 = InsertNewInstBefore(new GetElementPtrInst(I2, Other, "ctg2"), I);
 | |
|       return new CastInst(I2, CI->getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| // isSignBit - Return true if the value represented by the constant only has the
 | |
| // highest order bit set.
 | |
| static bool isSignBit(ConstantInt *CI) {
 | |
|   unsigned NumBits = CI->getType()->getPrimitiveSizeInBits();
 | |
|   return (CI->getRawValue() & (~0ULL >> (64-NumBits))) == (1ULL << (NumBits-1));
 | |
| }
 | |
| 
 | |
| /// RemoveNoopCast - Strip off nonconverting casts from the value.
 | |
| ///
 | |
| static Value *RemoveNoopCast(Value *V) {
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(V)) {
 | |
|     const Type *CTy = CI->getType();
 | |
|     const Type *OpTy = CI->getOperand(0)->getType();
 | |
|     if (CTy->isInteger() && OpTy->isInteger()) {
 | |
|       if (CTy->getPrimitiveSizeInBits() == OpTy->getPrimitiveSizeInBits())
 | |
|         return RemoveNoopCast(CI->getOperand(0));
 | |
|     } else if (isa<PointerType>(CTy) && isa<PointerType>(OpTy))
 | |
|       return RemoveNoopCast(CI->getOperand(0));
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSub(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Op0 == Op1)         // sub X, X  -> 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // If this is a 'B = x-(-A)', change to B = x+A...
 | |
|   if (Value *V = dyn_castNegVal(Op1))
 | |
|     return BinaryOperator::createAdd(Op0, V);
 | |
| 
 | |
|   if (isa<UndefValue>(Op0))
 | |
|     return ReplaceInstUsesWith(I, Op0);    // undef - X -> undef
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return ReplaceInstUsesWith(I, Op1);    // X - undef -> undef
 | |
| 
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
 | |
|     // Replace (-1 - A) with (~A)...
 | |
|     if (C->isAllOnesValue())
 | |
|       return BinaryOperator::createNot(Op1);
 | |
| 
 | |
|     // C - ~X == X + (1+C)
 | |
|     Value *X = 0;
 | |
|     if (match(Op1, m_Not(m_Value(X))))
 | |
|       return BinaryOperator::createAdd(X,
 | |
|                     ConstantExpr::getAdd(C, ConstantInt::get(I.getType(), 1)));
 | |
|     // -((uint)X >> 31) -> ((int)X >> 31)
 | |
|     // -((int)X >> 31) -> ((uint)X >> 31)
 | |
|     if (C->isNullValue()) {
 | |
|       Value *NoopCastedRHS = RemoveNoopCast(Op1);
 | |
|       if (ShiftInst *SI = dyn_cast<ShiftInst>(NoopCastedRHS))
 | |
|         if (SI->getOpcode() == Instruction::Shr)
 | |
|           if (ConstantUInt *CU = dyn_cast<ConstantUInt>(SI->getOperand(1))) {
 | |
|             const Type *NewTy;
 | |
|             if (SI->getType()->isSigned())
 | |
|               NewTy = SI->getType()->getUnsignedVersion();
 | |
|             else
 | |
|               NewTy = SI->getType()->getSignedVersion();
 | |
|             // Check to see if we are shifting out everything but the sign bit.
 | |
|             if (CU->getValue() == SI->getType()->getPrimitiveSizeInBits()-1) {
 | |
|               // Ok, the transformation is safe.  Insert a cast of the incoming
 | |
|               // value, then the new shift, then the new cast.
 | |
|               Instruction *FirstCast = new CastInst(SI->getOperand(0), NewTy,
 | |
|                                                  SI->getOperand(0)->getName());
 | |
|               Value *InV = InsertNewInstBefore(FirstCast, I);
 | |
|               Instruction *NewShift = new ShiftInst(Instruction::Shr, FirstCast,
 | |
|                                                     CU, SI->getName());
 | |
|               if (NewShift->getType() == I.getType())
 | |
|                 return NewShift;
 | |
|               else {
 | |
|                 InV = InsertNewInstBefore(NewShift, I);
 | |
|                 return new CastInst(NewShift, I.getType());
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant sub into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
| 
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
 | |
|     if (Op1I->getOpcode() == Instruction::Add &&
 | |
|         !Op0->getType()->isFloatingPoint()) {
 | |
|       if (Op1I->getOperand(0) == Op0)              // X-(X+Y) == -Y
 | |
|         return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
 | |
|       else if (Op1I->getOperand(1) == Op0)         // X-(Y+X) == -Y
 | |
|         return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
 | |
|       else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
 | |
|         if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
 | |
|           // C1-(X+C2) --> (C1-C2)-X
 | |
|           return BinaryOperator::createSub(ConstantExpr::getSub(CI1, CI2),
 | |
|                                            Op1I->getOperand(0));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Op1I->hasOneUse()) {
 | |
|       // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
 | |
|       // is not used by anyone else...
 | |
|       //
 | |
|       if (Op1I->getOpcode() == Instruction::Sub &&
 | |
|           !Op1I->getType()->isFloatingPoint()) {
 | |
|         // Swap the two operands of the subexpr...
 | |
|         Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
 | |
|         Op1I->setOperand(0, IIOp1);
 | |
|         Op1I->setOperand(1, IIOp0);
 | |
| 
 | |
|         // Create the new top level add instruction...
 | |
|         return BinaryOperator::createAdd(Op0, Op1);
 | |
|       }
 | |
| 
 | |
|       // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
 | |
|       //
 | |
|       if (Op1I->getOpcode() == Instruction::And &&
 | |
|           (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
 | |
|         Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
 | |
| 
 | |
|         Value *NewNot =
 | |
|           InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
 | |
|         return BinaryOperator::createAnd(Op0, NewNot);
 | |
|       }
 | |
| 
 | |
|       // -(X sdiv C)  -> (X sdiv -C)
 | |
|       if (Op1I->getOpcode() == Instruction::Div)
 | |
|         if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
 | |
|           if (CSI->isNullValue())
 | |
|             if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
 | |
|               return BinaryOperator::createDiv(Op1I->getOperand(0),
 | |
|                                                ConstantExpr::getNeg(DivRHS));
 | |
| 
 | |
|       // X - X*C --> X * (1-C)
 | |
|       ConstantInt *C2 = 0;
 | |
|       if (dyn_castFoldableMul(Op1I, C2) == Op0) {
 | |
|         Constant *CP1 =
 | |
|           ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), C2);
 | |
|         return BinaryOperator::createMul(Op0, CP1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Op0->getType()->isFloatingPoint())
 | |
|     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
 | |
|       if (Op0I->getOpcode() == Instruction::Add) {
 | |
|         if (Op0I->getOperand(0) == Op1)             // (Y+X)-Y == X
 | |
|           return ReplaceInstUsesWith(I, Op0I->getOperand(1));
 | |
|         else if (Op0I->getOperand(1) == Op1)        // (X+Y)-Y == X
 | |
|           return ReplaceInstUsesWith(I, Op0I->getOperand(0));
 | |
|       } else if (Op0I->getOpcode() == Instruction::Sub) {
 | |
|         if (Op0I->getOperand(0) == Op1)             // (X-Y)-X == -Y
 | |
|           return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
 | |
|       }
 | |
| 
 | |
|   ConstantInt *C1;
 | |
|   if (Value *X = dyn_castFoldableMul(Op0, C1)) {
 | |
|     if (X == Op1) { // X*C - X --> X * (C-1)
 | |
|       Constant *CP1 = ConstantExpr::getSub(C1, ConstantInt::get(I.getType(),1));
 | |
|       return BinaryOperator::createMul(Op1, CP1);
 | |
|     }
 | |
| 
 | |
|     ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
 | |
|     if (X == dyn_castFoldableMul(Op1, C2))
 | |
|       return BinaryOperator::createMul(Op1, ConstantExpr::getSub(C1, C2));
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// isSignBitCheck - Given an exploded setcc instruction, return true if it is
 | |
| /// really just returns true if the most significant (sign) bit is set.
 | |
| static bool isSignBitCheck(unsigned Opcode, Value *LHS, ConstantInt *RHS) {
 | |
|   if (RHS->getType()->isSigned()) {
 | |
|     // True if source is LHS < 0 or LHS <= -1
 | |
|     return Opcode == Instruction::SetLT && RHS->isNullValue() ||
 | |
|            Opcode == Instruction::SetLE && RHS->isAllOnesValue();
 | |
|   } else {
 | |
|     ConstantUInt *RHSC = cast<ConstantUInt>(RHS);
 | |
|     // True if source is LHS > 127 or LHS >= 128, where the constants depend on
 | |
|     // the size of the integer type.
 | |
|     if (Opcode == Instruction::SetGE)
 | |
|       return RHSC->getValue() ==
 | |
|         1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1);
 | |
|     if (Opcode == Instruction::SetGT)
 | |
|       return RHSC->getValue() ==
 | |
|         (1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1))-1;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitMul(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0);
 | |
| 
 | |
|   if (isa<UndefValue>(I.getOperand(1)))              // undef * X -> 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // Simplify mul instructions with a constant RHS...
 | |
|   if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
| 
 | |
|       // ((X << C1)*C2) == (X * (C2 << C1))
 | |
|       if (ShiftInst *SI = dyn_cast<ShiftInst>(Op0))
 | |
|         if (SI->getOpcode() == Instruction::Shl)
 | |
|           if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|             return BinaryOperator::createMul(SI->getOperand(0),
 | |
|                                              ConstantExpr::getShl(CI, ShOp));
 | |
| 
 | |
|       if (CI->isNullValue())
 | |
|         return ReplaceInstUsesWith(I, Op1);  // X * 0  == 0
 | |
|       if (CI->equalsInt(1))                  // X * 1  == X
 | |
|         return ReplaceInstUsesWith(I, Op0);
 | |
|       if (CI->isAllOnesValue())              // X * -1 == 0 - X
 | |
|         return BinaryOperator::createNeg(Op0, I.getName());
 | |
| 
 | |
|       int64_t Val = (int64_t)cast<ConstantInt>(CI)->getRawValue();
 | |
|       if (isPowerOf2_64(Val)) {          // Replace X*(2^C) with X << C
 | |
|         uint64_t C = Log2_64(Val);
 | |
|         return new ShiftInst(Instruction::Shl, Op0,
 | |
|                              ConstantUInt::get(Type::UByteTy, C));
 | |
|       }
 | |
|     } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
 | |
|       if (Op1F->isNullValue())
 | |
|         return ReplaceInstUsesWith(I, Op1);
 | |
| 
 | |
|       // "In IEEE floating point, x*1 is not equivalent to x for nans.  However,
 | |
|       // ANSI says we can drop signals, so we can do this anyway." (from GCC)
 | |
|       if (Op1F->getValue() == 1.0)
 | |
|         return ReplaceInstUsesWith(I, Op0);  // Eliminate 'mul double %X, 1.0'
 | |
|     }
 | |
|     
 | |
|     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
 | |
|       if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
 | |
|           isa<ConstantInt>(Op0I->getOperand(1))) {
 | |
|         // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
 | |
|         Instruction *Add = BinaryOperator::createMul(Op0I->getOperand(0),
 | |
|                                                      Op1, "tmp");
 | |
|         InsertNewInstBefore(Add, I);
 | |
|         Value *C1C2 = ConstantExpr::getMul(Op1, 
 | |
|                                            cast<Constant>(Op0I->getOperand(1)));
 | |
|         return BinaryOperator::createAdd(Add, C1C2);
 | |
|         
 | |
|       }
 | |
| 
 | |
|     // Try to fold constant mul into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
| 
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
 | |
|     if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
 | |
|       return BinaryOperator::createMul(Op0v, Op1v);
 | |
| 
 | |
|   // If one of the operands of the multiply is a cast from a boolean value, then
 | |
|   // we know the bool is either zero or one, so this is a 'masking' multiply.
 | |
|   // See if we can simplify things based on how the boolean was originally
 | |
|   // formed.
 | |
|   CastInst *BoolCast = 0;
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(0)))
 | |
|     if (CI->getOperand(0)->getType() == Type::BoolTy)
 | |
|       BoolCast = CI;
 | |
|   if (!BoolCast)
 | |
|     if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(1)))
 | |
|       if (CI->getOperand(0)->getType() == Type::BoolTy)
 | |
|         BoolCast = CI;
 | |
|   if (BoolCast) {
 | |
|     if (SetCondInst *SCI = dyn_cast<SetCondInst>(BoolCast->getOperand(0))) {
 | |
|       Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
 | |
|       const Type *SCOpTy = SCIOp0->getType();
 | |
| 
 | |
|       // If the setcc is true iff the sign bit of X is set, then convert this
 | |
|       // multiply into a shift/and combination.
 | |
|       if (isa<ConstantInt>(SCIOp1) &&
 | |
|           isSignBitCheck(SCI->getOpcode(), SCIOp0, cast<ConstantInt>(SCIOp1))) {
 | |
|         // Shift the X value right to turn it into "all signbits".
 | |
|         Constant *Amt = ConstantUInt::get(Type::UByteTy,
 | |
|                                           SCOpTy->getPrimitiveSizeInBits()-1);
 | |
|         if (SCIOp0->getType()->isUnsigned()) {
 | |
|           const Type *NewTy = SCIOp0->getType()->getSignedVersion();
 | |
|           SCIOp0 = InsertNewInstBefore(new CastInst(SCIOp0, NewTy,
 | |
|                                                     SCIOp0->getName()), I);
 | |
|         }
 | |
| 
 | |
|         Value *V =
 | |
|           InsertNewInstBefore(new ShiftInst(Instruction::Shr, SCIOp0, Amt,
 | |
|                                             BoolCast->getOperand(0)->getName()+
 | |
|                                             ".mask"), I);
 | |
| 
 | |
|         // If the multiply type is not the same as the source type, sign extend
 | |
|         // or truncate to the multiply type.
 | |
|         if (I.getType() != V->getType())
 | |
|           V = InsertNewInstBefore(new CastInst(V, I.getType(), V->getName()),I);
 | |
| 
 | |
|         Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
 | |
|         return BinaryOperator::createAnd(V, OtherOp);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitDiv(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (isa<UndefValue>(Op0))              // undef / X -> 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return ReplaceInstUsesWith(I, Op1);  // X / undef -> undef
 | |
| 
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // div X, 1 == X
 | |
|     if (RHS->equalsInt(1))
 | |
|       return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|     // div X, -1 == -X
 | |
|     if (RHS->isAllOnesValue())
 | |
|       return BinaryOperator::createNeg(Op0);
 | |
| 
 | |
|     if (Instruction *LHS = dyn_cast<Instruction>(Op0))
 | |
|       if (LHS->getOpcode() == Instruction::Div)
 | |
|         if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
 | |
|           // (X / C1) / C2  -> X / (C1*C2)
 | |
|           return BinaryOperator::createDiv(LHS->getOperand(0),
 | |
|                                            ConstantExpr::getMul(RHS, LHSRHS));
 | |
|         }
 | |
| 
 | |
|     // Check to see if this is an unsigned division with an exact power of 2,
 | |
|     // if so, convert to a right shift.
 | |
|     if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
 | |
|       if (uint64_t Val = C->getValue())    // Don't break X / 0
 | |
|         if (isPowerOf2_64(Val)) {
 | |
|           uint64_t C = Log2_64(Val);
 | |
|           return new ShiftInst(Instruction::Shr, Op0,
 | |
|                                ConstantUInt::get(Type::UByteTy, C));
 | |
|         }
 | |
| 
 | |
|     // -X/C -> X/-C
 | |
|     if (RHS->getType()->isSigned())
 | |
|       if (Value *LHSNeg = dyn_castNegVal(Op0))
 | |
|         return BinaryOperator::createDiv(LHSNeg, ConstantExpr::getNeg(RHS));
 | |
| 
 | |
|     if (!RHS->isNullValue()) {
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|         if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|           return R;
 | |
|       if (isa<PHINode>(Op0))
 | |
|         if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|           return NV;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle div X, Cond?Y:Z
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
 | |
|     // div X, (Cond ? 0 : Y) -> div X, Y.  If the div and the select are in the
 | |
|     // same basic block, then we replace the select with Y, and the condition of
 | |
|     // the select with false (if the cond value is in the same BB).  If the
 | |
|     // select has uses other than the div, this allows them to be simplified
 | |
|     // also.
 | |
|     if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|       if (ST->isNullValue()) {
 | |
|         Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
 | |
|         if (CondI && CondI->getParent() == I.getParent())
 | |
|           UpdateValueUsesWith(CondI, ConstantBool::getFalse());
 | |
|         else if (I.getParent() != SI->getParent() || SI->hasOneUse())
 | |
|           I.setOperand(1, SI->getOperand(2));
 | |
|         else
 | |
|           UpdateValueUsesWith(SI, SI->getOperand(2));
 | |
|         return &I;
 | |
|       }
 | |
|     // Likewise for: div X, (Cond ? Y : 0) -> div X, Y
 | |
|     if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
 | |
|       if (ST->isNullValue()) {
 | |
|         Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
 | |
|         if (CondI && CondI->getParent() == I.getParent())
 | |
|           UpdateValueUsesWith(CondI, ConstantBool::getTrue());
 | |
|         else if (I.getParent() != SI->getParent() || SI->hasOneUse())
 | |
|           I.setOperand(1, SI->getOperand(1));
 | |
|         else
 | |
|           UpdateValueUsesWith(SI, SI->getOperand(1));
 | |
|         return &I;
 | |
|       }
 | |
| 
 | |
|     // If this is 'udiv X, (Cond ? C1, C2)' where C1&C2 are powers of two,
 | |
|     // transform this into: '(Cond ? (udiv X, C1) : (udiv X, C2))'.
 | |
|     if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
 | |
|       if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
 | |
|         // STO == 0 and SFO == 0 handled above.
 | |
|         uint64_t TVA = STO->getValue(), FVA = SFO->getValue();
 | |
|         if (isPowerOf2_64(TVA) && isPowerOf2_64(FVA)) {
 | |
|           unsigned TSA = Log2_64(TVA), FSA = Log2_64(FVA);
 | |
|           Constant *TC = ConstantUInt::get(Type::UByteTy, TSA);
 | |
|           Instruction *TSI = new ShiftInst(Instruction::Shr, Op0,
 | |
|                                            TC, SI->getName()+".t");
 | |
|           TSI = InsertNewInstBefore(TSI, I);
 | |
| 
 | |
|           Constant *FC = ConstantUInt::get(Type::UByteTy, FSA);
 | |
|           Instruction *FSI = new ShiftInst(Instruction::Shr, Op0,
 | |
|                                            FC, SI->getName()+".f");
 | |
|           FSI = InsertNewInstBefore(FSI, I);
 | |
|           return new SelectInst(SI->getOperand(0), TSI, FSI);
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // 0 / X == 0, we don't need to preserve faults!
 | |
|   if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
 | |
|     if (LHS->equalsInt(0))
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   if (I.getType()->isSigned()) {
 | |
|     // If the sign bits of both operands are zero (i.e. we can prove they are
 | |
|     // unsigned inputs), turn this into a udiv.
 | |
|     uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
 | |
|     if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
 | |
|       const Type *NTy = Op0->getType()->getUnsignedVersion();
 | |
|       Instruction *LHS = new CastInst(Op0, NTy, Op0->getName());
 | |
|       InsertNewInstBefore(LHS, I);
 | |
|       Value *RHS;
 | |
|       if (Constant *R = dyn_cast<Constant>(Op1))
 | |
|         RHS = ConstantExpr::getCast(R, NTy);
 | |
|       else
 | |
|         RHS = InsertNewInstBefore(new CastInst(Op1, NTy, Op1->getName()), I);
 | |
|       Instruction *Div = BinaryOperator::createDiv(LHS, RHS, I.getName());
 | |
|       InsertNewInstBefore(Div, I);
 | |
|       return new CastInst(Div, I.getType());
 | |
|     }      
 | |
|   } else {
 | |
|     // Known to be an unsigned division.
 | |
|     if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
 | |
|       // Turn A / (C1 << N), where C1 is "1<<C2" into A >> (N+C2) [udiv only].
 | |
|       if (RHSI->getOpcode() == Instruction::Shl &&
 | |
|           isa<ConstantUInt>(RHSI->getOperand(0))) {
 | |
|         unsigned C1 = cast<ConstantUInt>(RHSI->getOperand(0))->getRawValue();
 | |
|         if (isPowerOf2_64(C1)) {
 | |
|           unsigned C2 = Log2_64(C1);
 | |
|           Value *Add = RHSI->getOperand(1);
 | |
|           if (C2) {
 | |
|             Constant *C2V = ConstantUInt::get(Add->getType(), C2);
 | |
|             Add = InsertNewInstBefore(BinaryOperator::createAdd(Add, C2V,
 | |
|                                                                 "tmp"), I);
 | |
|           }
 | |
|           return new ShiftInst(Instruction::Shr, Op0, Add);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GetFactor - If we can prove that the specified value is at least a multiple
 | |
| /// of some factor, return that factor.
 | |
| static Constant *GetFactor(Value *V) {
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | |
|     return CI;
 | |
|   
 | |
|   // Unless we can be tricky, we know this is a multiple of 1.
 | |
|   Constant *Result = ConstantInt::get(V->getType(), 1);
 | |
|   
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return Result;
 | |
|   
 | |
|   if (I->getOpcode() == Instruction::Mul) {
 | |
|     // Handle multiplies by a constant, etc.
 | |
|     return ConstantExpr::getMul(GetFactor(I->getOperand(0)),
 | |
|                                 GetFactor(I->getOperand(1)));
 | |
|   } else if (I->getOpcode() == Instruction::Shl) {
 | |
|     // (X<<C) -> X * (1 << C)
 | |
|     if (Constant *ShRHS = dyn_cast<Constant>(I->getOperand(1))) {
 | |
|       ShRHS = ConstantExpr::getShl(Result, ShRHS);
 | |
|       return ConstantExpr::getMul(GetFactor(I->getOperand(0)), ShRHS);
 | |
|     }
 | |
|   } else if (I->getOpcode() == Instruction::And) {
 | |
|     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       // X & 0xFFF0 is known to be a multiple of 16.
 | |
|       unsigned Zeros = CountTrailingZeros_64(RHS->getZExtValue());
 | |
|       if (Zeros != V->getType()->getPrimitiveSizeInBits())
 | |
|         return ConstantExpr::getShl(Result, 
 | |
|                                     ConstantUInt::get(Type::UByteTy, Zeros));
 | |
|     }
 | |
|   } else if (I->getOpcode() == Instruction::Cast) {
 | |
|     Value *Op = I->getOperand(0);
 | |
|     // Only handle int->int casts.
 | |
|     if (!Op->getType()->isInteger()) return Result;
 | |
|     return ConstantExpr::getCast(GetFactor(Op), V->getType());
 | |
|   }    
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitRem(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   
 | |
|   // 0 % X == 0, we don't need to preserve faults!
 | |
|   if (Constant *LHS = dyn_cast<Constant>(Op0))
 | |
|     if (LHS->isNullValue())
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   if (isa<UndefValue>(Op0))              // undef % X -> 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return ReplaceInstUsesWith(I, Op1);  // X % undef -> undef
 | |
|   
 | |
|   if (I.getType()->isSigned()) {
 | |
|     if (Value *RHSNeg = dyn_castNegVal(Op1))
 | |
|       if (!isa<ConstantSInt>(RHSNeg) ||
 | |
|           cast<ConstantSInt>(RHSNeg)->getValue() > 0) {
 | |
|         // X % -Y -> X % Y
 | |
|         AddUsesToWorkList(I);
 | |
|         I.setOperand(1, RHSNeg);
 | |
|         return &I;
 | |
|       }
 | |
|    
 | |
|     // If the top bits of both operands are zero (i.e. we can prove they are
 | |
|     // unsigned inputs), turn this into a urem.
 | |
|     uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
 | |
|     if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
 | |
|       const Type *NTy = Op0->getType()->getUnsignedVersion();
 | |
|       Instruction *LHS = new CastInst(Op0, NTy, Op0->getName());
 | |
|       InsertNewInstBefore(LHS, I);
 | |
|       Value *RHS;
 | |
|       if (Constant *R = dyn_cast<Constant>(Op1))
 | |
|         RHS = ConstantExpr::getCast(R, NTy);
 | |
|       else
 | |
|         RHS = InsertNewInstBefore(new CastInst(Op1, NTy, Op1->getName()), I);
 | |
|       Instruction *Rem = BinaryOperator::createRem(LHS, RHS, I.getName());
 | |
|       InsertNewInstBefore(Rem, I);
 | |
|       return new CastInst(Rem, I.getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // X % 0 == undef, we don't need to preserve faults!
 | |
|     if (RHS->equalsInt(0))
 | |
|       return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
 | |
|     
 | |
|     if (RHS->equalsInt(1))  // X % 1 == 0
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|     // Check to see if this is an unsigned remainder with an exact power of 2,
 | |
|     // if so, convert to a bitwise and.
 | |
|     if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
 | |
|       if (isPowerOf2_64(C->getValue()))
 | |
|         return BinaryOperator::createAnd(Op0, SubOne(C));
 | |
| 
 | |
|     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
 | |
|         if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|           return R;
 | |
|       } else if (isa<PHINode>(Op0I)) {
 | |
|         if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|           return NV;
 | |
|       }
 | |
|       
 | |
|       // X*C1%C2 --> 0  iff  C1%C2 == 0
 | |
|       if (ConstantExpr::getRem(GetFactor(Op0I), RHS)->isNullValue())
 | |
|         return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
 | |
|     // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) [urem only].
 | |
|     if (I.getType()->isUnsigned() && 
 | |
|         RHSI->getOpcode() == Instruction::Shl &&
 | |
|         isa<ConstantUInt>(RHSI->getOperand(0))) {
 | |
|       unsigned C1 = cast<ConstantUInt>(RHSI->getOperand(0))->getRawValue();
 | |
|       if (isPowerOf2_64(C1)) {
 | |
|         Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
 | |
|         Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1,
 | |
|                                                                    "tmp"), I);
 | |
|         return BinaryOperator::createAnd(Op0, Add);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If this is 'urem X, (Cond ? C1, C2)' where C1&C2 are powers of two,
 | |
|     // transform this into: '(Cond ? (urem X, C1) : (urem X, C2))'.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
 | |
|       // rem X, (Cond ? 0 : Y) -> rem X, Y.  If the rem and the select are in
 | |
|       // the same basic block, then we replace the select with Y, and the
 | |
|       // condition of the select with false (if the cond value is in the same
 | |
|       // BB).  If the select has uses other than the div, this allows them to be
 | |
|       // simplified also.
 | |
|       if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|         if (ST->isNullValue()) {
 | |
|           Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
 | |
|           if (CondI && CondI->getParent() == I.getParent())
 | |
|             UpdateValueUsesWith(CondI, ConstantBool::getFalse());
 | |
|           else if (I.getParent() != SI->getParent() || SI->hasOneUse())
 | |
|             I.setOperand(1, SI->getOperand(2));
 | |
|           else
 | |
|             UpdateValueUsesWith(SI, SI->getOperand(2));
 | |
|           return &I;
 | |
|         }
 | |
|       // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y
 | |
|       if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
 | |
|         if (ST->isNullValue()) {
 | |
|           Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
 | |
|           if (CondI && CondI->getParent() == I.getParent())
 | |
|             UpdateValueUsesWith(CondI, ConstantBool::getTrue());
 | |
|           else if (I.getParent() != SI->getParent() || SI->hasOneUse())
 | |
|             I.setOperand(1, SI->getOperand(1));
 | |
|           else
 | |
|             UpdateValueUsesWith(SI, SI->getOperand(1));
 | |
|           return &I;
 | |
|         }
 | |
| 
 | |
|       
 | |
|       if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
 | |
|         if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
 | |
|           // STO == 0 and SFO == 0 handled above.
 | |
|           
 | |
|           if (isPowerOf2_64(STO->getValue()) && isPowerOf2_64(SFO->getValue())){
 | |
|             Value *TrueAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
 | |
|                                           SubOne(STO), SI->getName()+".t"), I);
 | |
|             Value *FalseAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
 | |
|                                           SubOne(SFO), SI->getName()+".f"), I);
 | |
|             return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd);
 | |
|           }
 | |
|         }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // isMaxValueMinusOne - return true if this is Max-1
 | |
| static bool isMaxValueMinusOne(const ConstantInt *C) {
 | |
|   if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
 | |
|     return CU->getValue() == C->getType()->getIntegralTypeMask()-1;
 | |
| 
 | |
|   const ConstantSInt *CS = cast<ConstantSInt>(C);
 | |
| 
 | |
|   // Calculate 0111111111..11111
 | |
|   unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
 | |
|   int64_t Val = INT64_MAX;             // All ones
 | |
|   Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | |
|   return CS->getValue() == Val-1;
 | |
| }
 | |
| 
 | |
| // isMinValuePlusOne - return true if this is Min+1
 | |
| static bool isMinValuePlusOne(const ConstantInt *C) {
 | |
|   if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
 | |
|     return CU->getValue() == 1;
 | |
| 
 | |
|   const ConstantSInt *CS = cast<ConstantSInt>(C);
 | |
| 
 | |
|   // Calculate 1111111111000000000000
 | |
|   unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
 | |
|   int64_t Val = -1;                    // All ones
 | |
|   Val <<= TypeBits-1;                  // Shift over to the right spot
 | |
|   return CS->getValue() == Val+1;
 | |
| }
 | |
| 
 | |
| // isOneBitSet - Return true if there is exactly one bit set in the specified
 | |
| // constant.
 | |
| static bool isOneBitSet(const ConstantInt *CI) {
 | |
|   uint64_t V = CI->getRawValue();
 | |
|   return V && (V & (V-1)) == 0;
 | |
| }
 | |
| 
 | |
| #if 0   // Currently unused
 | |
| // isLowOnes - Return true if the constant is of the form 0+1+.
 | |
| static bool isLowOnes(const ConstantInt *CI) {
 | |
|   uint64_t V = CI->getRawValue();
 | |
| 
 | |
|   // There won't be bits set in parts that the type doesn't contain.
 | |
|   V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
 | |
| 
 | |
|   uint64_t U = V+1;  // If it is low ones, this should be a power of two.
 | |
|   return U && V && (U & V) == 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // isHighOnes - Return true if the constant is of the form 1+0+.
 | |
| // This is the same as lowones(~X).
 | |
| static bool isHighOnes(const ConstantInt *CI) {
 | |
|   uint64_t V = ~CI->getRawValue();
 | |
|   if (~V == 0) return false;  // 0's does not match "1+"
 | |
| 
 | |
|   // There won't be bits set in parts that the type doesn't contain.
 | |
|   V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
 | |
| 
 | |
|   uint64_t U = V+1;  // If it is low ones, this should be a power of two.
 | |
|   return U && V && (U & V) == 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getSetCondCode - Encode a setcc opcode into a three bit mask.  These bits
 | |
| /// are carefully arranged to allow folding of expressions such as:
 | |
| ///
 | |
| ///      (A < B) | (A > B) --> (A != B)
 | |
| ///
 | |
| /// Bit value '4' represents that the comparison is true if A > B, bit value '2'
 | |
| /// represents that the comparison is true if A == B, and bit value '1' is true
 | |
| /// if A < B.
 | |
| ///
 | |
| static unsigned getSetCondCode(const SetCondInst *SCI) {
 | |
|   switch (SCI->getOpcode()) {
 | |
|     // False -> 0
 | |
|   case Instruction::SetGT: return 1;
 | |
|   case Instruction::SetEQ: return 2;
 | |
|   case Instruction::SetGE: return 3;
 | |
|   case Instruction::SetLT: return 4;
 | |
|   case Instruction::SetNE: return 5;
 | |
|   case Instruction::SetLE: return 6;
 | |
|     // True -> 7
 | |
|   default:
 | |
|     assert(0 && "Invalid SetCC opcode!");
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getSetCCValue - This is the complement of getSetCondCode, which turns an
 | |
| /// opcode and two operands into either a constant true or false, or a brand new
 | |
| /// SetCC instruction.
 | |
| static Value *getSetCCValue(unsigned Opcode, Value *LHS, Value *RHS) {
 | |
|   switch (Opcode) {
 | |
|   case 0: return ConstantBool::getFalse();
 | |
|   case 1: return new SetCondInst(Instruction::SetGT, LHS, RHS);
 | |
|   case 2: return new SetCondInst(Instruction::SetEQ, LHS, RHS);
 | |
|   case 3: return new SetCondInst(Instruction::SetGE, LHS, RHS);
 | |
|   case 4: return new SetCondInst(Instruction::SetLT, LHS, RHS);
 | |
|   case 5: return new SetCondInst(Instruction::SetNE, LHS, RHS);
 | |
|   case 6: return new SetCondInst(Instruction::SetLE, LHS, RHS);
 | |
|   case 7: return ConstantBool::getTrue();
 | |
|   default: assert(0 && "Illegal SetCCCode!"); return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // FoldSetCCLogical - Implements (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
 | |
| struct FoldSetCCLogical {
 | |
|   InstCombiner &IC;
 | |
|   Value *LHS, *RHS;
 | |
|   FoldSetCCLogical(InstCombiner &ic, SetCondInst *SCI)
 | |
|     : IC(ic), LHS(SCI->getOperand(0)), RHS(SCI->getOperand(1)) {}
 | |
|   bool shouldApply(Value *V) const {
 | |
|     if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
 | |
|       return (SCI->getOperand(0) == LHS && SCI->getOperand(1) == RHS ||
 | |
|               SCI->getOperand(0) == RHS && SCI->getOperand(1) == LHS);
 | |
|     return false;
 | |
|   }
 | |
|   Instruction *apply(BinaryOperator &Log) const {
 | |
|     SetCondInst *SCI = cast<SetCondInst>(Log.getOperand(0));
 | |
|     if (SCI->getOperand(0) != LHS) {
 | |
|       assert(SCI->getOperand(1) == LHS);
 | |
|       SCI->swapOperands();  // Swap the LHS and RHS of the SetCC
 | |
|     }
 | |
| 
 | |
|     unsigned LHSCode = getSetCondCode(SCI);
 | |
|     unsigned RHSCode = getSetCondCode(cast<SetCondInst>(Log.getOperand(1)));
 | |
|     unsigned Code;
 | |
|     switch (Log.getOpcode()) {
 | |
|     case Instruction::And: Code = LHSCode & RHSCode; break;
 | |
|     case Instruction::Or:  Code = LHSCode | RHSCode; break;
 | |
|     case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
 | |
|     default: assert(0 && "Illegal logical opcode!"); return 0;
 | |
|     }
 | |
| 
 | |
|     Value *RV = getSetCCValue(Code, LHS, RHS);
 | |
|     if (Instruction *I = dyn_cast<Instruction>(RV))
 | |
|       return I;
 | |
|     // Otherwise, it's a constant boolean value...
 | |
|     return IC.ReplaceInstUsesWith(Log, RV);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
 | |
| // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
 | |
| // guaranteed to be either a shift instruction or a binary operator.
 | |
| Instruction *InstCombiner::OptAndOp(Instruction *Op,
 | |
|                                     ConstantIntegral *OpRHS,
 | |
|                                     ConstantIntegral *AndRHS,
 | |
|                                     BinaryOperator &TheAnd) {
 | |
|   Value *X = Op->getOperand(0);
 | |
|   Constant *Together = 0;
 | |
|   if (!isa<ShiftInst>(Op))
 | |
|     Together = ConstantExpr::getAnd(AndRHS, OpRHS);
 | |
| 
 | |
|   switch (Op->getOpcode()) {
 | |
|   case Instruction::Xor:
 | |
|     if (Op->hasOneUse()) {
 | |
|       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
 | |
|       std::string OpName = Op->getName(); Op->setName("");
 | |
|       Instruction *And = BinaryOperator::createAnd(X, AndRHS, OpName);
 | |
|       InsertNewInstBefore(And, TheAnd);
 | |
|       return BinaryOperator::createXor(And, Together);
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     if (Together == AndRHS) // (X | C) & C --> C
 | |
|       return ReplaceInstUsesWith(TheAnd, AndRHS);
 | |
| 
 | |
|     if (Op->hasOneUse() && Together != OpRHS) {
 | |
|       // (X | C1) & C2 --> (X | (C1&C2)) & C2
 | |
|       std::string Op0Name = Op->getName(); Op->setName("");
 | |
|       Instruction *Or = BinaryOperator::createOr(X, Together, Op0Name);
 | |
|       InsertNewInstBefore(Or, TheAnd);
 | |
|       return BinaryOperator::createAnd(Or, AndRHS);
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Add:
 | |
|     if (Op->hasOneUse()) {
 | |
|       // Adding a one to a single bit bit-field should be turned into an XOR
 | |
|       // of the bit.  First thing to check is to see if this AND is with a
 | |
|       // single bit constant.
 | |
|       uint64_t AndRHSV = cast<ConstantInt>(AndRHS)->getRawValue();
 | |
| 
 | |
|       // Clear bits that are not part of the constant.
 | |
|       AndRHSV &= AndRHS->getType()->getIntegralTypeMask();
 | |
| 
 | |
|       // If there is only one bit set...
