mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22254 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3966 lines
		
	
	
		
			148 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3966 lines
		
	
	
		
			148 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PPC32ISelSimple.cpp - A simple instruction selector PowerPC32 -----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "isel"
 | |
| #include "PowerPC.h"
 | |
| #include "PowerPCInstrBuilder.h"
 | |
| #include "PowerPCInstrInfo.h"
 | |
| #include "PPC32TargetMachine.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/CodeGen/IntrinsicLowering.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <vector>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
 | |
|   /// PPC Representation.
 | |
|   ///
 | |
|   enum TypeClass {
 | |
|     cByte, cShort, cInt, cFP32, cFP64, cLong
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// getClass - Turn a primitive type into a "class" number which is based on the
 | |
| /// size of the type, and whether or not it is floating point.
 | |
| ///
 | |
| static inline TypeClass getClass(const Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::SByteTyID:
 | |
|   case Type::UByteTyID:   return cByte;      // Byte operands are class #0
 | |
|   case Type::ShortTyID:
 | |
|   case Type::UShortTyID:  return cShort;     // Short operands are class #1
 | |
|   case Type::IntTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::PointerTyID: return cInt;       // Ints and pointers are class #2
 | |
| 
 | |
|   case Type::FloatTyID:   return cFP32;      // Single float is #3
 | |
|   case Type::DoubleTyID:  return cFP64;      // Double Point is #4
 | |
| 
 | |
|   case Type::LongTyID:
 | |
|   case Type::ULongTyID:   return cLong;      // Longs are class #5
 | |
|   default:
 | |
|     assert(0 && "Invalid type to getClass!");
 | |
|     return cByte;  // not reached
 | |
|   }
 | |
| }
 | |
| 
 | |
| // getClassB - Just like getClass, but treat boolean values as ints.
 | |
| static inline TypeClass getClassB(const Type *Ty) {
 | |
|   if (Ty == Type::BoolTy) return cByte;
 | |
|   return getClass(Ty);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct PPC32ISel : public FunctionPass, InstVisitor<PPC32ISel> {
 | |
|     PPC32TargetMachine &TM;
 | |
|     MachineFunction *F;                 // The function we are compiling into
 | |
|     MachineBasicBlock *BB;              // The current MBB we are compiling
 | |
|     int VarArgsFrameIndex;              // FrameIndex for start of varargs area
 | |
| 
 | |
|     /// CollapsedGepOp - This struct is for recording the intermediate results
 | |
|     /// used to calculate the base, index, and offset of a GEP instruction.
 | |
|     struct CollapsedGepOp {
 | |
|       ConstantSInt *offset; // the current offset into the struct/array
 | |
|       Value *index;         // the index of the array element
 | |
|       ConstantUInt *size;   // the size of each array element
 | |
|       CollapsedGepOp(ConstantSInt *o, Value *i, ConstantUInt *s) :
 | |
|         offset(o), index(i), size(s) {}
 | |
|     };
 | |
| 
 | |
|     /// FoldedGEP - This struct is for recording the necessary information to
 | |
|     /// emit the GEP in a load or store instruction, used by emitGEPOperation.
 | |
|     struct FoldedGEP {
 | |
|       unsigned base;
 | |
|       unsigned index;
 | |
|       ConstantSInt *offset;
 | |
|       FoldedGEP() : base(0), index(0), offset(0) {}
 | |
|       FoldedGEP(unsigned b, unsigned i, ConstantSInt *o) :
 | |
|         base(b), index(i), offset(o) {}
 | |
|     };
 | |
| 
 | |
|     /// RlwimiRec - This struct is for recording the arguments to a PowerPC
 | |
|     /// rlwimi instruction to be output for a particular Instruction::Or when
 | |
|     /// we recognize the pattern for rlwimi, starting with a shift or and.
 | |
|     struct RlwimiRec {
 | |
|       Value *Target, *Insert;
 | |
|       unsigned Shift, MB, ME;
 | |
|       RlwimiRec() : Target(0), Insert(0), Shift(0), MB(0), ME(0) {}
 | |
|       RlwimiRec(Value *tgt, Value *ins, unsigned s, unsigned b, unsigned e) :
 | |
|         Target(tgt), Insert(ins), Shift(s), MB(b), ME(e) {}
 | |
|     };
 | |
| 
 | |
|     // External functions we may use in compiling the Module
 | |
|     Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn,
 | |
|       *__umoddi3Fn,  *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn,
 | |
|       *__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;
 | |
| 
 | |
|     // Mapping between Values and SSA Regs
 | |
|     std::map<Value*, unsigned> RegMap;
 | |
| 
 | |
|     // MBBMap - Mapping between LLVM BB -> Machine BB
 | |
|     std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
 | |
| 
 | |
|     // AllocaMap - Mapping from fixed sized alloca instructions to the
 | |
|     // FrameIndex for the alloca.
 | |
|     std::map<AllocaInst*, unsigned> AllocaMap;
 | |
| 
 | |
|     // GEPMap - Mapping between basic blocks and GEP definitions
 | |
|     std::map<GetElementPtrInst*, FoldedGEP> GEPMap;
 | |
| 
 | |
|     // RlwimiMap  - Mapping between BinaryOperand (Or) instructions and info
 | |
|     // needed to properly emit a rlwimi instruction in its place.
 | |
|     std::map<Instruction *, RlwimiRec> InsertMap;
 | |
| 
 | |
|     // A rlwimi instruction is the combination of at least three instructions.
 | |
|     // Keep a vector of instructions to skip around so that we do not try to
 | |
|     // emit instructions that were folded into a rlwimi.
 | |
|     std::vector<Instruction *> SkipList;
 | |
| 
 | |
|     // A Reg to hold the base address used for global loads and stores, and a
 | |
|     // flag to set whether or not we need to emit it for this function.
 | |
|     unsigned GlobalBaseReg;
 | |
|     bool GlobalBaseInitialized;
 | |
| 
 | |
|     PPC32ISel(TargetMachine &tm):TM(reinterpret_cast<PPC32TargetMachine&>(tm)),
 | |
|       F(0), BB(0) {}
 | |
| 
 | |
|     bool doInitialization(Module &M) {
 | |
|       // Add external functions that we may call
 | |
|       Type *i = Type::IntTy;
 | |
|       Type *d = Type::DoubleTy;
 | |
|       Type *f = Type::FloatTy;
 | |
|       Type *l = Type::LongTy;
 | |
|       Type *ul = Type::ULongTy;
 | |
|       Type *voidPtr = PointerType::get(Type::SByteTy);
 | |
|       // float fmodf(float, float);
 | |
|       fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
 | |
|       // double fmod(double, double);
 | |
|       fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
 | |
|       // int __cmpdi2(long, long);
 | |
|       __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
 | |
|       // long __moddi3(long, long);
 | |
|       __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
 | |
|       // long __divdi3(long, long);
 | |
|       __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
 | |
|       // unsigned long __umoddi3(unsigned long, unsigned long);
 | |
|       __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
 | |
|       // unsigned long __udivdi3(unsigned long, unsigned long);
 | |
|       __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
 | |
|       // long __fixsfdi(float)
 | |
|       __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
 | |
|       // long __fixdfdi(double)
 | |
|       __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
 | |
|       // unsigned long __fixunssfdi(float)
 | |
|       __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
 | |
|       // unsigned long __fixunsdfdi(double)
 | |
|       __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
 | |
|       // float __floatdisf(long)
 | |
|       __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
 | |
|       // double __floatdidf(long)
 | |
|       __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
 | |
|       // void* malloc(size_t)
 | |
|       mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
 | |
|       // void free(void*)
 | |
|       freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /// runOnFunction - Top level implementation of instruction selection for
 | |
|     /// the entire function.
 | |
|     ///
 | |
|     bool runOnFunction(Function &Fn) {
 | |
|       // First pass over the function, lower any unknown intrinsic functions
 | |
|       // with the IntrinsicLowering class.
 | |
|       LowerUnknownIntrinsicFunctionCalls(Fn);
 | |
| 
 | |
|       F = &MachineFunction::construct(&Fn, TM);
 | |
| 
 | |
|       // Create all of the machine basic blocks for the function...
 | |
|       for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | |
|         F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
 | |
| 
 | |
|       BB = &F->front();
 | |
| 
 | |
|       // Make sure we re-emit a set of the global base reg if necessary
 | |
|       GlobalBaseInitialized = false;
 | |
| 
 | |
|       // Copy incoming arguments off of the stack...
 | |
|       LoadArgumentsToVirtualRegs(Fn);
 | |
| 
 | |
|       // Instruction select everything except PHI nodes
 | |
|       visit(Fn);
 | |
| 
 | |
|       // Select the PHI nodes
 | |
|       SelectPHINodes();
 | |
| 
 | |
|       GEPMap.clear();
 | |
|       RegMap.clear();
 | |
|       MBBMap.clear();
 | |
|       InsertMap.clear();
 | |
|       AllocaMap.clear();
 | |
|       SkipList.clear();
 | |
|       F = 0;
 | |
|       // We always build a machine code representation for the function
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "PowerPC Simple Instruction Selection";
 | |
|     }
 | |
| 
 | |
|     /// visitBasicBlock - This method is called when we are visiting a new basic
 | |
|     /// block.  This simply creates a new MachineBasicBlock to emit code into
 | |
|     /// and adds it to the current MachineFunction.  Subsequent visit* for
 | |
|     /// instructions will be invoked for all instructions in the basic block.
 | |
|     ///
 | |
|     void visitBasicBlock(BasicBlock &LLVM_BB) {
 | |
|       BB = MBBMap[&LLVM_BB];
 | |
|     }
 | |
| 
 | |
|     /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
 | |
|     /// function, lowering any calls to unknown intrinsic functions into the
 | |
|     /// equivalent LLVM code.
 | |
|     ///
 | |
|     void LowerUnknownIntrinsicFunctionCalls(Function &F);
 | |
| 
 | |
|     /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
 | |
|     /// from the stack into virtual registers.
 | |
|     ///
 | |
|     void LoadArgumentsToVirtualRegs(Function &F);
 | |
| 
 | |
|     /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
 | |
|     /// because we have to generate our sources into the source basic blocks,
 | |
|     /// not the current one.
 | |
|     ///
 | |
|     void SelectPHINodes();
 | |
| 
 | |
|     // Visitation methods for various instructions.  These methods simply emit
 | |
|     // fixed PowerPC code for each instruction.
 | |
| 
 | |
|     // Control flow operators.
 | |
|     void visitReturnInst(ReturnInst &RI);
 | |
|     void visitBranchInst(BranchInst &BI);
 | |
|     void visitUnreachableInst(UnreachableInst &UI) {}
 | |
| 
 | |
|     struct ValueRecord {
 | |
|       Value *Val;
 | |
|       unsigned Reg;
 | |
|       const Type *Ty;
 | |
|       ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
 | |
|       ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
 | |
|     };
 | |
| 
 | |
|     void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
 | |
|                 const std::vector<ValueRecord> &Args, bool isVarArg);
 | |
|     void visitCallInst(CallInst &I);
 | |
|     void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
 | |
| 
 | |
|     // Arithmetic operators
 | |
|     void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
 | |
|     void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
 | |
|     void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
 | |
|     void visitMul(BinaryOperator &B);
 | |
| 
 | |
|     void visitDiv(BinaryOperator &B) { visitDivRem(B); }
 | |
|     void visitRem(BinaryOperator &B) { visitDivRem(B); }
 | |
|     void visitDivRem(BinaryOperator &B);
 | |
| 
 | |
|     // Bitwise operators
 | |
|     void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
 | |
|     void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
 | |
|     void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
 | |
| 
 | |
|     // Comparison operators...
 | |
|     void visitSetCondInst(SetCondInst &I);
 | |
|     void EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
 | |
|                         MachineBasicBlock *MBB,
 | |
|                         MachineBasicBlock::iterator MBBI);
 | |
|     void visitSelectInst(SelectInst &SI);
 | |
| 
 | |
| 
 | |
|     // Memory Instructions
 | |
|     void visitLoadInst(LoadInst &I);
 | |
|     void visitStoreInst(StoreInst &I);
 | |
|     void visitGetElementPtrInst(GetElementPtrInst &I);
 | |
|     void visitAllocaInst(AllocaInst &I);
 | |
|     void visitMallocInst(MallocInst &I);
 | |
|     void visitFreeInst(FreeInst &I);
 | |
| 
 | |
|     // Other operators
 | |
|     void visitShiftInst(ShiftInst &I);
 | |
|     void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass
 | |
|     void visitCastInst(CastInst &I);
 | |
|     void visitVAArgInst(VAArgInst &I);
 | |
| 
 | |
|     void visitInstruction(Instruction &I) {
 | |
|       std::cerr << "Cannot instruction select: " << I;
 | |
|       abort();
 | |
|     }
 | |
| 
 | |
|     unsigned ExtendOrClear(MachineBasicBlock *MBB,
 | |
|                            MachineBasicBlock::iterator IP,
 | |
|                            Value *Op0);
 | |
| 
 | |
|     /// promote32 - Make a value 32-bits wide, and put it somewhere.
 | |
|     ///
 | |
|     void promote32(unsigned targetReg, const ValueRecord &VR);
 | |
| 
 | |
|     /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
 | |
|     /// constant expression GEP support.
 | |
|     ///
 | |
|     void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
 | |
|                           GetElementPtrInst *GEPI, bool foldGEP);
 | |
| 
 | |
|     /// emitCastOperation - Common code shared between visitCastInst and
 | |
|     /// constant expression cast support.
 | |
|     ///
 | |
|     void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
 | |
|                            Value *Src, const Type *DestTy, unsigned TargetReg);
 | |
| 
 | |
| 
 | |
|     /// emitBitfieldInsert - return true if we were able to fold the sequence of
 | |
|     /// instructions into a bitfield insert (rlwimi).
 | |
|     bool emitBitfieldInsert(User *OpUser, unsigned DestReg);
 | |
| 
 | |
|     /// emitBitfieldExtract - return true if we were able to fold the sequence
 | |
|     /// of instructions into a bitfield extract (rlwinm).
 | |
|     bool emitBitfieldExtract(MachineBasicBlock *MBB,
 | |
|                              MachineBasicBlock::iterator IP,
 | |
|                              User *OpUser, unsigned DestReg);
 | |
| 
 | |
|     /// emitBinaryConstOperation - Used by several functions to emit simple
 | |
|     /// arithmetic and logical operations with constants on a register rather
 | |
|     /// than a Value.
 | |
|     ///
 | |
|     void emitBinaryConstOperation(MachineBasicBlock *MBB,
 | |
|                                   MachineBasicBlock::iterator IP,
 | |
|                                   unsigned Op0Reg, ConstantInt *Op1,
 | |
|                                   unsigned Opcode, unsigned DestReg);
 | |
| 
 | |
|     /// emitSimpleBinaryOperation - Implement simple binary operators for
 | |
|     /// integral types.  OperatorClass is one of: 0 for Add, 1 for Sub,
 | |
|     /// 2 for And, 3 for Or, 4 for Xor.
 | |
|     ///
 | |
|     void emitSimpleBinaryOperation(MachineBasicBlock *BB,
 | |
|                                    MachineBasicBlock::iterator IP,
 | |
|                                    BinaryOperator *BO, Value *Op0, Value *Op1,
 | |
|                                    unsigned OperatorClass, unsigned TargetReg);
 | |
| 
 | |
|     /// emitBinaryFPOperation - This method handles emission of floating point
 | |
|     /// Add (0), Sub (1), Mul (2), and Div (3) operations.
 | |
|     void emitBinaryFPOperation(MachineBasicBlock *BB,
 | |
|                                MachineBasicBlock::iterator IP,
 | |
|                                Value *Op0, Value *Op1,
 | |
|                                unsigned OperatorClass, unsigned TargetReg);
 | |
| 
 | |
|     void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
 | |
|                       Value *Op0, Value *Op1, unsigned TargetReg);
 | |
| 
 | |
|     void doMultiply(MachineBasicBlock *MBB,
 | |
|                     MachineBasicBlock::iterator IP,
 | |
|                     unsigned DestReg, Value *Op0, Value *Op1);
 | |
| 
 | |
|     /// doMultiplyConst - This method will multiply the value in Op0Reg by the
 | |
|     /// value of the ContantInt *CI
 | |
|     void doMultiplyConst(MachineBasicBlock *MBB,
 | |
|                          MachineBasicBlock::iterator IP,
 | |
|                          unsigned DestReg, Value *Op0, ConstantInt *CI);
 | |
| 
 | |
|     void emitDivRemOperation(MachineBasicBlock *BB,
 | |
|                              MachineBasicBlock::iterator IP,
 | |
|                              Value *Op0, Value *Op1, bool isDiv,
 | |
|                              unsigned TargetReg);
 | |
| 
 | |
|     /// emitSetCCOperation - Common code shared between visitSetCondInst and
 | |
|     /// constant expression support.
 | |
|     ///
 | |
|     void emitSetCCOperation(MachineBasicBlock *BB,
 | |
|                             MachineBasicBlock::iterator IP,
 | |
|                             Value *Op0, Value *Op1, unsigned Opcode,
 | |
|                             unsigned TargetReg);
 | |
| 
 | |
|     /// emitShiftOperation - Common code shared between visitShiftInst and
 | |
|     /// constant expression support.
 | |
|     ///
 | |
|     void emitShiftOperation(MachineBasicBlock *MBB,
 | |
|                             MachineBasicBlock::iterator IP,
 | |
|                             Value *Op, Value *ShiftAmount, bool isLeftShift,
 | |
|                             const Type *ResultTy, ShiftInst *SI,
 | |
|                             unsigned DestReg);
 | |
| 
 | |
|     /// emitSelectOperation - Common code shared between visitSelectInst and the
 | |
|     /// constant expression support.
 | |
|     ///
 | |
|     void emitSelectOperation(MachineBasicBlock *MBB,
 | |
|                              MachineBasicBlock::iterator IP,
 | |
|                              Value *Cond, Value *TrueVal, Value *FalseVal,
 | |
|                              unsigned DestReg);
 | |
| 
 | |
|     /// getGlobalBaseReg - Output the instructions required to put the
 | |
|     /// base address to use for accessing globals into a register.  Returns the
 | |
|     /// register containing the base address.
 | |
|     ///
 | |
|     unsigned getGlobalBaseReg();
 | |
| 
 | |
|     /// copyConstantToRegister - Output the instructions required to put the
 | |
|     /// specified constant into the specified register.
 | |
|     ///
 | |
|     void copyConstantToRegister(MachineBasicBlock *MBB,
 | |
|                                 MachineBasicBlock::iterator MBBI,
 | |
|                                 Constant *C, unsigned Reg);
 | |
| 
 | |
|     void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
 | |
|                    unsigned LHS, unsigned RHS);
 | |
| 
 | |
|     /// makeAnotherReg - This method returns the next register number we haven't
 | |
|     /// yet used.
 | |
|     ///
 | |
|     /// Long values are handled somewhat specially.  They are always allocated
 | |
|     /// as pairs of 32 bit integer values.  The register number returned is the
 | |
|     /// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
 | |
|     ///
 | |
|     unsigned makeAnotherReg(const Type *Ty) {
 | |
|       assert(dynamic_cast<const PPC32RegisterInfo*>(TM.getRegisterInfo()) &&
 | |
|              "Current target doesn't have PPC reg info??");
 | |
|       const PPC32RegisterInfo *PPCRI =
 | |
|         static_cast<const PPC32RegisterInfo*>(TM.getRegisterInfo());
 | |
|       if (Ty == Type::LongTy || Ty == Type::ULongTy) {
 | |
|         const TargetRegisterClass *RC = PPCRI->getRegClassForType(Type::IntTy);
 | |
|         // Create the upper part
 | |
|         F->getSSARegMap()->createVirtualRegister(RC);
 | |
|         // Create the lower part.