 | |
|       if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
 | |
|         // Ok, at this point, we know that we are masking the result of the
 | |
|         // ADD down to exactly one bit.  If the constant we are adding has
 | |
|         // no bits set below this bit, then we can eliminate the ADD.
 | |
|         uint64_t AddRHS = cast<ConstantInt>(OpRHS)->getRawValue();
 | |
| 
 | |
|         // Check to see if any bits below the one bit set in AndRHSV are set.
 | |
|         if ((AddRHS & (AndRHSV-1)) == 0) {
 | |
|           // If not, the only thing that can effect the output of the AND is
 | |
|           // the bit specified by AndRHSV.  If that bit is set, the effect of
 | |
|           // the XOR is to toggle the bit.  If it is clear, then the ADD has
 | |
|           // no effect.
 | |
|           if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
 | |
|             TheAnd.setOperand(0, X);
 | |
|             return &TheAnd;
 | |
|           } else {
 | |
|             std::string Name = Op->getName(); Op->setName("");
 | |
|             // Pull the XOR out of the AND.
 | |
|             Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS, Name);
 | |
|             InsertNewInstBefore(NewAnd, TheAnd);
 | |
|             return BinaryOperator::createXor(NewAnd, AndRHS);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Shl: {
 | |
|     // We know that the AND will not produce any of the bits shifted in, so if
 | |
|     // the anded constant includes them, clear them now!
 | |
|     //
 | |
|     Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
 | |
|     Constant *ShlMask = ConstantExpr::getShl(AllOne, OpRHS);
 | |
|     Constant *CI = ConstantExpr::getAnd(AndRHS, ShlMask);
 | |
| 
 | |
|     if (CI == ShlMask) {   // Masking out bits that the shift already masks
 | |
|       return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
 | |
|     } else if (CI != AndRHS) {                  // Reducing bits set in and.
 | |
|       TheAnd.setOperand(1, CI);
 | |
|       return &TheAnd;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Shr:
 | |
|     // We know that the AND will not produce any of the bits shifted in, so if
 | |
|     // the anded constant includes them, clear them now!  This only applies to
 | |
|     // unsigned shifts, because a signed shr may bring in set bits!
 | |
|     //
 | |
|     if (AndRHS->getType()->isUnsigned()) {
 | |
|       Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
 | |
|       Constant *ShrMask = ConstantExpr::getShr(AllOne, OpRHS);
 | |
|       Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
 | |
| 
 | |
|       if (CI == ShrMask) {   // Masking out bits that the shift already masks.
 | |
|         return ReplaceInstUsesWith(TheAnd, Op);
 | |
|       } else if (CI != AndRHS) {
 | |
|         TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
 | |
|         return &TheAnd;
 | |
|       }
 | |
|     } else {   // Signed shr.
 | |
|       // See if this is shifting in some sign extension, then masking it out
 | |
|       // with an and.
 | |
|       if (Op->hasOneUse()) {
 | |
|         Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
 | |
|         Constant *ShrMask = ConstantExpr::getUShr(AllOne, OpRHS);
 | |
|         Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
 | |
|         if (CI == AndRHS) {          // Masking out bits shifted in.
 | |
|           // Make the argument unsigned.
 | |
|           Value *ShVal = Op->getOperand(0);
 | |
|           ShVal = InsertCastBefore(ShVal,
 | |
|                                    ShVal->getType()->getUnsignedVersion(),
 | |
|                                    TheAnd);
 | |
|           ShVal = InsertNewInstBefore(new ShiftInst(Instruction::Shr, ShVal,
 | |
|                                                     OpRHS, Op->getName()),
 | |
|                                       TheAnd);
 | |
|           Value *AndRHS2 = ConstantExpr::getCast(AndRHS, ShVal->getType());
 | |
|           ShVal = InsertNewInstBefore(BinaryOperator::createAnd(ShVal, AndRHS2,
 | |
|                                                              TheAnd.getName()),
 | |
|                                       TheAnd);
 | |
|           return new CastInst(ShVal, Op->getType());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
 | |
| /// true, otherwise (V < Lo || V >= Hi).  In pratice, we emit the more efficient
 | |
| /// (V-Lo) <u Hi-Lo.  This method expects that Lo <= Hi.  IB is the location to
 | |
| /// insert new instructions.
 | |
| Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
 | |
|                                            bool Inside, Instruction &IB) {
 | |
|   assert(cast<ConstantBool>(ConstantExpr::getSetLE(Lo, Hi))->getValue() &&
 | |
|          "Lo is not <= Hi in range emission code!");
 | |
|   if (Inside) {
 | |
|     if (Lo == Hi)  // Trivially false.
 | |
|       return new SetCondInst(Instruction::SetNE, V, V);
 | |
|     if (cast<ConstantIntegral>(Lo)->isMinValue())
 | |
|       return new SetCondInst(Instruction::SetLT, V, Hi);
 | |
| 
 | |
|     Constant *AddCST = ConstantExpr::getNeg(Lo);
 | |
|     Instruction *Add = BinaryOperator::createAdd(V, AddCST,V->getName()+".off");
 | |
|     InsertNewInstBefore(Add, IB);
 | |
|     // Convert to unsigned for the comparison.
 | |
|     const Type *UnsType = Add->getType()->getUnsignedVersion();
 | |
|     Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
 | |
|     AddCST = ConstantExpr::getAdd(AddCST, Hi);
 | |
|     AddCST = ConstantExpr::getCast(AddCST, UnsType);
 | |
|     return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
 | |
|   }
 | |
| 
 | |
|   if (Lo == Hi)  // Trivially true.
 | |
|     return new SetCondInst(Instruction::SetEQ, V, V);
 | |
| 
 | |
|   Hi = SubOne(cast<ConstantInt>(Hi));
 | |
|   if (cast<ConstantIntegral>(Lo)->isMinValue()) // V < 0 || V >= Hi ->'V > Hi-1'
 | |
|     return new SetCondInst(Instruction::SetGT, V, Hi);
 | |
| 
 | |
|   // Emit X-Lo > Hi-Lo-1
 | |
|   Constant *AddCST = ConstantExpr::getNeg(Lo);
 | |
|   Instruction *Add = BinaryOperator::createAdd(V, AddCST, V->getName()+".off");
 | |
|   InsertNewInstBefore(Add, IB);
 | |
|   // Convert to unsigned for the comparison.
 | |
|   const Type *UnsType = Add->getType()->getUnsignedVersion();
 | |
|   Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
 | |
|   AddCST = ConstantExpr::getAdd(AddCST, Hi);
 | |
|   AddCST = ConstantExpr::getCast(AddCST, UnsType);
 | |
|   return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
 | |
| }
 | |
| 
 | |
| // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
 | |
| // any number of 0s on either side.  The 1s are allowed to wrap from LSB to
 | |
| // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
 | |
| // not, since all 1s are not contiguous.
 | |
| static bool isRunOfOnes(ConstantIntegral *Val, unsigned &MB, unsigned &ME) {
 | |
|   uint64_t V = Val->getRawValue();
 | |
|   if (!isShiftedMask_64(V)) return false;
 | |
| 
 | |
|   // look for the first zero bit after the run of ones
 | |
|   MB = 64-CountLeadingZeros_64((V - 1) ^ V);
 | |
|   // look for the first non-zero bit
 | |
|   ME = 64-CountLeadingZeros_64(V);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
 | |
| /// where isSub determines whether the operator is a sub.  If we can fold one of
 | |
| /// the following xforms:
 | |
| /// 
 | |
| /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
 | |
| /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
 | |
| /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
 | |
| ///
 | |
| /// return (A +/- B).
 | |
| ///
 | |
| Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
 | |
|                                         ConstantIntegral *Mask, bool isSub,
 | |
|                                         Instruction &I) {
 | |
|   Instruction *LHSI = dyn_cast<Instruction>(LHS);
 | |
|   if (!LHSI || LHSI->getNumOperands() != 2 ||
 | |
|       !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
 | |
| 
 | |
|   ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
 | |
| 
 | |
|   switch (LHSI->getOpcode()) {
 | |
|   default: return 0;
 | |
|   case Instruction::And:
 | |
|     if (ConstantExpr::getAnd(N, Mask) == Mask) {
 | |
|       // If the AndRHS is a power of two minus one (0+1+), this is simple.
 | |
|       if ((Mask->getRawValue() & Mask->getRawValue()+1) == 0)
 | |
|         break;
 | |
| 
 | |
|       // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
 | |
|       // part, we don't need any explicit masks to take them out of A.  If that
 | |
|       // is all N is, ignore it.
 | |
|       unsigned MB, ME;
 | |
|       if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
 | |
|         uint64_t Mask = RHS->getType()->getIntegralTypeMask();
 | |
|         Mask >>= 64-MB+1;
 | |
|         if (MaskedValueIsZero(RHS, Mask))
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|     return 0;
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
 | |
|     if ((Mask->getRawValue() & Mask->getRawValue()+1) == 0 &&
 | |
|         ConstantExpr::getAnd(N, Mask)->isNullValue())
 | |
|       break;
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   Instruction *New;
 | |
|   if (isSub)
 | |
|     New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold");
 | |
|   else
 | |
|     New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold");
 | |
|   return InsertNewInstBefore(New, I);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (isa<UndefValue>(Op1))                         // X & undef -> 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // and X, X = X
 | |
|   if (Op0 == Op1)
 | |
|     return ReplaceInstUsesWith(I, Op1);
 | |
| 
 | |
|   // See if we can simplify any instructions used by the instruction whose sole 
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   uint64_t KnownZero, KnownOne;
 | |
|   if (!isa<PackedType>(I.getType()) &&
 | |
|       SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
 | |
|                            KnownZero, KnownOne))
 | |
|     return &I;
 | |
|   
 | |
|   if (ConstantIntegral *AndRHS = dyn_cast<ConstantIntegral>(Op1)) {
 | |
|     uint64_t AndRHSMask = AndRHS->getZExtValue();
 | |
|     uint64_t TypeMask = Op0->getType()->getIntegralTypeMask();
 | |
|     uint64_t NotAndRHS = AndRHSMask^TypeMask;
 | |
| 
 | |
|     // Optimize a variety of ((val OP C1) & C2) combinations...
 | |
|     if (isa<BinaryOperator>(Op0) || isa<ShiftInst>(Op0)) {
 | |
|       Instruction *Op0I = cast<Instruction>(Op0);
 | |
|       Value *Op0LHS = Op0I->getOperand(0);
 | |
|       Value *Op0RHS = Op0I->getOperand(1);
 | |
|       switch (Op0I->getOpcode()) {
 | |
|       case Instruction::Xor:
 | |
|       case Instruction::Or:
 | |
|         // If the mask is only needed on one incoming arm, push it up.
 | |
|         if (Op0I->hasOneUse()) {
 | |
|           if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
 | |
|             // Not masking anything out for the LHS, move to RHS.
 | |
|             Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
 | |
|                                                    Op0RHS->getName()+".masked");
 | |
|             InsertNewInstBefore(NewRHS, I);
 | |
|             return BinaryOperator::create(
 | |
|                        cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
 | |
|           }
 | |
|           if (!isa<Constant>(Op0RHS) &&
 | |
|               MaskedValueIsZero(Op0RHS, NotAndRHS)) {
 | |
|             // Not masking anything out for the RHS, move to LHS.
 | |
|             Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
 | |
|                                                    Op0LHS->getName()+".masked");
 | |
|             InsertNewInstBefore(NewLHS, I);
 | |
|             return BinaryOperator::create(
 | |
|                        cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|       case Instruction::Add:
 | |
|         // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
 | |
|         // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
 | |
|         // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
 | |
|         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
 | |
|           return BinaryOperator::createAnd(V, AndRHS);
 | |
|         if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
 | |
|           return BinaryOperator::createAnd(V, AndRHS);  // Add commutes
 | |
|         break;
 | |
| 
 | |
|       case Instruction::Sub:
 | |
|         // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
 | |
|         // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
 | |
|         // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
 | |
|         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
 | |
|           return BinaryOperator::createAnd(V, AndRHS);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
 | |
|         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
 | |
|           return Res;
 | |
|     } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
 | |
|       const Type *SrcTy = CI->getOperand(0)->getType();
 | |
| 
 | |
|       // If this is an integer truncation or change from signed-to-unsigned, and
 | |
|       // if the source is an and/or with immediate, transform it.  This
 | |
|       // frequently occurs for bitfield accesses.
 | |
|       if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
 | |
|         if (SrcTy->getPrimitiveSizeInBits() >= 
 | |
|               I.getType()->getPrimitiveSizeInBits() &&
 | |
|             CastOp->getNumOperands() == 2)
 | |
|           if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1)))
 | |
|             if (CastOp->getOpcode() == Instruction::And) {
 | |
|               // Change: and (cast (and X, C1) to T), C2
 | |
|               // into  : and (cast X to T), trunc(C1)&C2
 | |
|               // This will folds the two ands together, which may allow other
 | |
|               // simplifications.
 | |
|               Instruction *NewCast =
 | |
|                 new CastInst(CastOp->getOperand(0), I.getType(),
 | |
|                              CastOp->getName()+".shrunk");
 | |
|               NewCast = InsertNewInstBefore(NewCast, I);
 | |
|               
 | |
|               Constant *C3=ConstantExpr::getCast(AndCI, I.getType());//trunc(C1)
 | |
|               C3 = ConstantExpr::getAnd(C3, AndRHS);            // trunc(C1)&C2
 | |
|               return BinaryOperator::createAnd(NewCast, C3);
 | |
|             } else if (CastOp->getOpcode() == Instruction::Or) {
 | |
|               // Change: and (cast (or X, C1) to T), C2
 | |
|               // into  : trunc(C1)&C2 iff trunc(C1)&C2 == C2
 | |
|               Constant *C3=ConstantExpr::getCast(AndCI, I.getType());//trunc(C1)
 | |
|               if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS)   // trunc(C1)&C2
 | |
|                 return ReplaceInstUsesWith(I, AndRHS);
 | |
|             }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   Value *Op0NotVal = dyn_castNotVal(Op0);
 | |
|   Value *Op1NotVal = dyn_castNotVal(Op1);
 | |
| 
 | |
|   if (Op0NotVal == Op1 || Op1NotVal == Op0)  // A & ~A  == ~A & A == 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // (~A & ~B) == (~(A | B)) - De Morgan's Law
 | |
|   if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
 | |
|     Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
 | |
|                                                I.getName()+".demorgan");
 | |
|     InsertNewInstBefore(Or, I);
 | |
|     return BinaryOperator::createNot(Or);
 | |
|   }
 | |
|   
 | |
|   {
 | |
|     Value *A = 0, *B = 0;
 | |
|     ConstantInt *C1 = 0, *C2 = 0;
 | |
|     if (match(Op0, m_Or(m_Value(A), m_Value(B))))
 | |
|       if (A == Op1 || B == Op1)    // (A | ?) & A  --> A
 | |
|         return ReplaceInstUsesWith(I, Op1);
 | |
|     if (match(Op1, m_Or(m_Value(A), m_Value(B))))
 | |
|       if (A == Op0 || B == Op0)    // A & (A | ?)  --> A
 | |
|         return ReplaceInstUsesWith(I, Op0);
 | |
|     
 | |
|     if (Op0->hasOneUse() &&
 | |
|         match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
 | |
|       if (A == Op1) {                                // (A^B)&A -> A&(A^B)
 | |
|         I.swapOperands();     // Simplify below
 | |
|         std::swap(Op0, Op1);
 | |
|       } else if (B == Op1) {                         // (A^B)&B -> B&(B^A)
 | |
|         cast<BinaryOperator>(Op0)->swapOperands();
 | |
|         I.swapOperands();     // Simplify below
 | |
|         std::swap(Op0, Op1);
 | |
|       }
 | |
|     }
 | |
|     if (Op1->hasOneUse() &&
 | |
|         match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
 | |
|       if (B == Op0) {                                // B&(A^B) -> B&(B^A)
 | |
|         cast<BinaryOperator>(Op1)->swapOperands();
 | |
|         std::swap(A, B);
 | |
|       }
 | |
|       if (A == Op0) {                                // A&(A^B) -> A & ~B
 | |
|         Instruction *NotB = BinaryOperator::createNot(B, "tmp");
 | |
|         InsertNewInstBefore(NotB, I);
 | |
|         return BinaryOperator::createAnd(A, NotB);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
| 
 | |
|   if (SetCondInst *RHS = dyn_cast<SetCondInst>(Op1)) {
 | |
|     // (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
 | |
|     if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
 | |
|       return R;
 | |
| 
 | |
|     Value *LHSVal, *RHSVal;
 | |
|     ConstantInt *LHSCst, *RHSCst;
 | |
|     Instruction::BinaryOps LHSCC, RHSCC;
 | |
|     if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
 | |
|       if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
 | |
|         if (LHSVal == RHSVal &&    // Found (X setcc C1) & (X setcc C2)
 | |
|             // Set[GL]E X, CST is folded to Set[GL]T elsewhere.
 | |
|             LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE &&
 | |
|             RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
 | |
|           // Ensure that the larger constant is on the RHS.
 | |
|           Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
 | |
|           SetCondInst *LHS = cast<SetCondInst>(Op0);
 | |
|           if (cast<ConstantBool>(Cmp)->getValue()) {
 | |
|             std::swap(LHS, RHS);
 | |
|             std::swap(LHSCst, RHSCst);
 | |
|             std::swap(LHSCC, RHSCC);
 | |
|           }
 | |
| 
 | |
|           // At this point, we know we have have two setcc instructions
 | |
|           // comparing a value against two constants and and'ing the result
 | |
|           // together.  Because of the above check, we know that we only have
 | |
|           // SetEQ, SetNE, SetLT, and SetGT here.  We also know (from the
 | |
|           // FoldSetCCLogical check above), that the two constants are not
 | |
|           // equal.
 | |
|           assert(LHSCst != RHSCst && "Compares not folded above?");
 | |
| 
 | |
|           switch (LHSCC) {
 | |
|           default: assert(0 && "Unknown integer condition code!");
 | |
|           case Instruction::SetEQ:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetEQ:  // (X == 13 & X == 15) -> false
 | |
|             case Instruction::SetGT:  // (X == 13 & X > 15)  -> false
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::getFalse());
 | |
|             case Instruction::SetNE:  // (X == 13 & X != 15) -> X == 13
 | |
|             case Instruction::SetLT:  // (X == 13 & X < 15)  -> X == 13
 | |
|               return ReplaceInstUsesWith(I, LHS);
 | |
|             }
 | |
|           case Instruction::SetNE:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetLT:
 | |
|               if (LHSCst == SubOne(RHSCst)) // (X != 13 & X < 14) -> X < 13
 | |
|                 return new SetCondInst(Instruction::SetLT, LHSVal, LHSCst);
 | |
|               break;                        // (X != 13 & X < 15) -> no change
 | |
|             case Instruction::SetEQ:        // (X != 13 & X == 15) -> X == 15
 | |
|             case Instruction::SetGT:        // (X != 13 & X > 15)  -> X > 15
 | |
|               return ReplaceInstUsesWith(I, RHS);
 | |
|             case Instruction::SetNE:
 | |
|               if (LHSCst == SubOne(RHSCst)) {// (X != 13 & X != 14) -> X-13 >u 1
 | |
|                 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
 | |
|                 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
 | |
|                                                       LHSVal->getName()+".off");
 | |
|                 InsertNewInstBefore(Add, I);
 | |
|                 const Type *UnsType = Add->getType()->getUnsignedVersion();
 | |
|                 Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
 | |
|                 AddCST = ConstantExpr::getSub(RHSCst, LHSCst);
 | |
|                 AddCST = ConstantExpr::getCast(AddCST, UnsType);
 | |
|                 return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
 | |
|               }
 | |
|               break;                        // (X != 13 & X != 15) -> no change
 | |
|             }
 | |
|             break;
 | |
|           case Instruction::SetLT:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetEQ:  // (X < 13 & X == 15) -> false
 | |
|             case Instruction::SetGT:  // (X < 13 & X > 15)  -> false
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::getFalse());
 | |
|             case Instruction::SetNE:  // (X < 13 & X != 15) -> X < 13
 | |
|             case Instruction::SetLT:  // (X < 13 & X < 15) -> X < 13
 | |
|               return ReplaceInstUsesWith(I, LHS);
 | |
|             }
 | |
|           case Instruction::SetGT:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetEQ:  // (X > 13 & X == 15) -> X > 13
 | |
|               return ReplaceInstUsesWith(I, LHS);
 | |
|             case Instruction::SetGT:  // (X > 13 & X > 15)  -> X > 15
 | |
|               return ReplaceInstUsesWith(I, RHS);
 | |
|             case Instruction::SetNE:
 | |
|               if (RHSCst == AddOne(LHSCst)) // (X > 13 & X != 14) -> X > 14
 | |
|                 return new SetCondInst(Instruction::SetGT, LHSVal, RHSCst);
 | |
|               break;                        // (X > 13 & X != 15) -> no change
 | |
|             case Instruction::SetLT:   // (X > 13 & X < 15) -> (X-14) <u 1
 | |
|               return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true, I);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   // fold (and (cast A), (cast B)) -> (cast (and A, B))
 | |
|   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
 | |
|     const Type *SrcTy = Op0C->getOperand(0)->getType();
 | |
|     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
 | |
|       if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegral() &&
 | |
|           // Only do this if the casts both really cause code to be generated.
 | |
|           ValueRequiresCast(Op0C->getOperand(0), I.getType(), TD) &&
 | |
|           ValueRequiresCast(Op1C->getOperand(0), I.getType(), TD)) {
 | |
|         Instruction *NewOp = BinaryOperator::createAnd(Op0C->getOperand(0),
 | |
|                                                        Op1C->getOperand(0),
 | |
|                                                        I.getName());
 | |
|         InsertNewInstBefore(NewOp, I);
 | |
|         return new CastInst(NewOp, I.getType());
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| /// CollectBSwapParts - Look to see if the specified value defines a single byte
 | |
| /// in the result.  If it does, and if the specified byte hasn't been filled in
 | |
| /// yet, fill it in and return false.
 | |
| static bool CollectBSwapParts(Value *V, std::vector<Value*> &ByteValues) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (I == 0) return true;
 | |
| 
 | |
|   // If this is an or instruction, it is an inner node of the bswap.
 | |
|   if (I->getOpcode() == Instruction::Or)
 | |
|     return CollectBSwapParts(I->getOperand(0), ByteValues) ||
 | |
|            CollectBSwapParts(I->getOperand(1), ByteValues);
 | |
|   
 | |
|   // If this is a shift by a constant int, and it is "24", then its operand
 | |
|   // defines a byte.  We only handle unsigned types here.
 | |
|   if (isa<ShiftInst>(I) && isa<ConstantInt>(I->getOperand(1))) {
 | |
|     // Not shifting the entire input by N-1 bytes?
 | |
|     if (cast<ConstantInt>(I->getOperand(1))->getRawValue() !=
 | |
|         8*(ByteValues.size()-1))
 | |
|       return true;
 | |
|     
 | |
|     unsigned DestNo;
 | |
|     if (I->getOpcode() == Instruction::Shl) {
 | |
|       // X << 24 defines the top byte with the lowest of the input bytes.
 | |
|       DestNo = ByteValues.size()-1;
 | |
|     } else {
 | |
|       // X >>u 24 defines the low byte with the highest of the input bytes.
 | |
|       DestNo = 0;
 | |
|     }
 | |
|     
 | |
|     // If the destination byte value is already defined, the values are or'd
 | |
|     // together, which isn't a bswap (unless it's an or of the same bits).
 | |
|     if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0))
 | |
|       return true;
 | |
|     ByteValues[DestNo] = I->getOperand(0);
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, we can only handle and(shift X, imm), imm).  Bail out of if we
 | |
|   // don't have this.
 | |
|   Value *Shift = 0, *ShiftLHS = 0;
 | |
|   ConstantInt *AndAmt = 0, *ShiftAmt = 0;
 | |
|   if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) ||
 | |
|       !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt))))
 | |
|     return true;
 | |
|   Instruction *SI = cast<Instruction>(Shift);
 | |
| 
 | |
|   // Make sure that the shift amount is by a multiple of 8 and isn't too big.
 | |
|   if (ShiftAmt->getRawValue() & 7 ||
 | |
|       ShiftAmt->getRawValue() > 8*ByteValues.size())
 | |
|     return true;
 | |
|   
 | |
|   // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc.
 | |
|   unsigned DestByte;
 | |
|   for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte)
 | |
|     if (AndAmt->getRawValue() == uint64_t(0xFF) << 8*DestByte)
 | |
|       break;
 | |
|   // Unknown mask for bswap.
 | |
|   if (DestByte == ByteValues.size()) return true;
 | |
|   
 | |
|   unsigned ShiftBytes = ShiftAmt->getRawValue()/8;
 | |
|   unsigned SrcByte;
 | |
|   if (SI->getOpcode() == Instruction::Shl)
 | |
|     SrcByte = DestByte - ShiftBytes;
 | |
|   else
 | |
|     SrcByte = DestByte + ShiftBytes;
 | |
|   
 | |
|   // If the SrcByte isn't a bswapped value from the DestByte, reject it.
 | |
|   if (SrcByte != ByteValues.size()-DestByte-1)
 | |
|     return true;
 | |
|   
 | |
|   // If the destination byte value is already defined, the values are or'd
 | |
|   // together, which isn't a bswap (unless it's an or of the same bits).
 | |
|   if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0))
 | |
|     return true;
 | |
|   ByteValues[DestByte] = SI->getOperand(0);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
 | |
| /// If so, insert the new bswap intrinsic and return it.
 | |
| Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
 | |
|   // We can only handle bswap of unsigned integers, and cannot bswap one byte.
 | |
|   if (!I.getType()->isUnsigned() || I.getType() == Type::UByteTy)
 | |
|     return 0;
 | |
|   
 | |
|   /// ByteValues - For each byte of the result, we keep track of which value
 | |
|   /// defines each byte.
 | |
|   std::vector<Value*> ByteValues;
 | |
|   ByteValues.resize(I.getType()->getPrimitiveSize());
 | |
|     
 | |
|   // Try to find all the pieces corresponding to the bswap.
 | |
|   if (CollectBSwapParts(I.getOperand(0), ByteValues) ||
 | |
|       CollectBSwapParts(I.getOperand(1), ByteValues))
 | |
|     return 0;
 | |
|   
 | |
|   // Check to see if all of the bytes come from the same value.
 | |
|   Value *V = ByteValues[0];
 | |
|   if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
 | |
|   
 | |
|   // Check to make sure that all of the bytes come from the same value.
 | |
|   for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
 | |
|     if (ByteValues[i] != V)
 | |
|       return 0;
 | |
|     
 | |
|   // If they do then *success* we can turn this into a bswap.  Figure out what
 | |
|   // bswap to make it into.
 | |
|   Module *M = I.getParent()->getParent()->getParent();
 | |
|   const char *FnName = 0;
 | |
|   if (I.getType() == Type::UShortTy)
 | |
|     FnName = "llvm.bswap.i16";
 | |
|   else if (I.getType() == Type::UIntTy)
 | |
|     FnName = "llvm.bswap.i32";
 | |
|   else if (I.getType() == Type::ULongTy)
 | |
|     FnName = "llvm.bswap.i64";
 | |
|   else
 | |
|     assert(0 && "Unknown integer type!");
 | |
|   Function *F = M->getOrInsertFunction(FnName, I.getType(), I.getType(), NULL);
 | |
|   
 | |
|   return new CallInst(F, V);
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitOr(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return ReplaceInstUsesWith(I,                         // X | undef -> -1
 | |
|                                ConstantIntegral::getAllOnesValue(I.getType()));
 | |
| 
 | |
|   // or X, X = X
 | |
|   if (Op0 == Op1)
 | |
|     return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|   // See if we can simplify any instructions used by the instruction whose sole 
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   uint64_t KnownZero, KnownOne;
 | |
|   if (!isa<PackedType>(I.getType()) &&
 | |
|       SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
 | |
|                            KnownZero, KnownOne))
 | |
|     return &I;
 | |
|   
 | |
|   // or X, -1 == -1
 | |
|   if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
 | |
|     ConstantInt *C1 = 0; Value *X = 0;
 | |
|     // (X & C1) | C2 --> (X | C2) & (C1|C2)
 | |
|     if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
 | |
|       Instruction *Or = BinaryOperator::createOr(X, RHS, Op0->getName());
 | |
|       Op0->setName("");
 | |
|       InsertNewInstBefore(Or, I);
 | |
|       return BinaryOperator::createAnd(Or, ConstantExpr::getOr(RHS, C1));
 | |
|     }
 | |
| 
 | |
|     // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
 | |
|     if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
 | |
|       std::string Op0Name = Op0->getName(); Op0->setName("");
 | |
|       Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name);
 | |
|       InsertNewInstBefore(Or, I);
 | |
|       return BinaryOperator::createXor(Or,
 | |
|                  ConstantExpr::getAnd(C1, ConstantExpr::getNot(RHS)));
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   Value *A = 0, *B = 0;
 | |
|   ConstantInt *C1 = 0, *C2 = 0;
 | |
| 
 | |
|   if (match(Op0, m_And(m_Value(A), m_Value(B))))
 | |
|     if (A == Op1 || B == Op1)    // (A & ?) | A  --> A
 | |
|       return ReplaceInstUsesWith(I, Op1);
 | |
|   if (match(Op1, m_And(m_Value(A), m_Value(B))))
 | |
|     if (A == Op0 || B == Op0)    // A | (A & ?)  --> A
 | |
|       return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
 | |
|   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
 | |
|   if (match(Op0, m_Or(m_Value(), m_Value())) ||
 | |
|       match(Op1, m_Or(m_Value(), m_Value())) ||
 | |
|       (match(Op0, m_Shift(m_Value(), m_Value())) &&
 | |
|        match(Op1, m_Shift(m_Value(), m_Value())))) {
 | |
|     if (Instruction *BSwap = MatchBSwap(I))
 | |
|       return BSwap;
 | |
|   }
 | |
|   
 | |
|   // (X^C)|Y -> (X|Y)^C iff Y&C == 0
 | |
|   if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
 | |
|       MaskedValueIsZero(Op1, C1->getZExtValue())) {
 | |
|     Instruction *NOr = BinaryOperator::createOr(A, Op1, Op0->getName());
 | |
|     Op0->setName("");
 | |
|     return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1);
 | |
|   }
 | |
| 
 | |
|   // Y|(X^C) -> (X|Y)^C iff Y&C == 0
 | |
|   if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
 | |
|       MaskedValueIsZero(Op0, C1->getZExtValue())) {
 | |
|     Instruction *NOr = BinaryOperator::createOr(A, Op0, Op1->getName());
 | |
|     Op0->setName("");
 | |
|     return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1);
 | |
|   }
 | |
| 
 | |
|   // (A & C1)|(B & C2)
 | |
|   if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) &&
 | |
|       match(Op1, m_And(m_Value(B), m_ConstantInt(C2)))) {
 | |
| 
 | |
|     if (A == B)  // (A & C1)|(A & C2) == A & (C1|C2)
 | |
|       return BinaryOperator::createAnd(A, ConstantExpr::getOr(C1, C2));
 | |
| 
 | |
| 
 | |
|     // If we have: ((V + N) & C1) | (V & C2)
 | |
|     // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
 | |
|     // replace with V+N.
 | |
|     if (C1 == ConstantExpr::getNot(C2)) {
 | |
|       Value *V1 = 0, *V2 = 0;
 | |
|       if ((C2->getRawValue() & (C2->getRawValue()+1)) == 0 && // C2 == 0+1+
 | |
|           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
 | |
|         // Add commutes, try both ways.
 | |
|         if (V1 == B && MaskedValueIsZero(V2, C2->getZExtValue()))
 | |
|           return ReplaceInstUsesWith(I, A);
 | |
|         if (V2 == B && MaskedValueIsZero(V1, C2->getZExtValue()))
 | |
|           return ReplaceInstUsesWith(I, A);
 | |
|       }
 | |
|       // Or commutes, try both ways.
 | |
|       if ((C1->getRawValue() & (C1->getRawValue()+1)) == 0 &&
 | |
|           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
 | |
|         // Add commutes, try both ways.
 | |
|         if (V1 == A && MaskedValueIsZero(V2, C1->getZExtValue()))
 | |
|           return ReplaceInstUsesWith(I, B);
 | |
|         if (V2 == A && MaskedValueIsZero(V1, C1->getZExtValue()))
 | |
|           return ReplaceInstUsesWith(I, B);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (match(Op0, m_Not(m_Value(A)))) {   // ~A | Op1
 | |
|     if (A == Op1)   // ~A | A == -1
 | |
|       return ReplaceInstUsesWith(I,
 | |
|                                 ConstantIntegral::getAllOnesValue(I.getType()));
 | |
|   } else {
 | |
|     A = 0;
 | |
|   }
 | |
|   // Note, A is still live here!
 | |
|   if (match(Op1, m_Not(m_Value(B)))) {   // Op0 | ~B
 | |
|     if (Op0 == B)
 | |
|       return ReplaceInstUsesWith(I,
 | |
|                                 ConstantIntegral::getAllOnesValue(I.getType()));
 | |
| 
 | |
|     // (~A | ~B) == (~(A & B)) - De Morgan's Law
 | |
|     if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
 | |
|       Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
 | |
|                                               I.getName()+".demorgan"), I);
 | |
|       return BinaryOperator::createNot(And);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (setcc1 A, B) | (setcc2 A, B) --> (setcc3 A, B)
 | |
|   if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1))) {
 | |
|     if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
 | |
|       return R;
 | |
| 
 | |
|     Value *LHSVal, *RHSVal;
 | |
|     ConstantInt *LHSCst, *RHSCst;
 | |
|     Instruction::BinaryOps LHSCC, RHSCC;
 | |
|     if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
 | |
|       if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
 | |
|         if (LHSVal == RHSVal &&    // Found (X setcc C1) | (X setcc C2)
 | |
|             // Set[GL]E X, CST is folded to Set[GL]T elsewhere.
 | |
|             LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE &&
 | |
|             RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
 | |
|           // Ensure that the larger constant is on the RHS.
 | |
|           Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
 | |
|           SetCondInst *LHS = cast<SetCondInst>(Op0);
 | |
|           if (cast<ConstantBool>(Cmp)->getValue()) {
 | |
|             std::swap(LHS, RHS);
 | |
|             std::swap(LHSCst, RHSCst);
 | |
|             std::swap(LHSCC, RHSCC);
 | |
|           }
 | |
| 
 | |
|           // At this point, we know we have have two setcc instructions
 | |
|           // comparing a value against two constants and or'ing the result
 | |
|           // together.  Because of the above check, we know that we only have
 | |
|           // SetEQ, SetNE, SetLT, and SetGT here.  We also know (from the
 | |
|           // FoldSetCCLogical check above), that the two constants are not
 | |
|           // equal.
 | |
|           assert(LHSCst != RHSCst && "Compares not folded above?");
 | |
| 
 | |
|           switch (LHSCC) {
 | |
|           default: assert(0 && "Unknown integer condition code!");
 | |
|           case Instruction::SetEQ:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetEQ:
 | |
|               if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
 | |
|                 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
 | |
|                 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
 | |
|                                                       LHSVal->getName()+".off");
 | |
|                 InsertNewInstBefore(Add, I);
 | |
|                 const Type *UnsType = Add->getType()->getUnsignedVersion();
 | |
|                 Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
 | |
|                 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
 | |
|                 AddCST = ConstantExpr::getCast(AddCST, UnsType);
 | |
|                 return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
 | |
|               }
 | |
|               break;                  // (X == 13 | X == 15) -> no change
 | |
| 
 | |
|             case Instruction::SetGT:  // (X == 13 | X > 14) -> no change
 | |
|               break;
 | |
|             case Instruction::SetNE:  // (X == 13 | X != 15) -> X != 15
 | |
|             case Instruction::SetLT:  // (X == 13 | X < 15)  -> X < 15
 | |
|               return ReplaceInstUsesWith(I, RHS);
 | |
|             }
 | |
|             break;
 | |
|           case Instruction::SetNE:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetEQ:        // (X != 13 | X == 15) -> X != 13
 | |
|             case Instruction::SetGT:        // (X != 13 | X > 15)  -> X != 13
 | |
|               return ReplaceInstUsesWith(I, LHS);
 | |
|             case Instruction::SetNE:        // (X != 13 | X != 15) -> true
 | |
|             case Instruction::SetLT:        // (X != 13 | X < 15)  -> true
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::getTrue());
 | |
|             }
 | |
|             break;
 | |
|           case Instruction::SetLT:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetEQ:  // (X < 13 | X == 14) -> no change
 | |
|               break;
 | |
|             case Instruction::SetGT:  // (X < 13 | X > 15)  -> (X-13) > 2
 | |
|               return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false, I);
 | |
|             case Instruction::SetNE:  // (X < 13 | X != 15) -> X != 15
 | |
|             case Instruction::SetLT:  // (X < 13 | X < 15) -> X < 15
 | |
|               return ReplaceInstUsesWith(I, RHS);
 | |
|             }
 | |
|             break;
 | |
|           case Instruction::SetGT:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetEQ:  // (X > 13 | X == 15) -> X > 13
 | |
|             case Instruction::SetGT:  // (X > 13 | X > 15)  -> X > 13
 | |
|               return ReplaceInstUsesWith(I, LHS);
 | |
|             case Instruction::SetNE:  // (X > 13 | X != 15)  -> true
 | |
|             case Instruction::SetLT:  // (X > 13 | X < 15) -> true
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::getTrue());
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|   }
 | |
|     
 | |
|   // fold (or (cast A), (cast B)) -> (cast (or A, B))
 | |
|   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
 | |
|     const Type *SrcTy = Op0C->getOperand(0)->getType();
 | |
|     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
 | |
|       if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegral() &&
 | |
|           // Only do this if the casts both really cause code to be generated.