 | |
|         return F->getSSARegMap()->createVirtualRegister(RC)-1;
 | |
|       }
 | |
| 
 | |
|       // Add the mapping of regnumber => reg class to MachineFunction
 | |
|       const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
 | |
|       return F->getSSARegMap()->createVirtualRegister(RC);
 | |
|     }
 | |
| 
 | |
|     /// getReg - This method turns an LLVM value into a register number.
 | |
|     ///
 | |
|     unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
 | |
|     unsigned getReg(Value *V) {
 | |
|       // Just append to the end of the current bb.
 | |
|       MachineBasicBlock::iterator It = BB->end();
 | |
|       return getReg(V, BB, It);
 | |
|     }
 | |
|     unsigned getReg(Value *V, MachineBasicBlock *MBB,
 | |
|                     MachineBasicBlock::iterator IPt);
 | |
| 
 | |
|     /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
 | |
|     /// is okay to use as an immediate argument to a certain binary operation
 | |
|     bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode,
 | |
|                                     bool Shifted);
 | |
| 
 | |
|     /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
 | |
|     /// that is to be statically allocated with the initial stack frame
 | |
|     /// adjustment.
 | |
|     unsigned getFixedSizedAllocaFI(AllocaInst *AI);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// dyn_castFixedAlloca - If the specified value is a fixed size alloca
 | |
| /// instruction in the entry block, return it.  Otherwise, return a null
 | |
| /// pointer.
 | |
| static AllocaInst *dyn_castFixedAlloca(Value *V) {
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | |
|     BasicBlock *BB = AI->getParent();
 | |
|     if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
 | |
|       return AI;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getReg - This method turns an LLVM value into a register number.
 | |
| ///
 | |
| unsigned PPC32ISel::getReg(Value *V, MachineBasicBlock *MBB,
 | |
|                            MachineBasicBlock::iterator IPt) {
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|     unsigned Reg = makeAnotherReg(V->getType());
 | |
|     copyConstantToRegister(MBB, IPt, C, Reg);
 | |
|     return Reg;
 | |
|   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
 | |
|     // Do not emit noop casts at all, unless it's a double -> float cast.
 | |
|     if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
 | |
|       return getReg(CI->getOperand(0), MBB, IPt);
 | |
|   } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
 | |
|     unsigned Reg = makeAnotherReg(V->getType());
 | |
|     unsigned FI = getFixedSizedAllocaFI(AI);
 | |
|     addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
 | |
|     return Reg;
 | |
|   }
 | |
| 
 | |
|   unsigned &Reg = RegMap[V];
 | |
|   if (Reg == 0) {
 | |
|     Reg = makeAnotherReg(V->getType());
 | |
|     RegMap[V] = Reg;
 | |
|   }
 | |
| 
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
 | |
| /// is okay to use as an immediate argument to a certain binary operator.
 | |
| /// The shifted argument determines if the immediate is suitable to be used with
 | |
| /// the PowerPC instructions such as addis which concatenate 16 bits of the
 | |
| /// immediate with 16 bits of zeroes.
 | |
| ///
 | |
| bool PPC32ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode,
 | |
|                                            bool Shifted) {
 | |
|   ConstantSInt *Op1Cs;
 | |
|   ConstantUInt *Op1Cu;
 | |
| 
 | |
|   // For shifted immediates, any value with the low halfword cleared may be used
 | |
|   if (Shifted) {
 | |
|     if (((int32_t)CI->getRawValue() & 0x0000FFFF) == 0)
 | |
|       return true;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Treat subfic like addi for the purposes of constant validation
 | |
|   if (Opcode == 5) Opcode = 0;
 | |
| 
 | |
|   // addi, subfic, compare, and non-indexed load take SIMM
 | |
|   bool cond1 = (Opcode < 2)
 | |
|     && ((int32_t)CI->getRawValue() <= 32767)
 | |
|     && ((int32_t)CI->getRawValue() >= -32768);
 | |
| 
 | |
|   // ANDIo, ORI, and XORI take unsigned values
 | |
|   bool cond2 = (Opcode >= 2)
 | |
|     && (Op1Cs = dyn_cast<ConstantSInt>(CI))
 | |
|     && (Op1Cs->getValue() >= 0)
 | |
|     && (Op1Cs->getValue() <= 65535);
 | |
| 
 | |
|   // ANDIo, ORI, and XORI take UIMMs, so they can be larger
 | |
|   bool cond3 = (Opcode >= 2)
 | |
|     && (Op1Cu = dyn_cast<ConstantUInt>(CI))
 | |
|     && (Op1Cu->getValue() <= 65535);
 | |
| 
 | |
|   if (cond1 || cond2 || cond3)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
 | |
| /// that is to be statically allocated with the initial stack frame
 | |
| /// adjustment.
 | |
| unsigned PPC32ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
 | |
|   // Already computed this?
 | |
|   std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
 | |
|   if (I != AllocaMap.end() && I->first == AI) return I->second;
 | |
| 
 | |
|   const Type *Ty = AI->getAllocatedType();
 | |
|   ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
 | |
|   unsigned TySize = TM.getTargetData().getTypeSize(Ty);
 | |
|   TySize *= CUI->getValue();   // Get total allocated size...
 | |
|   unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
 | |
| 
 | |
|   // Create a new stack object using the frame manager...
 | |
|   int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
 | |
|   AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
 | |
|   return FrameIdx;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getGlobalBaseReg - Output the instructions required to put the
 | |
| /// base address to use for accessing globals into a register.
 | |
| ///
 | |
| unsigned PPC32ISel::getGlobalBaseReg() {
 | |
|   if (!GlobalBaseInitialized) {
 | |
|     // Insert the set of GlobalBaseReg into the first MBB of the function
 | |
|     MachineBasicBlock &FirstMBB = F->front();
 | |
|     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | |
|     GlobalBaseReg = makeAnotherReg(Type::IntTy);
 | |
|     BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
 | |
|     BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg).addReg(PPC::LR);
 | |
|     GlobalBaseInitialized = true;
 | |
|   }
 | |
|   return GlobalBaseReg;
 | |
| }
 | |
| 
 | |
| /// copyConstantToRegister - Output the instructions required to put the
 | |
| /// specified constant into the specified register.
 | |
| ///
 | |
| void PPC32ISel::copyConstantToRegister(MachineBasicBlock *MBB,
 | |
|                                        MachineBasicBlock::iterator IP,
 | |
|                                        Constant *C, unsigned R) {
 | |
|   if (isa<UndefValue>(C)) {
 | |
|     BuildMI(*MBB, IP, PPC::IMPLICIT_DEF, 0, R);
 | |
|     if (getClassB(C->getType()) == cLong)
 | |
|       BuildMI(*MBB, IP, PPC::IMPLICIT_DEF, 0, R+1);
 | |
|     return;
 | |
|   }
 | |
|   if (C->getType()->isIntegral()) {
 | |
|     unsigned Class = getClassB(C->getType());
 | |
| 
 | |
|     if (Class == cLong) {
 | |
|       if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
 | |
|         uint64_t uval = CUI->getValue();
 | |
|         unsigned hiUVal = uval >> 32;
 | |
|         unsigned loUVal = uval;
 | |
|         ConstantUInt *CUHi = ConstantUInt::get(Type::UIntTy, hiUVal);
 | |
|         ConstantUInt *CULo = ConstantUInt::get(Type::UIntTy, loUVal);
 | |
|         copyConstantToRegister(MBB, IP, CUHi, R);
 | |
|         copyConstantToRegister(MBB, IP, CULo, R+1);
 | |
|         return;
 | |
|       } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
 | |
|         int64_t sval = CSI->getValue();
 | |
|         int hiSVal = sval >> 32;
 | |
|         int loSVal = sval;
 | |
|         ConstantSInt *CSHi = ConstantSInt::get(Type::IntTy, hiSVal);
 | |
|         ConstantSInt *CSLo = ConstantSInt::get(Type::IntTy, loSVal);
 | |
|         copyConstantToRegister(MBB, IP, CSHi, R);
 | |
|         copyConstantToRegister(MBB, IP, CSLo, R+1);
 | |
|         return;
 | |
|       } else {
 | |
|         std::cerr << "Unhandled long constant type!\n";
 | |
|         abort();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     assert(Class <= cInt && "Type not handled yet!");
 | |
| 
 | |
|     // Handle bool
 | |
|     if (C->getType() == Type::BoolTy) {
 | |
|       BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Handle int
 | |
|     if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
 | |
|       unsigned uval = CUI->getValue();
 | |
|       if (uval < 32768) {
 | |
|         BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
 | |
|       } else {
 | |
|         unsigned Temp = makeAnotherReg(Type::IntTy);
 | |
|         BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
 | |
|         BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval & 0xFFFF);
 | |
|       }
 | |
|       return;
 | |
|     } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
 | |
|       int sval = CSI->getValue();
 | |
|       if (sval < 32768 && sval >= -32768) {
 | |
|         BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
 | |
|       } else {
 | |
|         unsigned Temp = makeAnotherReg(Type::IntTy);
 | |
|         BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
 | |
|         BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval & 0xFFFF);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     std::cerr << "Unhandled integer constant!\n";
 | |
|     abort();
 | |
|   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | |
|     // We need to spill the constant to memory...
 | |
|     MachineConstantPool *CP = F->getConstantPool();
 | |
|     unsigned CPI = CP->getConstantPoolIndex(CFP);
 | |
|     const Type *Ty = CFP->getType();
 | |
| 
 | |
|     assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
 | |
| 
 | |
|     // Load addr of constant to reg; constant is located at base + distance
 | |
|     unsigned Reg1 = makeAnotherReg(Type::IntTy);
 | |
|     unsigned Opcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
 | |
|     // Move value at base + distance into return reg
 | |
|     BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, Reg1)
 | |
|       .addReg(getGlobalBaseReg()).addConstantPoolIndex(CPI);
 | |
|     BuildMI(*MBB, IP, Opcode, 2, R).addConstantPoolIndex(CPI).addReg(Reg1);
 | |
|   } else if (isa<ConstantPointerNull>(C)) {
 | |
|     // Copy zero (null pointer) to the register.
 | |
|     BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
 | |
|   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
 | |
|     // GV is located at base + distance
 | |
|     unsigned TmpReg = makeAnotherReg(GV->getType());
 | |
| 
 | |
|     // Move value at base + distance into return reg
 | |
|     BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, TmpReg)
 | |
|       .addReg(getGlobalBaseReg()).addGlobalAddress(GV);
 | |
| 
 | |
|     if (GV->hasWeakLinkage() || GV->isExternal()) {
 | |
|       BuildMI(*MBB, IP, PPC::LWZ, 2, R).addGlobalAddress(GV).addReg(TmpReg);
 | |
|     } else {
 | |
|       BuildMI(*MBB, IP, PPC::LA, 2, R).addReg(TmpReg).addGlobalAddress(GV);
 | |
|     }
 | |
|   } else {
 | |
|     std::cerr << "Offending constant: " << *C << "\n";
 | |
|     assert(0 && "Type not handled yet!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
 | |
| /// the stack into virtual registers.
 | |
| void PPC32ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
 | |
|   unsigned ArgOffset = 24;
 | |
|   unsigned GPR_remaining = 8;
 | |
|   unsigned FPR_remaining = 13;
 | |
|   unsigned GPR_idx = 0, FPR_idx = 0;
 | |
|   static const unsigned GPR[] = {
 | |
|     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|   };
 | |
|   static const unsigned FPR[] = {
 | |
|     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | |
|     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
 | |
|   };
 | |
| 
 | |
|   MachineFrameInfo *MFI = F->getFrameInfo();
 | |
| 
 | |
|   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
 | |
|        I != E; ++I) {
 | |
|     bool ArgLive = !I->use_empty();
 | |
|     unsigned Reg = ArgLive ? getReg(*I) : 0;
 | |
|     int FI;          // Frame object index
 | |
| 
 | |
|     switch (getClassB(I->getType())) {
 | |
|     case cByte:
 | |
|       if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(4, ArgOffset);
 | |
|         if (GPR_remaining > 0) {
 | |
|           F->addLiveIn(GPR[GPR_idx]);
 | |
|           BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
 | |
|             .addReg(GPR[GPR_idx]);
 | |
|         } else {
 | |
|           addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case cShort:
 | |
|       if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(4, ArgOffset);
 | |
|         if (GPR_remaining > 0) {
 | |
|           F->addLiveIn(GPR[GPR_idx]);
 | |
|           BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
 | |
|             .addReg(GPR[GPR_idx]);
 | |
|         } else {
 | |
|           addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case cInt:
 | |
|       if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(4, ArgOffset);
 | |
|         if (GPR_remaining > 0) {
 | |
|           F->addLiveIn(GPR[GPR_idx]);
 | |
|           BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
 | |
|             .addReg(GPR[GPR_idx]);
 | |
|         } else {
 | |
|           addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case cLong:
 | |
|       if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(8, ArgOffset);
 | |
|         if (GPR_remaining > 1) {
 | |
|           F->addLiveIn(GPR[GPR_idx]);
 | |
|           F->addLiveIn(GPR[GPR_idx+1]);
 | |
|           BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
 | |
|             .addReg(GPR[GPR_idx]);
 | |
|           BuildMI(BB, PPC::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
 | |
|             .addReg(GPR[GPR_idx+1]);
 | |
|         } else {
 | |
|           addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
 | |
|           addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg+1), FI, 4);
 | |
|         }
 | |
|       }
 | |
|       // longs require 4 additional bytes and use 2 GPRs
 | |
|       ArgOffset += 4;
 | |
|       if (GPR_remaining > 1) {
 | |
|         GPR_remaining--;
 | |
|         GPR_idx++;
 | |
|       }
 | |
|       break;
 | |
|     case cFP32:
 | |
|      if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(4, ArgOffset);
 | |
| 
 | |
|         if (FPR_remaining > 0) {
 | |
|           F->addLiveIn(FPR[FPR_idx]);
 | |
|           BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
 | |
|           FPR_remaining--;
 | |
|           FPR_idx++;
 | |
|         } else {
 | |
|           addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case cFP64:
 | |
|       if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(8, ArgOffset);
 | |
| 
 | |
|         if (FPR_remaining > 0) {
 | |
|           F->addLiveIn(FPR[FPR_idx]);
 | |
|           BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
 | |
|           FPR_remaining--;
 | |
|           FPR_idx++;
 | |
|         } else {
 | |
|           addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // doubles require 4 additional bytes and use 2 GPRs of param space
 | |
|       ArgOffset += 4;
 | |
|       if (GPR_remaining > 0) {
 | |
|         GPR_remaining--;
 | |
|         GPR_idx++;
 | |
|       }
 | |
|       break;
 | |
|     default:
 | |
|       assert(0 && "Unhandled argument type!");
 | |
|     }
 | |
|     ArgOffset += 4;  // Each argument takes at least 4 bytes on the stack...
 | |
|     if (GPR_remaining > 0) {
 | |
|       GPR_remaining--;    // uses up 2 GPRs
 | |
|       GPR_idx++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the function takes variable number of arguments, add a frame offset for
 | |
|   // the start of the first vararg value... this is used to expand
 | |
|   // llvm.va_start.
 | |
|   if (Fn.getFunctionType()->isVarArg())
 | |
|     VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
 | |
| 
 | |
|   if (Fn.getReturnType() != Type::VoidTy)
 | |
|     switch (getClassB(Fn.getReturnType())) {
 | |
|     case cByte:
 | |
|     case cShort:
 | |
|     case cInt:
 | |
|       F->addLiveOut(PPC::R3);
 | |
|       break;
 | |
|     case cLong:
 | |
|       F->addLiveOut(PPC::R3);
 | |
|       F->addLiveOut(PPC::R4);
 | |
|       break;
 | |
|     case cFP32:
 | |
|     case cFP64:
 | |
|       F->addLiveOut(PPC::F1);
 | |
|       break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
 | |
| /// because we have to generate our sources into the source basic blocks, not
 | |
| /// the current one.
 | |
| ///
 | |
| void PPC32ISel::SelectPHINodes() {
 | |
|   const TargetInstrInfo &TII = *TM.getInstrInfo();
 | |
|   const Function &LF = *F->getFunction();  // The LLVM function...
 | |
| 
 | |
|   MachineBasicBlock::iterator MFLRIt = F->begin()->begin();
 | |
|   if (GlobalBaseInitialized) {
 | |
|     // If we emitted a MFLR for the global base reg, get an iterator to an
 | |
|     // instruction after it.
 | |
|     while (MFLRIt->getOpcode() != PPC::MFLR)
 | |
|       ++MFLRIt;
 | |
|     ++MFLRIt;  // step one MI past it.
 | |
|   }
 | |
| 
 | |
|   for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
 | |
|     const BasicBlock *BB = I;
 | |
|     MachineBasicBlock &MBB = *MBBMap[I];
 | |
| 
 | |
|     // Loop over all of the PHI nodes in the LLVM basic block...
 | |
|     MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
 | |
|     for (BasicBlock::const_iterator I = BB->begin();
 | |
|          PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
 | |
| 
 | |
|       // Create a new machine instr PHI node, and insert it.
 | |
|       unsigned PHIReg = getReg(*PN);
 | |
|       MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
 | |
|                                     PPC::PHI, PN->getNumOperands(), PHIReg);
 | |
| 
 | |
|       MachineInstr *LongPhiMI = 0;
 | |
|       if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
 | |
|         LongPhiMI = BuildMI(MBB, PHIInsertPoint,
 | |
|                             PPC::PHI, PN->getNumOperands(), PHIReg+1);
 | |
| 
 | |
|       // PHIValues - Map of blocks to incoming virtual registers.  We use this
 | |
|       // so that we only initialize one incoming value for a particular block,
 | |
|       // even if the block has multiple entries in the PHI node.
 | |
|       //
 | |
|       std::map<MachineBasicBlock*, unsigned> PHIValues;
 | |
| 
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|         MachineBasicBlock *PredMBB = 0;
 | |
|         for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
 | |
|              PE = MBB.pred_end (); PI != PE; ++PI)
 | |
|           if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
 | |
|             PredMBB = *PI;
 | |
|             break;
 | |
|           }
 | |
|         assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
 | |
| 
 | |
|         unsigned ValReg;
 | |
|         std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
 | |
|           PHIValues.lower_bound(PredMBB);
 | |
| 
 | |
|         if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
 | |
|           // We already inserted an initialization of the register for this
 | |
|           // predecessor.  Recycle it.
 | |
|           ValReg = EntryIt->second;
 | |
|         } else {
 | |
|           // Get the incoming value into a virtual register.
 | |
|           //
 | |
|           Value *Val = PN->getIncomingValue(i);
 | |
| 
 | |
|           // If this is a constant or GlobalValue, we may have to insert code
 | |
|           // into the basic block to compute it into a virtual register.
 | |
|           if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
 | |
|               isa<GlobalValue>(Val)) {
 | |
|             // Simple constants get emitted at the end of the basic block,
 | |
|             // before any terminator instructions.  We "know" that the code to
 | |
|             // move a constant into a register will never clobber any flags.