 | |
|           ValueRequiresCast(Op0C->getOperand(0), I.getType(), TD) &&
 | |
|           ValueRequiresCast(Op1C->getOperand(0), I.getType(), TD)) {
 | |
|         Instruction *NewOp = BinaryOperator::createOr(Op0C->getOperand(0),
 | |
|                                                       Op1C->getOperand(0),
 | |
|                                                       I.getName());
 | |
|         InsertNewInstBefore(NewOp, I);
 | |
|         return new CastInst(NewOp, I.getType());
 | |
|       }
 | |
|   }
 | |
|       
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| // XorSelf - Implements: X ^ X --> 0
 | |
| struct XorSelf {
 | |
|   Value *RHS;
 | |
|   XorSelf(Value *rhs) : RHS(rhs) {}
 | |
|   bool shouldApply(Value *LHS) const { return LHS == RHS; }
 | |
|   Instruction *apply(BinaryOperator &Xor) const {
 | |
|     return &Xor;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitXor(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return ReplaceInstUsesWith(I, Op1);  // X ^ undef -> undef
 | |
| 
 | |
|   // xor X, X = 0, even if X is nested in a sequence of Xor's.
 | |
|   if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
 | |
|     assert(Result == &I && "AssociativeOpt didn't work?");
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|   }
 | |
|   
 | |
|   // See if we can simplify any instructions used by the instruction whose sole 
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   uint64_t KnownZero, KnownOne;
 | |
|   if (!isa<PackedType>(I.getType()) &&
 | |
|       SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
 | |
|                            KnownZero, KnownOne))
 | |
|     return &I;
 | |
| 
 | |
|   if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
 | |
|     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
 | |
|       // xor (setcc A, B), true = not (setcc A, B) = setncc A, B
 | |
|       if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0I))
 | |
|         if (RHS == ConstantBool::getTrue() && SCI->hasOneUse())
 | |
|           return new SetCondInst(SCI->getInverseCondition(),
 | |
|                                  SCI->getOperand(0), SCI->getOperand(1));
 | |
| 
 | |
|       // ~(c-X) == X-c-1 == X+(-c-1)
 | |
|       if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
 | |
|         if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
 | |
|           Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
 | |
|           Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
 | |
|                                               ConstantInt::get(I.getType(), 1));
 | |
|           return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
 | |
|         }
 | |
| 
 | |
|       // ~(~X & Y) --> (X | ~Y)
 | |
|       if (Op0I->getOpcode() == Instruction::And && RHS->isAllOnesValue()) {
 | |
|         if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
 | |
|         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
 | |
|           Instruction *NotY =
 | |
|             BinaryOperator::createNot(Op0I->getOperand(1),
 | |
|                                       Op0I->getOperand(1)->getName()+".not");
 | |
|           InsertNewInstBefore(NotY, I);
 | |
|           return BinaryOperator::createOr(Op0NotVal, NotY);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
 | |
|         if (Op0I->getOpcode() == Instruction::Add) {
 | |
|           // ~(X-c) --> (-c-1)-X
 | |
|           if (RHS->isAllOnesValue()) {
 | |
|             Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
 | |
|             return BinaryOperator::createSub(
 | |
|                            ConstantExpr::getSub(NegOp0CI,
 | |
|                                              ConstantInt::get(I.getType(), 1)),
 | |
|                                           Op0I->getOperand(0));
 | |
|           }
 | |
|         } else if (Op0I->getOpcode() == Instruction::Or) {
 | |
|           // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
 | |
|           if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getZExtValue())) {
 | |
|             Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
 | |
|             // Anything in both C1 and C2 is known to be zero, remove it from
 | |
|             // NewRHS.
 | |
|             Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
 | |
|             NewRHS = ConstantExpr::getAnd(NewRHS, 
 | |
|                                           ConstantExpr::getNot(CommonBits));
 | |
|             WorkList.push_back(Op0I);
 | |
|             I.setOperand(0, Op0I->getOperand(0));
 | |
|             I.setOperand(1, NewRHS);
 | |
|             return &I;
 | |
|           }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   if (Value *X = dyn_castNotVal(Op0))   // ~A ^ A == -1
 | |
|     if (X == Op1)
 | |
|       return ReplaceInstUsesWith(I,
 | |
|                                 ConstantIntegral::getAllOnesValue(I.getType()));
 | |
| 
 | |
|   if (Value *X = dyn_castNotVal(Op1))   // A ^ ~A == -1
 | |
|     if (X == Op0)
 | |
|       return ReplaceInstUsesWith(I,
 | |
|                                 ConstantIntegral::getAllOnesValue(I.getType()));
 | |
| 
 | |
|   if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1))
 | |
|     if (Op1I->getOpcode() == Instruction::Or) {
 | |
|       if (Op1I->getOperand(0) == Op0) {              // B^(B|A) == (A|B)^B
 | |
|         Op1I->swapOperands();
 | |
|         I.swapOperands();
 | |
|         std::swap(Op0, Op1);
 | |
|       } else if (Op1I->getOperand(1) == Op0) {       // B^(A|B) == (A|B)^B
 | |
|         I.swapOperands();     // Simplified below.
 | |
|         std::swap(Op0, Op1);
 | |
|       }
 | |
|     } else if (Op1I->getOpcode() == Instruction::Xor) {
 | |
|       if (Op0 == Op1I->getOperand(0))                        // A^(A^B) == B
 | |
|         return ReplaceInstUsesWith(I, Op1I->getOperand(1));
 | |
|       else if (Op0 == Op1I->getOperand(1))                   // A^(B^A) == B
 | |
|         return ReplaceInstUsesWith(I, Op1I->getOperand(0));
 | |
|     } else if (Op1I->getOpcode() == Instruction::And && Op1I->hasOneUse()) {
 | |
|       if (Op1I->getOperand(0) == Op0)                      // A^(A&B) -> A^(B&A)
 | |
|         Op1I->swapOperands();
 | |
|       if (Op0 == Op1I->getOperand(1)) {                    // A^(B&A) -> (B&A)^A
 | |
|         I.swapOperands();     // Simplified below.
 | |
|         std::swap(Op0, Op1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
 | |
|     if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) {
 | |
|       if (Op0I->getOperand(0) == Op1)                // (B|A)^B == (A|B)^B
 | |
|         Op0I->swapOperands();
 | |
|       if (Op0I->getOperand(1) == Op1) {              // (A|B)^B == A & ~B
 | |
|         Instruction *NotB = BinaryOperator::createNot(Op1, "tmp");
 | |
|         InsertNewInstBefore(NotB, I);
 | |
|         return BinaryOperator::createAnd(Op0I->getOperand(0), NotB);
 | |
|       }
 | |
|     } else if (Op0I->getOpcode() == Instruction::Xor) {
 | |
|       if (Op1 == Op0I->getOperand(0))                        // (A^B)^A == B
 | |
|         return ReplaceInstUsesWith(I, Op0I->getOperand(1));
 | |
|       else if (Op1 == Op0I->getOperand(1))                   // (B^A)^A == B
 | |
|         return ReplaceInstUsesWith(I, Op0I->getOperand(0));
 | |
|     } else if (Op0I->getOpcode() == Instruction::And && Op0I->hasOneUse()) {
 | |
|       if (Op0I->getOperand(0) == Op1)                      // (A&B)^A -> (B&A)^A
 | |
|         Op0I->swapOperands();
 | |
|       if (Op0I->getOperand(1) == Op1 &&                    // (B&A)^A == ~B & A
 | |
|           !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
 | |
|         Instruction *N = BinaryOperator::createNot(Op0I->getOperand(0), "tmp");
 | |
|         InsertNewInstBefore(N, I);
 | |
|         return BinaryOperator::createAnd(N, Op1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // (setcc1 A, B) ^ (setcc2 A, B) --> (setcc3 A, B)
 | |
|   if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
 | |
|     if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
 | |
|       return R;
 | |
| 
 | |
|   // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
 | |
|   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
 | |
|     const Type *SrcTy = Op0C->getOperand(0)->getType();
 | |
|     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
 | |
|       if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegral() &&
 | |
|           // Only do this if the casts both really cause code to be generated.
 | |
|           ValueRequiresCast(Op0C->getOperand(0), I.getType(), TD) &&
 | |
|           ValueRequiresCast(Op1C->getOperand(0), I.getType(), TD)) {
 | |
|         Instruction *NewOp = BinaryOperator::createXor(Op0C->getOperand(0),
 | |
|                                                        Op1C->getOperand(0),
 | |
|                                                        I.getName());
 | |
|         InsertNewInstBefore(NewOp, I);
 | |
|         return new CastInst(NewOp, I.getType());
 | |
|       }
 | |
|   }
 | |
|     
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| /// MulWithOverflow - Compute Result = In1*In2, returning true if the result
 | |
| /// overflowed for this type.
 | |
| static bool MulWithOverflow(ConstantInt *&Result, ConstantInt *In1,
 | |
|                             ConstantInt *In2) {
 | |
|   Result = cast<ConstantInt>(ConstantExpr::getMul(In1, In2));
 | |
|   return !In2->isNullValue() && ConstantExpr::getDiv(Result, In2) != In1;
 | |
| }
 | |
| 
 | |
| static bool isPositive(ConstantInt *C) {
 | |
|   return cast<ConstantSInt>(C)->getValue() >= 0;
 | |
| }
 | |
| 
 | |
| /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
 | |
| /// overflowed for this type.
 | |
| static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
 | |
|                             ConstantInt *In2) {
 | |
|   Result = cast<ConstantInt>(ConstantExpr::getAdd(In1, In2));
 | |
| 
 | |
|   if (In1->getType()->isUnsigned())
 | |
|     return cast<ConstantUInt>(Result)->getValue() <
 | |
|            cast<ConstantUInt>(In1)->getValue();
 | |
|   if (isPositive(In1) != isPositive(In2))
 | |
|     return false;
 | |
|   if (isPositive(In1))
 | |
|     return cast<ConstantSInt>(Result)->getValue() <
 | |
|            cast<ConstantSInt>(In1)->getValue();
 | |
|   return cast<ConstantSInt>(Result)->getValue() >
 | |
|          cast<ConstantSInt>(In1)->getValue();
 | |
| }
 | |
| 
 | |
| /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
 | |
| /// code necessary to compute the offset from the base pointer (without adding
 | |
| /// in the base pointer).  Return the result as a signed integer of intptr size.
 | |
| static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
 | |
|   TargetData &TD = IC.getTargetData();
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|   const Type *UIntPtrTy = TD.getIntPtrType();
 | |
|   const Type *SIntPtrTy = UIntPtrTy->getSignedVersion();
 | |
|   Value *Result = Constant::getNullValue(SIntPtrTy);
 | |
| 
 | |
|   // Build a mask for high order bits.
 | |
|   uint64_t PtrSizeMask = ~0ULL >> (64-TD.getPointerSize()*8);
 | |
| 
 | |
|   for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
 | |
|     Value *Op = GEP->getOperand(i);
 | |
|     uint64_t Size = TD.getTypeSize(GTI.getIndexedType()) & PtrSizeMask;
 | |
|     Constant *Scale = ConstantExpr::getCast(ConstantUInt::get(UIntPtrTy, Size),
 | |
|                                             SIntPtrTy);
 | |
|     if (Constant *OpC = dyn_cast<Constant>(Op)) {
 | |
|       if (!OpC->isNullValue()) {
 | |
|         OpC = ConstantExpr::getCast(OpC, SIntPtrTy);
 | |
|         Scale = ConstantExpr::getMul(OpC, Scale);
 | |
|         if (Constant *RC = dyn_cast<Constant>(Result))
 | |
|           Result = ConstantExpr::getAdd(RC, Scale);
 | |
|         else {
 | |
|           // Emit an add instruction.
 | |
|           Result = IC.InsertNewInstBefore(
 | |
|              BinaryOperator::createAdd(Result, Scale,
 | |
|                                        GEP->getName()+".offs"), I);
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       // Convert to correct type.
 | |
|       Op = IC.InsertNewInstBefore(new CastInst(Op, SIntPtrTy,
 | |
|                                                Op->getName()+".c"), I);
 | |
|       if (Size != 1)
 | |
|         // We'll let instcombine(mul) convert this to a shl if possible.
 | |
|         Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
 | |
|                                                     GEP->getName()+".idx"), I);
 | |
| 
 | |
|       // Emit an add instruction.
 | |
|       Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
 | |
|                                                     GEP->getName()+".offs"), I);
 | |
|     }
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// FoldGEPSetCC - Fold comparisons between a GEP instruction and something
 | |
| /// else.  At this point we know that the GEP is on the LHS of the comparison.
 | |
| Instruction *InstCombiner::FoldGEPSetCC(User *GEPLHS, Value *RHS,
 | |
|                                         Instruction::BinaryOps Cond,
 | |
|                                         Instruction &I) {
 | |
|   assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
 | |
| 
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(RHS))
 | |
|     if (isa<PointerType>(CI->getOperand(0)->getType()))
 | |
|       RHS = CI->getOperand(0);
 | |
| 
 | |
|   Value *PtrBase = GEPLHS->getOperand(0);
 | |
|   if (PtrBase == RHS) {
 | |
|     // As an optimization, we don't actually have to compute the actual value of
 | |
|     // OFFSET if this is a seteq or setne comparison, just return whether each
 | |
|     // index is zero or not.
 | |
|     if (Cond == Instruction::SetEQ || Cond == Instruction::SetNE) {
 | |
|       Instruction *InVal = 0;
 | |
|       gep_type_iterator GTI = gep_type_begin(GEPLHS);
 | |
|       for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) {
 | |
|         bool EmitIt = true;
 | |
|         if (Constant *C = dyn_cast<Constant>(GEPLHS->getOperand(i))) {
 | |
|           if (isa<UndefValue>(C))  // undef index -> undef.
 | |
|             return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
 | |
|           if (C->isNullValue())
 | |
|             EmitIt = false;
 | |
|           else if (TD->getTypeSize(GTI.getIndexedType()) == 0) {
 | |
|             EmitIt = false;  // This is indexing into a zero sized array?
 | |
|           } else if (isa<ConstantInt>(C))
 | |
|             return ReplaceInstUsesWith(I, // No comparison is needed here.
 | |
|                                  ConstantBool::get(Cond == Instruction::SetNE));
 | |
|         }
 | |
| 
 | |
|         if (EmitIt) {
 | |
|           Instruction *Comp =
 | |
|             new SetCondInst(Cond, GEPLHS->getOperand(i),
 | |
|                     Constant::getNullValue(GEPLHS->getOperand(i)->getType()));
 | |
|           if (InVal == 0)
 | |
|             InVal = Comp;
 | |
|           else {
 | |
|             InVal = InsertNewInstBefore(InVal, I);
 | |
|             InsertNewInstBefore(Comp, I);
 | |
|             if (Cond == Instruction::SetNE)   // True if any are unequal
 | |
|               InVal = BinaryOperator::createOr(InVal, Comp);
 | |
|             else                              // True if all are equal
 | |
|               InVal = BinaryOperator::createAnd(InVal, Comp);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (InVal)
 | |
|         return InVal;
 | |
|       else
 | |
|         ReplaceInstUsesWith(I, // No comparison is needed here, all indexes = 0
 | |
|                             ConstantBool::get(Cond == Instruction::SetEQ));
 | |
|     }
 | |
| 
 | |
|     // Only lower this if the setcc is the only user of the GEP or if we expect
 | |
|     // the result to fold to a constant!
 | |
|     if (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) {
 | |
|       // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
 | |
|       Value *Offset = EmitGEPOffset(GEPLHS, I, *this);
 | |
|       return new SetCondInst(Cond, Offset,
 | |
|                              Constant::getNullValue(Offset->getType()));
 | |
|     }
 | |
|   } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
 | |
|     // If the base pointers are different, but the indices are the same, just
 | |
|     // compare the base pointer.
 | |
|     if (PtrBase != GEPRHS->getOperand(0)) {
 | |
|       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
 | |
|       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
 | |
|                         GEPRHS->getOperand(0)->getType();
 | |
|       if (IndicesTheSame)
 | |
|         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
 | |
|           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
 | |
|             IndicesTheSame = false;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|       // If all indices are the same, just compare the base pointers.
 | |
|       if (IndicesTheSame)
 | |
|         return new SetCondInst(Cond, GEPLHS->getOperand(0),
 | |
|                                GEPRHS->getOperand(0));
 | |
| 
 | |
|       // Otherwise, the base pointers are different and the indices are
 | |
|       // different, bail out.
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     // If one of the GEPs has all zero indices, recurse.
 | |
|     bool AllZeros = true;
 | |
|     for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
 | |
|       if (!isa<Constant>(GEPLHS->getOperand(i)) ||
 | |
|           !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
 | |
|         AllZeros = false;
 | |
|         break;
 | |
|       }
 | |
|     if (AllZeros)
 | |
|       return FoldGEPSetCC(GEPRHS, GEPLHS->getOperand(0),
 | |
|                           SetCondInst::getSwappedCondition(Cond), I);
 | |
| 
 | |
|     // If the other GEP has all zero indices, recurse.
 | |
|     AllZeros = true;
 | |
|     for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
 | |
|       if (!isa<Constant>(GEPRHS->getOperand(i)) ||
 | |
|           !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
 | |
|         AllZeros = false;
 | |
|         break;
 | |
|       }
 | |
|     if (AllZeros)
 | |
|       return FoldGEPSetCC(GEPLHS, GEPRHS->getOperand(0), Cond, I);
 | |
| 
 | |
|     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
 | |
|       // If the GEPs only differ by one index, compare it.
 | |
|       unsigned NumDifferences = 0;  // Keep track of # differences.
 | |
|       unsigned DiffOperand = 0;     // The operand that differs.
 | |
|       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
 | |
|         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
 | |
|           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
 | |
|                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
 | |
|             // Irreconcilable differences.
 | |
|             NumDifferences = 2;
 | |
|             break;
 | |
|           } else {
 | |
|             if (NumDifferences++) break;
 | |
|             DiffOperand = i;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       if (NumDifferences == 0)   // SAME GEP?
 | |
|         return ReplaceInstUsesWith(I, // No comparison is needed here.
 | |
|                                  ConstantBool::get(Cond == Instruction::SetEQ));
 | |
|       else if (NumDifferences == 1) {
 | |
|         Value *LHSV = GEPLHS->getOperand(DiffOperand);
 | |
|         Value *RHSV = GEPRHS->getOperand(DiffOperand);
 | |
| 
 | |
|         // Convert the operands to signed values to make sure to perform a
 | |
|         // signed comparison.
 | |
|         const Type *NewTy = LHSV->getType()->getSignedVersion();
 | |
|         if (LHSV->getType() != NewTy)
 | |
|           LHSV = InsertNewInstBefore(new CastInst(LHSV, NewTy,
 | |
|                                                   LHSV->getName()), I);
 | |
|         if (RHSV->getType() != NewTy)
 | |
|           RHSV = InsertNewInstBefore(new CastInst(RHSV, NewTy,
 | |
|                                                   RHSV->getName()), I);
 | |
|         return new SetCondInst(Cond, LHSV, RHSV);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Only lower this if the setcc is the only user of the GEP or if we expect
 | |
|     // the result to fold to a constant!
 | |
|     if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
 | |
|         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
 | |
|       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
 | |
|       Value *L = EmitGEPOffset(GEPLHS, I, *this);
 | |
|       Value *R = EmitGEPOffset(GEPRHS, I, *this);
 | |
|       return new SetCondInst(Cond, L, R);
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitSetCondInst(SetCondInst &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   const Type *Ty = Op0->getType();
 | |
| 
 | |
|   // setcc X, X
 | |
|   if (Op0 == Op1)
 | |
|     return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I)));
 | |
| 
 | |
|   if (isa<UndefValue>(Op1))                  // X setcc undef -> undef
 | |
|     return ReplaceInstUsesWith(I, UndefValue::get(Type::BoolTy));
 | |
| 
 | |
|   // setcc <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
 | |
|   // addresses never equal each other!  We already know that Op0 != Op1.
 | |
|   if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
 | |
|        isa<ConstantPointerNull>(Op0)) &&
 | |
|       (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
 | |
|        isa<ConstantPointerNull>(Op1)))
 | |
|     return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I)));
 | |
| 
 | |
|   // setcc's with boolean values can always be turned into bitwise operations
 | |
|   if (Ty == Type::BoolTy) {
 | |
|     switch (I.getOpcode()) {
 | |
|     default: assert(0 && "Invalid setcc instruction!");
 | |
|     case Instruction::SetEQ: {     //  seteq bool %A, %B -> ~(A^B)
 | |
|       Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
 | |
|       InsertNewInstBefore(Xor, I);
 | |
|       return BinaryOperator::createNot(Xor);
 | |
|     }
 | |
|     case Instruction::SetNE:
 | |
|       return BinaryOperator::createXor(Op0, Op1);
 | |
| 
 | |
|     case Instruction::SetGT:
 | |
|       std::swap(Op0, Op1);                   // Change setgt -> setlt
 | |
|       // FALL THROUGH
 | |
|     case Instruction::SetLT: {               // setlt bool A, B -> ~X & Y
 | |
|       Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
 | |
|       InsertNewInstBefore(Not, I);
 | |
|       return BinaryOperator::createAnd(Not, Op1);
 | |
|     }
 | |
|     case Instruction::SetGE:
 | |
|       std::swap(Op0, Op1);                   // Change setge -> setle
 | |
|       // FALL THROUGH
 | |
|     case Instruction::SetLE: {     //  setle bool %A, %B -> ~A | B
 | |
|       Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
 | |
|       InsertNewInstBefore(Not, I);
 | |
|       return BinaryOperator::createOr(Not, Op1);
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if we are doing a comparison between a constant and an instruction that
 | |
|   // can be folded into the comparison.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // Check to see if we are comparing against the minimum or maximum value...
 | |
|     if (CI->isMinValue()) {
 | |
|       if (I.getOpcode() == Instruction::SetLT)       // A < MIN -> FALSE
 | |
|         return ReplaceInstUsesWith(I, ConstantBool::getFalse());
 | |
|       if (I.getOpcode() == Instruction::SetGE)       // A >= MIN -> TRUE
 | |
|         return ReplaceInstUsesWith(I, ConstantBool::getTrue());
 | |
|       if (I.getOpcode() == Instruction::SetLE)       // A <= MIN -> A == MIN
 | |
|         return BinaryOperator::createSetEQ(Op0, Op1);
 | |
|       if (I.getOpcode() == Instruction::SetGT)       // A > MIN -> A != MIN
 | |
|         return BinaryOperator::createSetNE(Op0, Op1);
 | |
| 
 | |
|     } else if (CI->isMaxValue()) {
 | |
|       if (I.getOpcode() == Instruction::SetGT)       // A > MAX -> FALSE
 | |
|         return ReplaceInstUsesWith(I, ConstantBool::getFalse());
 | |
|       if (I.getOpcode() == Instruction::SetLE)       // A <= MAX -> TRUE
 | |
|         return ReplaceInstUsesWith(I, ConstantBool::getTrue());
 | |
|       if (I.getOpcode() == Instruction::SetGE)       // A >= MAX -> A == MAX
 | |
|         return BinaryOperator::createSetEQ(Op0, Op1);
 | |
|       if (I.getOpcode() == Instruction::SetLT)       // A < MAX -> A != MAX
 | |
|         return BinaryOperator::createSetNE(Op0, Op1);
 | |
| 
 | |
|       // Comparing against a value really close to min or max?
 | |
|     } else if (isMinValuePlusOne(CI)) {
 | |
|       if (I.getOpcode() == Instruction::SetLT)       // A < MIN+1 -> A == MIN
 | |
|         return BinaryOperator::createSetEQ(Op0, SubOne(CI));
 | |
|       if (I.getOpcode() == Instruction::SetGE)       // A >= MIN-1 -> A != MIN
 | |
|         return BinaryOperator::createSetNE(Op0, SubOne(CI));
 | |
| 
 | |
|     } else if (isMaxValueMinusOne(CI)) {
 | |
|       if (I.getOpcode() == Instruction::SetGT)       // A > MAX-1 -> A == MAX
 | |
|         return BinaryOperator::createSetEQ(Op0, AddOne(CI));
 | |
|       if (I.getOpcode() == Instruction::SetLE)       // A <= MAX-1 -> A != MAX
 | |
|         return BinaryOperator::createSetNE(Op0, AddOne(CI));
 | |
|     }
 | |
| 
 | |
|     // If we still have a setle or setge instruction, turn it into the
 | |
|     // appropriate setlt or setgt instruction.  Since the border cases have
 | |
|     // already been handled above, this requires little checking.
 | |
|     //
 | |
|     if (I.getOpcode() == Instruction::SetLE)
 | |
|       return BinaryOperator::createSetLT(Op0, AddOne(CI));
 | |
|     if (I.getOpcode() == Instruction::SetGE)
 | |
|       return BinaryOperator::createSetGT(Op0, SubOne(CI));
 | |
| 
 | |
|     
 | |
|     // See if we can fold the comparison based on bits known to be zero or one
 | |
|     // in the input.
 | |
|     uint64_t KnownZero, KnownOne;
 | |
|     if (SimplifyDemandedBits(Op0, Ty->getIntegralTypeMask(),
 | |
|                              KnownZero, KnownOne, 0))
 | |
|       return &I;
 | |
|         
 | |
|     // Given the known and unknown bits, compute a range that the LHS could be
 | |
|     // in.
 | |
|     if (KnownOne | KnownZero) {
 | |
|       if (Ty->isUnsigned()) {   // Unsigned comparison.
 | |
|         uint64_t Min, Max;
 | |
|         uint64_t RHSVal = CI->getZExtValue();
 | |
|         ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,
 | |
|                                                  Min, Max);
 | |
|         switch (I.getOpcode()) {  // LE/GE have been folded already.
 | |
|         default: assert(0 && "Unknown setcc opcode!");
 | |
|         case Instruction::SetEQ:
 | |
|           if (Max < RHSVal || Min > RHSVal)
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::getFalse());
 | |
|           break;
 | |
|         case Instruction::SetNE:
 | |
|           if (Max < RHSVal || Min > RHSVal)
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::getTrue());
 | |
|           break;
 | |
|         case Instruction::SetLT:
 | |
|           if (Max < RHSVal)
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::getTrue());
 | |
|           if (Min > RHSVal)
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::getFalse());
 | |
|           break;
 | |
|         case Instruction::SetGT:
 | |
|           if (Min > RHSVal)
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::getTrue());
 | |
|           if (Max < RHSVal)
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::getFalse());
 | |
|           break;
 | |
|         }
 | |
|       } else {              // Signed comparison.
 | |
|         int64_t Min, Max;
 | |
|         int64_t RHSVal = CI->getSExtValue();
 | |
|         ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,
 | |
|                                                Min, Max);
 | |
|         switch (I.getOpcode()) {  // LE/GE have been folded already.
 | |
|         default: assert(0 && "Unknown setcc opcode!");
 | |
|         case Instruction::SetEQ:
 | |
|           if (Max < RHSVal || Min > RHSVal)
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::getFalse());
 | |
|           break;
 | |
|         case Instruction::SetNE:
 | |
|           if (Max < RHSVal || Min > RHSVal)
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::getTrue());
 | |
|           break;
 | |
|         case Instruction::SetLT:
 | |
|           if (Max < RHSVal)
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::getTrue());
 | |
|           if (Min > RHSVal)
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::getFalse());
 | |
|           break;
 | |
|         case Instruction::SetGT:
 | |
|           if (Min > RHSVal)
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::getTrue());
 | |
|           if (Max < RHSVal)
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::getFalse());
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|           
 | |
|     
 | |
|     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
 | |
|       switch (LHSI->getOpcode()) {
 | |
|       case Instruction::And:
 | |
|         if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
 | |
|             LHSI->getOperand(0)->hasOneUse()) {
 | |
|           ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
 | |
| 
 | |
|           // If an operand is an AND of a truncating cast, we can widen the
 | |
|           // and/compare to be the input width without changing the value
 | |
|           // produced, eliminating a cast.
 | |
|           if (CastInst *Cast = dyn_cast<CastInst>(LHSI->getOperand(0))) {
 | |
|             // We can do this transformation if either the AND constant does not
 | |
|             // have its sign bit set or if it is an equality comparison. 
 | |
|             // Extending a relational comparison when we're checking the sign
 | |
|             // bit would not work.
 | |
|             if (Cast->hasOneUse() && Cast->isTruncIntCast() && 
 | |
|                 (I.isEquality() ||
 | |
|                  (AndCST->getZExtValue() == (uint64_t)AndCST->getSExtValue()) &&
 | |
|                  (CI->getZExtValue() == (uint64_t)CI->getSExtValue()))) {
 | |
|               ConstantInt *NewCST;
 | |
|               ConstantInt *NewCI;
 | |
|               if (Cast->getOperand(0)->getType()->isSigned()) {
 | |
|                 NewCST = ConstantSInt::get(Cast->getOperand(0)->getType(),
 | |
|                                            AndCST->getZExtValue());
 | |
|                 NewCI = ConstantSInt::get(Cast->getOperand(0)->getType(),
 | |
|                                           CI->getZExtValue());
 | |
|               } else {
 | |
|                 NewCST = ConstantUInt::get(Cast->getOperand(0)->getType(),
 | |
|                                            AndCST->getZExtValue());
 | |
|                 NewCI = ConstantUInt::get(Cast->getOperand(0)->getType(),
 | |
|                                           CI->getZExtValue());
 | |
|               }
 | |
|               Instruction *NewAnd = 
 | |
|                 BinaryOperator::createAnd(Cast->getOperand(0), NewCST, 
 | |
|                                           LHSI->getName());
 | |
|               InsertNewInstBefore(NewAnd, I);
 | |
|               return new SetCondInst(I.getOpcode(), NewAnd, NewCI);
 | |
|             }
 | |
|           }
 | |
|           
 | |
|           // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
 | |
|           // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
 | |
|           // happens a LOT in code produced by the C front-end, for bitfield
 | |
|           // access.
 | |
|           ShiftInst *Shift = dyn_cast<ShiftInst>(LHSI->getOperand(0));
 | |
| 
 | |
|           // Check to see if there is a noop-cast between the shift and the and.
 | |
|           if (!Shift) {
 | |
|             if (CastInst *CI = dyn_cast<CastInst>(LHSI->getOperand(0)))
 | |
|               if (CI->getOperand(0)->getType()->isIntegral() &&
 | |
|                   CI->getOperand(0)->getType()->getPrimitiveSizeInBits() ==
 | |
|                      CI->getType()->getPrimitiveSizeInBits())
 | |
|                 Shift = dyn_cast<ShiftInst>(CI->getOperand(0));
 | |
|           }
 | |
| 
 | |
|           ConstantUInt *ShAmt;
 | |
|           ShAmt = Shift ? dyn_cast<ConstantUInt>(Shift->getOperand(1)) : 0;
 | |
|           const Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
 | |
|           const Type *AndTy = AndCST->getType();          // Type of the and.
 | |
| 
 | |
|           // We can fold this as long as we can't shift unknown bits
 | |
|           // into the mask.  This can only happen with signed shift
 | |
|           // rights, as they sign-extend.
 | |
|           if (ShAmt) {
 | |
|             bool CanFold = Shift->isLogicalShift();
 | |
|             if (!CanFold) {
 | |
|               // To test for the bad case of the signed shr, see if any
 | |
|               // of the bits shifted in could be tested after the mask.
 | |
|               int ShAmtVal = Ty->getPrimitiveSizeInBits()-ShAmt->getValue();
 | |
|               if (ShAmtVal < 0) ShAmtVal = 0; // Out of range shift.
 | |
| 
 | |
|               Constant *OShAmt = ConstantUInt::get(Type::UByteTy, ShAmtVal);
 | |
|               Constant *ShVal =
 | |
|                 ConstantExpr::getShl(ConstantInt::getAllOnesValue(AndTy), 
 | |
|                                      OShAmt);
 | |
|               if (ConstantExpr::getAnd(ShVal, AndCST)->isNullValue())
 | |
|                 CanFold = true;
 | |
|             }
 | |
| 
 | |
|             if (CanFold) {
 | |
|               Constant *NewCst;
 | |
|               if (Shift->getOpcode() == Instruction::Shl)
 | |
|                 NewCst = ConstantExpr::getUShr(CI, ShAmt);
 | |
|               else
 | |
|                 NewCst = ConstantExpr::getShl(CI, ShAmt);
 | |
| 
 | |
|               // Check to see if we are shifting out any of the bits being
 | |
|               // compared.
 | |
|               if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != CI){
 | |
|                 // If we shifted bits out, the fold is not going to work out.
 | |
|                 // As a special case, check to see if this means that the
 | |
|                 // result is always true or false now.
 | |
|                 if (I.getOpcode() == Instruction::SetEQ)
 | |
|                   return ReplaceInstUsesWith(I, ConstantBool::getFalse());
 | |
|                 if (I.getOpcode() == Instruction::SetNE)
 | |
|                   return ReplaceInstUsesWith(I, ConstantBool::getTrue());
 | |
|               } else {
 | |
|                 I.setOperand(1, NewCst);
 | |
|                 Constant *NewAndCST;
 | |
|                 if (Shift->getOpcode() == Instruction::Shl)
 | |
|                   NewAndCST = ConstantExpr::getUShr(AndCST, ShAmt);
 | |
|                 else
 | |
|                   NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
 | |
|                 LHSI->setOperand(1, NewAndCST);
 | |
|                 if (AndTy == Ty) 
 | |
|                   LHSI->setOperand(0, Shift->getOperand(0));
 | |
|                 else {
 | |
|                   Value *NewCast = InsertCastBefore(Shift->getOperand(0), AndTy,
 | |
|                                                     *Shift);
 | |
|                   LHSI->setOperand(0, NewCast);
 | |
|                 }
 | |
|                 WorkList.push_back(Shift); // Shift is dead.
 | |
|                 AddUsesToWorkList(I);
 | |
|                 return &I;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|           
 | |
|           // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
 | |
|           // preferable because it allows the C<<Y expression to be hoisted out
 | |
|           // of a loop if Y is invariant and X is not.
 | |
|           if (Shift && Shift->hasOneUse() && CI->isNullValue() &&
 | |
|               I.isEquality() && !Shift->isArithmeticShift() &&
 | |
|               isa<Instruction>(Shift->getOperand(0))) {
 | |
|             // Compute C << Y.
 | |
|             Value *NS;
 | |
|             if (Shift->getOpcode() == Instruction::Shr) {
 | |
|               NS = new ShiftInst(Instruction::Shl, AndCST, Shift->getOperand(1),
 | |
|                                  "tmp");
 | |
|             } else {
 | |
|               // Make sure we insert a logical shift.
 | |
|               Constant *NewAndCST = AndCST;
 | |
|               if (AndCST->getType()->isSigned())
 | |
|                 NewAndCST = ConstantExpr::getCast(AndCST,
 | |
|                                       AndCST->getType()->getUnsignedVersion());
 | |
|               NS = new ShiftInst(Instruction::Shr, NewAndCST,
 | |
|                                  Shift->getOperand(1), "tmp");
 | |
|             }
 | |
|             InsertNewInstBefore(cast<Instruction>(NS), I);
 | |
| 
 | |
|             // If C's sign doesn't agree with the and, insert a cast now.
 | |
|             if (NS->getType() != LHSI->getType())
 | |
|               NS = InsertCastBefore(NS, LHSI->getType(), I);
 | |
| 
 | |
|             Value *ShiftOp = Shift->getOperand(0);
 | |
|             if (ShiftOp->getType() != LHSI->getType())
 | |
|               ShiftOp = InsertCastBefore(ShiftOp, LHSI->getType(), I);
 | |
|               
 | |
|             // Compute X & (C << Y).
 | |
|             Instruction *NewAnd =
 | |
|               BinaryOperator::createAnd(ShiftOp, NS, LHSI->getName());
 | |
|             InsertNewInstBefore(NewAnd, I);
 | |
|             
 | |
|             I.setOperand(0, NewAnd);
 | |
|             return &I;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case Instruction::Shl:         // (setcc (shl X, ShAmt), CI)
 | |
|         if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
 | |
|           if (I.isEquality()) {
 | |
|             unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
 | |
| 
 | |
|             // Check that the shift amount is in range.  If not, don't perform
 | |
|             // undefined shifts.  When the shift is visited it will be
 | |
|             // simplified.
 | |
|             if (ShAmt->getValue() >= TypeBits)
 | |
|               break;
 | |
| 
 | |
|             // If we are comparing against bits always shifted out, the
 | |
|             // comparison cannot succeed.