 | |
|             ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
 | |
|           } else {
 | |
|             // Because we don't want to clobber any values which might be in
 | |
|             // physical registers with the computation of this constant (which
 | |
|             // might be arbitrarily complex if it is a constant expression),
 | |
|             // just insert the computation at the top of the basic block.
 | |
|             MachineBasicBlock::iterator PI = PredMBB->begin();
 | |
| 
 | |
|             // Skip over any PHI nodes though!
 | |
|             while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
 | |
|               ++PI;
 | |
| 
 | |
|             // If this is the entry block, and if the entry block contains a
 | |
|             // MFLR instruction, emit this operation after it.  This is needed
 | |
|             // because global addresses use it.
 | |
|             if (PredMBB == F->begin())
 | |
|               PI = MFLRIt;
 | |
| 
 | |
|             ValReg = getReg(Val, PredMBB, PI);
 | |
|           }
 | |
| 
 | |
|           // Remember that we inserted a value for this PHI for this predecessor
 | |
|           PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
 | |
|         }
 | |
| 
 | |
|         PhiMI->addRegOperand(ValReg);
 | |
|         PhiMI->addMachineBasicBlockOperand(PredMBB);
 | |
|         if (LongPhiMI) {
 | |
|           LongPhiMI->addRegOperand(ValReg+1);
 | |
|           LongPhiMI->addMachineBasicBlockOperand(PredMBB);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Now that we emitted all of the incoming values for the PHI node, make
 | |
|       // sure to reposition the InsertPoint after the PHI that we just added.
 | |
|       // This is needed because we might have inserted a constant into this
 | |
|       // block, right after the PHI's which is before the old insert point!
 | |
|       PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
 | |
|       ++PHIInsertPoint;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
 | |
| // it into the conditional branch or select instruction which is the only user
 | |
| // of the cc instruction.  This is the case if the conditional branch is the
 | |
| // only user of the setcc, and if the setcc is in the same basic block as the
 | |
| // conditional branch.
 | |
| //
 | |
| static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
 | |
|   if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
 | |
|     if (SCI->hasOneUse()) {
 | |
|       Instruction *User = cast<Instruction>(SCI->use_back());
 | |
|       if ((isa<BranchInst>(User) ||
 | |
|            (isa<SelectInst>(User) && User->getOperand(0) == V)) &&
 | |
|           SCI->getParent() == User->getParent())
 | |
|         return SCI;
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
 | |
| // the load or store instruction that is the only user of the GEP.
 | |
| //
 | |
| static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
 | |
|   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
 | |
|     bool AllUsesAreMem = true;
 | |
|     for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
 | |
|          I != E; ++I) {
 | |
|       Instruction *User = cast<Instruction>(*I);
 | |
| 
 | |
|       // If the GEP is the target of a store, but not the source, then we are ok
 | |
|       // to fold it.
 | |
|       if (isa<StoreInst>(User) &&
 | |
|           GEPI->getParent() == User->getParent() &&
 | |
|           User->getOperand(0) != GEPI &&
 | |
|           User->getOperand(1) == GEPI)
 | |
|         continue;
 | |
| 
 | |
|       // If the GEP is the source of a load, then we're always ok to fold it
 | |
|       if (isa<LoadInst>(User) &&
 | |
|           GEPI->getParent() == User->getParent() &&
 | |
|           User->getOperand(0) == GEPI)
 | |
|         continue;
 | |
| 
 | |
|       // if we got to this point, than the instruction was not a load or store
 | |
|       // that we are capable of folding the GEP into.
 | |
|       AllUsesAreMem = false;
 | |
|       break;
 | |
|     }
 | |
|     if (AllUsesAreMem)
 | |
|       return GEPI;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Return a fixed numbering for setcc instructions which does not depend on the
 | |
| // order of the opcodes.
 | |
| //
 | |
| static unsigned getSetCCNumber(unsigned Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: assert(0 && "Unknown setcc instruction!");
 | |
|   case Instruction::SetEQ: return 0;
 | |
|   case Instruction::SetNE: return 1;
 | |
|   case Instruction::SetLT: return 2;
 | |
|   case Instruction::SetGE: return 3;
 | |
|   case Instruction::SetGT: return 4;
 | |
|   case Instruction::SetLE: return 5;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned getPPCOpcodeForSetCCOpcode(unsigned Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: assert(0 && "Unknown setcc instruction!");
 | |
|   case Instruction::SetEQ: return PPC::BEQ;
 | |
|   case Instruction::SetNE: return PPC::BNE;
 | |
|   case Instruction::SetLT: return PPC::BLT;
 | |
|   case Instruction::SetGE: return PPC::BGE;
 | |
|   case Instruction::SetGT: return PPC::BGT;
 | |
|   case Instruction::SetLE: return PPC::BLE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// emitUCOM - emits an unordered FP compare.
 | |
| void PPC32ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
 | |
|                          unsigned LHS, unsigned RHS) {
 | |
|     BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS);
 | |
| }
 | |
| 
 | |
| unsigned PPC32ISel::ExtendOrClear(MachineBasicBlock *MBB,
 | |
|                                   MachineBasicBlock::iterator IP,
 | |
|                                   Value *Op0) {
 | |
|   const Type *CompTy = Op0->getType();
 | |
|   unsigned Reg = getReg(Op0, MBB, IP);
 | |
|   unsigned Class = getClassB(CompTy);
 | |
| 
 | |
|   // Since we know that boolean values will be either zero or one, we don't
 | |
|   // have to extend or clear them.
 | |
|   if (CompTy == Type::BoolTy)
 | |
|     return Reg;
 | |
| 
 | |
|   // Before we do a comparison or SetCC, we have to make sure that we truncate
 | |
|   // the source registers appropriately.
 | |
|   if (Class == cByte) {
 | |
|     unsigned TmpReg = makeAnotherReg(CompTy);
 | |
|     if (CompTy->isSigned())
 | |
|       BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Reg);
 | |
|     else
 | |
|       BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Reg).addImm(0)
 | |
|         .addImm(24).addImm(31);
 | |
|     Reg = TmpReg;
 | |
|   } else if (Class == cShort) {
 | |
|     unsigned TmpReg = makeAnotherReg(CompTy);
 | |
|     if (CompTy->isSigned())
 | |
|       BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Reg);
 | |
|     else
 | |
|       BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Reg).addImm(0)
 | |
|         .addImm(16).addImm(31);
 | |
|     Reg = TmpReg;
 | |
|   }
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| /// EmitComparison - emits a comparison of the two operands. The result is in
 | |
| /// CR0.
 | |
| ///
 | |
| void PPC32ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
 | |
|                                MachineBasicBlock *MBB,
 | |
|                                MachineBasicBlock::iterator IP) {
 | |
|   // The arguments are already supposed to be of the same type.
 | |
|   const Type *CompTy = Op0->getType();
 | |
|   unsigned Class = getClassB(CompTy);
 | |
|   unsigned Op0r = ExtendOrClear(MBB, IP, Op0);
 | |
| 
 | |
|   // Use crand for lt, gt and crandc for le, ge
 | |
|   unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC;
 | |
|   // ? cr1[lt] : cr1[gt]
 | |
|   unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 0 : 1;
 | |
|   // ? cr0[lt] : cr0[gt]
 | |
|   unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
 | |
|   unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW;
 | |
|   unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI;
 | |
| 
 | |
|   // Special case handling of: cmp R, i
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|     if (Class == cByte || Class == cShort || Class == cInt) {
 | |
|       unsigned Op1v = CI->getRawValue() & 0xFFFF;
 | |
|       unsigned OpClass = (CompTy->isSigned()) ? 0 : 2;
 | |
| 
 | |
|       // Treat compare like ADDI for the purposes of immediate suitability
 | |
|       if (canUseAsImmediateForOpcode(CI, OpClass, false)) {
 | |
|         BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v);
 | |
|       } else {
 | |
|         unsigned Op1r = getReg(Op1, MBB, IP);
 | |
|         BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
 | |
|       }
 | |
|       return;
 | |
|     } else {
 | |
|       assert(Class == cLong && "Unknown integer class!");
 | |
|       unsigned LowCst = CI->getRawValue();
 | |
|       unsigned HiCst = CI->getRawValue() >> 32;
 | |
|       if (OpNum < 2) {    // seteq, setne
 | |
|         unsigned LoLow = makeAnotherReg(Type::IntTy);
 | |
|         unsigned LoTmp = makeAnotherReg(Type::IntTy);
 | |
|         unsigned HiLow = makeAnotherReg(Type::IntTy);
 | |
|         unsigned HiTmp = makeAnotherReg(Type::IntTy);
 | |
|         unsigned FinalTmp = makeAnotherReg(Type::IntTy);
 | |
| 
 | |
|         BuildMI(*MBB, IP, PPC::XORI, 2, LoLow).addReg(Op0r+1)
 | |
|           .addImm(LowCst & 0xFFFF);
 | |