 | |
|             Constant *Comp =
 | |
|               ConstantExpr::getShl(ConstantExpr::getShr(CI, ShAmt), ShAmt);
 | |
|             if (Comp != CI) {// Comparing against a bit that we know is zero.
 | |
|               bool IsSetNE = I.getOpcode() == Instruction::SetNE;
 | |
|               Constant *Cst = ConstantBool::get(IsSetNE);
 | |
|               return ReplaceInstUsesWith(I, Cst);
 | |
|             }
 | |
| 
 | |
|             if (LHSI->hasOneUse()) {
 | |
|               // Otherwise strength reduce the shift into an and.
 | |
|               unsigned ShAmtVal = (unsigned)ShAmt->getValue();
 | |
|               uint64_t Val = (1ULL << (TypeBits-ShAmtVal))-1;
 | |
| 
 | |
|               Constant *Mask;
 | |
|               if (CI->getType()->isUnsigned()) {
 | |
|                 Mask = ConstantUInt::get(CI->getType(), Val);
 | |
|               } else if (ShAmtVal != 0) {
 | |
|                 Mask = ConstantSInt::get(CI->getType(), Val);
 | |
|               } else {
 | |
|                 Mask = ConstantInt::getAllOnesValue(CI->getType());
 | |
|               }
 | |
| 
 | |
|               Instruction *AndI =
 | |
|                 BinaryOperator::createAnd(LHSI->getOperand(0),
 | |
|                                           Mask, LHSI->getName()+".mask");
 | |
|               Value *And = InsertNewInstBefore(AndI, I);
 | |
|               return new SetCondInst(I.getOpcode(), And,
 | |
|                                      ConstantExpr::getUShr(CI, ShAmt));
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case Instruction::Shr:         // (setcc (shr X, ShAmt), CI)
 | |
|         if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
 | |
|           if (I.isEquality()) {
 | |
|             // Check that the shift amount is in range.  If not, don't perform
 | |
|             // undefined shifts.  When the shift is visited it will be
 | |
|             // simplified.
 | |
|             unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
 | |
|             if (ShAmt->getValue() >= TypeBits)
 | |
|               break;
 | |
| 
 | |
|             // If we are comparing against bits always shifted out, the
 | |
|             // comparison cannot succeed.
 | |
|             Constant *Comp =
 | |
|               ConstantExpr::getShr(ConstantExpr::getShl(CI, ShAmt), ShAmt);
 | |
| 
 | |
|             if (Comp != CI) {// Comparing against a bit that we know is zero.
 | |
|               bool IsSetNE = I.getOpcode() == Instruction::SetNE;
 | |
|               Constant *Cst = ConstantBool::get(IsSetNE);
 | |
|               return ReplaceInstUsesWith(I, Cst);
 | |
|             }
 | |
| 
 | |
|             if (LHSI->hasOneUse() || CI->isNullValue()) {
 | |
|               unsigned ShAmtVal = (unsigned)ShAmt->getValue();
 | |
| 
 | |
|               // Otherwise strength reduce the shift into an and.
 | |
|               uint64_t Val = ~0ULL;          // All ones.
 | |
|               Val <<= ShAmtVal;              // Shift over to the right spot.
 | |
| 
 | |
|               Constant *Mask;
 | |
|               if (CI->getType()->isUnsigned()) {
 | |
|                 Val &= ~0ULL >> (64-TypeBits);
 | |
|                 Mask = ConstantUInt::get(CI->getType(), Val);
 | |
|               } else {
 | |
|                 Mask = ConstantSInt::get(CI->getType(), Val);
 | |
|               }
 | |
| 
 | |
|               Instruction *AndI =
 | |
|                 BinaryOperator::createAnd(LHSI->getOperand(0),
 | |
|                                           Mask, LHSI->getName()+".mask");
 | |
|               Value *And = InsertNewInstBefore(AndI, I);
 | |
|               return new SetCondInst(I.getOpcode(), And,
 | |
|                                      ConstantExpr::getShl(CI, ShAmt));
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case Instruction::Div:
 | |
|         // Fold: (div X, C1) op C2 -> range check
 | |
|         if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
 | |
|           // Fold this div into the comparison, producing a range check.
 | |
|           // Determine, based on the divide type, what the range is being
 | |
|           // checked.  If there is an overflow on the low or high side, remember
 | |
|           // it, otherwise compute the range [low, hi) bounding the new value.
 | |
|           bool LoOverflow = false, HiOverflow = 0;
 | |
|           ConstantInt *LoBound = 0, *HiBound = 0;
 | |
| 
 | |
|           ConstantInt *Prod;
 | |
|           bool ProdOV = MulWithOverflow(Prod, CI, DivRHS);
 | |
| 
 | |
|           Instruction::BinaryOps Opcode = I.getOpcode();
 | |
| 
 | |
|           if (DivRHS->isNullValue()) {  // Don't hack on divide by zeros.
 | |
|           } else if (LHSI->getType()->isUnsigned()) {  // udiv
 | |
|             LoBound = Prod;
 | |
|             LoOverflow = ProdOV;
 | |
|             HiOverflow = ProdOV || AddWithOverflow(HiBound, LoBound, DivRHS);
 | |
|           } else if (isPositive(DivRHS)) {             // Divisor is > 0.
 | |
|             if (CI->isNullValue()) {       // (X / pos) op 0
 | |
|               // Can't overflow.
 | |
|               LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
 | |
|               HiBound = DivRHS;
 | |
|             } else if (isPositive(CI)) {   // (X / pos) op pos
 | |
|               LoBound = Prod;
 | |
|               LoOverflow = ProdOV;
 | |
|               HiOverflow = ProdOV || AddWithOverflow(HiBound, Prod, DivRHS);
 | |
|             } else {                       // (X / pos) op neg
 | |
|               Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
 | |
|               LoOverflow = AddWithOverflow(LoBound, Prod,
 | |
|                                            cast<ConstantInt>(DivRHSH));
 | |
|               HiBound = Prod;
 | |
|               HiOverflow = ProdOV;
 | |
|             }
 | |
|           } else {                                     // Divisor is < 0.
 | |
|             if (CI->isNullValue()) {       // (X / neg) op 0
 | |
|               LoBound = AddOne(DivRHS);
 | |
|               HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
 | |
|               if (HiBound == DivRHS)
 | |
|                 LoBound = 0;  // - INTMIN = INTMIN
 | |
|             } else if (isPositive(CI)) {   // (X / neg) op pos
 | |
|               HiOverflow = LoOverflow = ProdOV;
 | |
|               if (!LoOverflow)
 | |
|                 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS));
 | |
|               HiBound = AddOne(Prod);
 | |
|             } else {                       // (X / neg) op neg
 | |
|               LoBound = Prod;
 | |
|               LoOverflow = HiOverflow = ProdOV;
 | |
|               HiBound = cast<ConstantInt>(ConstantExpr::getSub(Prod, DivRHS));
 | |
|             }
 | |
| 
 | |
|             // Dividing by a negate swaps the condition.
 | |
|             Opcode = SetCondInst::getSwappedCondition(Opcode);
 | |
|           }
 | |
| 
 | |
|           if (LoBound) {
 | |
|             Value *X = LHSI->getOperand(0);
 | |
|             switch (Opcode) {
 | |
|             default: assert(0 && "Unhandled setcc opcode!");
 | |
|             case Instruction::SetEQ:
 | |
|               if (LoOverflow && HiOverflow)
 | |
|                 return ReplaceInstUsesWith(I, ConstantBool::getFalse());
 | |
|               else if (HiOverflow)
 | |
|                 return new SetCondInst(Instruction::SetGE, X, LoBound);
 | |
|               else if (LoOverflow)
 | |
|                 return new SetCondInst(Instruction::SetLT, X, HiBound);
 | |
|               else
 | |
|                 return InsertRangeTest(X, LoBound, HiBound, true, I);
 | |
|             case Instruction::SetNE:
 | |
|               if (LoOverflow && HiOverflow)
 | |
|                 return ReplaceInstUsesWith(I, ConstantBool::getTrue());
 | |
|               else if (HiOverflow)
 | |
|                 return new SetCondInst(Instruction::SetLT, X, LoBound);
 | |
|               else if (LoOverflow)
 | |
|                 return new SetCondInst(Instruction::SetGE, X, HiBound);
 | |
|               else
 | |
|                 return InsertRangeTest(X, LoBound, HiBound, false, I);
 | |
|             case Instruction::SetLT:
 | |
|               if (LoOverflow)
 | |
|                 return ReplaceInstUsesWith(I, ConstantBool::getFalse());
 | |
|               return new SetCondInst(Instruction::SetLT, X, LoBound);
 | |
|             case Instruction::SetGT:
 | |
|               if (HiOverflow)
 | |
|                 return ReplaceInstUsesWith(I, ConstantBool::getFalse());
 | |
|               return new SetCondInst(Instruction::SetGE, X, HiBound);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     // Simplify seteq and setne instructions...
 | |
|     if (I.isEquality()) {
 | |
|       bool isSetNE = I.getOpcode() == Instruction::SetNE;
 | |
| 
 | |
|       // If the first operand is (and|or|xor) with a constant, and the second
 | |
|       // operand is a constant, simplify a bit.
 | |
|       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
 | |
|         switch (BO->getOpcode()) {
 | |
|         case Instruction::Rem:
 | |
|           // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
 | |
|           if (CI->isNullValue() && isa<ConstantSInt>(BO->getOperand(1)) &&
 | |
|               BO->hasOneUse() &&
 | |
|               cast<ConstantSInt>(BO->getOperand(1))->getValue() > 1) {
 | |
|             int64_t V = cast<ConstantSInt>(BO->getOperand(1))->getValue();
 | |
|             if (isPowerOf2_64(V)) {
 | |
|               unsigned L2 = Log2_64(V);
 | |
|               const Type *UTy = BO->getType()->getUnsignedVersion();
 | |
|               Value *NewX = InsertNewInstBefore(new CastInst(BO->getOperand(0),
 | |
|                                                              UTy, "tmp"), I);
 | |
|               Constant *RHSCst = ConstantUInt::get(UTy, 1ULL << L2);
 | |
|               Value *NewRem =InsertNewInstBefore(BinaryOperator::createRem(NewX,
 | |
|                                                     RHSCst, BO->getName()), I);
 | |
|               return BinaryOperator::create(I.getOpcode(), NewRem,
 | |
|                                             Constant::getNullValue(UTy));
 | |
|             }
 | |
|           }
 | |
|           break;
 | |
| 
 | |
|         case Instruction::Add:
 | |
|           // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
 | |
|           if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | |
|             if (BO->hasOneUse())
 | |
|               return new SetCondInst(I.getOpcode(), BO->getOperand(0),
 | |
|                                      ConstantExpr::getSub(CI, BOp1C));
 | |
|           } else if (CI->isNullValue()) {
 | |
|             // Replace ((add A, B) != 0) with (A != -B) if A or B is
 | |
|             // efficiently invertible, or if the add has just this one use.
 | |
|             Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
 | |
| 
 | |
|             if (Value *NegVal = dyn_castNegVal(BOp1))
 | |
|               return new SetCondInst(I.getOpcode(), BOp0, NegVal);
 | |
|             else if (Value *NegVal = dyn_castNegVal(BOp0))
 | |
|               return new SetCondInst(I.getOpcode(), NegVal, BOp1);
 | |
|             else if (BO->hasOneUse()) {
 | |
|               Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
 | |
|               BO->setName("");
 | |
|               InsertNewInstBefore(Neg, I);
 | |
|               return new SetCondInst(I.getOpcode(), BOp0, Neg);
 | |
|             }
 | |
|           }
 | |
|           break;
 | |
|         case Instruction::Xor:
 | |
|           // For the xor case, we can xor two constants together, eliminating
 | |
|           // the explicit xor.
 | |
|           if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
 | |
|             return BinaryOperator::create(I.getOpcode(), BO->getOperand(0),
 | |
|                                   ConstantExpr::getXor(CI, BOC));
 | |
| 
 | |
|           // FALLTHROUGH
 | |
|         case Instruction::Sub:
 | |
|           // Replace (([sub|xor] A, B) != 0) with (A != B)
 | |
|           if (CI->isNullValue())
 | |
|             return new SetCondInst(I.getOpcode(), BO->getOperand(0),
 | |
|                                    BO->getOperand(1));
 | |
|           break;
 | |
| 
 | |
|         case Instruction::Or:
 | |
|           // If bits are being or'd in that are not present in the constant we
 | |
|           // are comparing against, then the comparison could never succeed!
 | |
|           if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
 | |
|             Constant *NotCI = ConstantExpr::getNot(CI);
 | |
|             if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
 | |
|           }
 | |
|           break;
 | |
| 
 | |
|         case Instruction::And:
 | |
|           if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | |
|             // If bits are being compared against that are and'd out, then the
 | |
|             // comparison can never succeed!
 | |
|             if (!ConstantExpr::getAnd(CI,
 | |
|                                       ConstantExpr::getNot(BOC))->isNullValue())
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
 | |
| 
 | |
|             // If we have ((X & C) == C), turn it into ((X & C) != 0).
 | |
|             if (CI == BOC && isOneBitSet(CI))
 | |
|               return new SetCondInst(isSetNE ? Instruction::SetEQ :
 | |
|                                      Instruction::SetNE, Op0,
 | |
|                                      Constant::getNullValue(CI->getType()));
 | |
| 
 | |
|             // Replace (and X, (1 << size(X)-1) != 0) with x < 0, converting X
 | |
|             // to be a signed value as appropriate.
 | |
|             if (isSignBit(BOC)) {
 | |
|               Value *X = BO->getOperand(0);
 | |
|               // If 'X' is not signed, insert a cast now...
 | |
|               if (!BOC->getType()->isSigned()) {
 | |
|                 const Type *DestTy = BOC->getType()->getSignedVersion();
 | |
|                 X = InsertCastBefore(X, DestTy, I);
 | |
|               }
 | |
|               return new SetCondInst(isSetNE ? Instruction::SetLT :
 | |
|                                          Instruction::SetGE, X,
 | |
|                                      Constant::getNullValue(X->getType()));
 | |
|             }
 | |
| 
 | |
|             // ((X & ~7) == 0) --> X < 8
 | |
|             if (CI->isNullValue() && isHighOnes(BOC)) {
 | |
|               Value *X = BO->getOperand(0);
 | |
|               Constant *NegX = ConstantExpr::getNeg(BOC);
 | |
| 
 | |
|               // If 'X' is signed, insert a cast now.
 | |
|               if (NegX->getType()->isSigned()) {
 | |
|                 const Type *DestTy = NegX->getType()->getUnsignedVersion();
 | |
|                 X = InsertCastBefore(X, DestTy, I);
 | |
|                 NegX = ConstantExpr::getCast(NegX, DestTy);
 | |
|               }
 | |
| 
 | |
|               return new SetCondInst(isSetNE ? Instruction::SetGE :
 | |
|                                      Instruction::SetLT, X, NegX);
 | |
|             }
 | |
| 
 | |
|           }
 | |
|         default: break;
 | |
|         }
 | |
|       }
 | |
|     } else {  // Not a SetEQ/SetNE
 | |
|       // If the LHS is a cast from an integral value of the same size,
 | |
|       if (CastInst *Cast = dyn_cast<CastInst>(Op0)) {
 | |
|         Value *CastOp = Cast->getOperand(0);
 | |
|         const Type *SrcTy = CastOp->getType();
 | |
|         unsigned SrcTySize = SrcTy->getPrimitiveSizeInBits();
 | |
|         if (SrcTy != Cast->getType() && SrcTy->isInteger() &&
 | |
|             SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
 | |
|           assert((SrcTy->isSigned() ^ Cast->getType()->isSigned()) &&
 | |
|                  "Source and destination signednesses should differ!");
 | |
|           if (Cast->getType()->isSigned()) {
 | |
|             // If this is a signed comparison, check for comparisons in the
 | |
|             // vicinity of zero.
 | |
|             if (I.getOpcode() == Instruction::SetLT && CI->isNullValue())
 | |
|               // X < 0  => x > 127
 | |
|               return BinaryOperator::createSetGT(CastOp,
 | |
|                          ConstantUInt::get(SrcTy, (1ULL << (SrcTySize-1))-1));
 | |
|             else if (I.getOpcode() == Instruction::SetGT &&
 | |
|                      cast<ConstantSInt>(CI)->getValue() == -1)
 | |
|               // X > -1  => x < 128
 | |
|               return BinaryOperator::createSetLT(CastOp,
 | |
|                          ConstantUInt::get(SrcTy, 1ULL << (SrcTySize-1)));
 | |
|           } else {
 | |
|             ConstantUInt *CUI = cast<ConstantUInt>(CI);
 | |
|             if (I.getOpcode() == Instruction::SetLT &&
 | |
|                 CUI->getValue() == 1ULL << (SrcTySize-1))
 | |
|               // X < 128 => X > -1
 | |
|               return BinaryOperator::createSetGT(CastOp,
 | |
|                                                  ConstantSInt::get(SrcTy, -1));
 | |
|             else if (I.getOpcode() == Instruction::SetGT &&
 | |
|                      CUI->getValue() == (1ULL << (SrcTySize-1))-1)
 | |
|               // X > 127 => X < 0
 | |
|               return BinaryOperator::createSetLT(CastOp,
 | |
|                                                  Constant::getNullValue(SrcTy));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle setcc with constant RHS's that can be integer, FP or pointer.
 | |
|   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
 | |
|     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
 | |
|       switch (LHSI->getOpcode()) {
 | |
|       case Instruction::GetElementPtr:
 | |
|         if (RHSC->isNullValue()) {
 | |
|           // Transform setcc GEP P, int 0, int 0, int 0, null -> setcc P, null
 | |
|           bool isAllZeros = true;
 | |
|           for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
 | |
|             if (!isa<Constant>(LHSI->getOperand(i)) ||
 | |
|                 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
 | |
|               isAllZeros = false;
 | |
|               break;
 | |
|             }
 | |
|           if (isAllZeros)
 | |
|             return new SetCondInst(I.getOpcode(), LHSI->getOperand(0),
 | |
|                     Constant::getNullValue(LHSI->getOperand(0)->getType()));
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case Instruction::PHI:
 | |
|         if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|           return NV;
 | |
|         break;
 | |
|       case Instruction::Select:
 | |
|         // If either operand of the select is a constant, we can fold the
 | |
|         // comparison into the select arms, which will cause one to be
 | |
|         // constant folded and the select turned into a bitwise or.
 | |
|         Value *Op1 = 0, *Op2 = 0;
 | |
|         if (LHSI->hasOneUse()) {
 | |
|           if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
 | |
|             // Fold the known value into the constant operand.
 | |
|             Op1 = ConstantExpr::get(I.getOpcode(), C, RHSC);
 | |
|             // Insert a new SetCC of the other select operand.
 | |
|             Op2 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
 | |
|                                                       LHSI->getOperand(2), RHSC,
 | |
|                                                       I.getName()), I);
 | |
|           } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
 | |
|             // Fold the known value into the constant operand.
 | |
|             Op2 = ConstantExpr::get(I.getOpcode(), C, RHSC);
 | |
|             // Insert a new SetCC of the other select operand.
 | |
|             Op1 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
 | |
|                                                       LHSI->getOperand(1), RHSC,
 | |
|                                                       I.getName()), I);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (Op1)
 | |
|           return new SelectInst(LHSI->getOperand(0), Op1, Op2);
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // If we can optimize a 'setcc GEP, P' or 'setcc P, GEP', do so now.
 | |
|   if (User *GEP = dyn_castGetElementPtr(Op0))
 | |
|     if (Instruction *NI = FoldGEPSetCC(GEP, Op1, I.getOpcode(), I))
 | |
|       return NI;
 | |
|   if (User *GEP = dyn_castGetElementPtr(Op1))
 | |
|     if (Instruction *NI = FoldGEPSetCC(GEP, Op0,
 | |
|                            SetCondInst::getSwappedCondition(I.getOpcode()), I))
 | |
|       return NI;
 | |
| 
 | |
|   // Test to see if the operands of the setcc are casted versions of other
 | |
|   // values.  If the cast can be stripped off both arguments, we do so now.
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
 | |
|     Value *CastOp0 = CI->getOperand(0);
 | |
|     if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) &&
 | |
|         (isa<Constant>(Op1) || isa<CastInst>(Op1)) && I.isEquality()) {
 | |
|       // We keep moving the cast from the left operand over to the right
 | |
|       // operand, where it can often be eliminated completely.
 | |
|       Op0 = CastOp0;
 | |
| 
 | |
|       // If operand #1 is a cast instruction, see if we can eliminate it as
 | |
|       // well.
 | |
|       if (CastInst *CI2 = dyn_cast<CastInst>(Op1))
 | |
|         if (CI2->getOperand(0)->getType()->isLosslesslyConvertibleTo(
 | |
|                                                                Op0->getType()))
 | |
|           Op1 = CI2->getOperand(0);
 | |
| 
 | |
|       // If Op1 is a constant, we can fold the cast into the constant.
 | |
|       if (Op1->getType() != Op0->getType())
 | |
|         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
 | |
|           Op1 = ConstantExpr::getCast(Op1C, Op0->getType());
 | |
|         } else {
 | |
|           // Otherwise, cast the RHS right before the setcc
 | |
|           Op1 = new CastInst(Op1, Op0->getType(), Op1->getName());
 | |
|           InsertNewInstBefore(cast<Instruction>(Op1), I);
 | |
|         }
 | |
|       return BinaryOperator::create(I.getOpcode(), Op0, Op1);
 | |
|     }
 | |
| 
 | |
|     // Handle the special case of: setcc (cast bool to X), <cst>
 | |
|     // This comes up when you have code like
 | |
|     //   int X = A < B;
 | |
|     //   if (X) ...
 | |
|     // For generality, we handle any zero-extension of any operand comparison
 | |
|     // with a constant or another cast from the same type.
 | |
|     if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
 | |
|       if (Instruction *R = visitSetCondInstWithCastAndCast(I))
 | |
|         return R;
 | |
|   }
 | |
|   
 | |
|   if (I.isEquality()) {
 | |
|     Value *A, *B;
 | |
|     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|         (A == Op1 || B == Op1)) {
 | |
|       // (A^B) == A  ->  B == 0
 | |
|       Value *OtherVal = A == Op1 ? B : A;
 | |
|       return BinaryOperator::create(I.getOpcode(), OtherVal,
 | |
|                                     Constant::getNullValue(A->getType()));
 | |
|     } else if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|                (A == Op0 || B == Op0)) {
 | |
|       // A == (A^B)  ->  B == 0
 | |
|       Value *OtherVal = A == Op0 ? B : A;
 | |
|       return BinaryOperator::create(I.getOpcode(), OtherVal,
 | |
|                                     Constant::getNullValue(A->getType()));
 | |
|     } else if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
 | |
|       // (A-B) == A  ->  B == 0
 | |
|       return BinaryOperator::create(I.getOpcode(), B,
 | |
|                                     Constant::getNullValue(B->getType()));
 | |
|     } else if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
 | |
|       // A == (A-B)  ->  B == 0
 | |
|       return BinaryOperator::create(I.getOpcode(), B,
 | |
|                                     Constant::getNullValue(B->getType()));
 | |
|     }
 | |
|   }
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| // visitSetCondInstWithCastAndCast - Handle setcond (cast x to y), (cast/cst).
 | |
| // We only handle extending casts so far.
 | |
| //
 | |
| Instruction *InstCombiner::visitSetCondInstWithCastAndCast(SetCondInst &SCI) {
 | |
|   Value *LHSCIOp = cast<CastInst>(SCI.getOperand(0))->getOperand(0);
 | |
|   const Type *SrcTy = LHSCIOp->getType();
 | |
|   const Type *DestTy = SCI.getOperand(0)->getType();
 | |
|   Value *RHSCIOp;
 | |
| 
 | |
|   if (!DestTy->isIntegral() || !SrcTy->isIntegral())
 | |
|     return 0;
 | |
| 
 | |
|   unsigned SrcBits  = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBits = DestTy->getPrimitiveSizeInBits();
 | |
|   if (SrcBits >= DestBits) return 0;  // Only handle extending cast.
 | |
| 
 | |
|   // Is this a sign or zero extension?
 | |
|   bool isSignSrc  = SrcTy->isSigned();
 | |
|   bool isSignDest = DestTy->isSigned();
 | |
| 
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(SCI.getOperand(1))) {
 | |
|     // Not an extension from the same type?
 | |
|     RHSCIOp = CI->getOperand(0);
 | |
|     if (RHSCIOp->getType() != LHSCIOp->getType()) return 0;
 | |
|   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(SCI.getOperand(1))) {
 | |
|     // Compute the constant that would happen if we truncated to SrcTy then
 | |
|     // reextended to DestTy.
 | |
|     Constant *Res = ConstantExpr::getCast(CI, SrcTy);
 | |
| 
 | |
|     if (ConstantExpr::getCast(Res, DestTy) == CI) {
 | |
|       RHSCIOp = Res;
 | |
|     } else {
 | |
|       // If the value cannot be represented in the shorter type, we cannot emit
 | |
|       // a simple comparison.
 | |
|       if (SCI.getOpcode() == Instruction::SetEQ)
 | |
|         return ReplaceInstUsesWith(SCI, ConstantBool::getFalse());
 | |
|       if (SCI.getOpcode() == Instruction::SetNE)
 | |
|         return ReplaceInstUsesWith(SCI, ConstantBool::getTrue());
 | |
| 
 | |
|       // Evaluate the comparison for LT.
 | |
|       Value *Result;
 | |
|       if (DestTy->isSigned()) {
 | |
|         // We're performing a signed comparison.
 | |
|         if (isSignSrc) {
 | |
|           // Signed extend and signed comparison.
 | |
|           if (cast<ConstantSInt>(CI)->getValue() < 0) // X < (small) --> false
 | |
|             Result = ConstantBool::getFalse();
 | |
|           else
 | |
|             Result = ConstantBool::getTrue();         // X < (large) --> true
 | |
|         } else {
 | |
|           // Unsigned extend and signed comparison.
 | |
|           if (cast<ConstantSInt>(CI)->getValue() < 0)
 | |
|             Result = ConstantBool::getFalse();
 | |
|           else
 | |
|             Result = ConstantBool::getTrue();
 | |
|         }
 | |
|       } else {
 | |
|         // We're performing an unsigned comparison.
 | |
|         if (!isSignSrc) {
 | |
|           // Unsigned extend & compare -> always true.
 | |
|           Result = ConstantBool::getTrue();
 | |
|         } else {
 | |
|           // We're performing an unsigned comp with a sign extended value.
 | |
|           // This is true if the input is >= 0. [aka >s -1]
 | |
|           Constant *NegOne = ConstantIntegral::getAllOnesValue(SrcTy);
 | |
|           Result = InsertNewInstBefore(BinaryOperator::createSetGT(LHSCIOp,
 | |
|                                                   NegOne, SCI.getName()), SCI);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Finally, return the value computed.
 | |
|       if (SCI.getOpcode() == Instruction::SetLT) {
 | |
|         return ReplaceInstUsesWith(SCI, Result);
 | |
|       } else {
 | |
|         assert(SCI.getOpcode()==Instruction::SetGT &&"SetCC should be folded!");
 | |
|         if (Constant *CI = dyn_cast<Constant>(Result))
 | |
|           return ReplaceInstUsesWith(SCI, ConstantExpr::getNot(CI));
 | |
|         else
 | |
|           return BinaryOperator::createNot(Result);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Okay, just insert a compare of the reduced operands now!
 | |
|   return BinaryOperator::create(SCI.getOpcode(), LHSCIOp, RHSCIOp);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
 | |
|   assert(I.getOperand(1)->getType() == Type::UByteTy);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   bool isLeftShift = I.getOpcode() == Instruction::Shl;
 | |
| 
 | |
|   // shl X, 0 == X and shr X, 0 == X
 | |
|   // shl 0, X == 0 and shr 0, X == 0
 | |
|   if (Op1 == Constant::getNullValue(Type::UByteTy) ||
 | |
|       Op0 == Constant::getNullValue(Op0->getType()))
 | |
|     return ReplaceInstUsesWith(I, Op0);
 | |
|   
 | |
|   if (isa<UndefValue>(Op0)) {            // undef >>s X -> undef
 | |
|     if (!isLeftShift && I.getType()->isSigned())
 | |
|       return ReplaceInstUsesWith(I, Op0);
 | |
|     else                         // undef << X -> 0   AND  undef >>u X -> 0
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|   }
 | |
|   if (isa<UndefValue>(Op1)) {
 | |
|     if (isLeftShift || I.getType()->isUnsigned())// X << undef, X >>u undef -> 0
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|     else
 | |
|       return ReplaceInstUsesWith(I, Op0);          // X >>s undef -> X
 | |
|   }
 | |
| 
 | |
|   // shr int -1, X = -1   (for any arithmetic shift rights of ~0)
 | |
|   if (!isLeftShift)
 | |
|     if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
 | |
|       if (CSI->isAllOnesValue())
 | |
|         return ReplaceInstUsesWith(I, CSI);
 | |
| 
 | |
|   // Try to fold constant and into select arguments.
 | |
|   if (isa<Constant>(Op0))
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
| 
 | |
|   // See if we can turn a signed shr into an unsigned shr.
 | |
|   if (I.isArithmeticShift()) {
 | |
|     if (MaskedValueIsZero(Op0,
 | |
|                           1ULL << (I.getType()->getPrimitiveSizeInBits()-1))) {
 | |
|       Value *V = InsertCastBefore(Op0, I.getType()->getUnsignedVersion(), I);
 | |
|       V = InsertNewInstBefore(new ShiftInst(Instruction::Shr, V, Op1,
 | |
|                                             I.getName()), I);
 | |
|       return new CastInst(V, I.getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1))
 | |
|     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
 | |
|       return Res;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantUInt *Op1,
 | |
|                                                ShiftInst &I) {
 | |
|   bool isLeftShift = I.getOpcode() == Instruction::Shl;
 | |
|   bool isSignedShift = Op0->getType()->isSigned();
 | |
|   bool isUnsignedShift = !isSignedShift;
 | |
| 
 | |
|   // See if we can simplify any instructions used by the instruction whose sole 
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   uint64_t KnownZero, KnownOne;
 | |
|   if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
 | |
|                            KnownZero, KnownOne))
 | |
|     return &I;
 | |
|   
 | |
|   // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
 | |
|   // of a signed value.
 | |
|   //
 | |
|   unsigned TypeBits = Op0->getType()->getPrimitiveSizeInBits();
 | |
|   if (Op1->getValue() >= TypeBits) {
 | |
|     if (isUnsignedShift || isLeftShift)
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
 | |
|     else {
 | |
|       I.setOperand(1, ConstantUInt::get(Type::UByteTy, TypeBits-1));
 | |
|       return &I;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // ((X*C1) << C2) == (X * (C1 << C2))
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
 | |
|     if (BO->getOpcode() == Instruction::Mul && isLeftShift)
 | |
|       if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
 | |
|         return BinaryOperator::createMul(BO->getOperand(0),
 | |
|                                          ConstantExpr::getShl(BOOp, Op1));
 | |
|   
 | |
|   // Try to fold constant and into select arguments.
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|     if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|       return R;
 | |
|   if (isa<PHINode>(Op0))
 | |
|     if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|       return NV;
 | |
|   
 | |
|   if (Op0->hasOneUse()) {
 | |
|     if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
 | |
|       // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
 | |
|       Value *V1, *V2;
 | |
|       ConstantInt *CC;
 | |
|       switch (Op0BO->getOpcode()) {
 | |
|         default: break;
 | |
|         case Instruction::Add:
 | |
|         case Instruction::And:
 | |
|         case Instruction::Or:
 | |
|         case Instruction::Xor:
 | |
|           // These operators commute.
 | |
|           // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
 | |
|           if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
 | |
|               match(Op0BO->getOperand(1),
 | |
|                     m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
 | |
|             Instruction *YS = new ShiftInst(Instruction::Shl, 
 | |
|                                             Op0BO->getOperand(0), Op1,
 | |
|                                             Op0BO->getName());
 | |
|             InsertNewInstBefore(YS, I); // (Y << C)
 | |
|             Instruction *X = 
 | |
|               BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
 | |
|                                      Op0BO->getOperand(1)->getName());
 | |
|             InsertNewInstBefore(X, I);  // (X + (Y << C))
 | |
|             Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
 | |
|             C2 = ConstantExpr::getShl(C2, Op1);
 | |
|             return BinaryOperator::createAnd(X, C2);
 | |
|           }
 | |
|           
 | |
|           // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
 | |
|           if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
 | |
|               match(Op0BO->getOperand(1),
 | |
|                     m_And(m_Shr(m_Value(V1), m_Value(V2)),
 | |
|                           m_ConstantInt(CC))) && V2 == Op1 &&
 | |
|       cast<BinaryOperator>(Op0BO->getOperand(1))->getOperand(0)->hasOneUse()) {
 | |
|             Instruction *YS = new ShiftInst(Instruction::Shl, 
 | |
|                                             Op0BO->getOperand(0), Op1,
 | |
|                                             Op0BO->getName());
 | |
|             InsertNewInstBefore(YS, I); // (Y << C)
 | |
|             Instruction *XM =
 | |
|               BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
 | |
|                                         V1->getName()+".mask");
 | |
|             InsertNewInstBefore(XM, I); // X & (CC << C)
 | |
|             
 | |
|             return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
 | |
|           }
 | |
|           
 | |
|           // FALL THROUGH.
 | |
|         case Instruction::Sub:
 | |
|           // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
 | |
|           if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
 | |
|               match(Op0BO->getOperand(0),
 | |
|                     m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
 | |
|             Instruction *YS = new ShiftInst(Instruction::Shl, 
 | |
|                                             Op0BO->getOperand(1), Op1,
 | |
|                                             Op0BO->getName());
 | |
|             InsertNewInstBefore(YS, I); // (Y << C)
 | |
|             Instruction *X =
 | |
|               BinaryOperator::create(Op0BO->getOpcode(), V1, YS,
 | |
|                                      Op0BO->getOperand(0)->getName());
 | |
|             InsertNewInstBefore(X, I);  // (X + (Y << C))
 | |
|             Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
 | |
|             C2 = ConstantExpr::getShl(C2, Op1);
 | |
|             return BinaryOperator::createAnd(X, C2);
 | |
|           }
 | |
|           
 | |
|           // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
 | |
|           if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
 | |
|               match(Op0BO->getOperand(0),
 | |
|                     m_And(m_Shr(m_Value(V1), m_Value(V2)),
 | |
|                           m_ConstantInt(CC))) && V2 == Op1 &&
 | |
|               cast<BinaryOperator>(Op0BO->getOperand(0))
 | |
|                   ->getOperand(0)->hasOneUse()) {
 | |
|             Instruction *YS = new ShiftInst(Instruction::Shl, 
 | |
|                                             Op0BO->getOperand(1), Op1,
 | |
|                                             Op0BO->getName());
 | |
|             InsertNewInstBefore(YS, I); // (Y << C)
 | |
|             Instruction *XM =
 | |
|               BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
 | |
|                                         V1->getName()+".mask");
 | |
|             InsertNewInstBefore(XM, I); // X & (CC << C)
 | |
|             
 | |
|             return BinaryOperator::create(Op0BO->getOpcode(), XM, YS);
 | |
|           }
 | |
|           
 | |
|           break;
 | |
|       }
 | |
|       
 | |
|       
 | |
|       // If the operand is an bitwise operator with a constant RHS, and the
 | |
|       // shift is the only use, we can pull it out of the shift.
 | |
|       if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
 | |
|         bool isValid = true;     // Valid only for And, Or, Xor
 | |
|         bool highBitSet = false; // Transform if high bit of constant set?
 | |
|         
 | |
|         switch (Op0BO->getOpcode()) {
 | |
|           default: isValid = false; break;   // Do not perform transform!
 | |
|           case Instruction::Add:
 | |
|             isValid = isLeftShift;
 | |
|             break;
 | |
|           case Instruction::Or:
 | |
|           case Instruction::Xor:
 | |
|             highBitSet = false;
 | |
|             break;
 | |
|           case Instruction::And:
 | |
|             highBitSet = true;
 | |
|             break;
 | |
|         }
 | |
|         
 | |
|         // If this is a signed shift right, and the high bit is modified
 | |
|         // by the logical operation, do not perform the transformation.
 | |
|         // The highBitSet boolean indicates the value of the high bit of
 | |
|         // the constant which would cause it to be modified for this
 | |
|         // operation.
 | |
|         //
 | |
|         if (isValid && !isLeftShift && isSignedShift) {
 | |
|           uint64_t Val = Op0C->getRawValue();
 | |
|           isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
 | |
|         }
 | |
|         
 | |
|         if (isValid) {
 | |
|           Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
 | |
|           
 | |
|           Instruction *NewShift =
 | |
|             new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), Op1,
 | |
|                           Op0BO->getName());
 | |
|           Op0BO->setName("");
 | |
|           InsertNewInstBefore(NewShift, I);
 | |
|           
 | |
|           return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
 | |
|                                         NewRHS);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Find out if this is a shift of a shift by a constant.
 | |
|   ShiftInst *ShiftOp = 0;
 | |
|   if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0))
 | |
|     ShiftOp = Op0SI;
 | |
|   else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
 | |
|     // If this is a noop-integer case of a shift instruction, use the shift.
 | |
|     if (CI->getOperand(0)->getType()->isInteger() &&
 | |
|         CI->getOperand(0)->getType()->getPrimitiveSizeInBits() ==
 | |
|         CI->getType()->getPrimitiveSizeInBits() &&
 | |
|         isa<ShiftInst>(CI->getOperand(0))) {
 | |
|       ShiftOp = cast<ShiftInst>(CI->getOperand(0));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (ShiftOp && isa<ConstantUInt>(ShiftOp->getOperand(1))) {
 | |
|     // Find the operands and properties of the input shift.  Note that the
 | |
|     // signedness of the input shift may differ from the current shift if there
 | |
|     // is a noop cast between the two.
 | |
|     bool isShiftOfLeftShift = ShiftOp->getOpcode() == Instruction::Shl;
 | |
|     bool isShiftOfSignedShift = ShiftOp->getType()->isSigned();
 | |
|     bool isShiftOfUnsignedShift = !isShiftOfSignedShift;
 | |
|     
 | |
|     ConstantUInt *ShiftAmt1C = cast<ConstantUInt>(ShiftOp->getOperand(1));
 | |
| 
 | |
|     unsigned ShiftAmt1 = (unsigned)ShiftAmt1C->getValue();
 | |
|     unsigned ShiftAmt2 = (unsigned)Op1->getValue();
 | |
|     
 | |
|     // Check for (A << c1) << c2   and   (A >> c1) >> c2.
 | |
|     if (isLeftShift == isShiftOfLeftShift) {
 | |
|       // Do not fold these shifts if the first one is signed and the second one
 | |
|       // is unsigned and this is a right shift.  Further, don't do any folding
 | |
|       // on them.
 | |
|       if (isShiftOfSignedShift && isUnsignedShift && !isLeftShift)
 | |
|         return 0;
 | |
|       
 | |
|       unsigned Amt = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
 | |
|       if (Amt > Op0->getType()->getPrimitiveSizeInBits())
 | |
|         Amt = Op0->getType()->getPrimitiveSizeInBits();
 | |
|       
 | |
|       Value *Op = ShiftOp->getOperand(0);
 | |
|       if (isShiftOfSignedShift != isSignedShift)
 | |
|         Op = InsertNewInstBefore(new CastInst(Op, I.getType(), "tmp"), I);
 | |
|       return new ShiftInst(I.getOpcode(), Op,
 | |
|                            ConstantUInt::get(Type::UByteTy, Amt));
 | |
|     }
 | |
|     
 | |
|     // Check for (A << c1) >> c2 or (A >> c1) << c2.  If we are dealing with
 | |
|     // signed types, we can only support the (A >> c1) << c2 configuration,
 | |
|     // because it can not turn an arbitrary bit of A into a sign bit.
 | |
|     if (isUnsignedShift || isLeftShift) {
 | |
|       // Calculate bitmask for what gets shifted off the edge.
 | |
|       Constant *C = ConstantIntegral::getAllOnesValue(I.getType());
 | |
|       if (isLeftShift)
 | |
|         C = ConstantExpr::getShl(C, ShiftAmt1C);
 | |
|       else
 | |
|         C = ConstantExpr::getUShr(C, ShiftAmt1C);
 | |
|       
 | |
|       Value *Op = ShiftOp->getOperand(0);
 | |
|       if (isShiftOfSignedShift != isSignedShift)
 | |
|         Op = InsertNewInstBefore(new CastInst(Op, I.getType(),Op->getName()),I);
 | |
|       
 | |
|       Instruction *Mask =
 | |
|         BinaryOperator::createAnd(Op, C, Op->getName()+".mask");
 | |
|       InsertNewInstBefore(Mask, I);
 | |
|       
 | |
|       // Figure out what flavor of shift we should use...
 | |
|       if (ShiftAmt1 == ShiftAmt2) {
 | |
|         return ReplaceInstUsesWith(I, Mask);  // (A << c) >> c  === A & c2
 | |
|       } else if (ShiftAmt1 < ShiftAmt2) {
 | |
|         return new ShiftInst(I.getOpcode(), Mask,
 | |
|                          ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1));
 | |
|       } else if (isShiftOfUnsignedShift || isShiftOfLeftShift) {
 | |
|         if (isShiftOfUnsignedShift && !isShiftOfLeftShift && isSignedShift) {
 | |
|           // Make sure to emit an unsigned shift right, not a signed one.
 | |
|           Mask = InsertNewInstBefore(new CastInst(Mask, 
 | |
|                                         Mask->getType()->getUnsignedVersion(),
 | |
|                                                   Op->getName()), I);
 | |
|           Mask = new ShiftInst(Instruction::Shr, Mask,
 | |
|                          ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
 | |
|           InsertNewInstBefore(Mask, I);
 | |
|           return new CastInst(Mask, I.getType());
 | |
|         } else {
 | |
|           return new ShiftInst(ShiftOp->getOpcode(), Mask,
 | |
|                     ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
 | |
|         }
 | |
|       } else {
 | |
|         // (X >>s C1) << C2  where C1 > C2  === (X >>s (C1-C2)) & mask
 | |
|         Op = InsertNewInstBefore(new CastInst(Mask,
 | |
|                                               I.getType()->getSignedVersion(),
 | |
|                                               Mask->getName()), I);
 | |
|         Instruction *Shift =
 | |
|           new ShiftInst(ShiftOp->getOpcode(), Op,
 | |
|                         ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
 | |
|         InsertNewInstBefore(Shift, I);
 | |
|         
 | |
|         C = ConstantIntegral::getAllOnesValue(Shift->getType());
 | |
|         C = ConstantExpr::getShl(C, Op1);
 | |
|         Mask = BinaryOperator::createAnd(Shift, C, Op->getName()+".mask");
 | |
|         InsertNewInstBefore(Mask, I);
 | |
|         return new CastInst(Mask, I.getType());
 | |
|       }
 | |
|     } else {
 | |
|       // We can handle signed (X << C1) >>s C2 if it's a sign extend.  In
 | |
|       // this case, C1 == C2 and C1 is 8, 16, or 32.
 | |
|       if (ShiftAmt1 == ShiftAmt2) {
 | |
|         const Type *SExtType = 0;
 | |
|         switch (Op0->getType()->getPrimitiveSizeInBits() - ShiftAmt1) {
 | |
|         case 8 : SExtType = Type::SByteTy; break;
 | |
|         case 16: SExtType = Type::ShortTy; break;
 | |
|         case 32: SExtType = Type::IntTy; break;
 | |
|         }
 | |
|         
 | |
|         if (SExtType) {
 | |
|           Instruction *NewTrunc = new CastInst(ShiftOp->getOperand(0),
 | |
|                                                SExtType, "sext");
 | |
|           InsertNewInstBefore(NewTrunc, I);
 | |
|           return new CastInst(NewTrunc, I.getType());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
 | |
| /// expression.  If so, decompose it, returning some value X, such that Val is
 | |
| /// X*Scale+Offset.
 | |
| ///
 | |
| static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
 | |
|                                         unsigned &Offset) {
 | |
|   assert(Val->getType() == Type::UIntTy && "Unexpected allocation size type!");
 | |
|   if (ConstantUInt *CI = dyn_cast<ConstantUInt>(Val)) {
 | |
|     Offset = CI->getValue();
 | |
|     Scale  = 1;
 | |
|     return ConstantUInt::get(Type::UIntTy, 0);
 | |
|   } else if (Instruction *I = dyn_cast<Instruction>(Val)) {
 | |
|     if (I->getNumOperands() == 2) {
 | |
|       if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I->getOperand(1))) {
 | |
|         if (I->getOpcode() == Instruction::Shl) {
 | |
|           // This is a value scaled by '1 << the shift amt'.
 | |
|           Scale = 1U << CUI->getValue();
 | |
|           Offset = 0;
 | |
|           return I->getOperand(0);
 | |
|         } else if (I->getOpcode() == Instruction::Mul) {
 | |
|           // This value is scaled by 'CUI'.
 | |
|           Scale = CUI->getValue();
 | |
|           Offset = 0;
 | |
|           return I->getOperand(0);
 | |
|         } else if (I->getOpcode() == Instruction::Add) {
 | |
|           // We have X+C.  Check to see if we really have (X*C2)+C1, where C1 is
 | |
|           // divisible by C2.
 | |
|           unsigned SubScale;
 | |
|           Value *SubVal = DecomposeSimpleLinearExpr(I->getOperand(0), SubScale,
 | |
|                                                     Offset);
 | |
|           Offset += CUI->getValue();
 | |
|           if (SubScale > 1 && (Offset % SubScale == 0)) {
 | |
|             Scale = SubScale;
 | |
|             return SubVal;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we can't look past this.
 | |
|   Scale = 1;
 | |
|   Offset = 0;
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
 | |
| /// try to eliminate the cast by moving the type information into the alloc.
 | |
| Instruction *InstCombiner::PromoteCastOfAllocation(CastInst &CI,
 | |
|                                                    AllocationInst &AI) {
 | |
|   const PointerType *PTy = dyn_cast<PointerType>(CI.getType());
 | |
|   if (!PTy) return 0;   // Not casting the allocation to a pointer type.
 | |
|   
 | |
|   // Remove any uses of AI that are dead.
 | |
|   assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
 | |
|   std::vector<Instruction*> DeadUsers;
 | |
|   for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
 | |
|     Instruction *User = cast<Instruction>(*UI++);
 | |
|     if (isInstructionTriviallyDead(User)) {
 | |
|       while (UI != E && *UI == User)
 | |
|         ++UI; // If this instruction uses AI more than once, don't break UI.
 | |
|       
 | |
|       // Add operands to the worklist.
 | |
|       AddUsesToWorkList(*User);
 | |
|       ++NumDeadInst;
 | |
|       DEBUG(std::cerr << "IC: DCE: " << *User);
 | |
|       
 | |
|       User->eraseFromParent();
 | |
|       removeFromWorkList(User);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Get the type really allocated and the type casted to.
 | |
|   const Type *AllocElTy = AI.getAllocatedType();
 | |
|   const Type *CastElTy = PTy->getElementType();
 | |
|   if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
 | |
| 
 | |
|   unsigned AllocElTyAlign = TD->getTypeAlignment(AllocElTy);
 | |
|   unsigned CastElTyAlign = TD->getTypeAlignment(CastElTy);
 | |
|   if (CastElTyAlign < AllocElTyAlign) return 0;
 | |
| 
 | |
|   // If the allocation has multiple uses, only promote it if we are strictly
 | |
|   // increasing the alignment of the resultant allocation.  If we keep it the
 | |
|   // same, we open the door to infinite loops of various kinds.
 | |
|   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
 | |
| 
 | |
|   uint64_t AllocElTySize = TD->getTypeSize(AllocElTy);
 | |
|   uint64_t CastElTySize = TD->getTypeSize(CastElTy);
 | |
|   if (CastElTySize == 0 || AllocElTySize == 0) return 0;
 | |
| 
 | |
|   // See if we can satisfy the modulus by pulling a scale out of the array
 | |
|   // size argument.
 | |
|   unsigned ArraySizeScale, ArrayOffset;
 | |
|   Value *NumElements = // See if the array size is a decomposable linear expr.
 | |
|     DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
 | |
|  
 | |
|   // If we can now satisfy the modulus, by using a non-1 scale, we really can
 | |
|   // do the xform.
 | |
|   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
 | |
|       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
 | |
| 
 | |
|   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
 | |
|   Value *Amt = 0;
 | |
|   if (Scale == 1) {
 | |
|     Amt = NumElements;
 | |
|   } else {
 | |
|     Amt = ConstantUInt::get(Type::UIntTy, Scale);
 | |
|     if (ConstantUInt *CI = dyn_cast<ConstantUInt>(NumElements))
 | |
|       Amt = ConstantExpr::getMul(CI, cast<ConstantUInt>(Amt));
 | |
|     else if (Scale != 1) {
 | |
|       Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp");
 | |
|       Amt = InsertNewInstBefore(Tmp, AI);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (unsigned Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
 | |
|     Value *Off = ConstantUInt::get(Type::UIntTy, Offset);
 | |
|     Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp");
 | |
|     Amt = InsertNewInstBefore(Tmp, AI);
 | |
|   }
 | |
|   
 | |
|   std::string Name = AI.getName(); AI.setName("");
 | |
|   AllocationInst *New;
 | |
|   if (isa<MallocInst>(AI))
 | |
|     New = new MallocInst(CastElTy, Amt, AI.getAlignment(), Name);
 | |
|   else
 | |
|     New = new AllocaInst(CastElTy, Amt, AI.getAlignment(), Name);
 | |
|   InsertNewInstBefore(New, AI);
 | |
|   
 | |
|   // If the allocation has multiple uses, insert a cast and change all things
 | |
|   // that used it to use the new cast.  This will also hack on CI, but it will
 | |
|   // die soon.
 | |
|   if (!AI.hasOneUse()) {
 | |
|     AddUsesToWorkList(AI);
 | |
|     CastInst *NewCast = new CastInst(New, AI.getType(), "tmpcast");
 | |
|     InsertNewInstBefore(NewCast, AI);
 | |
|     AI.replaceAllUsesWith(NewCast);
 | |
|   }
 | |
|   return ReplaceInstUsesWith(CI, New);
 | |
| }
 | |
| 
 | |
| /// CanEvaluateInDifferentType - Return true if we can take the specified value
 | |
| /// and return it without inserting any new casts.  This is used by code that
 | |
| /// tries to decide whether promoting or shrinking integer operations to wider
 | |
| /// or smaller types will allow us to eliminate a truncate or extend.
 | |
| static bool CanEvaluateInDifferentType(Value *V, const Type *Ty,
 | |
|                                        int &NumCastsRemoved) {
 | |
|   if (isa<Constant>(V)) return true;
 | |
|   
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I || !I->hasOneUse()) return false;
 | |
|   
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     // These operators can all arbitrarily be extended or truncated.
 | |
|     return CanEvaluateInDifferentType(I->getOperand(0), Ty, NumCastsRemoved) &&
 | |
|            CanEvaluateInDifferentType(I->getOperand(1), Ty, NumCastsRemoved);
 | |
|   case Instruction::Cast:
 | |
|     // If this is a cast from the destination type, we can trivially eliminate
 | |
|     // it, and this will remove a cast overall.
 | |
|     if (I->getOperand(0)->getType() == Ty) {
 | |
|       // If the first operand is itself a cast, and is eliminable, do not count
 | |
|       // this as an eliminable cast.  We would prefer to eliminate those two
 | |
|       // casts first.
 | |
|       if (CastInst *OpCast = dyn_cast<CastInst>(I->getOperand(0)))
 | |
|         return true;
 | |
|       
 | |
|       ++NumCastsRemoved;
 | |
|       return true;
 | |
|     }
 | |
|     // TODO: Can handle more cases here.
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// EvaluateInDifferentType - Given an expression that 
 | |
| /// CanEvaluateInDifferentType returns true for, actually insert the code to
 | |
| /// evaluate the expression.
 | |
| Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty) {
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return ConstantExpr::getCast(C, Ty);
 | |
| 
 | |
|   // Otherwise, it must be an instruction.
 | |
|   Instruction *I = cast<Instruction>(V);
 | |
|   Instruction *Res = 0;
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor: {
 | |
|     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty);
 | |
|     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty);
 | |
|     Res = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(),
 | |
|                                  LHS, RHS, I->getName());
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Cast:
 | |
|     // If this is a cast from the destination type, return the input.
 | |
|     if (I->getOperand(0)->getType() == Ty)
 | |
|       return I->getOperand(0);
 | |
|     
 | |
|     // TODO: Can handle more cases here.
 | |
|     assert(0 && "Unreachable!");
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   return InsertNewInstBefore(Res, *I);
 | |
| }
 | |
| 
 | |
| 
 | |
| // CastInst simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitCastInst(CastInst &CI) {
 | |
|   Value *Src = CI.getOperand(0);
 | |
| 
 | |
|   // If the user is casting a value to the same type, eliminate this cast
 | |
|   // instruction...
 | |
|   if (CI.getType() == Src->getType())
 | |
|     return ReplaceInstUsesWith(CI, Src);
 | |
| 
 | |
|   if (isa<UndefValue>(Src))   // cast undef -> undef
 | |
|     return ReplaceInstUsesWith(CI, UndefValue::get(CI.getType()));
 | |
| 
 | |
|   // If casting the result of another cast instruction, try to eliminate this
 | |
|   // one!
 | |
|   //
 | |
|   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
 | |
|     Value *A = CSrc->getOperand(0);
 | |
|     if (isEliminableCastOfCast(A->getType(), CSrc->getType(),
 | |
|                                CI.getType(), TD)) {
 | |
|       // This instruction now refers directly to the cast's src operand.  This
 | |
|       // has a good chance of making CSrc dead.
 | |
|       CI.setOperand(0, CSrc->getOperand(0));
 | |
|       return &CI;
 | |
|     }
 | |
| 
 | |
|     // If this is an A->B->A cast, and we are dealing with integral types, try
 | |
|     // to convert this into a logical 'and' instruction.
 | |
|     //
 | |
|     if (A->getType()->isInteger() &&
 | |
|         CI.getType()->isInteger() && CSrc->getType()->isInteger() &&
 | |
|         CSrc->getType()->isUnsigned() &&   // B->A cast must zero extend
 | |
|         CSrc->getType()->getPrimitiveSizeInBits() <
 | |
|                     CI.getType()->getPrimitiveSizeInBits()&&
 | |
|         A->getType()->getPrimitiveSizeInBits() ==
 | |
|               CI.getType()->getPrimitiveSizeInBits()) {
 | |
|       assert(CSrc->getType() != Type::ULongTy &&
 | |
|              "Cannot have type bigger than ulong!");
 | |
|       uint64_t AndValue = CSrc->getType()->getIntegralTypeMask();
 | |
|       Constant *AndOp = ConstantUInt::get(A->getType()->getUnsignedVersion(),
 | |
|                                           AndValue);
 | |
|       AndOp = ConstantExpr::getCast(AndOp, A->getType());
 | |
|       Instruction *And = BinaryOperator::createAnd(CSrc->getOperand(0), AndOp);
 | |
|       if (And->getType() != CI.getType()) {
 | |
|         And->setName(CSrc->getName()+".mask");
 | |
|         InsertNewInstBefore(And, CI);
 | |
|         And = new CastInst(And, CI.getType());
 | |
|       }
 | |
|       return And;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If this is a cast to bool, turn it into the appropriate setne instruction.
 | |
|   if (CI.getType() == Type::BoolTy)
 | |
|     return BinaryOperator::createSetNE(CI.getOperand(0),
 | |
|                        Constant::getNullValue(CI.getOperand(0)->getType()));
 | |
| 
 | |
|   // See if we can simplify any instructions used by the LHS whose sole 
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   if (CI.getType()->isInteger() && CI.getOperand(0)->getType()->isIntegral()) {
 | |
|     uint64_t KnownZero, KnownOne;
 | |
|     if (SimplifyDemandedBits(&CI, CI.getType()->getIntegralTypeMask(),
 | |
|                              KnownZero, KnownOne))
 | |
|       return &CI;
 | |
|   }
 | |
|   
 | |
|   // If casting the result of a getelementptr instruction with no offset, turn
 | |
|   // this into a cast of the original pointer!
 | |
|   //
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
 | |
|     bool AllZeroOperands = true;
 | |
|     for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
 | |
|       if (!isa<Constant>(GEP->getOperand(i)) ||
 | |
|           !cast<Constant>(GEP->getOperand(i))->isNullValue()) {
 | |
|         AllZeroOperands = false;
 | |
|         break;
 | |
|       }
 | |
|     if (AllZeroOperands) {
 | |
|       CI.setOperand(0, GEP->getOperand(0));
 | |
|       return &CI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we are casting a malloc or alloca to a pointer to a type of the same
 | |
|   // size, rewrite the allocation instruction to allocate the "right" type.
 | |
|   //
 | |
|   if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
 | |
|     if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
 | |
|       return V;
 | |
| 
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(Src))
 | |
|     if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
 | |
|       return NV;
 | |
|   if (isa<PHINode>(Src))
 | |
|     if (Instruction *NV = FoldOpIntoPhi(CI))
 | |
|       return NV;
 | |
|   
 | |
|   // If the source and destination are pointers, and this cast is equivalent to
 | |
|   // a getelementptr X, 0, 0, 0...  turn it into the appropriate getelementptr.
 | |
|   // This can enhance SROA and other transforms that want type-safe pointers.
 | |
|   if (const PointerType *DstPTy = dyn_cast<PointerType>(CI.getType()))
 | |
|     if (const PointerType *SrcPTy = dyn_cast<PointerType>(Src->getType())) {
 | |
|       const Type *DstTy = DstPTy->getElementType();
 | |
|       const Type *SrcTy = SrcPTy->getElementType();
 | |
|       
 | |
|       Constant *ZeroUInt = Constant::getNullValue(Type::UIntTy);
 | |
|       unsigned NumZeros = 0;
 | |
|       while (SrcTy != DstTy && 
 | |
|              isa<CompositeType>(SrcTy) && !isa<PointerType>(SrcTy) &&
 | |
|              SrcTy->getNumContainedTypes() /* not "{}" */) {
 | |
|         SrcTy = cast<CompositeType>(SrcTy)->getTypeAtIndex(ZeroUInt);
 | |
|         ++NumZeros;
 | |
|       }
 | |
| 
 | |
|       // If we found a path from the src to dest, create the getelementptr now.
 | |
|       if (SrcTy == DstTy) {
 | |
|         std::vector<Value*> Idxs(NumZeros+1, ZeroUInt);
 | |
|         return new GetElementPtrInst(Src, Idxs);
 | |
|       }
 | |
|     }
 | |
|       
 | |
|   // If the source value is an instruction with only this use, we can attempt to
 | |
|   // propagate the cast into the instruction.  Also, only handle integral types
 | |
|   // for now.
 | |
|   if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
 | |
|     if (SrcI->hasOneUse() && Src->getType()->isIntegral() &&
 | |
|         CI.getType()->isInteger()) {  // Don't mess with casts to bool here
 | |
|       
 | |
|       int NumCastsRemoved = 0;
 | |
|       if (CanEvaluateInDifferentType(SrcI, CI.getType(), NumCastsRemoved)) {
 | |
|         // If this cast is a truncate, evaluting in a different type always
 | |
|         // eliminates the cast, so it is always a win.  If this is a noop-cast
 | |
|         // this just removes a noop cast which isn't pointful, but simplifies
 | |
|         // the code.  If this is a zero-extension, we need to do an AND to
 | |
|         // maintain the clear top-part of the computation, so we require that
 | |
|         // the input have eliminated at least one cast.  If this is a sign
 | |
|         // extension, we insert two new casts (to do the extension) so we
 | |
|         // require that two casts have been eliminated.
 | |
|         bool DoXForm;
 | |
|         switch (getCastType(Src->getType(), CI.getType())) {
 | |
|         default: assert(0 && "Unknown cast type!");
 | |
|         case Noop:
 | |
|         case Truncate:
 | |
|           DoXForm = true;
 | |
|           break;
 | |
|         case Zeroext:
 | |
|           DoXForm = NumCastsRemoved >= 1;
 | |
|           break;
 | |
|         case Signext:
 | |
|           DoXForm = NumCastsRemoved >= 2;
 | |
|           break;
 | |
|         }
 | |
|         
 | |
|         if (DoXForm) {
 | |
|           Value *Res = EvaluateInDifferentType(SrcI, CI.getType());
 | |
|           assert(Res->getType() == CI.getType());
 | |
|           switch (getCastType(Src->getType(), CI.getType())) {
 | |
|           default: assert(0 && "Unknown cast type!");
 | |
|           case Noop:
 | |
|           case Truncate:
 | |
|             // Just replace this cast with the result.
 | |
|             return ReplaceInstUsesWith(CI, Res);
 | |
|           case Zeroext: {
 | |
|             // We need to emit an AND to clear the high bits.
 | |
|             unsigned SrcBitSize = Src->getType()->getPrimitiveSizeInBits();
 | |
|             unsigned DestBitSize = CI.getType()->getPrimitiveSizeInBits();
 | |
|             assert(SrcBitSize < DestBitSize && "Not a zext?");
 | |
|             Constant *C = ConstantUInt::get(Type::ULongTy, (1 << SrcBitSize)-1);
 | |
|             C = ConstantExpr::getCast(C, CI.getType());
 | |
|             return BinaryOperator::createAnd(Res, C);
 | |
|           }
 | |
|           case Signext:
 | |
|             // We need to emit a cast to truncate, then a cast to sext.
 | |
|             return new CastInst(InsertCastBefore(Res, Src->getType(), CI),
 | |
|                                 CI.getType());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       const Type *DestTy = CI.getType();
 | |
|       unsigned SrcBitSize = Src->getType()->getPrimitiveSizeInBits();
 | |
|       unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|       Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
 | |
|       Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
 | |
| 
 | |
|       switch (SrcI->getOpcode()) {
 | |
|       case Instruction::Add:
 | |
|       case Instruction::Mul:
 | |
|       case Instruction::And:
 | |
|       case Instruction::Or:
 | |
|       case Instruction::Xor:
 | |
|         // If we are discarding information, or just changing the sign, rewrite.
 | |
|         if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
 | |
|           // Don't insert two casts if they cannot be eliminated.  We allow two
 | |
|           // casts to be inserted if the sizes are the same.  This could only be
 | |
|           // converting signedness, which is a noop.
 | |
|           if (DestBitSize == SrcBitSize || !ValueRequiresCast(Op1, DestTy,TD) ||
 | |
|               !ValueRequiresCast(Op0, DestTy, TD)) {
 | |
|             Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
 | |
|             Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI);
 | |
|             return BinaryOperator::create(cast<BinaryOperator>(SrcI)
 | |
|                              ->getOpcode(), Op0c, Op1c);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // cast (xor bool X, true) to int  --> xor (cast bool X to int), 1
 | |
|         if (SrcBitSize == 1 && SrcI->getOpcode() == Instruction::Xor &&
 | |
|             Op1 == ConstantBool::getTrue() &&
 | |
|             (!Op0->hasOneUse() || !isa<SetCondInst>(Op0))) {
 | |
|           Value *New = InsertOperandCastBefore(Op0, DestTy, &CI);
 | |
|           return BinaryOperator::createXor(New,
 | |
|                                            ConstantInt::get(CI.getType(), 1));
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::Shl:
 | |
|         // Allow changing the sign of the source operand.  Do not allow changing
 | |
|         // the size of the shift, UNLESS the shift amount is a constant.  We
 | |
|         // mush not change variable sized shifts to a smaller size, because it
 | |
|         // is undefined to shift more bits out than exist in the value.
 | |
|         if (DestBitSize == SrcBitSize ||
 | |
|             (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
 | |
|           Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
 | |
|           return new ShiftInst(Instruction::Shl, Op0c, Op1);
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::Shr:
 | |
|         // If this is a signed shr, and if all bits shifted in are about to be
 | |
|         // truncated off, turn it into an unsigned shr to allow greater
 | |
|         // simplifications.
 | |
|         if (DestBitSize < SrcBitSize && Src->getType()->isSigned() &&
 | |
|             isa<ConstantInt>(Op1)) {
 | |
|           unsigned ShiftAmt = cast<ConstantUInt>(Op1)->getValue();
 | |
|           if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
 | |
|             // Convert to unsigned.
 | |
|             Value *N1 = InsertOperandCastBefore(Op0,
 | |
|                                      Op0->getType()->getUnsignedVersion(), &CI);
 | |
|             // Insert the new shift, which is now unsigned.
 | |
|             N1 = InsertNewInstBefore(new ShiftInst(Instruction::Shr, N1,
 | |
|                                                    Op1, Src->getName()), CI);
 | |
|             return new CastInst(N1, CI.getType());
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case Instruction::SetEQ:
 | |
|       case Instruction::SetNE:
 | |
|         // We if we are just checking for a seteq of a single bit and casting it
 | |
|         // to an integer.  If so, shift the bit to the appropriate place then
 | |
|         // cast to integer to avoid the comparison.
 | |
|         if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | |
|           uint64_t Op1CV = Op1C->getZExtValue();
 | |
|           // cast (X == 0) to int --> X^1        iff X has only the low bit set.
 | |
|           // cast (X == 0) to int --> (X>>1)^1   iff X has only the 2nd bit set.
 | |
|           // cast (X == 1) to int --> X          iff X has only the low bit set.
 | |
|           // cast (X == 2) to int --> X>>1       iff X has only the 2nd bit set.
 | |
|           // cast (X != 0) to int --> X          iff X has only the low bit set.
 | |
|           // cast (X != 0) to int --> X>>1       iff X has only the 2nd bit set.
 | |
|           // cast (X != 1) to int --> X^1        iff X has only the low bit set.
 | |
|           // cast (X != 2) to int --> (X>>1)^1   iff X has only the 2nd bit set.
 | |
|           if (Op1CV == 0 || isPowerOf2_64(Op1CV)) {
 | |
|             // If Op1C some other power of two, convert:
 | |
|             uint64_t KnownZero, KnownOne;
 | |
|             uint64_t TypeMask = Op1->getType()->getIntegralTypeMask();
 | |
|             ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne);
 | |
|             
 | |
|             if (isPowerOf2_64(KnownZero^TypeMask)) { // Exactly one possible 1?
 | |
|               bool isSetNE = SrcI->getOpcode() == Instruction::SetNE;
 | |
|               if (Op1CV && (Op1CV != (KnownZero^TypeMask))) {
 | |
|                 // (X&4) == 2 --> false
 | |
|                 // (X&4) != 2 --> true
 | |
|                 Constant *Res = ConstantBool::get(isSetNE);
 | |
|                 Res = ConstantExpr::getCast(Res, CI.getType());
 | |
|                 return ReplaceInstUsesWith(CI, Res);
 | |
|               }
 | |
|               
 | |
|               unsigned ShiftAmt = Log2_64(KnownZero^TypeMask);
 | |
|               Value *In = Op0;
 | |
|               if (ShiftAmt) {
 | |
|                 // Perform an unsigned shr by shiftamt.  Convert input to
 | |
|                 // unsigned if it is signed.
 | |
|                 if (In->getType()->isSigned())
 | |
|                   In = InsertNewInstBefore(new CastInst(In,
 | |
|                         In->getType()->getUnsignedVersion(), In->getName()),CI);
 | |
|                 // Insert the shift to put the result in the low bit.
 | |
|                 In = InsertNewInstBefore(new ShiftInst(Instruction::Shr, In,
 | |
|                                      ConstantInt::get(Type::UByteTy, ShiftAmt),
 | |
|                                      In->getName()+".lobit"), CI);
 | |
|               }
 | |
|               
 | |
|               if ((Op1CV != 0) == isSetNE) { // Toggle the low bit.
 | |
|                 Constant *One = ConstantInt::get(In->getType(), 1);
 | |
|                 In = BinaryOperator::createXor(In, One, "tmp");
 | |
|                 InsertNewInstBefore(cast<Instruction>(In), CI);
 | |
|               }
 | |
|               
 | |
|               if (CI.getType() == In->getType())
 | |
|                 return ReplaceInstUsesWith(CI, In);
 | |
|               else
 | |
|                 return new CastInst(In, CI.getType());
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (SrcI->hasOneUse()) {
 | |
|       if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SrcI)) {
 | |
|         // Okay, we have (cast (shuffle ..)).  We know this cast is a bitconvert
 | |
|         // because the inputs are known to be a vector.  Check to see if this is
 | |
|         // a cast to a vector with the same # elts.
 | |
|         if (isa<PackedType>(CI.getType()) && 
 | |
|             cast<PackedType>(CI.getType())->getNumElements() == 
 | |
|                   SVI->getType()->getNumElements()) {
 | |
|           CastInst *Tmp;
 | |
|           // If either of the operands is a cast from CI.getType(), then
 | |
|           // evaluating the shuffle in the casted destination's type will allow
 | |
|           // us to eliminate at least one cast.
 | |
|           if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) && 
 | |
|                Tmp->getOperand(0)->getType() == CI.getType()) ||
 | |
|               ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) && 
 | |
|                Tmp->getOperand(0)->getType() == CI.getType())) {
 | |
|             Value *LHS = InsertOperandCastBefore(SVI->getOperand(0),
 | |
|                                                  CI.getType(), &CI);
 | |
|             Value *RHS = InsertOperandCastBefore(SVI->getOperand(1),
 | |
|                                                  CI.getType(), &CI);
 | |
|             // Return a new shuffle vector.  Use the same element ID's, as we
 | |
|             // know the vector types match #elts.
 | |
|             return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|       
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// GetSelectFoldableOperands - We want to turn code that looks like this:
 | |
| ///   %C = or %A, %B
 | |
| ///   %D = select %cond, %C, %A
 | |
| /// into:
 | |
| ///   %C = select %cond, %B, 0
 | |
| ///   %D = or %A, %C
 | |
| ///
 | |
| /// Assuming that the specified instruction is an operand to the select, return
 | |
| /// a bitmask indicating which operands of this instruction are foldable if they
 | |
| /// equal the other incoming value of the select.
 | |
| ///
 | |
| static unsigned GetSelectFoldableOperands(Instruction *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     return 3;              // Can fold through either operand.
 | |
|   case Instruction::Sub:   // Can only fold on the amount subtracted.
 | |
|   case Instruction::Shl:   // Can only fold on the shift amount.
 | |
|   case Instruction::Shr:
 | |
|     return 1;
 | |
|   default:
 | |
|     return 0;              // Cannot fold
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// GetSelectFoldableConstant - For the same transformation as the previous
 | |
| /// function, return the identity constant that goes into the select.
 | |
| static Constant *GetSelectFoldableConstant(Instruction *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   default: assert(0 && "This cannot happen!"); abort();
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     return Constant::getNullValue(I->getType());
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::Shr:
 | |
|     return Constant::getNullValue(Type::UByteTy);
 | |
|   case Instruction::And:
 | |
|     return ConstantInt::getAllOnesValue(I->getType());
 | |
|   case Instruction::Mul:
 | |
|     return ConstantInt::get(I->getType(), 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
 | |
| /// have the same opcode and only one use each.  Try to simplify this.
 | |
| Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
 | |
|                                           Instruction *FI) {
 | |
|   if (TI->getNumOperands() == 1) {
 | |
|     // If this is a non-volatile load or a cast from the same type,
 | |
|     // merge.
 | |
|     if (TI->getOpcode() == Instruction::Cast) {
 | |
|       if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
 | |
|         return 0;
 | |
|     } else {
 | |
|       return 0;  // unknown unary op.
 | |
|     }
 | |
| 
 | |
|     // Fold this by inserting a select from the input values.
 | |
|     SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0),
 | |
|                                        FI->getOperand(0), SI.getName()+".v");
 | |
|     InsertNewInstBefore(NewSI, SI);
 | |
|     return new CastInst(NewSI, TI->getType());
 | |
|   }
 | |
| 
 | |
|   // Only handle binary operators here.
 | |
|   if (!isa<ShiftInst>(TI) && !isa<BinaryOperator>(TI))
 | |
|     return 0;
 | |
| 
 | |
|   // Figure out if the operations have any operands in common.
 | |
|   Value *MatchOp, *OtherOpT, *OtherOpF;
 | |
|   bool MatchIsOpZero;
 | |
|   if (TI->getOperand(0) == FI->getOperand(0)) {
 | |
|     MatchOp  = TI->getOperand(0);
 | |
|     OtherOpT = TI->getOperand(1);
 | |
|     OtherOpF = FI->getOperand(1);
 | |
|     MatchIsOpZero = true;
 | |
|   } else if (TI->getOperand(1) == FI->getOperand(1)) {
 | |
|     MatchOp  = TI->getOperand(1);
 | |
|     OtherOpT = TI->getOperand(0);
 | |
|     OtherOpF = FI->getOperand(0);
 | |
|     MatchIsOpZero = false;
 | |
|   } else if (!TI->isCommutative()) {
 | |
|     return 0;
 | |
|   } else if (TI->getOperand(0) == FI->getOperand(1)) {
 | |
|     MatchOp  = TI->getOperand(0);
 | |
|     OtherOpT = TI->getOperand(1);
 | |
|     OtherOpF = FI->getOperand(0);
 | |
|     MatchIsOpZero = true;
 | |
|   } else if (TI->getOperand(1) == FI->getOperand(0)) {
 | |
|     MatchOp  = TI->getOperand(1);
 | |
|     OtherOpT = TI->getOperand(0);
 | |
|     OtherOpF = FI->getOperand(1);
 | |
|     MatchIsOpZero = true;
 | |
|   } else {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // If we reach here, they do have operations in common.