|         BuildMI(*MBB, IP, PPC::XORIS, 2, LoTmp).addReg(LoLow)
 | |
|           .addImm(LowCst >> 16);
 | |
|         BuildMI(*MBB, IP, PPC::XORI, 2, HiLow).addReg(Op0r)
 | |
|           .addImm(HiCst & 0xFFFF);
 | |
|         BuildMI(*MBB, IP, PPC::XORIS, 2, HiTmp).addReg(HiLow)
 | |
|           .addImm(HiCst >> 16);
 | |
|         BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
 | |
|         return;
 | |
|       } else {
 | |
|         unsigned ConstReg = makeAnotherReg(CompTy);
 | |
|         copyConstantToRegister(MBB, IP, CI, ConstReg);
 | |
| 
 | |
|         // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
 | |
|         BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r)
 | |
|           .addReg(ConstReg);
 | |
|         BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1)
 | |
|           .addReg(ConstReg+1);
 | |
|         BuildMI(*MBB, IP, PPC::CRAND, 5, PPC::CR0).addImm(2)
 | |
|           .addReg(PPC::CR0).addImm(2).addReg(PPC::CR1).addImm(CR1field);
 | |
|         BuildMI(*MBB, IP, PPC::CROR, 5, PPC::CR0).addImm(CR0field)
 | |
|           .addReg(PPC::CR0).addImm(CR0field).addReg(PPC::CR0).addImm(2);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned Op1r = getReg(Op1, MBB, IP);
 | |
| 
 | |
|   switch (Class) {
 | |
|   default: assert(0 && "Unknown type class!");
 | |
|   case cByte:
 | |
|   case cShort:
 | |
|   case cInt:
 | |
|     BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
 | |
|     break;
 | |
| 
 | |
|   case cFP32:
 | |
|   case cFP64:
 | |
|     emitUCOM(MBB, IP, Op0r, Op1r);
 | |
|     break;
 | |
| 
 | |
|   case cLong:
 | |
|     if (OpNum < 2) {    // seteq, setne
 | |
|       unsigned LoTmp = makeAnotherReg(Type::IntTy);
 | |
|       unsigned HiTmp = makeAnotherReg(Type::IntTy);
 | |
|       unsigned FinalTmp = makeAnotherReg(Type::IntTy);
 | |
|       BuildMI(*MBB, IP, PPC::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
 | |
|       BuildMI(*MBB, IP, PPC::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
 | |
|       BuildMI(*MBB, IP, PPC::ORo,  2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
 | |
|       break;  // Allow the sete or setne to be generated from flags set by OR
 | |
|     } else {
 | |
|       unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
 | |
|       unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
 | |
| 
 | |
|       // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
 | |
|       BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
 | |
|       BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1).addReg(Op1r+1);
 | |
|       BuildMI(*MBB, IP, PPC::CRAND, 5, PPC::CR0).addImm(2)
 | |
|         .addReg(PPC::CR0).addImm(2).addReg(PPC::CR1).addImm(CR1field);
 | |
|       BuildMI(*MBB, IP, PPC::CROR, 5, PPC::CR0).addImm(CR0field)
 | |
|         .addReg(PPC::CR0).addImm(CR0field).addReg(PPC::CR0).addImm(2);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// visitSetCondInst - emit code to calculate the condition via
 | |
| /// EmitComparison(), and possibly store a 0 or 1 to a register as a result
 | |
| ///
 | |
| void PPC32ISel::visitSetCondInst(SetCondInst &I) {
 | |
|   if (canFoldSetCCIntoBranchOrSelect(&I))
 | |
|     return;
 | |
| 
 | |
|   MachineBasicBlock::iterator MI = BB->end();
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   const Type *Ty = Op0->getType();
 | |
|   unsigned Class = getClassB(Ty);
 | |
|   unsigned Opcode = I.getOpcode();
 | |
|   unsigned OpNum = getSetCCNumber(Opcode);
 | |
|   unsigned DestReg = getReg(I);
 | |
| 
 | |
|   // If the comparison type is byte, short, or int, then we can emit a
 | |
|   // branchless version of the SetCC that puts 0 (false) or 1 (true) in the
 | |
|   // destination register.
 | |
|   if (Class <= cInt) {
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(Op1);
 | |
| 
 | |
|     if (CI && CI->getRawValue() == 0) {
 | |
|       unsigned Op0Reg = ExtendOrClear(BB, MI, Op0);
 | |
| 
 | |
|       // comparisons against constant zero and negative one often have shorter
 | |
|       // and/or faster sequences than the set-and-branch general case, handled
 | |
|       // below.
 | |
|       switch(OpNum) {
 | |
|       case 0: { // eq0
 | |
|         unsigned TempReg = makeAnotherReg(Type::IntTy);
 | |
|         BuildMI(*BB, MI, PPC::CNTLZW, 1, TempReg).addReg(Op0Reg);
 | |
|         BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(TempReg).addImm(27)
 | |
|           .addImm(5).addImm(31);
 | |
|         break;
 | |
|         }
 | |
|       case 1: { // ne0
 | |
|         unsigned TempReg = makeAnotherReg(Type::IntTy);
 | |
|         BuildMI(*BB, MI, PPC::ADDIC, 2, TempReg).addReg(Op0Reg).addSImm(-1);
 | |
|         BuildMI(*BB, MI, PPC::SUBFE, 2, DestReg).addReg(TempReg).addReg(Op0Reg);
 | |
|         break;
 | |
|         }
 | |
|       case 2: { // lt0, always false if unsigned
 | |
|         if (Ty->isSigned())
 | |
|           BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Op0Reg).addImm(1)
 | |
|             .addImm(31).addImm(31);
 | |
|         else
 | |
|           BuildMI(*BB, MI, PPC::LI, 1, DestReg).addSImm(0);
 | |
|         break;
 | |
|         }
 | |
|       case 3: { // ge0, always true if unsigned
 | |
|         if (Ty->isSigned()) {
 | |
|           unsigned TempReg = makeAnotherReg(Type::IntTy);
 | |
|           BuildMI(*BB, MI, PPC::RLWINM, 4, TempReg).addReg(Op0Reg).addImm(1)
 | |
|             .addImm(31).addImm(31);
 | |
|           BuildMI(*BB, MI, PPC::XORI, 2, DestReg).addReg(TempReg).addImm(1);
 | |
|         } else {
 | |
|           BuildMI(*BB, MI, PPC::LI, 1, DestReg).addSImm(1);
 | |
|         }
 | |
|         break;
 | |
|         }
 | |
|       case 4: { // gt0, equivalent to ne0 if unsigned
 | |
|         unsigned Temp1 = makeAnotherReg(Type::IntTy);
 | |
|         unsigned Temp2 = makeAnotherReg(Type::IntTy);
 | |
|         if (Ty->isSigned()) {
 | |
|           BuildMI(*BB, MI, PPC::NEG, 2, Temp1).addReg(Op0Reg);
 | |
|           BuildMI(*BB, MI, PPC::ANDC, 2, Temp2).addReg(Temp1).addReg(Op0Reg);
 | |
|           BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp2).addImm(1)
 | |
|             .addImm(31).addImm(31);
 | |
|         } else {
 | |
|           BuildMI(*BB, MI, PPC::ADDIC, 2, Temp1).addReg(Op0Reg).addSImm(-1);
 | |
|           BuildMI(*BB, MI, PPC::SUBFE, 2, DestReg).addReg(Temp1).addReg(Op0Reg);
 | |
|         }
 | |
|         break;
 | |
|         }
 | |
|       case 5: { // le0, equivalent to eq0 if unsigned
 | |
|         unsigned Temp1 = makeAnotherReg(Type::IntTy);
 | |
|         unsigned Temp2 = makeAnotherReg(Type::IntTy);
 | |
|         if (Ty->isSigned()) {
 | |
|           BuildMI(*BB, MI, PPC::NEG, 2, Temp1).addReg(Op0Reg);
 | |
|           BuildMI(*BB, MI, PPC::ORC, 2, Temp2).addReg(Op0Reg).addReg(Temp1);
 | |
|           BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp2).addImm(1)
 | |
|             .addImm(31).addImm(31);
 | |
|         } else {
 | |
|           BuildMI(*BB, MI, PPC::CNTLZW, 1, Temp1).addReg(Op0Reg);
 | |
|           BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp1).addImm(27)
 | |
|             .addImm(5).addImm(31);
 | |
|         }
 | |
|         break;
 | |
|         }
 | |
|       } // switch
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   unsigned PPCOpcode = getPPCOpcodeForSetCCOpcode(Opcode);
 | |
| 
 | |
|   // Create an iterator with which to insert the MBB for copying the false value
 | |
|   // and the MBB to hold the PHI instruction for this SetCC.
 | |
|   MachineBasicBlock *thisMBB = BB;
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   ilist<MachineBasicBlock>::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //  ...
 | |
|   //   cmpTY cr0, r1, r2
 | |
|   //   %TrueValue = li 1
 | |
|   //   bCC sinkMBB
 | |
|   EmitComparison(OpNum, Op0, Op1, BB, BB->end());
 | |
|   unsigned TrueValue = makeAnotherReg(I.getType());
 | |
|   BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
 | |
|   MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
 | |
|   BuildMI(BB, PPCOpcode, 2).addReg(PPC::CR0).addMBB(sinkMBB);
 | |
|   F->getBasicBlockList().insert(It, copy0MBB);
 | |
|   F->getBasicBlockList().insert(It, sinkMBB);
 | |
|   // Update machine-CFG edges
 | |
|   BB->addSuccessor(copy0MBB);
 | |
|   BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|   //  copy0MBB:
 | |
|   //   %FalseValue = li 0
 | |
|   //   fallthrough
 | |
|   BB = copy0MBB;
 | |
|   unsigned FalseValue = makeAnotherReg(I.getType());
 | |
|   BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
 | |
|   // Update machine-CFG edges
 | |
|   BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|   //  sinkMBB:
 | |
|   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | |
|   //  ...
 | |
|   BB = sinkMBB;
 | |
|   BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
 | |
|     .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
 | |
| }
 | |
| 
 | |
| void PPC32ISel::visitSelectInst(SelectInst &SI) {
 | |
|   unsigned DestReg = getReg(SI);
 | |
|   MachineBasicBlock::iterator MII = BB->end();
 | |
|   emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
 | |
|                       SI.getFalseValue(), DestReg);
 | |
| }
 | |
| 
 | |
| /// emitSelect - Common code shared between visitSelectInst and the constant
 | |
| /// expression support.