 | |
|   SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT,
 | |
|                                      OtherOpF, SI.getName()+".v");
 | |
|   InsertNewInstBefore(NewSI, SI);
 | |
| 
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
 | |
|     if (MatchIsOpZero)
 | |
|       return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
 | |
|     else
 | |
|       return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
 | |
|   } else {
 | |
|     if (MatchIsOpZero)
 | |
|       return new ShiftInst(cast<ShiftInst>(TI)->getOpcode(), MatchOp, NewSI);
 | |
|     else
 | |
|       return new ShiftInst(cast<ShiftInst>(TI)->getOpcode(), NewSI, MatchOp);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
 | |
|   Value *CondVal = SI.getCondition();
 | |
|   Value *TrueVal = SI.getTrueValue();
 | |
|   Value *FalseVal = SI.getFalseValue();
 | |
| 
 | |
|   // select true, X, Y  -> X
 | |
|   // select false, X, Y -> Y
 | |
|   if (ConstantBool *C = dyn_cast<ConstantBool>(CondVal))
 | |
|     return ReplaceInstUsesWith(SI, C->getValue() ? TrueVal : FalseVal);
 | |
| 
 | |
|   // select C, X, X -> X
 | |
|   if (TrueVal == FalseVal)
 | |
|     return ReplaceInstUsesWith(SI, TrueVal);
 | |
| 
 | |
|   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
 | |
|     return ReplaceInstUsesWith(SI, FalseVal);
 | |
|   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
 | |
|     return ReplaceInstUsesWith(SI, TrueVal);
 | |
|   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
 | |
|     if (isa<Constant>(TrueVal))
 | |
|       return ReplaceInstUsesWith(SI, TrueVal);
 | |
|     else
 | |
|       return ReplaceInstUsesWith(SI, FalseVal);
 | |
|   }
 | |
| 
 | |
|   if (SI.getType() == Type::BoolTy)
 | |
|     if (ConstantBool *C = dyn_cast<ConstantBool>(TrueVal)) {
 | |
|       if (C->getValue()) {
 | |
|         // Change: A = select B, true, C --> A = or B, C
 | |
|         return BinaryOperator::createOr(CondVal, FalseVal);
 | |
|       } else {
 | |
|         // Change: A = select B, false, C --> A = and !B, C
 | |
|         Value *NotCond =
 | |
|           InsertNewInstBefore(BinaryOperator::createNot(CondVal,
 | |
|                                              "not."+CondVal->getName()), SI);
 | |
|         return BinaryOperator::createAnd(NotCond, FalseVal);
 | |
|       }
 | |
|     } else if (ConstantBool *C = dyn_cast<ConstantBool>(FalseVal)) {
 | |
|       if (C->getValue() == false) {
 | |
|         // Change: A = select B, C, false --> A = and B, C
 | |
|         return BinaryOperator::createAnd(CondVal, TrueVal);
 | |
|       } else {
 | |
|         // Change: A = select B, C, true --> A = or !B, C
 | |
|         Value *NotCond =
 | |
|           InsertNewInstBefore(BinaryOperator::createNot(CondVal,
 | |
|                                              "not."+CondVal->getName()), SI);
 | |
|         return BinaryOperator::createOr(NotCond, TrueVal);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Selecting between two integer constants?
 | |
|   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
 | |
|     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
 | |
|       // select C, 1, 0 -> cast C to int
 | |
|       if (FalseValC->isNullValue() && TrueValC->getRawValue() == 1) {
 | |
|         return new CastInst(CondVal, SI.getType());
 | |
|       } else if (TrueValC->isNullValue() && FalseValC->getRawValue() == 1) {
 | |
|         // select C, 0, 1 -> cast !C to int
 | |
|         Value *NotCond =
 | |
|           InsertNewInstBefore(BinaryOperator::createNot(CondVal,
 | |
|                                                "not."+CondVal->getName()), SI);
 | |
|         return new CastInst(NotCond, SI.getType());
 | |
|       }
 | |
| 
 | |
|       if (SetCondInst *IC = dyn_cast<SetCondInst>(SI.getCondition())) {
 | |
| 
 | |
|         // (x <s 0) ? -1 : 0 -> sra x, 31
 | |
|         // (x >u 2147483647) ? -1 : 0 -> sra x, 31
 | |
|         if (TrueValC->isAllOnesValue() && FalseValC->isNullValue())
 | |
|           if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
 | |
|             bool CanXForm = false;
 | |
|             if (CmpCst->getType()->isSigned())
 | |
|               CanXForm = CmpCst->isNullValue() && 
 | |
|                          IC->getOpcode() == Instruction::SetLT;
 | |
|             else {
 | |
|               unsigned Bits = CmpCst->getType()->getPrimitiveSizeInBits();
 | |
|               CanXForm = (CmpCst->getRawValue() == ~0ULL >> (64-Bits+1)) &&
 | |
|                          IC->getOpcode() == Instruction::SetGT;
 | |
|             }
 | |
|             
 | |
|             if (CanXForm) {
 | |
|               // The comparison constant and the result are not neccessarily the
 | |
|               // same width.  In any case, the first step to do is make sure
 | |
|               // that X is signed.
 | |
|               Value *X = IC->getOperand(0);
 | |
|               if (!X->getType()->isSigned())
 | |
|                 X = InsertCastBefore(X, X->getType()->getSignedVersion(), SI);
 | |
|               
 | |
|               // Now that X is signed, we have to make the all ones value.  Do
 | |
|               // this by inserting a new SRA.
 | |
|               unsigned Bits = X->getType()->getPrimitiveSizeInBits();
 | |
|               Constant *ShAmt = ConstantUInt::get(Type::UByteTy, Bits-1);
 | |
|               Instruction *SRA = new ShiftInst(Instruction::Shr, X,
 | |
|                                                ShAmt, "ones");
 | |
|               InsertNewInstBefore(SRA, SI);
 | |
|               
 | |
|               // Finally, convert to the type of the select RHS.  If this is
 | |
|               // smaller than the compare value, it will truncate the ones to
 | |
|               // fit. If it is larger, it will sext the ones to fit.
 | |
|               return new CastInst(SRA, SI.getType());
 | |
|             }
 | |
|           }
 | |
| 
 | |
| 
 | |
|         // If one of the constants is zero (we know they can't both be) and we
 | |
|         // have a setcc instruction with zero, and we have an 'and' with the
 | |
|         // non-constant value, eliminate this whole mess.  This corresponds to
 | |
|         // cases like this: ((X & 27) ? 27 : 0)
 | |
|         if (TrueValC->isNullValue() || FalseValC->isNullValue())
 | |
|           if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
 | |
|               cast<Constant>(IC->getOperand(1))->isNullValue())
 | |
|             if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
 | |
|               if (ICA->getOpcode() == Instruction::And &&
 | |
|                   isa<ConstantInt>(ICA->getOperand(1)) &&
 | |
|                   (ICA->getOperand(1) == TrueValC ||
 | |
|                    ICA->getOperand(1) == FalseValC) &&
 | |
|                   isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
 | |
|                 // Okay, now we know that everything is set up, we just don't
 | |
|                 // know whether we have a setne or seteq and whether the true or
 | |
|                 // false val is the zero.
 | |
|                 bool ShouldNotVal = !TrueValC->isNullValue();
 | |
|                 ShouldNotVal ^= IC->getOpcode() == Instruction::SetNE;
 | |
|                 Value *V = ICA;
 | |
|                 if (ShouldNotVal)
 | |
|                   V = InsertNewInstBefore(BinaryOperator::create(
 | |
|                                   Instruction::Xor, V, ICA->getOperand(1)), SI);
 | |
|                 return ReplaceInstUsesWith(SI, V);
 | |
|               }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // See if we are selecting two values based on a comparison of the two values.
 | |
|   if (SetCondInst *SCI = dyn_cast<SetCondInst>(CondVal)) {
 | |
|     if (SCI->getOperand(0) == TrueVal && SCI->getOperand(1) == FalseVal) {
 | |
|       // Transform (X == Y) ? X : Y  -> Y
 | |
|       if (SCI->getOpcode() == Instruction::SetEQ)
 | |
|         return ReplaceInstUsesWith(SI, FalseVal);
 | |
|       // Transform (X != Y) ? X : Y  -> X
 | |
|       if (SCI->getOpcode() == Instruction::SetNE)
 | |
|         return ReplaceInstUsesWith(SI, TrueVal);
 | |
|       // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
 | |
| 
 | |
|     } else if (SCI->getOperand(0) == FalseVal && SCI->getOperand(1) == TrueVal){
 | |
|       // Transform (X == Y) ? Y : X  -> X
 | |
|       if (SCI->getOpcode() == Instruction::SetEQ)
 | |
|         return ReplaceInstUsesWith(SI, FalseVal);
 | |
|       // Transform (X != Y) ? Y : X  -> Y
 | |
|       if (SCI->getOpcode() == Instruction::SetNE)
 | |
|         return ReplaceInstUsesWith(SI, TrueVal);
 | |
|       // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
 | |
|     if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
 | |
|       if (TI->hasOneUse() && FI->hasOneUse()) {
 | |
|         bool isInverse = false;
 | |
|         Instruction *AddOp = 0, *SubOp = 0;
 | |
| 
 | |
|         // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
 | |
|         if (TI->getOpcode() == FI->getOpcode())
 | |
|           if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
 | |
|             return IV;
 | |
| 
 | |
|         // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
 | |
|         // even legal for FP.
 | |
|         if (TI->getOpcode() == Instruction::Sub &&
 | |
|             FI->getOpcode() == Instruction::Add) {
 | |
|           AddOp = FI; SubOp = TI;
 | |
|         } else if (FI->getOpcode() == Instruction::Sub &&
 | |
|                    TI->getOpcode() == Instruction::Add) {
 | |
|           AddOp = TI; SubOp = FI;
 | |
|         }
 | |
| 
 | |
|         if (AddOp) {
 | |
|           Value *OtherAddOp = 0;
 | |
|           if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
 | |
|             OtherAddOp = AddOp->getOperand(1);
 | |
|           } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
 | |
|             OtherAddOp = AddOp->getOperand(0);
 | |
|           }
 | |
| 
 | |
|           if (OtherAddOp) {
 | |
|             // So at this point we know we have (Y -> OtherAddOp):
 | |
|             //        select C, (add X, Y), (sub X, Z)
 | |
|             Value *NegVal;  // Compute -Z
 | |
|             if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
 | |
|               NegVal = ConstantExpr::getNeg(C);
 | |
|             } else {
 | |
|               NegVal = InsertNewInstBefore(
 | |
|                     BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI);
 | |
|             }
 | |
| 
 | |
|             Value *NewTrueOp = OtherAddOp;
 | |
|             Value *NewFalseOp = NegVal;
 | |
|             if (AddOp != TI)
 | |
|               std::swap(NewTrueOp, NewFalseOp);
 | |
|             Instruction *NewSel =
 | |
|               new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");
 | |
| 
 | |
|             NewSel = InsertNewInstBefore(NewSel, SI);
 | |
|             return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   // See if we can fold the select into one of our operands.
 | |
|   if (SI.getType()->isInteger()) {
 | |
|     // See the comment above GetSelectFoldableOperands for a description of the
 | |
|     // transformation we are doing here.
 | |
|     if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
 | |
|       if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
 | |
|           !isa<Constant>(FalseVal))
 | |
|         if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
 | |
|           unsigned OpToFold = 0;
 | |
|           if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
 | |
|             OpToFold = 1;
 | |
|           } else  if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
 | |
|             OpToFold = 2;
 | |
|           }
 | |
| 
 | |
|           if (OpToFold) {
 | |
|             Constant *C = GetSelectFoldableConstant(TVI);
 | |
|             std::string Name = TVI->getName(); TVI->setName("");
 | |
|             Instruction *NewSel =
 | |
|               new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C,
 | |
|                              Name);
 | |
|             InsertNewInstBefore(NewSel, SI);
 | |
|             if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
 | |
|               return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
 | |
|             else if (ShiftInst *SI = dyn_cast<ShiftInst>(TVI))
 | |
|               return new ShiftInst(SI->getOpcode(), FalseVal, NewSel);
 | |
|             else {
 | |
|               assert(0 && "Unknown instruction!!");
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|     if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
 | |
|       if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
 | |
|           !isa<Constant>(TrueVal))
 | |
|         if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
 | |
|           unsigned OpToFold = 0;
 | |
|           if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
 | |
|             OpToFold = 1;
 | |
|           } else  if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
 | |
|             OpToFold = 2;
 | |
|           }
 | |
| 
 | |
|           if (OpToFold) {
 | |
|             Constant *C = GetSelectFoldableConstant(FVI);
 | |
|             std::string Name = FVI->getName(); FVI->setName("");
 | |
|             Instruction *NewSel =
 | |
|               new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold),
 | |
|                              Name);
 | |
|             InsertNewInstBefore(NewSel, SI);
 | |
|             if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
 | |
|               return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
 | |
|             else if (ShiftInst *SI = dyn_cast<ShiftInst>(FVI))
 | |
|               return new ShiftInst(SI->getOpcode(), TrueVal, NewSel);
 | |
|             else {
 | |
|               assert(0 && "Unknown instruction!!");
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   if (BinaryOperator::isNot(CondVal)) {
 | |
|     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
 | |
|     SI.setOperand(1, FalseVal);
 | |
|     SI.setOperand(2, TrueVal);
 | |
|     return &SI;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// GetKnownAlignment - If the specified pointer has an alignment that we can
 | |
| /// determine, return it, otherwise return 0.
 | |
| static unsigned GetKnownAlignment(Value *V, TargetData *TD) {
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
 | |
|     unsigned Align = GV->getAlignment();
 | |
|     if (Align == 0 && TD) 
 | |
|       Align = TD->getTypeAlignment(GV->getType()->getElementType());
 | |
|     return Align;
 | |
|   } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
 | |
|     unsigned Align = AI->getAlignment();
 | |
|     if (Align == 0 && TD) {
 | |
|       if (isa<AllocaInst>(AI))
 | |
|         Align = TD->getTypeAlignment(AI->getType()->getElementType());
 | |
|       else if (isa<MallocInst>(AI)) {
 | |
|         // Malloc returns maximally aligned memory.
 | |
|         Align = TD->getTypeAlignment(AI->getType()->getElementType());
 | |
|         Align = std::max(Align, (unsigned)TD->getTypeAlignment(Type::DoubleTy));
 | |
|         Align = std::max(Align, (unsigned)TD->getTypeAlignment(Type::LongTy));
 | |
|       }
 | |
|     }
 | |
|     return Align;
 | |
|   } else if (isa<CastInst>(V) ||
 | |
|              (isa<ConstantExpr>(V) && 
 | |
|               cast<ConstantExpr>(V)->getOpcode() == Instruction::Cast)) {
 | |
|     User *CI = cast<User>(V);
 | |
|     if (isa<PointerType>(CI->getOperand(0)->getType()))
 | |
|       return GetKnownAlignment(CI->getOperand(0), TD);
 | |
|     return 0;
 | |
|   } else if (isa<GetElementPtrInst>(V) ||
 | |
|              (isa<ConstantExpr>(V) && 
 | |
|               cast<ConstantExpr>(V)->getOpcode()==Instruction::GetElementPtr)) {
 | |
|     User *GEPI = cast<User>(V);
 | |
|     unsigned BaseAlignment = GetKnownAlignment(GEPI->getOperand(0), TD);
 | |
|     if (BaseAlignment == 0) return 0;
 | |
|     
 | |
|     // If all indexes are zero, it is just the alignment of the base pointer.
 | |
|     bool AllZeroOperands = true;
 | |
|     for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
 | |
|       if (!isa<Constant>(GEPI->getOperand(i)) ||
 | |
|           !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
 | |
|         AllZeroOperands = false;
 | |
|         break;
 | |
|       }
 | |
|     if (AllZeroOperands)
 | |
|       return BaseAlignment;
 | |
|     
 | |
|     // Otherwise, if the base alignment is >= the alignment we expect for the
 | |
|     // base pointer type, then we know that the resultant pointer is aligned at
 | |
|     // least as much as its type requires.
 | |
|     if (!TD) return 0;
 | |
| 
 | |
|     const Type *BasePtrTy = GEPI->getOperand(0)->getType();
 | |
|     if (TD->getTypeAlignment(cast<PointerType>(BasePtrTy)->getElementType())
 | |
|         <= BaseAlignment) {
 | |
|       const Type *GEPTy = GEPI->getType();
 | |
|       return TD->getTypeAlignment(cast<PointerType>(GEPTy)->getElementType());
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitCallInst - CallInst simplification.  This mostly only handles folding 
 | |
| /// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
 | |
| /// the heavy lifting.
 | |
| ///
 | |
| Instruction *InstCombiner::visitCallInst(CallInst &CI) {
 | |
|   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
 | |
|   if (!II) return visitCallSite(&CI);
 | |
|   
 | |
|   // Intrinsics cannot occur in an invoke, so handle them here instead of in
 | |
|   // visitCallSite.
 | |
|   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
 | |
|     bool Changed = false;
 | |
| 
 | |
|     // memmove/cpy/set of zero bytes is a noop.
 | |
|     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
 | |
|       if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
 | |
| 
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
 | |
|         if (CI->getRawValue() == 1) {
 | |
|           // Replace the instruction with just byte operations.  We would
 | |
|           // transform other cases to loads/stores, but we don't know if
 | |
|           // alignment is sufficient.
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If we have a memmove and the source operation is a constant global,
 | |
|     // then the source and dest pointers can't alias, so we can change this
 | |
|     // into a call to memcpy.
 | |
|     if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(II)) {
 | |
|       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
 | |
|         if (GVSrc->isConstant()) {
 | |
|           Module *M = CI.getParent()->getParent()->getParent();
 | |
|           const char *Name;
 | |
|           if (CI.getCalledFunction()->getFunctionType()->getParamType(3) == 
 | |
|               Type::UIntTy)
 | |
|             Name = "llvm.memcpy.i32";
 | |
|           else
 | |
|             Name = "llvm.memcpy.i64";
 | |
|           Function *MemCpy = M->getOrInsertFunction(Name,
 | |
|                                      CI.getCalledFunction()->getFunctionType());
 | |
|           CI.setOperand(0, MemCpy);
 | |
|           Changed = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If we can determine a pointer alignment that is bigger than currently
 | |
|     // set, update the alignment.
 | |
|     if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
 | |
|       unsigned Alignment1 = GetKnownAlignment(MI->getOperand(1), TD);
 | |
|       unsigned Alignment2 = GetKnownAlignment(MI->getOperand(2), TD);
 | |
|       unsigned Align = std::min(Alignment1, Alignment2);
 | |
|       if (MI->getAlignment()->getRawValue() < Align) {
 | |
|         MI->setAlignment(ConstantUInt::get(Type::UIntTy, Align));
 | |
|         Changed = true;
 | |
|       }
 | |
|     } else if (isa<MemSetInst>(MI)) {
 | |
|       unsigned Alignment = GetKnownAlignment(MI->getDest(), TD);
 | |
|       if (MI->getAlignment()->getRawValue() < Alignment) {
 | |
|         MI->setAlignment(ConstantUInt::get(Type::UIntTy, Alignment));
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|           
 | |
|     if (Changed) return II;
 | |
|   } else {
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default: break;
 | |
|     case Intrinsic::ppc_altivec_lvx:
 | |
|     case Intrinsic::ppc_altivec_lvxl:
 | |
|     case Intrinsic::x86_sse_loadu_ps:
 | |
|     case Intrinsic::x86_sse2_loadu_pd:
 | |
|     case Intrinsic::x86_sse2_loadu_dq:
 | |
|       // Turn PPC lvx     -> load if the pointer is known aligned.
 | |
|       // Turn X86 loadups -> load if the pointer is known aligned.
 | |
|       if (GetKnownAlignment(II->getOperand(1), TD) >= 16) {
 | |
|         Value *Ptr = InsertCastBefore(II->getOperand(1),
 | |
|                                       PointerType::get(II->getType()), CI);
 | |
|         return new LoadInst(Ptr);
 | |
|       }
 | |
|       break;
 | |
|     case Intrinsic::ppc_altivec_stvx:
 | |
|     case Intrinsic::ppc_altivec_stvxl:
 | |
|       // Turn stvx -> store if the pointer is known aligned.
 | |
|       if (GetKnownAlignment(II->getOperand(2), TD) >= 16) {
 | |
|         const Type *OpPtrTy = PointerType::get(II->getOperand(1)->getType());
 | |
|         Value *Ptr = InsertCastBefore(II->getOperand(2), OpPtrTy, CI);
 | |
|         return new StoreInst(II->getOperand(1), Ptr);
 | |
|       }
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_storeu_ps:
 | |
|     case Intrinsic::x86_sse2_storeu_pd:
 | |
|     case Intrinsic::x86_sse2_storeu_dq:
 | |
|     case Intrinsic::x86_sse2_storel_dq:
 | |
|       // Turn X86 storeu -> store if the pointer is known aligned.
 | |
|       if (GetKnownAlignment(II->getOperand(1), TD) >= 16) {
 | |
|         const Type *OpPtrTy = PointerType::get(II->getOperand(2)->getType());
 | |
|         Value *Ptr = InsertCastBefore(II->getOperand(1), OpPtrTy, CI);
 | |
|         return new StoreInst(II->getOperand(2), Ptr);
 | |
|       }
 | |
|       break;
 | |
|     case Intrinsic::ppc_altivec_vperm:
 | |
|       // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
 | |
|       if (ConstantPacked *Mask = dyn_cast<ConstantPacked>(II->getOperand(3))) {
 | |
|         assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
 | |
|         
 | |
|         // Check that all of the elements are integer constants or undefs.
 | |
|         bool AllEltsOk = true;
 | |
|         for (unsigned i = 0; i != 16; ++i) {
 | |
|           if (!isa<ConstantInt>(Mask->getOperand(i)) && 
 | |
|               !isa<UndefValue>(Mask->getOperand(i))) {
 | |
|             AllEltsOk = false;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         
 | |
|         if (AllEltsOk) {
 | |
|           // Cast the input vectors to byte vectors.
 | |
|           Value *Op0 = InsertCastBefore(II->getOperand(1), Mask->getType(), CI);
 | |
|           Value *Op1 = InsertCastBefore(II->getOperand(2), Mask->getType(), CI);
 | |
|           Value *Result = UndefValue::get(Op0->getType());
 | |
|           
 | |
|           // Only extract each element once.
 | |
|           Value *ExtractedElts[32];
 | |
|           memset(ExtractedElts, 0, sizeof(ExtractedElts));
 | |
|           
 | |
|           for (unsigned i = 0; i != 16; ++i) {
 | |
|             if (isa<UndefValue>(Mask->getOperand(i)))
 | |
|               continue;
 | |
|             unsigned Idx =cast<ConstantInt>(Mask->getOperand(i))->getRawValue();
 | |
|             Idx &= 31;  // Match the hardware behavior.
 | |
|             
 | |
|             if (ExtractedElts[Idx] == 0) {
 | |
|               Instruction *Elt = 
 | |
|                 new ExtractElementInst(Idx < 16 ? Op0 : Op1,
 | |
|                                        ConstantUInt::get(Type::UIntTy, Idx&15),
 | |
|                                        "tmp");
 | |
|               InsertNewInstBefore(Elt, CI);
 | |
|               ExtractedElts[Idx] = Elt;
 | |
|             }
 | |
|           
 | |
|             // Insert this value into the result vector.
 | |
|             Result = new InsertElementInst(Result, ExtractedElts[Idx],
 | |
|                                            ConstantUInt::get(Type::UIntTy, i),
 | |
|                                            "tmp");
 | |
|             InsertNewInstBefore(cast<Instruction>(Result), CI);
 | |
|           }
 | |
|           return new CastInst(Result, CI.getType());
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case Intrinsic::stackrestore: {
 | |
|       // If the save is right next to the restore, remove the restore.  This can
 | |
|       // happen when variable allocas are DCE'd.
 | |
|       if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
 | |
|         if (SS->getIntrinsicID() == Intrinsic::stacksave) {
 | |
|           BasicBlock::iterator BI = SS;
 | |
|           if (&*++BI == II)
 | |
|             return EraseInstFromFunction(CI);
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // If the stack restore is in a return/unwind block and if there are no
 | |
|       // allocas or calls between the restore and the return, nuke the restore.
 | |
|       TerminatorInst *TI = II->getParent()->getTerminator();
 | |
|       if (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)) {
 | |
|         BasicBlock::iterator BI = II;
 | |
|         bool CannotRemove = false;
 | |
|         for (++BI; &*BI != TI; ++BI) {
 | |
|           if (isa<AllocaInst>(BI) ||
 | |
|               (isa<CallInst>(BI) && !isa<IntrinsicInst>(BI))) {
 | |
|             CannotRemove = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if (!CannotRemove)
 | |
|           return EraseInstFromFunction(CI);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return visitCallSite(II);
 | |
| }
 | |
| 
 | |
| // InvokeInst simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
 | |
|   return visitCallSite(&II);
 | |
| }
 | |
| 
 | |
| // visitCallSite - Improvements for call and invoke instructions.
 | |
| //
 | |
| Instruction *InstCombiner::visitCallSite(CallSite CS) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // If the callee is a constexpr cast of a function, attempt to move the cast
 | |
|   // to the arguments of the call/invoke.
 | |
|   if (transformConstExprCastCall(CS)) return 0;
 | |
| 
 | |
|   Value *Callee = CS.getCalledValue();
 | |
| 
 | |
|   if (Function *CalleeF = dyn_cast<Function>(Callee))
 | |
|     if (CalleeF->getCallingConv() != CS.getCallingConv()) {
 | |
|       Instruction *OldCall = CS.getInstruction();
 | |
|       // If the call and callee calling conventions don't match, this call must
 | |
|       // be unreachable, as the call is undefined.
 | |
|       new StoreInst(ConstantBool::getTrue(),
 | |
|                     UndefValue::get(PointerType::get(Type::BoolTy)), OldCall);
 | |
|       if (!OldCall->use_empty())
 | |
|         OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
 | |
|       if (isa<CallInst>(OldCall))   // Not worth removing an invoke here.
 | |
|         return EraseInstFromFunction(*OldCall);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|   if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
 | |
|     // This instruction is not reachable, just remove it.  We insert a store to
 | |
|     // undef so that we know that this code is not reachable, despite the fact
 | |
|     // that we can't modify the CFG here.
 | |
|     new StoreInst(ConstantBool::getTrue(),
 | |
|                   UndefValue::get(PointerType::get(Type::BoolTy)),
 | |
|                   CS.getInstruction());
 | |
| 
 | |
|     if (!CS.getInstruction()->use_empty())
 | |
|       CS.getInstruction()->
 | |
|         replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
 | |
| 
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
 | |
|       // Don't break the CFG, insert a dummy cond branch.
 | |
|       new BranchInst(II->getNormalDest(), II->getUnwindDest(),
 | |
|                      ConstantBool::getTrue(), II);
 | |
|     }
 | |
|     return EraseInstFromFunction(*CS.getInstruction());
 | |
|   }
 | |
| 
 | |
|   const PointerType *PTy = cast<PointerType>(Callee->getType());
 | |
|   const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | |
|   if (FTy->isVarArg()) {
 | |
|     // See if we can optimize any arguments passed through the varargs area of
 | |
|     // the call.
 | |
|     for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
 | |
|            E = CS.arg_end(); I != E; ++I)
 | |
|       if (CastInst *CI = dyn_cast<CastInst>(*I)) {
 | |
|         // If this cast does not effect the value passed through the varargs
 | |
|         // area, we can eliminate the use of the cast.
 | |
|         Value *Op = CI->getOperand(0);
 | |
|         if (CI->getType()->isLosslesslyConvertibleTo(Op->getType())) {
 | |
|           *I = Op;
 | |
|           Changed = true;
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return Changed ? CS.getInstruction() : 0;
 | |
| }
 | |
| 
 | |
| // transformConstExprCastCall - If the callee is a constexpr cast of a function,
 | |
| // attempt to move the cast to the arguments of the call/invoke.
 | |
| //
 | |
| bool InstCombiner::transformConstExprCastCall(CallSite CS) {
 | |
|   if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
 | |
|   ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
 | |
|   if (CE->getOpcode() != Instruction::Cast || !isa<Function>(CE->getOperand(0)))
 | |
|     return false;
 | |
|   Function *Callee = cast<Function>(CE->getOperand(0));
 | |
|   Instruction *Caller = CS.getInstruction();
 | |
| 
 | |
|   // Okay, this is a cast from a function to a different type.  Unless doing so
 | |
|   // would cause a type conversion of one of our arguments, change this call to
 | |
|   // be a direct call with arguments casted to the appropriate types.
 | |
|   //
 | |
|   const FunctionType *FT = Callee->getFunctionType();
 | |
|   const Type *OldRetTy = Caller->getType();
 | |
| 
 | |
|   // Check to see if we are changing the return type...
 | |
|   if (OldRetTy != FT->getReturnType()) {
 | |
|     if (Callee->isExternal() &&
 | |
|         !(OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType()) ||
 | |
|           (isa<PointerType>(FT->getReturnType()) && 
 | |
|            TD->getIntPtrType()->isLosslesslyConvertibleTo(OldRetTy)))
 | |
|         && !Caller->use_empty())
 | |
|       return false;   // Cannot transform this return value...
 | |
| 
 | |
|     // If the callsite is an invoke instruction, and the return value is used by
 | |
|     // a PHI node in a successor, we cannot change the return type of the call
 | |
|     // because there is no place to put the cast instruction (without breaking
 | |
|     // the critical edge).  Bail out in this case.
 | |
|     if (!Caller->use_empty())
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
 | |
|         for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
 | |
|              UI != E; ++UI)
 | |
|           if (PHINode *PN = dyn_cast<PHINode>(*UI))
 | |
|             if (PN->getParent() == II->getNormalDest() ||
 | |
|                 PN->getParent() == II->getUnwindDest())
 | |
|               return false;
 | |
|   }
 | |
| 
 | |
|   unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
 | |
|   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
 | |
| 
 | |
|   CallSite::arg_iterator AI = CS.arg_begin();
 | |
|   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
 | |
|     const Type *ParamTy = FT->getParamType(i);
 | |
|     const Type *ActTy = (*AI)->getType();
 | |
|     ConstantSInt* c = dyn_cast<ConstantSInt>(*AI);
 | |
|     //Either we can cast directly, or we can upconvert the argument
 | |
|     bool isConvertible = ActTy->isLosslesslyConvertibleTo(ParamTy) ||
 | |
|       (ParamTy->isIntegral() && ActTy->isIntegral() &&
 | |
|        ParamTy->isSigned() == ActTy->isSigned() &&
 | |
|        ParamTy->getPrimitiveSize() >= ActTy->getPrimitiveSize()) ||
 | |
|       (c && ParamTy->getPrimitiveSize() >= ActTy->getPrimitiveSize() &&
 | |
|        c->getValue() > 0);
 | |
|     if (Callee->isExternal() && !isConvertible) return false;
 | |
|   }
 | |
| 
 | |
|   if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
 | |
|       Callee->isExternal())
 | |
|     return false;   // Do not delete arguments unless we have a function body...
 | |
| 
 | |
|   // Okay, we decided that this is a safe thing to do: go ahead and start
 | |
|   // inserting cast instructions as necessary...
 | |
|   std::vector<Value*> Args;
 | |
|   Args.reserve(NumActualArgs);
 | |
| 
 | |
|   AI = CS.arg_begin();
 | |
|   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
 | |
|     const Type *ParamTy = FT->getParamType(i);
 | |
|     if ((*AI)->getType() == ParamTy) {
 | |
|       Args.push_back(*AI);
 | |
|     } else {
 | |
|       Args.push_back(InsertNewInstBefore(new CastInst(*AI, ParamTy, "tmp"),
 | |
|                                          *Caller));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the function takes more arguments than the call was taking, add them
 | |
|   // now...
 | |
|   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
 | |
|     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
 | |
| 
 | |
|   // If we are removing arguments to the function, emit an obnoxious warning...
 | |
|   if (FT->getNumParams() < NumActualArgs)
 | |
|     if (!FT->isVarArg()) {
 | |
|       std::cerr << "WARNING: While resolving call to function '"
 | |
|                 << Callee->getName() << "' arguments were dropped!\n";
 | |
|     } else {
 | |
|       // Add all of the arguments in their promoted form to the arg list...
 | |
|       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
 | |
|         const Type *PTy = getPromotedType((*AI)->getType());
 | |
|         if (PTy != (*AI)->getType()) {
 | |
|           // Must promote to pass through va_arg area!
 | |
|           Instruction *Cast = new CastInst(*AI, PTy, "tmp");
 | |
|           InsertNewInstBefore(Cast, *Caller);
 | |
|           Args.push_back(Cast);
 | |
|         } else {
 | |
|           Args.push_back(*AI);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   if (FT->getReturnType() == Type::VoidTy)
 | |
|     Caller->setName("");   // Void type should not have a name...
 | |
| 
 | |
|   Instruction *NC;
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | |
|     NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
 | |
|                         Args, Caller->getName(), Caller);
 | |
|     cast<InvokeInst>(II)->setCallingConv(II->getCallingConv());
 | |
|   } else {
 | |
|     NC = new CallInst(Callee, Args, Caller->getName(), Caller);
 | |
|     if (cast<CallInst>(Caller)->isTailCall())
 | |
|       cast<CallInst>(NC)->setTailCall();
 | |
|    cast<CallInst>(NC)->setCallingConv(cast<CallInst>(Caller)->getCallingConv());
 | |
|   }
 | |
| 
 | |
|   // Insert a cast of the return type as necessary...
 | |
|   Value *NV = NC;
 | |
|   if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
 | |
|     if (NV->getType() != Type::VoidTy) {
 | |
|       NV = NC = new CastInst(NC, Caller->getType(), "tmp");
 | |
| 
 | |
|       // If this is an invoke instruction, we should insert it after the first
 | |
|       // non-phi, instruction in the normal successor block.
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | |
|         BasicBlock::iterator I = II->getNormalDest()->begin();
 | |
|         while (isa<PHINode>(I)) ++I;
 | |
|         InsertNewInstBefore(NC, *I);
 | |
|       } else {
 | |
|         // Otherwise, it's a call, just insert cast right after the call instr
 | |
|         InsertNewInstBefore(NC, *Caller);
 | |
|       }
 | |
|       AddUsersToWorkList(*Caller);
 | |
|     } else {
 | |
|       NV = UndefValue::get(Caller->getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
 | |
|     Caller->replaceAllUsesWith(NV);
 | |
|   Caller->getParent()->getInstList().erase(Caller);
 | |
|   removeFromWorkList(Caller);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
 | |
| // operator and they all are only used by the PHI, PHI together their
 | |
| // inputs, and do the operation once, to the result of the PHI.
 | |
| Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
 | |
|   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
 | |
| 
 | |
|   // Scan the instruction, looking for input operations that can be folded away.
 | |
|   // If all input operands to the phi are the same instruction (e.g. a cast from
 | |
|   // the same type or "+42") we can pull the operation through the PHI, reducing
 | |
|   // code size and simplifying code.
 | |
|   Constant *ConstantOp = 0;
 | |
|   const Type *CastSrcTy = 0;
 | |
|   if (isa<CastInst>(FirstInst)) {
 | |
|     CastSrcTy = FirstInst->getOperand(0)->getType();
 | |
|   } else if (isa<BinaryOperator>(FirstInst) || isa<ShiftInst>(FirstInst)) {
 | |
|     // Can fold binop or shift if the RHS is a constant.
 | |
|     ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
 | |
|     if (ConstantOp == 0) return 0;
 | |
|   } else {
 | |
|     return 0;  // Cannot fold this operation.
 | |
|   }
 | |
| 
 | |
|   // Check to see if all arguments are the same operation.
 | |
|   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
 | |
|     Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
 | |
|     if (!I->hasOneUse() || I->getOpcode() != FirstInst->getOpcode())
 | |
|       return 0;
 | |
|     if (CastSrcTy) {
 | |
|       if (I->getOperand(0)->getType() != CastSrcTy)
 | |
|         return 0;  // Cast operation must match.
 | |
|     } else if (I->getOperand(1) != ConstantOp) {
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, they are all the same operation.  Create a new PHI node of the
 | |
|   // correct type, and PHI together all of the LHS's of the instructions.
 | |
|   PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(),
 | |
|                                PN.getName()+".in");
 | |
|   NewPN->reserveOperandSpace(PN.getNumOperands()/2);
 | |
| 
 | |
|   Value *InVal = FirstInst->getOperand(0);
 | |
|   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
 | |
| 
 | |
|   // Add all operands to the new PHI.
 | |
|   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
 | |
|     if (NewInVal != InVal)
 | |
|       InVal = 0;
 | |
|     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
 | |
|   }
 | |
| 
 | |
|   Value *PhiVal;
 | |
|   if (InVal) {
 | |
|     // The new PHI unions all of the same values together.  This is really
 | |
|     // common, so we handle it intelligently here for compile-time speed.
 | |
|     PhiVal = InVal;
 | |
|     delete NewPN;
 | |
|   } else {
 | |
|     InsertNewInstBefore(NewPN, PN);
 | |
|     PhiVal = NewPN;
 | |
|   }
 | |
| 
 | |
|   // Insert and return the new operation.
 | |
|   if (isa<CastInst>(FirstInst))
 | |
|     return new CastInst(PhiVal, PN.getType());
 | |
|   else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
 | |
|     return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
 | |
|   else
 | |
|     return new ShiftInst(cast<ShiftInst>(FirstInst)->getOpcode(),
 | |
|                          PhiVal, ConstantOp);
 | |
| }
 | |
| 
 | |
| /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
 | |
| /// that is dead.
 | |
| static bool DeadPHICycle(PHINode *PN, std::set<PHINode*> &PotentiallyDeadPHIs) {
 | |
|   if (PN->use_empty()) return true;
 | |
|   if (!PN->hasOneUse()) return false;
 | |
| 
 | |
|   // Remember this node, and if we find the cycle, return.
 | |
|   if (!PotentiallyDeadPHIs.insert(PN).second)
 | |
|     return true;
 | |
| 
 | |
|   if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
 | |
|     return DeadPHICycle(PU, PotentiallyDeadPHIs);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // PHINode simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitPHINode(PHINode &PN) {
 | |
|   // If LCSSA is around, don't mess with Phi nodes
 | |
|   if (mustPreserveAnalysisID(LCSSAID)) return 0;
 | |
|   
 | |
|   if (Value *V = PN.hasConstantValue())
 | |
|     return ReplaceInstUsesWith(PN, V);
 | |
| 
 | |
|   // If the only user of this instruction is a cast instruction, and all of the
 | |
|   // incoming values are constants, change this PHI to merge together the casted
 | |
|   // constants.
 | |
|   if (PN.hasOneUse())
 | |
|     if (CastInst *CI = dyn_cast<CastInst>(PN.use_back()))
 | |
|       if (CI->getType() != PN.getType()) {  // noop casts will be folded
 | |
|         bool AllConstant = true;
 | |
|         for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | |
|           if (!isa<Constant>(PN.getIncomingValue(i))) {
 | |
|             AllConstant = false;
 | |
|             break;
 | |
|           }
 | |
|         if (AllConstant) {
 | |
|           // Make a new PHI with all casted values.
 | |
|           PHINode *New = new PHINode(CI->getType(), PN.getName(), &PN);
 | |
|           for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|             Constant *OldArg = cast<Constant>(PN.getIncomingValue(i));
 | |
|             New->addIncoming(ConstantExpr::getCast(OldArg, New->getType()),
 | |
|                              PN.getIncomingBlock(i));
 | |
|           }
 | |
| 
 | |
|           // Update the cast instruction.
 | |
|           CI->setOperand(0, New);
 | |
|           WorkList.push_back(CI);    // revisit the cast instruction to fold.
 | |
|           WorkList.push_back(New);   // Make sure to revisit the new Phi
 | |
|           return &PN;                // PN is now dead!
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   // If all PHI operands are the same operation, pull them through the PHI,
 | |
|   // reducing code size.
 | |
|   if (isa<Instruction>(PN.getIncomingValue(0)) &&
 | |
|       PN.getIncomingValue(0)->hasOneUse())
 | |
|     if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
 | |
|       return Result;
 | |
| 
 | |
|   // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
 | |
|   // this PHI only has a single use (a PHI), and if that PHI only has one use (a
 | |
|   // PHI)... break the cycle.
 | |
|   if (PN.hasOneUse())
 | |
|     if (PHINode *PU = dyn_cast<PHINode>(PN.use_back())) {
 | |
|       std::set<PHINode*> PotentiallyDeadPHIs;
 | |
|       PotentiallyDeadPHIs.insert(&PN);
 | |
|       if (DeadPHICycle(PU, PotentiallyDeadPHIs))
 | |
|         return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
 | |
|     }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static Value *InsertSignExtendToPtrTy(Value *V, const Type *DTy,
 | |
|                                       Instruction *InsertPoint,
 | |
|                                       InstCombiner *IC) {
 | |
|   unsigned PS = IC->getTargetData().getPointerSize();
 | |
|   const Type *VTy = V->getType();
 | |
|   if (!VTy->isSigned() && VTy->getPrimitiveSize() < PS)
 | |
|     // We must insert a cast to ensure we sign-extend.
 | |
|     V = IC->InsertNewInstBefore(new CastInst(V, VTy->getSignedVersion(),
 | |
|                                              V->getName()), *InsertPoint);
 | |
|   return IC->InsertNewInstBefore(new CastInst(V, DTy, V->getName()),
 | |
|                                  *InsertPoint);
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | |
|   Value *PtrOp = GEP.getOperand(0);
 | |
|   // Is it 'getelementptr %P, long 0'  or 'getelementptr %P'
 | |
|   // If so, eliminate the noop.
 | |
|   if (GEP.getNumOperands() == 1)
 | |
|     return ReplaceInstUsesWith(GEP, PtrOp);
 | |
| 
 | |
|   if (isa<UndefValue>(GEP.getOperand(0)))
 | |
|     return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
 | |
| 
 | |
|   bool HasZeroPointerIndex = false;
 | |
|   if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
 | |
|     HasZeroPointerIndex = C->isNullValue();
 | |
| 
 | |
|   if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
 | |
|     return ReplaceInstUsesWith(GEP, PtrOp);
 | |
| 
 | |
|   // Eliminate unneeded casts for indices.
 | |
|   bool MadeChange = false;
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|   for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI)
 | |
|     if (isa<SequentialType>(*GTI)) {
 | |
|       if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
 | |
|         Value *Src = CI->getOperand(0);
 | |
|         const Type *SrcTy = Src->getType();
 | |
|         const Type *DestTy = CI->getType();
 | |
|         if (Src->getType()->isInteger()) {
 | |
|           if (SrcTy->getPrimitiveSizeInBits() ==
 | |
|                        DestTy->getPrimitiveSizeInBits()) {
 | |
|             // We can always eliminate a cast from ulong or long to the other.
 | |
|             // We can always eliminate a cast from uint to int or the other on
 | |
|             // 32-bit pointer platforms.
 | |
|             if (DestTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()){
 | |
|               MadeChange = true;
 | |
|               GEP.setOperand(i, Src);
 | |
|             }
 | |
|           } else if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
 | |
|                      SrcTy->getPrimitiveSize() == 4) {
 | |
|             // We can always eliminate a cast from int to [u]long.  We can
 | |
|             // eliminate a cast from uint to [u]long iff the target is a 32-bit
 | |
|             // pointer target.
 | |
|             if (SrcTy->isSigned() ||
 | |
|                 SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
 | |
|               MadeChange = true;
 | |
|               GEP.setOperand(i, Src);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       // If we are using a wider index than needed for this platform, shrink it
 | |
|       // to what we need.  If the incoming value needs a cast instruction,
 | |
|       // insert it.  This explicit cast can make subsequent optimizations more
 | |
|       // obvious.
 | |
|       Value *Op = GEP.getOperand(i);
 | |
|       if (Op->getType()->getPrimitiveSize() > TD->getPointerSize())
 | |
|         if (Constant *C = dyn_cast<Constant>(Op)) {
 | |
|           GEP.setOperand(i, ConstantExpr::getCast(C,
 | |
|                                      TD->getIntPtrType()->getSignedVersion()));
 | |
|           MadeChange = true;
 | |
|         } else {
 | |
|           Op = InsertNewInstBefore(new CastInst(Op, TD->getIntPtrType(),
 | |
|                                                 Op->getName()), GEP);
 | |
|           GEP.setOperand(i, Op);
 | |
|           MadeChange = true;
 | |
|         }
 | |
| 
 | |
|       // If this is a constant idx, make sure to canonicalize it to be a signed
 | |
|       // operand, otherwise CSE and other optimizations are pessimized.
 | |
|       if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op)) {
 | |
|         GEP.setOperand(i, ConstantExpr::getCast(CUI,
 | |
|                                           CUI->getType()->getSignedVersion()));
 | |
|         MadeChange = true;
 | |
|       }
 | |
|     }
 | |
|   if (MadeChange) return &GEP;
 | |
| 
 | |
|   // Combine Indices - If the source pointer to this getelementptr instruction
 | |
|   // is a getelementptr instruction, combine the indices of the two
 | |
|   // getelementptr instructions into a single instruction.
 | |
|   //
 | |
|   std::vector<Value*> SrcGEPOperands;
 | |
|   if (User *Src = dyn_castGetElementPtr(PtrOp))
 | |
|     SrcGEPOperands.assign(Src->op_begin(), Src->op_end());
 | |
| 
 | |
|   if (!SrcGEPOperands.empty()) {
 | |
|     // Note that if our source is a gep chain itself that we wait for that
 | |
|     // chain to be resolved before we perform this transformation.  This
 | |
|     // avoids us creating a TON of code in some cases.
 | |
|     //
 | |
|     if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
 | |
|         cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
 | |
|       return 0;   // Wait until our source is folded to completion.
 | |
| 
 | |
|     std::vector<Value *> Indices;
 | |
| 
 | |
|     // Find out whether the last index in the source GEP is a sequential idx.
 | |
|     bool EndsWithSequential = false;
 | |
|     for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
 | |
|            E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
 | |
|       EndsWithSequential = !isa<StructType>(*I);
 | |
| 
 | |
|     // Can we combine the two pointer arithmetics offsets?
 | |
|     if (EndsWithSequential) {
 | |
|       // Replace: gep (gep %P, long B), long A, ...
 | |
|       // With:    T = long A+B; gep %P, T, ...
 | |
|       //
 | |
|       Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
 | |
|       if (SO1 == Constant::getNullValue(SO1->getType())) {
 | |
|         Sum = GO1;
 | |
|       } else if (GO1 == Constant::getNullValue(GO1->getType())) {
 | |
|         Sum = SO1;
 | |
|       } else {
 | |
|         // If they aren't the same type, convert both to an integer of the
 | |
|         // target's pointer size.
 | |
|         if (SO1->getType() != GO1->getType()) {
 | |
|           if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
 | |
|             SO1 = ConstantExpr::getCast(SO1C, GO1->getType());
 | |
|           } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
 | |
|             GO1 = ConstantExpr::getCast(GO1C, SO1->getType());
 | |
|           } else {
 | |
|             unsigned PS = TD->getPointerSize();
 | |
|             if (SO1->getType()->getPrimitiveSize() == PS) {
 | |
|               // Convert GO1 to SO1's type.
 | |
|               GO1 = InsertSignExtendToPtrTy(GO1, SO1->getType(), &GEP, this);
 | |
| 
 | |
|             } else if (GO1->getType()->getPrimitiveSize() == PS) {
 | |
|               // Convert SO1 to GO1's type.
 | |
|               SO1 = InsertSignExtendToPtrTy(SO1, GO1->getType(), &GEP, this);
 | |
|             } else {
 | |
|               const Type *PT = TD->getIntPtrType();
 | |
|               SO1 = InsertSignExtendToPtrTy(SO1, PT, &GEP, this);
 | |
|               GO1 = InsertSignExtendToPtrTy(GO1, PT, &GEP, this);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         if (isa<Constant>(SO1) && isa<Constant>(GO1))
 | |
|           Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
 | |
|         else {
 | |
|           Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
 | |
|           InsertNewInstBefore(cast<Instruction>(Sum), GEP);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Recycle the GEP we already have if possible.
 | |
|       if (SrcGEPOperands.size() == 2) {
 | |
|         GEP.setOperand(0, SrcGEPOperands[0]);
 | |
|         GEP.setOperand(1, Sum);
 | |
|         return &GEP;
 | |
|       } else {
 | |
|         Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
 | |
|                        SrcGEPOperands.end()-1);
 | |
|         Indices.push_back(Sum);
 | |
|         Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
 | |
|       }
 | |
|     } else if (isa<Constant>(*GEP.idx_begin()) &&
 | |
|                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
 | |
|                SrcGEPOperands.size() != 1) {
 | |
|       // Otherwise we can do the fold if the first index of the GEP is a zero
 | |
|       Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
 | |
|                      SrcGEPOperands.end());
 | |
|       Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
 | |
|     }
 | |
| 
 | |
|     if (!Indices.empty())
 | |
|       return new GetElementPtrInst(SrcGEPOperands[0], Indices, GEP.getName());
 | |
| 
 | |
|   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
 | |
|     // GEP of global variable.  If all of the indices for this GEP are
 | |
|     // constants, we can promote this to a constexpr instead of an instruction.
 | |
| 
 | |
|     // Scan for nonconstants...
 | |
|     std::vector<Constant*> Indices;
 | |
|     User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
 | |
|     for (; I != E && isa<Constant>(*I); ++I)
 | |
|       Indices.push_back(cast<Constant>(*I));
 | |
| 
 | |
|     if (I == E) {  // If they are all constants...
 | |
|       Constant *CE = ConstantExpr::getGetElementPtr(GV, Indices);
 | |
| 
 | |
|       // Replace all uses of the GEP with the new constexpr...
 | |
|       return ReplaceInstUsesWith(GEP, CE);
 | |
|     }
 | |
|   } else if (Value *X = isCast(PtrOp)) {  // Is the operand a cast?
 | |
|     if (!isa<PointerType>(X->getType())) {
 | |
|       // Not interesting.  Source pointer must be a cast from pointer.
 | |
|     } else if (HasZeroPointerIndex) {
 | |
|       // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
 | |
|       // into     : GEP [10 x ubyte]* X, long 0, ...
 | |
|       //
 | |
|       // This occurs when the program declares an array extern like "int X[];"
 | |
|       //
 | |
|       const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
 | |
|       const PointerType *XTy = cast<PointerType>(X->getType());
 | |
|       if (const ArrayType *XATy =
 | |
|           dyn_cast<ArrayType>(XTy->getElementType()))
 | |
|         if (const ArrayType *CATy =
 | |
|             dyn_cast<ArrayType>(CPTy->getElementType()))
 | |
|           if (CATy->getElementType() == XATy->getElementType()) {
 | |
|             // At this point, we know that the cast source type is a pointer
 | |
|             // to an array of the same type as the destination pointer
 | |
|             // array.  Because the array type is never stepped over (there
 | |
|             // is a leading zero) we can fold the cast into this GEP.
 | |
|             GEP.setOperand(0, X);
 | |
|             return &GEP;
 | |
|           }
 | |
|     } else if (GEP.getNumOperands() == 2) {
 | |
|       // Transform things like:
 | |
|       // %t = getelementptr ubyte* cast ([2 x int]* %str to uint*), uint %V
 | |
|       // into:  %t1 = getelementptr [2 x int*]* %str, int 0, uint %V; cast
 | |
|       const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
 | |
|       const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
 | |
|       if (isa<ArrayType>(SrcElTy) &&
 | |
|           TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
 | |
|           TD->getTypeSize(ResElTy)) {
 | |
|         Value *V = InsertNewInstBefore(
 | |
|                new GetElementPtrInst(X, Constant::getNullValue(Type::IntTy),
 | |
|                                      GEP.getOperand(1), GEP.getName()), GEP);
 | |
|         return new CastInst(V, GEP.getType());
 | |
|       }
 | |
|       
 | |
|       // Transform things like:
 | |
|       // getelementptr sbyte* cast ([100 x double]* X to sbyte*), int %tmp
 | |
|       //   (where tmp = 8*tmp2) into:
 | |
|       // getelementptr [100 x double]* %arr, int 0, int %tmp.2
 | |
|       
 | |
|       if (isa<ArrayType>(SrcElTy) &&
 | |
|           (ResElTy == Type::SByteTy || ResElTy == Type::UByteTy)) {
 | |
|         uint64_t ArrayEltSize =
 | |
|             TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType());
 | |
|         
 | |
|         // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
 | |
|         // allow either a mul, shift, or constant here.
 | |
|         Value *NewIdx = 0;
 | |
|         ConstantInt *Scale = 0;
 | |
|         if (ArrayEltSize == 1) {
 | |
|           NewIdx = GEP.getOperand(1);
 | |
|           Scale = ConstantInt::get(NewIdx->getType(), 1);
 | |
|         } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
 | |
|           NewIdx = ConstantInt::get(CI->getType(), 1);
 | |
|           Scale = CI;
 | |
|         } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
 | |
|           if (Inst->getOpcode() == Instruction::Shl &&
 | |
|               isa<ConstantInt>(Inst->getOperand(1))) {
 | |
|             unsigned ShAmt =cast<ConstantUInt>(Inst->getOperand(1))->getValue();
 | |
|             if (Inst->getType()->isSigned())
 | |
|               Scale = ConstantSInt::get(Inst->getType(), 1ULL << ShAmt);
 | |
|             else
 | |
|               Scale = ConstantUInt::get(Inst->getType(), 1ULL << ShAmt);
 | |
|             NewIdx = Inst->getOperand(0);
 | |
|           } else if (Inst->getOpcode() == Instruction::Mul &&
 | |
|                      isa<ConstantInt>(Inst->getOperand(1))) {
 | |
|             Scale = cast<ConstantInt>(Inst->getOperand(1));
 | |
|             NewIdx = Inst->getOperand(0);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // If the index will be to exactly the right offset with the scale taken
 | |
|         // out, perform the transformation.
 | |
|         if (Scale && Scale->getRawValue() % ArrayEltSize == 0) {
 | |
|           if (ConstantSInt *C = dyn_cast<ConstantSInt>(Scale))
 | |
|             Scale = ConstantSInt::get(C->getType(),
 | |
|                                       (int64_t)C->getRawValue() / 
 | |
|                                       (int64_t)ArrayEltSize);
 | |
|           else
 | |
|             Scale = ConstantUInt::get(Scale->getType(),
 | |
|                                       Scale->getRawValue() / ArrayEltSize);
 | |
|           if (Scale->getRawValue() != 1) {
 | |
|             Constant *C = ConstantExpr::getCast(Scale, NewIdx->getType());
 | |
|             Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale");
 | |
|             NewIdx = InsertNewInstBefore(Sc, GEP);
 | |
|           }
 | |
| 
 | |
|           // Insert the new GEP instruction.
 | |
|           Instruction *Idx =
 | |
|             new GetElementPtrInst(X, Constant::getNullValue(Type::IntTy),
 | |
|                                   NewIdx, GEP.getName());
 | |
|           Idx = InsertNewInstBefore(Idx, GEP);
 | |
|           return new CastInst(Idx, GEP.getType());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
 | |
|   // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
 | |
|   if (AI.isArrayAllocation())    // Check C != 1
 | |
|     if (const ConstantUInt *C = dyn_cast<ConstantUInt>(AI.getArraySize())) {
 | |
|       const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue());
 | |
|       AllocationInst *New = 0;
 | |
| 
 | |
|       // Create and insert the replacement instruction...
 | |
|       if (isa<MallocInst>(AI))
 | |
|         New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
 | |
|       else {
 | |
|         assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
 | |
|         New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
 | |
|       }
 | |
| 
 | |
|       InsertNewInstBefore(New, AI);
 | |
| 
 | |
|       // Scan to the end of the allocation instructions, to skip over a block of
 | |
|       // allocas if possible...
 | |
|       //
 | |
|       BasicBlock::iterator It = New;
 | |
|       while (isa<AllocationInst>(*It)) ++It;
 | |
| 
 | |
|       // Now that I is pointing to the first non-allocation-inst in the block,
 | |
|       // insert our getelementptr instruction...
 | |
|       //
 | |
|       Value *NullIdx = Constant::getNullValue(Type::IntTy);
 | |
|       Value *V = new GetElementPtrInst(New, NullIdx, NullIdx,
 | |
|                                        New->getName()+".sub", It);
 | |
| 
 | |
|       // Now make everything use the getelementptr instead of the original
 | |
|       // allocation.
 | |
|       return ReplaceInstUsesWith(AI, V);
 | |
|     } else if (isa<UndefValue>(AI.getArraySize())) {
 | |
|       return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
 | |
|     }
 | |
| 
 | |
|   // If alloca'ing a zero byte object, replace the alloca with a null pointer.
 | |
|   // Note that we only do this for alloca's, because malloc should allocate and
 | |
|   // return a unique pointer, even for a zero byte allocation.
 | |
|   if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
 | |
|       TD->getTypeSize(AI.getAllocatedType()) == 0)
 | |
|     return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
 | |
|   Value *Op = FI.getOperand(0);
 | |
| 
 | |
|   // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(Op))
 | |
|     if (isa<PointerType>(CI->getOperand(0)->getType())) {
 | |
|       FI.setOperand(0, CI->getOperand(0));
 | |
|       return &FI;
 | |
|     }
 | |
| 
 | |
|   // free undef -> unreachable.
 | |
|   if (isa<UndefValue>(Op)) {
 | |
|     // Insert a new store to null because we cannot modify the CFG here.
 | |
|     new StoreInst(ConstantBool::getTrue(),
 | |
|                   UndefValue::get(PointerType::get(Type::BoolTy)), &FI);
 | |
|     return EraseInstFromFunction(FI);
 | |
|   }
 | |
| 
 | |
|   // If we have 'free null' delete the instruction.  This can happen in stl code
 | |
|   // when lots of inlining happens.
 | |
|   if (isa<ConstantPointerNull>(Op))
 | |
|     return EraseInstFromFunction(FI);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
 | |
| static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) {
 | |
|   User *CI = cast<User>(LI.getOperand(0));
 | |
|   Value *CastOp = CI->getOperand(0);
 | |
| 
 | |
|   const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
 | |
|   if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
 | |
|     const Type *SrcPTy = SrcTy->getElementType();
 | |
| 
 | |
|     if (DestPTy->isInteger() || isa<PointerType>(DestPTy) || 
 | |
|         isa<PackedType>(DestPTy)) {
 | |
|       // If the source is an array, the code below will not succeed.  Check to
 | |
|       // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
 | |
|       // constants.
 | |
|       if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
 | |
|         if (Constant *CSrc = dyn_cast<Constant>(CastOp))
 | |
|           if (ASrcTy->getNumElements() != 0) {
 | |
|             std::vector<Value*> Idxs(2, Constant::getNullValue(Type::IntTy));
 | |
|             CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
 | |
|             SrcTy = cast<PointerType>(CastOp->getType());
 | |
|             SrcPTy = SrcTy->getElementType();
 | |
|           }
 | |
| 
 | |
|       if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) || 
 | |
|            isa<PackedType>(SrcPTy)) &&
 | |
|           // Do not allow turning this into a load of an integer, which is then
 | |
|           // casted to a pointer, this pessimizes pointer analysis a lot.
 | |
|           (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
 | |
|           IC.getTargetData().getTypeSize(SrcPTy) ==
 | |
|                IC.getTargetData().getTypeSize(DestPTy)) {
 | |
| 
 | |
|         // Okay, we are casting from one integer or pointer type to another of
 | |
|         // the same size.  Instead of casting the pointer before the load, cast
 | |
|         // the result of the loaded value.
 | |
|         Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
 | |
|                                                              CI->getName(),
 | |
|                                                          LI.isVolatile()),LI);
 | |
|         // Now cast the result of the load.
 | |
|         return new CastInst(NewLoad, LI.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// isSafeToLoadUnconditionally - Return true if we know that executing a load
 | |
| /// from this value cannot trap.  If it is not obviously safe to load from the
 | |
| /// specified pointer, we do a quick local scan of the basic block containing
 | |
| /// ScanFrom, to determine if the address is already accessed.
 | |
| static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
 | |
|   // If it is an alloca or global variable, it is always safe to load from.
 | |
|   if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
 | |
| 
 | |
|   // Otherwise, be a little bit agressive by scanning the local block where we
 | |
|   // want to check to see if the pointer is already being loaded or stored
 | |
|   // from/to.  If so, the previous load or store would have already trapped,
 | |
|   // so there is no harm doing an extra load (also, CSE will later eliminate
 | |
|   // the load entirely).
 | |
|   BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
 | |
| 
 | |
|   while (BBI != E) {
 | |
|     --BBI;
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | |
|       if (LI->getOperand(0) == V) return true;
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
 | |
|       if (SI->getOperand(1) == V) return true;
 | |
| 
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
 | |
|   Value *Op = LI.getOperand(0);
 | |
| 
 | |
|   // load (cast X) --> cast (load X) iff safe
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(Op))
 | |
|     if (Instruction *Res = InstCombineLoadCast(*this, LI))
 | |
|       return Res;
 | |
| 
 | |
|   // None of the following transforms are legal for volatile loads.
 | |
|   if (LI.isVolatile()) return 0;
 | |
|   
 | |
|   if (&LI.getParent()->front() != &LI) {
 | |
|     BasicBlock::iterator BBI = &LI; --BBI;
 | |
|     // If the instruction immediately before this is a store to the same
 | |
|     // address, do a simple form of store->load forwarding.
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
 | |
|       if (SI->getOperand(1) == LI.getOperand(0))
 | |
|         return ReplaceInstUsesWith(LI, SI->getOperand(0));
 | |
|     if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
 | |
|       if (LIB->getOperand(0) == LI.getOperand(0))
 | |
|         return ReplaceInstUsesWith(LI, LIB);
 | |
|   }
 | |
| 
 | |
|   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op))
 | |
|     if (isa<ConstantPointerNull>(GEPI->getOperand(0)) ||
 | |
|         isa<UndefValue>(GEPI->getOperand(0))) {
 | |
|       // Insert a new store to null instruction before the load to indicate
 | |
|       // that this code is not reachable.  We do this instead of inserting
 | |
|       // an unreachable instruction directly because we cannot modify the
 | |
|       // CFG.
 | |
|       new StoreInst(UndefValue::get(LI.getType()),
 | |
|                     Constant::getNullValue(Op->getType()), &LI);
 | |
|       return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | |
|     }
 | |
| 
 | |
|   if (Constant *C = dyn_cast<Constant>(Op)) {
 | |
|     // load null/undef -> undef
 | |
|     if ((C->isNullValue() || isa<UndefValue>(C))) {
 | |
|       // Insert a new store to null instruction before the load to indicate that
 | |
|       // this code is not reachable.  We do this instead of inserting an
 | |
|       // unreachable instruction directly because we cannot modify the CFG.
 | |
|       new StoreInst(UndefValue::get(LI.getType()),
 | |
|                     Constant::getNullValue(Op->getType()), &LI);
 | |
|       return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | |
|     }
 | |
| 
 | |
|     // Instcombine load (constant global) into the value loaded.
 | |
|     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
 | |
|       if (GV->isConstant() && !GV->isExternal())
 | |
|         return ReplaceInstUsesWith(LI, GV->getInitializer());
 | |
| 
 | |
|     // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
 | |
|       if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
 | |
|           if (GV->isConstant() && !GV->isExternal())
 | |
|             if (Constant *V = 
 | |
|                ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
 | |
|               return ReplaceInstUsesWith(LI, V);
 | |
|         if (CE->getOperand(0)->isNullValue()) {
 | |
|           // Insert a new store to null instruction before the load to indicate
 | |
|           // that this code is not reachable.  We do this instead of inserting
 | |
|           // an unreachable instruction directly because we cannot modify the
 | |
|           // CFG.
 | |
|           new StoreInst(UndefValue::get(LI.getType()),
 | |
|                         Constant::getNullValue(Op->getType()), &LI);
 | |
|           return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | |
|         }
 | |
| 
 | |
|       } else if (CE->getOpcode() == Instruction::Cast) {
 | |
|         if (Instruction *Res = InstCombineLoadCast(*this, LI))
 | |
|           return Res;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if (Op->hasOneUse()) {
 | |
|     // Change select and PHI nodes to select values instead of addresses: this
 | |
|     // helps alias analysis out a lot, allows many others simplifications, and
 | |
|     // exposes redundancy in the code.
 | |
|     //
 | |
|     // Note that we cannot do the transformation unless we know that the
 | |
|     // introduced loads cannot trap!  Something like this is valid as long as
 | |
|     // the condition is always false: load (select bool %C, int* null, int* %G),
 | |
|     // but it would not be valid if we transformed it to load from null
 | |
|     // unconditionally.
 | |
|     //
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
 | |
|       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
 | |
|       if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
 | |
|           isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
 | |
|         Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
 | |
|                                      SI->getOperand(1)->getName()+".val"), LI);
 | |
|         Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
 | |
|                                      SI->getOperand(2)->getName()+".val"), LI);
 | |
|         return new SelectInst(SI->getCondition(), V1, V2);
 | |
|       }
 | |
| 
 | |
|       // load (select (cond, null, P)) -> load P
 | |
|       if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|         if (C->isNullValue()) {
 | |
|           LI.setOperand(0, SI->getOperand(2));
 | |
|           return &LI;
 | |
|         }
 | |
| 
 | |
|       // load (select (cond, P, null)) -> load P
 | |
|       if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
 | |
|         if (C->isNullValue()) {
 | |
|           LI.setOperand(0, SI->getOperand(1));
 | |
|           return &LI;
 | |
|         }
 | |
| 
 | |
|     } else if (PHINode *PN = dyn_cast<PHINode>(Op)) {
 | |
|       // load (phi (&V1, &V2, &V3))  --> phi(load &V1, load &V2, load &V3)
 | |
|       bool Safe = PN->getParent() == LI.getParent();
 | |
| 
 | |
|       // Scan all of the instructions between the PHI and the load to make
 | |
|       // sure there are no instructions that might possibly alter the value
 | |
|       // loaded from the PHI.
 | |
|       if (Safe) {
 | |
|         BasicBlock::iterator I = &LI;
 | |
|         for (--I; !isa<PHINode>(I); --I)
 | |
|           if (isa<StoreInst>(I) || isa<CallInst>(I)) {
 | |
|             Safe = false;
 | |
|             break;
 | |
|           }
 | |
|       }
 | |
| 
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e && Safe; ++i)
 | |
|         if (!isSafeToLoadUnconditionally(PN->getIncomingValue(i),
 | |
|                                     PN->getIncomingBlock(i)->getTerminator()))
 | |
|           Safe = false;
 | |
| 
 | |
|       if (Safe) {
 | |
|         // Create the PHI.
 | |
|         PHINode *NewPN = new PHINode(LI.getType(), PN->getName());
 | |
|         InsertNewInstBefore(NewPN, *PN);
 | |
|         std::map<BasicBlock*,Value*> LoadMap;  // Don't insert duplicate loads
 | |
| 
 | |
|         for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|           BasicBlock *BB = PN->getIncomingBlock(i);
 | |
|           Value *&TheLoad = LoadMap[BB];
 | |
|           if (TheLoad == 0) {
 | |
|             Value *InVal = PN->getIncomingValue(i);
 | |
|             TheLoad = InsertNewInstBefore(new LoadInst(InVal,
 | |
|                                                        InVal->getName()+".val"),
 | |
|                                           *BB->getTerminator());
 | |
|           }
 | |
|           NewPN->addIncoming(TheLoad, BB);
 | |
|         }
 | |
|         return ReplaceInstUsesWith(LI, NewPN);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// InstCombineStoreToCast - Fold 'store V, (cast P)' -> store (cast V), P'
 | |
| /// when possible.
 | |
| static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
 | |
|   User *CI = cast<User>(SI.getOperand(1));
 | |
|   Value *CastOp = CI->getOperand(0);
 | |
| 
 | |
|   const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
 | |
|   if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
 | |
|     const Type *SrcPTy = SrcTy->getElementType();
 | |
| 
 | |
|     if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
 | |
|       // If the source is an array, the code below will not succeed.  Check to
 | |
|       // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
 | |
|       // constants.
 | |
|       if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
 | |
|         if (Constant *CSrc = dyn_cast<Constant>(CastOp))
 | |
|           if (ASrcTy->getNumElements() != 0) {
 | |
|             std::vector<Value*> Idxs(2, Constant::getNullValue(Type::IntTy));
 | |
|             CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
 | |
|             SrcTy = cast<PointerType>(CastOp->getType());
 | |
|             SrcPTy = SrcTy->getElementType();
 | |
|           }
 | |
| 
 | |
|       if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
 | |
|           IC.getTargetData().getTypeSize(SrcPTy) ==
 | |
|                IC.getTargetData().getTypeSize(DestPTy)) {
 | |
| 
 | |
|         // Okay, we are casting from one integer or pointer type to another of
 | |
|         // the same size.  Instead of casting the pointer before the store, cast
 | |
|         // the value to be stored.
 | |
|         Value *NewCast;
 | |
|         if (Constant *C = dyn_cast<Constant>(SI.getOperand(0)))
 | |
|           NewCast = ConstantExpr::getCast(C, SrcPTy);
 | |
|         else
 | |
|           NewCast = IC.InsertNewInstBefore(new CastInst(SI.getOperand(0),
 | |
|                                                         SrcPTy,
 | |
|                                          SI.getOperand(0)->getName()+".c"), SI);
 | |
| 
 | |
|         return new StoreInst(NewCast, CastOp);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
 | |
|   Value *Val = SI.getOperand(0);
 | |
|   Value *Ptr = SI.getOperand(1);
 | |
| 
 | |
|   if (isa<UndefValue>(Ptr)) {     // store X, undef -> noop (even if volatile)
 | |
|     EraseInstFromFunction(SI);
 | |
|     ++NumCombined;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Do really simple DSE, to catch cases where there are several consequtive
 | |
|   // stores to the same location, separated by a few arithmetic operations. This
 | |
|   // situation often occurs with bitfield accesses.
 | |
|   BasicBlock::iterator BBI = &SI;
 | |
|   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
 | |
|        --ScanInsts) {
 | |
|     --BBI;
 | |
|     
 | |
|     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
 | |
|       // Prev store isn't volatile, and stores to the same location?
 | |
|       if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
 | |
|         ++NumDeadStore;
 | |
|         ++BBI;
 | |
|         EraseInstFromFunction(*PrevSI);
 | |
|         continue;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     // If this is a load, we have to stop.  However, if the loaded value is from
 | |
|     // the pointer we're loading and is producing the pointer we're storing,
 | |
|     // then *this* store is dead (X = load P; store X -> P).
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | |
|       if (LI == Val && LI->getOperand(0) == Ptr) {
 | |
|         EraseInstFromFunction(SI);
 | |
|         ++NumCombined;
 | |
|         return 0;
 | |
|       }
 | |
|       // Otherwise, this is a load from some other location.  Stores before it
 | |
|       // may not be dead.
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     // Don't skip over loads or things that can modify memory.
 | |
|     if (BBI->mayWriteToMemory())
 | |
|       break;
 | |
|   }
 | |
|   
 | |
|   
 | |
|   if (SI.isVolatile()) return 0;  // Don't hack volatile stores.
 | |
| 
 | |
|   // store X, null    -> turns into 'unreachable' in SimplifyCFG
 | |
|   if (isa<ConstantPointerNull>(Ptr)) {
 | |
|     if (!isa<UndefValue>(Val)) {
 | |
|       SI.setOperand(0, UndefValue::get(Val->getType()));
 | |
|       if (Instruction *U = dyn_cast<Instruction>(Val))
 | |
|         WorkList.push_back(U);  // Dropped a use.
 | |
|       ++NumCombined;
 | |
|     }
 | |
|     return 0;  // Do not modify these!
 | |
|   }
 | |
| 
 | |
|   // store undef, Ptr -> noop
 | |
|   if (isa<UndefValue>(Val)) {
 | |
|     EraseInstFromFunction(SI);
 | |
|     ++NumCombined;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // If the pointer destination is a cast, see if we can fold the cast into the
 | |
|   // source instead.