 | |
| void PPC32ISel::emitSelectOperation(MachineBasicBlock *MBB,
 | |
|                                     MachineBasicBlock::iterator IP,
 | |
|                                     Value *Cond, Value *TrueVal,
 | |
|                                     Value *FalseVal, unsigned DestReg) {
 | |
|   unsigned SelectClass = getClassB(TrueVal->getType());
 | |
|   unsigned Opcode;
 | |
| 
 | |
|   // See if we can fold the setcc into the select instruction, or if we have
 | |
|   // to get the register of the Cond value
 | |
|   if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
 | |
|     // We successfully folded the setcc into the select instruction.
 | |
|     unsigned OpNum = getSetCCNumber(SCI->getOpcode());
 | |
|     if (OpNum >= 2 && OpNum <= 5) {
 | |
|       unsigned SetCondClass = getClassB(SCI->getOperand(0)->getType());
 | |
|       if ((SetCondClass == cFP32 || SetCondClass == cFP64) &&
 | |
|           (SelectClass == cFP32 || SelectClass == cFP64)) {
 | |
|         unsigned CondReg = getReg(SCI->getOperand(0), MBB, IP);
 | |
|         unsigned TrueReg = getReg(TrueVal, MBB, IP);
 | |
|         unsigned FalseReg = getReg(FalseVal, MBB, IP);
 | |
|         // if the comparison of the floating point value used to for the select
 | |
|         // is against 0, then we can emit an fsel without subtraction.
 | |
|         ConstantFP *Op1C = dyn_cast<ConstantFP>(SCI->getOperand(1));
 | |
|         if (Op1C && (Op1C->isExactlyValue(-0.0) || Op1C->isExactlyValue(0.0))) {
 | |
|           switch(OpNum) {
 | |
|           case 2:   // LT
 | |
|             BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(CondReg)
 | |
|               .addReg(FalseReg).addReg(TrueReg);
 | |
|             break;
 | |
|           case 3:   // GE == !LT
 | |
|             BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(CondReg)
 | |
|               .addReg(TrueReg).addReg(FalseReg);
 | |
|             break;
 | |
|           case 4: {  // GT
 | |
|             unsigned NegatedReg = makeAnotherReg(SCI->getOperand(0)->getType());
 | |
|             BuildMI(*MBB, IP, PPC::FNEG, 1, NegatedReg).addReg(CondReg);
 | |
|             BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(NegatedReg)
 | |
|               .addReg(FalseReg).addReg(TrueReg);
 | |
|             }
 | |
|             break;
 | |
|           case 5: {  // LE == !GT
 | |
|             unsigned NegatedReg = makeAnotherReg(SCI->getOperand(0)->getType());
 | |
|             BuildMI(*MBB, IP, PPC::FNEG, 1, NegatedReg).addReg(CondReg);
 | |
|             BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(NegatedReg)
 | |
|               .addReg(TrueReg).addReg(FalseReg);
 | |
|             }
 | |
|             break;
 | |
|           default:
 | |
|             assert(0 && "Invalid SetCC opcode to fsel");
 | |
|             abort();
 | |
|             break;
 | |
|           }
 | |
|         } else {
 | |
|           unsigned OtherCondReg = getReg(SCI->getOperand(1), MBB, IP);
 | |
|           unsigned SelectReg = makeAnotherReg(SCI->getOperand(0)->getType());
 | |
|           switch(OpNum) {
 | |
|           case 2:   // LT
 | |
|             BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(CondReg)
 | |
|               .addReg(OtherCondReg);
 | |
|             BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
 | |
|               .addReg(FalseReg).addReg(TrueReg);
 | |
|             break;
 | |
|           case 3:   // GE == !LT
 | |
|             BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(CondReg)
 | |
|               .addReg(OtherCondReg);
 | |
|             BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
 | |
|               .addReg(TrueReg).addReg(FalseReg);
 | |
|             break;
 | |
|           case 4:   // GT
 | |
|             BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(OtherCondReg)
 | |
|               .addReg(CondReg);
 | |
|             BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
 | |
|               .addReg(FalseReg).addReg(TrueReg);
 | |
|             break;
 | |
|           case 5:   // LE == !GT
 | |
|             BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(OtherCondReg)
 | |
|               .addReg(CondReg);
 | |
|             BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
 | |
|               .addReg(TrueReg).addReg(FalseReg);
 | |
|             break;
 | |
|           default:
 | |
|             assert(0 && "Invalid SetCC opcode to fsel");
 | |
|             abort();
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
 | |
|     Opcode = getPPCOpcodeForSetCCOpcode(SCI->getOpcode());
 | |
|   } else {
 | |
|     unsigned CondReg = getReg(Cond, MBB, IP);
 | |
|     BuildMI(*MBB, IP, PPC::CMPWI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
 | |
|     Opcode = getPPCOpcodeForSetCCOpcode(Instruction::SetNE);
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock *thisMBB = BB;
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   ilist<MachineBasicBlock>::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //  ...
 | |
|   //   TrueVal = ...
 | |
|   //   cmpTY cr0, r1, r2
 | |
|   //   bCC copy1MBB
 | |
|   //   fallthrough --> copy0MBB
 | |
|   MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
 | |
|   unsigned TrueValue = getReg(TrueVal);
 | |
|   BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(sinkMBB);
 | |
|   F->getBasicBlockList().insert(It, copy0MBB);
 | |
|   F->getBasicBlockList().insert(It, sinkMBB);
 | |
|   // Update machine-CFG edges
 | |
|   BB->addSuccessor(copy0MBB);
 | |
|   BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|   //  copy0MBB:
 | |
|   //   %FalseValue = ...
 | |
|   //   # fallthrough to sinkMBB
 | |
|   BB = copy0MBB;
 | |
|   unsigned FalseValue = getReg(FalseVal);
 | |
|   // Update machine-CFG edges
 | |
|   BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|   //  sinkMBB:
 | |
|   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | |
|   //  ...
 | |
|   BB = sinkMBB;
 | |
|   BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
 | |
|     .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
 | |
| 
 | |
|   // For a register pair representing a long value, define the top part.
 | |
|   if (getClassB(TrueVal->getType()) == cLong)
 | |
|     BuildMI(BB, PPC::PHI, 4, DestReg+1).addReg(FalseValue+1)
 | |
|       .addMBB(copy0MBB).addReg(TrueValue+1).addMBB(thisMBB);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
 | |
| /// operand, in the specified target register.
 | |
| ///
 | |
| void PPC32ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
 | |
|   bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
 | |
| 
 | |
|   Value *Val = VR.Val;
 | |
|   const Type *Ty = VR.Ty;
 | |
|   if (Val) {
 | |
|     if (Constant *C = dyn_cast<Constant>(Val)) {
 | |
|       Val = ConstantExpr::getCast(C, Type::IntTy);
 | |
|       if (isa<ConstantExpr>(Val))   // Could not fold
 | |
|         Val = C;
 | |
|       else
 | |
|         Ty = Type::IntTy;           // Folded!
 | |
|     }
 | |
| 
 | |
|     // If this is a simple constant, just emit a load directly to avoid the copy
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | |
|       copyConstantToRegister(BB, BB->end(), CI, targetReg);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure we have the register number for this value...
 | |
|   unsigned Reg = Val ? getReg(Val) : VR.Reg;
 | |
|   switch (getClassB(Ty)) {
 | |
|   case cByte:
 | |
|     // Extend value into target register (8->32)
 | |
|     if (Ty == Type::BoolTy)
 | |
|       BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
 | |
|     else if (isUnsigned)
 | |
|       BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
 | |
|         .addZImm(24).addZImm(31);
 | |
|     else
 | |
|       BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg);
 | |
|     break;
 | |
|   case cShort:
 | |
|     // Extend value into target register (16->32)
 | |
|     if (isUnsigned)
 | |
|       BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
 | |
|         .addZImm(16).addZImm(31);
 | |
|     else
 | |
|       BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg);
 | |
|     break;
 | |
|   case cInt:
 | |
|     // Move value into target register (32->32)
 | |
|     BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
 | |
|     break;
 | |
|   default:
 | |
|     assert(0 && "Unpromotable operand class in promote32");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// visitReturnInst - implemented with BLR
 | |
| ///
 | |
| void PPC32ISel::visitReturnInst(ReturnInst &I) {
 | |
|   // Only do the processing if this is a non-void return
 | |
|   if (I.getNumOperands() > 0) {
 | |
|     Value *RetVal = I.getOperand(0);
 | |
|     switch (getClassB(RetVal->getType())) {
 | |
|     case cByte:   // integral return values: extend or move into r3 and return
 | |
|     case cShort:
 | |
|     case cInt:
 | |
|       promote32(PPC::R3, ValueRecord(RetVal));
 | |
|       break;
 | |
|     case cFP32:
 | |
|     case cFP64: {   // Floats & Doubles: Return in f1
 | |
|       unsigned RetReg = getReg(RetVal);
 | |
|       BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg);
 | |
|       break;
 | |
|     }
 | |
|     case cLong: {
 | |
|       unsigned RetReg = getReg(RetVal);
 | |
|       BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(RetReg).addReg(RetReg);
 | |
|       BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(RetReg+1).addReg(RetReg+1);
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       visitInstruction(I);
 | |
|     }
 | |
|   }
 | |
|   BuildMI(BB, PPC::BLR, 1).addImm(0);
 | |
| }
 | |
| 
 | |
| // getBlockAfter - Return the basic block which occurs lexically after the
 | |
| // specified one.
 | |
| static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
 | |
|   Function::iterator I = BB; ++I;  // Get iterator to next block
 | |
|   return I != BB->getParent()->end() ? &*I : 0;
 | |
| }
 | |
| 
 | |
| /// visitBranchInst - Handle conditional and unconditional branches here.  Note
 | |
| /// that since code layout is frozen at this point, that if we are trying to
 | |
| /// jump to a block that is the immediate successor of the current block, we can
 | |
| /// just make a fall-through (but we don't currently).