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(Ptr))
 | |
|     if (Instruction *Res = InstCombineStoreToCast(*this, SI))
 | |
|       return Res;
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
 | |
|     if (CE->getOpcode() == Instruction::Cast)
 | |
|       if (Instruction *Res = InstCombineStoreToCast(*this, SI))
 | |
|         return Res;
 | |
| 
 | |
|   
 | |
|   // If this store is the last instruction in the basic block, and if the block
 | |
|   // ends with an unconditional branch, try to move it to the successor block.
 | |
|   BBI = &SI; ++BBI;
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
 | |
|     if (BI->isUnconditional()) {
 | |
|       // Check to see if the successor block has exactly two incoming edges.  If
 | |
|       // so, see if the other predecessor contains a store to the same location.
 | |
|       // if so, insert a PHI node (if needed) and move the stores down.
 | |
|       BasicBlock *Dest = BI->getSuccessor(0);
 | |
| 
 | |
|       pred_iterator PI = pred_begin(Dest);
 | |
|       BasicBlock *Other = 0;
 | |
|       if (*PI != BI->getParent())
 | |
|         Other = *PI;
 | |
|       ++PI;
 | |
|       if (PI != pred_end(Dest)) {
 | |
|         if (*PI != BI->getParent())
 | |
|           if (Other)
 | |
|             Other = 0;
 | |
|           else
 | |
|             Other = *PI;
 | |
|         if (++PI != pred_end(Dest))
 | |
|           Other = 0;
 | |
|       }
 | |
|       if (Other) {  // If only one other pred...
 | |
|         BBI = Other->getTerminator();
 | |
|         // Make sure this other block ends in an unconditional branch and that
 | |
|         // there is an instruction before the branch.
 | |
|         if (isa<BranchInst>(BBI) && cast<BranchInst>(BBI)->isUnconditional() &&
 | |
|             BBI != Other->begin()) {
 | |
|           --BBI;
 | |
|           StoreInst *OtherStore = dyn_cast<StoreInst>(BBI);
 | |
|           
 | |
|           // If this instruction is a store to the same location.
 | |
|           if (OtherStore && OtherStore->getOperand(1) == SI.getOperand(1)) {
 | |
|             // Okay, we know we can perform this transformation.  Insert a PHI
 | |
|             // node now if we need it.
 | |
|             Value *MergedVal = OtherStore->getOperand(0);
 | |
|             if (MergedVal != SI.getOperand(0)) {
 | |
|               PHINode *PN = new PHINode(MergedVal->getType(), "storemerge");
 | |
|               PN->reserveOperandSpace(2);
 | |
|               PN->addIncoming(SI.getOperand(0), SI.getParent());
 | |
|               PN->addIncoming(OtherStore->getOperand(0), Other);
 | |
|               MergedVal = InsertNewInstBefore(PN, Dest->front());
 | |
|             }
 | |
|             
 | |
|             // Advance to a place where it is safe to insert the new store and
 | |
|             // insert it.
 | |
|             BBI = Dest->begin();
 | |
|             while (isa<PHINode>(BBI)) ++BBI;
 | |
|             InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
 | |
|                                               OtherStore->isVolatile()), *BBI);
 | |
| 
 | |
|             // Nuke the old stores.
 | |
|             EraseInstFromFunction(SI);
 | |
|             EraseInstFromFunction(*OtherStore);
 | |
|             ++NumCombined;
 | |
|             return 0;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
 | |
|   // Change br (not X), label True, label False to: br X, label False, True
 | |
|   Value *X = 0;
 | |
|   BasicBlock *TrueDest;
 | |
|   BasicBlock *FalseDest;
 | |
|   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
 | |
|       !isa<Constant>(X)) {
 | |
|     // Swap Destinations and condition...
 | |
|     BI.setCondition(X);
 | |
|     BI.setSuccessor(0, FalseDest);
 | |
|     BI.setSuccessor(1, TrueDest);
 | |
|     return &BI;
 | |
|   }
 | |
| 
 | |
|   // Cannonicalize setne -> seteq
 | |
|   Instruction::BinaryOps Op; Value *Y;
 | |
|   if (match(&BI, m_Br(m_SetCond(Op, m_Value(X), m_Value(Y)),
 | |
|                       TrueDest, FalseDest)))
 | |
|     if ((Op == Instruction::SetNE || Op == Instruction::SetLE ||
 | |
|          Op == Instruction::SetGE) && BI.getCondition()->hasOneUse()) {
 | |
|       SetCondInst *I = cast<SetCondInst>(BI.getCondition());
 | |
|       std::string Name = I->getName(); I->setName("");
 | |
|       Instruction::BinaryOps NewOpcode = SetCondInst::getInverseCondition(Op);
 | |
|       Value *NewSCC =  BinaryOperator::create(NewOpcode, X, Y, Name, I);
 | |
|       // Swap Destinations and condition...
 | |
|       BI.setCondition(NewSCC);
 | |
|       BI.setSuccessor(0, FalseDest);
 | |
|       BI.setSuccessor(1, TrueDest);
 | |
|       removeFromWorkList(I);
 | |
|       I->getParent()->getInstList().erase(I);
 | |
|       WorkList.push_back(cast<Instruction>(NewSCC));
 | |
|       return &BI;
 | |
|     }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
 | |
|   Value *Cond = SI.getCondition();
 | |
|   if (Instruction *I = dyn_cast<Instruction>(Cond)) {
 | |
|     if (I->getOpcode() == Instruction::Add)
 | |
|       if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|         // change 'switch (X+4) case 1:' into 'switch (X) case -3'
 | |
|         for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
 | |
|           SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
 | |
|                                                 AddRHS));
 | |
|         SI.setOperand(0, I->getOperand(0));
 | |
|         WorkList.push_back(I);
 | |
|         return &SI;
 | |
|       }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// CheapToScalarize - Return true if the value is cheaper to scalarize than it
 | |
| /// is to leave as a vector operation.
 | |
| static bool CheapToScalarize(Value *V, bool isConstant) {
 | |
|   if (isa<ConstantAggregateZero>(V)) 
 | |
|     return true;
 | |
|   if (ConstantPacked *C = dyn_cast<ConstantPacked>(V)) {
 | |
|     if (isConstant) return true;
 | |
|     // If all elts are the same, we can extract.
 | |
|     Constant *Op0 = C->getOperand(0);
 | |
|     for (unsigned i = 1; i < C->getNumOperands(); ++i)
 | |
|       if (C->getOperand(i) != Op0)
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
|   
 | |
|   // Insert element gets simplified to the inserted element or is deleted if
 | |
|   // this is constant idx extract element and its a constant idx insertelt.
 | |
|   if (I->getOpcode() == Instruction::InsertElement && isConstant &&
 | |
|       isa<ConstantInt>(I->getOperand(2)))
 | |
|     return true;
 | |
|   if (I->getOpcode() == Instruction::Load && I->hasOneUse())
 | |
|     return true;
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
 | |
|     if (BO->hasOneUse() &&
 | |
|         (CheapToScalarize(BO->getOperand(0), isConstant) ||
 | |
|          CheapToScalarize(BO->getOperand(1), isConstant)))
 | |
|       return true;
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getShuffleMask - Read and decode a shufflevector mask.  It turns undef
 | |
| /// elements into values that are larger than the #elts in the input.
 | |
| static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
 | |
|   unsigned NElts = SVI->getType()->getNumElements();
 | |
|   if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
 | |
|     return std::vector<unsigned>(NElts, 0);
 | |
|   if (isa<UndefValue>(SVI->getOperand(2)))
 | |
|     return std::vector<unsigned>(NElts, 2*NElts);
 | |
| 
 | |
|   std::vector<unsigned> Result;
 | |
|   const ConstantPacked *CP = cast<ConstantPacked>(SVI->getOperand(2));
 | |
|   for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
 | |
|     if (isa<UndefValue>(CP->getOperand(i)))
 | |
|       Result.push_back(NElts*2);  // undef -> 8
 | |
|     else
 | |
|       Result.push_back(cast<ConstantUInt>(CP->getOperand(i))->getValue());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// FindScalarElement - Given a vector and an element number, see if the scalar
 | |
| /// value is already around as a register, for example if it were inserted then
 | |
| /// extracted from the vector.
 | |
| static Value *FindScalarElement(Value *V, unsigned EltNo) {
 | |
|   assert(isa<PackedType>(V->getType()) && "Not looking at a vector?");
 | |
|   const PackedType *PTy = cast<PackedType>(V->getType());
 | |
|   unsigned Width = PTy->getNumElements();
 | |
|   if (EltNo >= Width)  // Out of range access.
 | |
|     return UndefValue::get(PTy->getElementType());
 | |
|   
 | |
|   if (isa<UndefValue>(V))
 | |
|     return UndefValue::get(PTy->getElementType());
 | |
|   else if (isa<ConstantAggregateZero>(V))
 | |
|     return Constant::getNullValue(PTy->getElementType());
 | |
|   else if (ConstantPacked *CP = dyn_cast<ConstantPacked>(V))
 | |
|     return CP->getOperand(EltNo);
 | |
|   else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert to a variable element, we don't know what it is.
 | |
|     if (!isa<ConstantUInt>(III->getOperand(2))) return 0;
 | |
|     unsigned IIElt = cast<ConstantUInt>(III->getOperand(2))->getValue();
 | |
|     
 | |
|     // If this is an insert to the element we are looking for, return the
 | |
|     // inserted value.
 | |
|     if (EltNo == IIElt) return III->getOperand(1);
 | |
|     
 | |
|     // Otherwise, the insertelement doesn't modify the value, recurse on its
 | |
|     // vector input.
 | |
|     return FindScalarElement(III->getOperand(0), EltNo);
 | |
|   } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
 | |
|     unsigned InEl = getShuffleMask(SVI)[EltNo];
 | |
|     if (InEl < Width)
 | |
|       return FindScalarElement(SVI->getOperand(0), InEl);
 | |
|     else if (InEl < Width*2)
 | |
|       return FindScalarElement(SVI->getOperand(1), InEl - Width);
 | |
|     else
 | |
|       return UndefValue::get(PTy->getElementType());
 | |
|   }
 | |
|   
 | |
|   // Otherwise, we don't know.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
 | |
| 
 | |
|   // If packed val is undef, replace extract with scalar undef.
 | |
|   if (isa<UndefValue>(EI.getOperand(0)))
 | |
|     return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | |
| 
 | |
|   // If packed val is constant 0, replace extract with scalar 0.
 | |
|   if (isa<ConstantAggregateZero>(EI.getOperand(0)))
 | |
|     return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
 | |
|   
 | |
|   if (ConstantPacked *C = dyn_cast<ConstantPacked>(EI.getOperand(0))) {
 | |
|     // If packed val is constant with uniform operands, replace EI
 | |
|     // with that operand
 | |
|     Constant *op0 = C->getOperand(0);
 | |
|     for (unsigned i = 1; i < C->getNumOperands(); ++i)
 | |
|       if (C->getOperand(i) != op0) {
 | |
|         op0 = 0; 
 | |
|         break;
 | |
|       }
 | |
|     if (op0)
 | |
|       return ReplaceInstUsesWith(EI, op0);
 | |
|   }
 | |
|   
 | |
|   // If extracting a specified index from the vector, see if we can recursively
 | |
|   // find a previously computed scalar that was inserted into the vector.
 | |
|   if (ConstantUInt *IdxC = dyn_cast<ConstantUInt>(EI.getOperand(1))) {
 | |
|     if (Value *Elt = FindScalarElement(EI.getOperand(0), IdxC->getValue()))
 | |
|       return ReplaceInstUsesWith(EI, Elt);
 | |
|   }
 | |
|   
 | |
|   if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
 | |
|     if (I->hasOneUse()) {
 | |
|       // Push extractelement into predecessor operation if legal and
 | |
|       // profitable to do so
 | |
|       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | |
|         bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
 | |
|         if (CheapToScalarize(BO, isConstantElt)) {
 | |
|           ExtractElementInst *newEI0 = 
 | |
|             new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
 | |
|                                    EI.getName()+".lhs");
 | |
|           ExtractElementInst *newEI1 =
 | |
|             new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
 | |
|                                    EI.getName()+".rhs");
 | |
|           InsertNewInstBefore(newEI0, EI);
 | |
|           InsertNewInstBefore(newEI1, EI);
 | |
|           return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1);
 | |
|         }
 | |
|       } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|         Value *Ptr = InsertCastBefore(I->getOperand(0),
 | |
|                                       PointerType::get(EI.getType()), EI);
 | |
|         GetElementPtrInst *GEP = 
 | |
|           new GetElementPtrInst(Ptr, EI.getOperand(1),
 | |
|                                 I->getName() + ".gep");
 | |
|         InsertNewInstBefore(GEP, EI);
 | |
|         return new LoadInst(GEP);
 | |
|       }
 | |
|     }
 | |
|     if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
 | |
|       // Extracting the inserted element?
 | |
|       if (IE->getOperand(2) == EI.getOperand(1))
 | |
|         return ReplaceInstUsesWith(EI, IE->getOperand(1));
 | |
|       // If the inserted and extracted elements are constants, they must not
 | |
|       // be the same value, extract from the pre-inserted value instead.
 | |
|       if (isa<Constant>(IE->getOperand(2)) &&
 | |
|           isa<Constant>(EI.getOperand(1))) {
 | |
|         AddUsesToWorkList(EI);
 | |
|         EI.setOperand(0, IE->getOperand(0));
 | |
|         return &EI;
 | |
|       }
 | |
|     } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
 | |
|       // If this is extracting an element from a shufflevector, figure out where
 | |
|       // it came from and extract from the appropriate input element instead.
 | |
|       if (ConstantUInt *Elt = dyn_cast<ConstantUInt>(EI.getOperand(1))) {
 | |
|         unsigned SrcIdx = getShuffleMask(SVI)[Elt->getValue()];
 | |
|         Value *Src;
 | |
|         if (SrcIdx < SVI->getType()->getNumElements())
 | |
|           Src = SVI->getOperand(0);
 | |
|         else if (SrcIdx < SVI->getType()->getNumElements()*2) {
 | |
|           SrcIdx -= SVI->getType()->getNumElements();
 | |
|           Src = SVI->getOperand(1);
 | |
|         } else {
 | |
|           return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | |
|         }
 | |
|         return new ExtractElementInst(Src,
 | |
|                                       ConstantUInt::get(Type::UIntTy, SrcIdx));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
 | |
| /// elements from either LHS or RHS, return the shuffle mask and true. 
 | |
| /// Otherwise, return false.
 | |
| static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
 | |
|                                          std::vector<Constant*> &Mask) {
 | |
|   assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
 | |
|          "Invalid CollectSingleShuffleElements");
 | |
|   unsigned NumElts = cast<PackedType>(V->getType())->getNumElements();
 | |
| 
 | |
|   if (isa<UndefValue>(V)) {
 | |
|     Mask.assign(NumElts, UndefValue::get(Type::UIntTy));
 | |
|     return true;
 | |
|   } else if (V == LHS) {
 | |
|     for (unsigned i = 0; i != NumElts; ++i)
 | |
|       Mask.push_back(ConstantUInt::get(Type::UIntTy, i));
 | |
|     return true;
 | |
|   } else if (V == RHS) {
 | |
|     for (unsigned i = 0; i != NumElts; ++i)
 | |
|       Mask.push_back(ConstantUInt::get(Type::UIntTy, i+NumElts));
 | |
|     return true;
 | |
|   } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert of an extract from some other vector, include it.
 | |
|     Value *VecOp    = IEI->getOperand(0);
 | |
|     Value *ScalarOp = IEI->getOperand(1);
 | |
|     Value *IdxOp    = IEI->getOperand(2);
 | |
|     
 | |
|     if (!isa<ConstantInt>(IdxOp))
 | |
|       return false;
 | |
|     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getRawValue();
 | |
|     
 | |
|     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
 | |
|       // Okay, we can handle this if the vector we are insertinting into is
 | |
|       // transitively ok.
 | |
|       if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | |
|         // If so, update the mask to reflect the inserted undef.
 | |
|         Mask[InsertedIdx] = UndefValue::get(Type::UIntTy);
 | |
|         return true;
 | |
|       }      
 | |
|     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
 | |
|       if (isa<ConstantInt>(EI->getOperand(1)) &&
 | |
|           EI->getOperand(0)->getType() == V->getType()) {
 | |
|         unsigned ExtractedIdx =
 | |
|           cast<ConstantInt>(EI->getOperand(1))->getRawValue();
 | |
|         
 | |
|         // This must be extracting from either LHS or RHS.
 | |
|         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
 | |
|           // Okay, we can handle this if the vector we are insertinting into is
 | |
|           // transitively ok.
 | |
|           if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | |
|             // If so, update the mask to reflect the inserted value.
 | |
|             if (EI->getOperand(0) == LHS) {
 | |
|               Mask[InsertedIdx & (NumElts-1)] = 
 | |
|                  ConstantUInt::get(Type::UIntTy, ExtractedIdx);
 | |
|             } else {
 | |
|               assert(EI->getOperand(0) == RHS);
 | |
|               Mask[InsertedIdx & (NumElts-1)] = 
 | |
|                 ConstantUInt::get(Type::UIntTy, ExtractedIdx+NumElts);
 | |
|               
 | |
|             }
 | |
|             return true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // TODO: Handle shufflevector here!
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CollectShuffleElements - We are building a shuffle of V, using RHS as the
 | |
| /// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask
 | |
| /// that computes V and the LHS value of the shuffle.
 | |
| static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
 | |
|                                      Value *&RHS) {
 | |
|   assert(isa<PackedType>(V->getType()) && 
 | |
|          (RHS == 0 || V->getType() == RHS->getType()) &&
 | |
|          "Invalid shuffle!");
 | |
|   unsigned NumElts = cast<PackedType>(V->getType())->getNumElements();
 | |
| 
 | |
|   if (isa<UndefValue>(V)) {
 | |
|     Mask.assign(NumElts, UndefValue::get(Type::UIntTy));
 | |
|     return V;
 | |
|   } else if (isa<ConstantAggregateZero>(V)) {
 | |
|     Mask.assign(NumElts, ConstantUInt::get(Type::UIntTy, 0));
 | |
|     return V;
 | |
|   } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert of an extract from some other vector, include it.
 | |
|     Value *VecOp    = IEI->getOperand(0);
 | |
|     Value *ScalarOp = IEI->getOperand(1);
 | |
|     Value *IdxOp    = IEI->getOperand(2);
 | |
|     
 | |
|     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | |
|       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
 | |
|           EI->getOperand(0)->getType() == V->getType()) {
 | |
|         unsigned ExtractedIdx =
 | |
|           cast<ConstantInt>(EI->getOperand(1))->getRawValue();
 | |
|         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getRawValue();
 | |
|         
 | |
|         // Either the extracted from or inserted into vector must be RHSVec,
 | |
|         // otherwise we'd end up with a shuffle of three inputs.
 | |
|         if (EI->getOperand(0) == RHS || RHS == 0) {
 | |
|           RHS = EI->getOperand(0);
 | |
|           Value *V = CollectShuffleElements(VecOp, Mask, RHS);
 | |
|           Mask[InsertedIdx & (NumElts-1)] = 
 | |
|             ConstantUInt::get(Type::UIntTy, NumElts+ExtractedIdx);
 | |
|           return V;
 | |
|         }
 | |
|         
 | |
|         if (VecOp == RHS) {
 | |
|           Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
 | |
|           // Everything but the extracted element is replaced with the RHS.
 | |
|           for (unsigned i = 0; i != NumElts; ++i) {
 | |
|             if (i != InsertedIdx)
 | |
|               Mask[i] = ConstantUInt::get(Type::UIntTy, NumElts+i);
 | |
|           }
 | |
|           return V;
 | |
|         }
 | |
|         
 | |
|         // If this insertelement is a chain that comes from exactly these two
 | |
|         // vectors, return the vector and the effective shuffle.
 | |
|         if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
 | |
|           return EI->getOperand(0);
 | |
|         
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // TODO: Handle shufflevector here!
 | |
|   
 | |
|   // Otherwise, can't do anything fancy.  Return an identity vector.
 | |
|   for (unsigned i = 0; i != NumElts; ++i)
 | |
|     Mask.push_back(ConstantUInt::get(Type::UIntTy, i));
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
 | |
|   Value *VecOp    = IE.getOperand(0);
 | |
|   Value *ScalarOp = IE.getOperand(1);
 | |
|   Value *IdxOp    = IE.getOperand(2);
 | |
|   
 | |
|   // If the inserted element was extracted from some other vector, and if the 
 | |
|   // indexes are constant, try to turn this into a shufflevector operation.
 | |
|   if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | |
|     if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
 | |
|         EI->getOperand(0)->getType() == IE.getType()) {
 | |
|       unsigned NumVectorElts = IE.getType()->getNumElements();
 | |
|       unsigned ExtractedIdx=cast<ConstantInt>(EI->getOperand(1))->getRawValue();
 | |
|       unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getRawValue();
 | |
|       
 | |
|       if (ExtractedIdx >= NumVectorElts) // Out of range extract.
 | |
|         return ReplaceInstUsesWith(IE, VecOp);
 | |
|       
 | |
|       if (InsertedIdx >= NumVectorElts)  // Out of range insert.
 | |
|         return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
 | |
|       
 | |
|       // If we are extracting a value from a vector, then inserting it right
 | |
|       // back into the same place, just use the input vector.
 | |
|       if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
 | |
|         return ReplaceInstUsesWith(IE, VecOp);      
 | |
|       
 | |
|       // We could theoretically do this for ANY input.  However, doing so could
 | |
|       // turn chains of insertelement instructions into a chain of shufflevector
 | |
|       // instructions, and right now we do not merge shufflevectors.  As such,
 | |
|       // only do this in a situation where it is clear that there is benefit.
 | |
|       if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
 | |
|         // Turn this into shuffle(EIOp0, VecOp, Mask).  The result has all of
 | |
|         // the values of VecOp, except then one read from EIOp0.
 | |
|         // Build a new shuffle mask.
 | |
|         std::vector<Constant*> Mask;
 | |
|         if (isa<UndefValue>(VecOp))
 | |
|           Mask.assign(NumVectorElts, UndefValue::get(Type::UIntTy));
 | |
|         else {
 | |
|           assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
 | |
|           Mask.assign(NumVectorElts, ConstantUInt::get(Type::UIntTy,
 | |
|                                                        NumVectorElts));
 | |
|         } 
 | |
|         Mask[InsertedIdx] = ConstantUInt::get(Type::UIntTy, ExtractedIdx);
 | |
|         return new ShuffleVectorInst(EI->getOperand(0), VecOp,
 | |
|                                      ConstantPacked::get(Mask));
 | |
|       }
 | |
|       
 | |
|       // If this insertelement isn't used by some other insertelement, turn it
 | |
|       // (and any insertelements it points to), into one big shuffle.
 | |
|       if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
 | |
|         std::vector<Constant*> Mask;
 | |
|         Value *RHS = 0;
 | |
|         Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
 | |
|         if (RHS == 0) RHS = UndefValue::get(LHS->getType());
 | |
|         // We now have a shuffle of LHS, RHS, Mask.
 | |
|         return new ShuffleVectorInst(LHS, RHS, ConstantPacked::get(Mask));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
 | |
|   Value *LHS = SVI.getOperand(0);
 | |
|   Value *RHS = SVI.getOperand(1);
 | |
|   std::vector<unsigned> Mask = getShuffleMask(&SVI);
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   
 | |
|   if (isa<UndefValue>(SVI.getOperand(2)))
 | |
|     return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
 | |
|   
 | |
|   // TODO: If we have shuffle(x, undef, mask) and any elements of mask refer to
 | |
|   // the undef, change them to undefs.
 | |
|   
 | |
|   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
 | |
|   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
 | |
|   if (LHS == RHS || isa<UndefValue>(LHS)) {
 | |
|     if (isa<UndefValue>(LHS) && LHS == RHS) {
 | |
|       // shuffle(undef,undef,mask) -> undef.
 | |
|       return ReplaceInstUsesWith(SVI, LHS);
 | |
|     }
 | |
|     
 | |
|     // Remap any references to RHS to use LHS.
 | |
|     std::vector<Constant*> Elts;
 | |
|     for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
 | |
|       if (Mask[i] >= 2*e)
 | |
|         Elts.push_back(UndefValue::get(Type::UIntTy));
 | |
|       else {
 | |
|         if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
 | |
|             (Mask[i] <  e && isa<UndefValue>(LHS)))
 | |
|           Mask[i] = 2*e;     // Turn into undef.
 | |
|         else
 | |
|           Mask[i] &= (e-1);  // Force to LHS.
 | |
|         Elts.push_back(ConstantUInt::get(Type::UIntTy, Mask[i]));
 | |
|       }
 | |
|     }
 | |
|     SVI.setOperand(0, SVI.getOperand(1));
 | |
|     SVI.setOperand(1, UndefValue::get(RHS->getType()));
 | |
|     SVI.setOperand(2, ConstantPacked::get(Elts));
 | |
|     LHS = SVI.getOperand(0);
 | |
|     RHS = SVI.getOperand(1);
 | |
|     MadeChange = true;
 | |
|   }
 | |
|   
 | |
|   // Analyze the shuffle, are the LHS or RHS and identity shuffles?
 | |
|   bool isLHSID = true, isRHSID = true;
 | |
|     
 | |
|   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
 | |
|     if (Mask[i] >= e*2) continue;  // Ignore undef values.
 | |
|     // Is this an identity shuffle of the LHS value?
 | |
|     isLHSID &= (Mask[i] == i);
 | |
|       
 | |
|     // Is this an identity shuffle of the RHS value?
 | |
|     isRHSID &= (Mask[i]-e == i);
 | |
|   }
 | |
| 
 | |
|   // Eliminate identity shuffles.
 | |
|   if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
 | |
|   if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
 | |
|   
 | |
|   // If the LHS is a shufflevector itself, see if we can combine it with this
 | |
|   // one without producing an unusual shuffle.  Here we are really conservative:
 | |
|   // we are absolutely afraid of producing a shuffle mask not in the input
 | |
|   // program, because the code gen may not be smart enough to turn a merged
 | |
|   // shuffle into two specific shuffles: it may produce worse code.  As such,
 | |
|   // we only merge two shuffles if the result is one of the two input shuffle
 | |
|   // masks.  In this case, merging the shuffles just removes one instruction,
 | |
|   // which we know is safe.  This is good for things like turning:
 | |
|   // (splat(splat)) -> splat.
 | |
|   if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
 | |
|     if (isa<UndefValue>(RHS)) {
 | |
|       std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
 | |
| 
 | |
|       std::vector<unsigned> NewMask;
 | |
|       for (unsigned i = 0, e = Mask.size(); i != e; ++i)
 | |
|         if (Mask[i] >= 2*e)
 | |
|           NewMask.push_back(2*e);
 | |
|         else
 | |
|           NewMask.push_back(LHSMask[Mask[i]]);
 | |
|       
 | |
|       // If the result mask is equal to the src shuffle or this shuffle mask, do
 | |
|       // the replacement.
 | |
|       if (NewMask == LHSMask || NewMask == Mask) {
 | |
|         std::vector<Constant*> Elts;
 | |
|         for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
 | |
|           if (NewMask[i] >= e*2) {
 | |
|             Elts.push_back(UndefValue::get(Type::UIntTy));
 | |
|           } else {
 | |
|             Elts.push_back(ConstantUInt::get(Type::UIntTy, NewMask[i]));
 | |
|           }
 | |
|         }
 | |
|         return new ShuffleVectorInst(LHSSVI->getOperand(0),
 | |
|                                      LHSSVI->getOperand(1),
 | |
|                                      ConstantPacked::get(Elts));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return MadeChange ? &SVI : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void InstCombiner::removeFromWorkList(Instruction *I) {
 | |
|   WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
 | |
|                  WorkList.end());
 | |
| }
 | |
| 
 | |
| 
 | |
| /// TryToSinkInstruction - Try to move the specified instruction from its
 | |
| /// current block into the beginning of DestBlock, which can only happen if it's
 | |
| /// safe to move the instruction past all of the instructions between it and the
 | |
| /// end of its block.
 | |
| static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
 | |
|   assert(I->hasOneUse() && "Invariants didn't hold!");
 | |
| 
 | |
|   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
 | |
|   if (isa<PHINode>(I) || I->mayWriteToMemory()) return false;
 | |
| 
 | |
|   // Do not sink alloca instructions out of the entry block.
 | |
|   if (isa<AllocaInst>(I) && I->getParent() == &DestBlock->getParent()->front())
 | |
|     return false;
 | |
| 
 | |
|   // We can only sink load instructions if there is nothing between the load and
 | |
|   // the end of block that could change the value.
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|     for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
 | |
|          Scan != E; ++Scan)
 | |
|       if (Scan->mayWriteToMemory())
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   BasicBlock::iterator InsertPos = DestBlock->begin();
 | |
|   while (isa<PHINode>(InsertPos)) ++InsertPos;
 | |
| 
 | |
|   I->moveBefore(InsertPos);
 | |
|   ++NumSunkInst;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// OptimizeConstantExpr - Given a constant expression and target data layout
 | |
| /// information, symbolically evaluation the constant expr to something simpler
 | |
| /// if possible.
 | |
| static Constant *OptimizeConstantExpr(ConstantExpr *CE, const TargetData *TD) {
 | |
|   if (!TD) return CE;
 | |
|   
 | |
|   Constant *Ptr = CE->getOperand(0);
 | |
|   if (CE->getOpcode() == Instruction::GetElementPtr && Ptr->isNullValue() &&
 | |
|       cast<PointerType>(Ptr->getType())->getElementType()->isSized()) {
 | |
|     // If this is a constant expr gep that is effectively computing an
 | |
|     // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
 | |
|     bool isFoldableGEP = true;
 | |
|     for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
 | |
|       if (!isa<ConstantInt>(CE->getOperand(i)))
 | |
|         isFoldableGEP = false;
 | |
|     if (isFoldableGEP) {
 | |
|       std::vector<Value*> Ops(CE->op_begin()+1, CE->op_end());
 | |
|       uint64_t Offset = TD->getIndexedOffset(Ptr->getType(), Ops);
 | |
|       Constant *C = ConstantUInt::get(Type::ULongTy, Offset);
 | |
|       C = ConstantExpr::getCast(C, TD->getIntPtrType());
 | |
|       return ConstantExpr::getCast(C, CE->getType());
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return CE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
 | |
| /// all reachable code to the worklist.
 | |
| ///
 | |
| /// This has a couple of tricks to make the code faster and more powerful.  In
 | |
| /// particular, we constant fold and DCE instructions as we go, to avoid adding
 | |
| /// them to the worklist (this significantly speeds up instcombine on code where
 | |
| /// many instructions are dead or constant).  Additionally, if we find a branch
 | |
| /// whose condition is a known constant, we only visit the reachable successors.
 | |
| ///
 | |
| static void AddReachableCodeToWorklist(BasicBlock *BB, 
 | |
|                                        std::set<BasicBlock*> &Visited,
 | |
|                                        std::vector<Instruction*> &WorkList,
 | |
|                                        const TargetData *TD) {
 | |
|   // We have now visited this block!  If we've already been here, bail out.
 | |
|   if (!Visited.insert(BB).second) return;
 | |
|     
 | |
|   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
 | |
|     Instruction *Inst = BBI++;
 | |
|     
 | |
|     // DCE instruction if trivially dead.
 | |
|     if (isInstructionTriviallyDead(Inst)) {
 | |
|       ++NumDeadInst;
 | |
|       DEBUG(std::cerr << "IC: DCE: " << *Inst);
 | |
|       Inst->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // ConstantProp instruction if trivially constant.
 | |
|     if (Constant *C = ConstantFoldInstruction(Inst)) {
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
 | |
|         C = OptimizeConstantExpr(CE, TD);
 | |
|       DEBUG(std::cerr << "IC: ConstFold to: " << *C << " from: " << *Inst);
 | |
|       Inst->replaceAllUsesWith(C);
 | |
|       ++NumConstProp;
 | |
|       Inst->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     WorkList.push_back(Inst);
 | |
|   }
 | |
| 
 | |
|   // Recursively visit successors.  If this is a branch or switch on a constant,
 | |
|   // only visit the reachable successor.
 | |
|   TerminatorInst *TI = BB->getTerminator();
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|     if (BI->isConditional() && isa<ConstantBool>(BI->getCondition())) {
 | |
|       bool CondVal = cast<ConstantBool>(BI->getCondition())->getValue();
 | |
|       AddReachableCodeToWorklist(BI->getSuccessor(!CondVal), Visited, WorkList,
 | |
|                                  TD);
 | |
|       return;
 | |
|     }
 | |
|   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|     if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
 | |
|       // See if this is an explicit destination.
 | |
|       for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
 | |
|         if (SI->getCaseValue(i) == Cond) {
 | |
|           AddReachableCodeToWorklist(SI->getSuccessor(i), Visited, WorkList,TD);
 | |
|           return;
 | |
|         }
 | |
|       
 | |
|       // Otherwise it is the default destination.
 | |
|       AddReachableCodeToWorklist(SI->getSuccessor(0), Visited, WorkList, TD);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|     AddReachableCodeToWorklist(TI->getSuccessor(i), Visited, WorkList, TD);
 | |
| }
 | |
| 
 | |
| bool InstCombiner::runOnFunction(Function &F) {
 | |
|   bool Changed = false;
 | |
|   TD = &getAnalysis<TargetData>();
 | |
| 
 | |
|   {
 | |
|     // Do a depth-first traversal of the function, populate the worklist with
 | |
|     // the reachable instructions.  Ignore blocks that are not reachable.  Keep
 | |
|     // track of which blocks we visit.
 | |
|     std::set<BasicBlock*> Visited;
 | |
|     AddReachableCodeToWorklist(F.begin(), Visited, WorkList, TD);
 | |
| 
 | |
|     // Do a quick scan over the function.  If we find any blocks that are
 | |
|     // unreachable, remove any instructions inside of them.  This prevents
 | |
|     // the instcombine code from having to deal with some bad special cases.
 | |
|     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | |
|       if (!Visited.count(BB)) {
 | |
|         Instruction *Term = BB->getTerminator();
 | |
|         while (Term != BB->begin()) {   // Remove instrs bottom-up
 | |
|           BasicBlock::iterator I = Term; --I;
 | |
| 
 | |
|           DEBUG(std::cerr << "IC: DCE: " << *I);
 | |
|           ++NumDeadInst;
 | |
| 
 | |
|           if (!I->use_empty())
 | |
|             I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | |
|           I->eraseFromParent();
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     Instruction *I = WorkList.back();  // Get an instruction from the worklist
 | |
|     WorkList.pop_back();
 | |
| 
 | |
|     // Check to see if we can DCE the instruction.
 | |
|     if (isInstructionTriviallyDead(I)) {
 | |
|       // Add operands to the worklist.
 | |
|       if (I->getNumOperands() < 4)
 | |
|         AddUsesToWorkList(*I);
 | |
|       ++NumDeadInst;
 | |
| 
 | |
|       DEBUG(std::cerr << "IC: DCE: " << *I);
 | |
| 
 | |
|       I->eraseFromParent();
 | |
|       removeFromWorkList(I);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Instruction isn't dead, see if we can constant propagate it.
 | |
|     if (Constant *C = ConstantFoldInstruction(I)) {
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
 | |
|         C = OptimizeConstantExpr(CE, TD);
 | |
|       DEBUG(std::cerr << "IC: ConstFold to: " << *C << " from: " << *I);
 | |
| 
 | |
|       // Add operands to the worklist.
 | |
|       AddUsesToWorkList(*I);
 | |
|       ReplaceInstUsesWith(*I, C);
 | |
| 
 | |
|       ++NumConstProp;
 | |
|       I->eraseFromParent();
 | |
|       removeFromWorkList(I);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // See if we can trivially sink this instruction to a successor basic block.
 | |
|     if (I->hasOneUse()) {
 | |
|       BasicBlock *BB = I->getParent();
 | |
|       BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
 | |
|       if (UserParent != BB) {
 | |
|         bool UserIsSuccessor = false;
 | |
|         // See if the user is one of our successors.
 | |
|         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
 | |
|           if (*SI == UserParent) {
 | |
|             UserIsSuccessor = true;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|         // If the user is one of our immediate successors, and if that successor
 | |
|         // only has us as a predecessors (we'd have to split the critical edge
 | |
|         // otherwise), we can keep going.
 | |
|         if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
 | |
|             next(pred_begin(UserParent)) == pred_end(UserParent))
 | |
|           // Okay, the CFG is simple enough, try to sink this instruction.
 | |
|           Changed |= TryToSinkInstruction(I, UserParent);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that we have an instruction, try combining it to simplify it...
 | |
|     if (Instruction *Result = visit(*I)) {
 | |
|       ++NumCombined;
 | |
|       // Should we replace the old instruction with a new one?
 | |
|       if (Result != I) {
 | |
|         DEBUG(std::cerr << "IC: Old = " << *I
 | |
|                         << "    New = " << *Result);
 | |
| 
 | |
|         // Everything uses the new instruction now.
 | |
|         I->replaceAllUsesWith(Result);
 | |
| 
 | |
|         // Push the new instruction and any users onto the worklist.
 | |
|         WorkList.push_back(Result);
 | |
|         AddUsersToWorkList(*Result);
 | |
| 
 | |
|         // Move the name to the new instruction first...
 | |
|         std::string OldName = I->getName(); I->setName("");
 | |
|         Result->setName(OldName);
 | |
| 
 | |
|         // Insert the new instruction into the basic block...
 | |
|         BasicBlock *InstParent = I->getParent();
 | |
|         BasicBlock::iterator InsertPos = I;
 | |
| 
 | |
|         if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
 | |
|           while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
 | |
|             ++InsertPos;
 | |
| 
 | |
|         InstParent->getInstList().insert(InsertPos, Result);
 | |
| 
 | |
|         // Make sure that we reprocess all operands now that we reduced their
 | |
|         // use counts.
 | |
|         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|           if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|             WorkList.push_back(OpI);
 | |
| 
 | |
|         // Instructions can end up on the worklist more than once.  Make sure
 | |
|         // we do not process an instruction that has been deleted.
 | |
|         removeFromWorkList(I);
 | |
| 
 | |
|         // Erase the old instruction.
 | |
|         InstParent->getInstList().erase(I);
 | |
|       } else {
 | |
|         DEBUG(std::cerr << "IC: MOD = " << *I);
 | |
| 
 | |
|         // If the instruction was modified, it's possible that it is now dead.
 | |
|         // if so, remove it.
 | |
|         if (isInstructionTriviallyDead(I)) {
 | |
|           // Make sure we process all operands now that we are reducing their
 | |
|           // use counts.
 | |
|           for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|             if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|               WorkList.push_back(OpI);
 | |
| 
 | |
|           // Instructions may end up in the worklist more than once.  Erase all
 | |
|           // occurrences of this instruction.
 | |
|           removeFromWorkList(I);
 | |
|           I->eraseFromParent();
 | |
|         } else {
 | |
|           WorkList.push_back(Result);
 | |
|           AddUsersToWorkList(*Result);
 | |
|         }
 | |
|       }
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createInstructionCombiningPass() {
 | |
|   return new InstCombiner();
 | |
| }
 | |
| 
 |