 | |
| ///
 | |
| void PPC32ISel::visitBranchInst(BranchInst &BI) {
 | |
|   // Update machine-CFG edges
 | |
|   BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
 | |
|   if (BI.isConditional())
 | |
|     BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
 | |
| 
 | |
|   BasicBlock *NextBB = getBlockAfter(BI.getParent());  // BB after current one
 | |
| 
 | |
|   if (!BI.isConditional()) {  // Unconditional branch?
 | |
|     if (BI.getSuccessor(0) != NextBB)
 | |
|       BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // See if we can fold the setcc into the branch itself...
 | |
|   SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
 | |
|   if (SCI == 0) {
 | |
|     // Nope, cannot fold setcc into this branch.  Emit a branch on a condition
 | |
|     // computed some other way...
 | |
|     unsigned condReg = getReg(BI.getCondition());
 | |
|     BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg)
 | |
|       .addImm(0);
 | |
|     if (BI.getSuccessor(1) == NextBB) {
 | |
|       if (BI.getSuccessor(0) != NextBB)
 | |
|         BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(PPC::BNE)
 | |
|           .addMBB(MBBMap[BI.getSuccessor(0)])
 | |
|           .addMBB(MBBMap[BI.getSuccessor(1)]);
 | |
|     } else {
 | |
|       BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(PPC::BEQ)
 | |
|         .addMBB(MBBMap[BI.getSuccessor(1)])
 | |
|         .addMBB(MBBMap[BI.getSuccessor(0)]);
 | |
|       if (BI.getSuccessor(0) != NextBB)
 | |
|         BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned OpNum = getSetCCNumber(SCI->getOpcode());
 | |
|   unsigned Opcode = getPPCOpcodeForSetCCOpcode(SCI->getOpcode());
 | |
|   MachineBasicBlock::iterator MII = BB->end();
 | |
|   EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
 | |
| 
 | |
|   if (BI.getSuccessor(0) != NextBB) {
 | |
|     BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(Opcode)
 | |
|       .addMBB(MBBMap[BI.getSuccessor(0)])
 | |
|       .addMBB(MBBMap[BI.getSuccessor(1)]);
 | |
|     if (BI.getSuccessor(1) != NextBB)
 | |
|       BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
 | |
|   } else {
 | |
|     // Change to the inverse condition...
 | |
|     if (BI.getSuccessor(1) != NextBB) {
 | |
|       Opcode = PPC32InstrInfo::invertPPCBranchOpcode(Opcode);
 | |
|       BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(Opcode)
 | |
|         .addMBB(MBBMap[BI.getSuccessor(1)])
 | |
|         .addMBB(MBBMap[BI.getSuccessor(0)]);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// doCall - This emits an abstract call instruction, setting up the arguments
 | |
| /// and the return value as appropriate.  For the actual function call itself,
 | |
| /// it inserts the specified CallMI instruction into the stream.
 | |
| ///
 | |
| /// FIXME: See Documentation at the following URL for "correct" behavior
 | |
| /// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/PowerPCConventions/chapter_3_section_5.html>
 | |
| void PPC32ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
 | |
|                        const std::vector<ValueRecord> &Args, bool isVarArg) {
 | |
|   // Count how many bytes are to be pushed on the stack, including the linkage
 | |
|   // area, and parameter passing area.
 | |
|   unsigned NumBytes = 24;
 | |
|   unsigned ArgOffset = 24;
 | |
| 
 | |
|   if (!Args.empty()) {
 | |
|     for (unsigned i = 0, e = Args.size(); i != e; ++i)
 | |
|       switch (getClassB(Args[i].Ty)) {
 | |
|       case cByte: case cShort: case cInt:
 | |
|         NumBytes += 4; break;
 | |
|       case cLong:
 | |
|         NumBytes += 8; break;
 | |
|       case cFP32:
 | |
|         NumBytes += 4; break;
 | |
|       case cFP64:
 | |
|         NumBytes += 8; break;
 | |
|         break;
 | |
|       default: assert(0 && "Unknown class!");
 | |
|       }
 | |
| 
 | |
|     // Just to be safe, we'll always reserve the full 24 bytes of linkage area
 | |
|     // plus 32 bytes of argument space in case any called code gets funky on us.
 | |
|     if (NumBytes < 56) NumBytes = 56;
 | |
| 
 | |
|     // Adjust the stack pointer for the new arguments...
 | |
|     // These operations are automatically eliminated by the prolog/epilog pass
 | |
|     BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
 | |
| 
 | |
|     // Arguments go on the stack in reverse order, as specified by the ABI.
 | |
|     // Offset to the paramater area on the stack is 24.
 | |
|     int GPR_remaining = 8, FPR_remaining = 13;
 | |
|     unsigned GPR_idx = 0, FPR_idx = 0;
 | |
|     static const unsigned GPR[] = {
 | |
|       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|     };
 | |
|     static const unsigned FPR[] = {
 | |
|       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6,
 | |
|       PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12,
 | |
|       PPC::F13
 | |
|     };
 | |
| 
 | |
|     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|       unsigned ArgReg;
 | |
|       switch (getClassB(Args[i].Ty)) {
 | |
|       case cByte:
 | |
|       case cShort:
 | |
|         // Promote arg to 32 bits wide into a temporary register...
 | |
|         ArgReg = makeAnotherReg(Type::UIntTy);
 | |
|         promote32(ArgReg, Args[i]);
 | |
| 
 | |
|         // Reg or stack?
 | |
|         if (GPR_remaining > 0) {
 | |
|           BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
 | |
|             .addReg(ArgReg);
 | |
|           CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
 | |
|         }
 | |
|         if (GPR_remaining <= 0 || isVarArg) {
 | |
|           BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
 | |
|             .addReg(PPC::R1);
 | |
|         }
 | |
|         break;
 | |
|       case cInt:
 | |
|         ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | |
| 
 | |
|         // Reg or stack?
 | |
|         if (GPR_remaining > 0) {
 | |
|           BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
 | |
|             .addReg(ArgReg);
 | |
|           CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
 | |
|         }
 | |
|         if (GPR_remaining <= 0 || isVarArg) {
 | |
|           BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
 | |
|             .addReg(PPC::R1);
 | |
|         }
 | |
|         break;
 | |
|       case cLong:
 | |
|         ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | |
| 
 | |
|         // Reg or stack?  Note that PPC calling conventions state that long args
 | |
|         // are passed rN = hi, rN+1 = lo, opposite of LLVM.
 | |
|         if (GPR_remaining > 1) {
 | |
|           BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
 | |
|             .addReg(ArgReg);
 | |
|           BuildMI(BB, PPC::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
 | |
|             .addReg(ArgReg+1);
 | |
|           CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
 | |
|           CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
 | |
|         }
 | |
|         if (GPR_remaining <= 1 || isVarArg) {
 | |
|           BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
 | |
|             .addReg(PPC::R1);
 | |
|           BuildMI(BB, PPC::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
 | |
|             .addReg(PPC::R1);
 | |
|         }
 | |
| 
 | |
|         ArgOffset += 4;        // 8 byte entry, not 4.
 | |
|         GPR_remaining -= 1;    // uses up 2 GPRs
 | |
|         GPR_idx += 1;
 | |
|         break;
 | |
|       case cFP32:
 | |
|         ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | |
|         // Reg or stack?
 | |
|         if (FPR_remaining > 0) {
 | |
|           BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
 | |
|           CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
 | |
|           FPR_remaining--;
 | |
|           FPR_idx++;
 | |
| 
 | |
|           // If this is a vararg function, and there are GPRs left, also
 | |
|           // pass the float in an int.  Otherwise, put it on the stack.
 | |
|           if (isVarArg) {
 | |
|             BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
 | |
|             .addReg(PPC::R1);
 | |
|             if (GPR_remaining > 0) {
 | |
|               BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx])
 | |
|               .addSImm(ArgOffset).addReg(PPC::R1);
 | |
|               CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
 | |
|             }
 | |
|           }
 | |
|         } else {
 | |
|           BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
 | |
|           .addReg(PPC::R1);
 | |
|         }
 | |
|         break;
 | |
|       case cFP64:
 | |
|         ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | |
|         // Reg or stack?
 | |
|         if (FPR_remaining > 0) {
 | |
|           BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
 | |
|           CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
 | |
|           FPR_remaining--;
 | |
|           FPR_idx++;
 | |
|           // For vararg functions, must pass doubles via int regs as well
 | |
|           if (isVarArg) {
 | |
|             BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
 | |
|             .addReg(PPC::R1);
 | |
| 
 | |
|             // Doubles can be split across reg + stack for varargs
 | |
|             if (GPR_remaining > 0) {
 | |
|               BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
 | |
|               .addReg(PPC::R1);
 | |
|               CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
 | |
|             }
 | |
|             if (GPR_remaining > 1) {
 | |
|               BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx+1])
 | |
|                 .addSImm(ArgOffset+4).addReg(PPC::R1);
 | |
|               CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
 | |
|             }
 | |
|           }
 | |
|         } else {
 | |
|           BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
 | |
|           .addReg(PPC::R1);
 | |
|         }
 | |
|         // Doubles use 8 bytes, and 2 GPRs worth of param space
 | |
|         ArgOffset += 4;
 | |
|         GPR_remaining--;
 | |
|         GPR_idx++;
 | |
|         break;
 | |
| 
 | |
|       default: assert(0 && "Unknown class!");
 | |
|       }
 | |
|       ArgOffset += 4;
 | |
|       GPR_remaining--;
 | |
|       GPR_idx++;
 | |
|     }
 | |
|   } else {
 | |
|     BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
 | |
|   }
 | |
| 
 | |
|   BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR);
 | |
|   BB->push_back(CallMI);
 | |
| 
 | |
|   // These functions are automatically eliminated by the prolog/epilog pass
 | |
|   BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes);
 | |
| 
 | |
|   // If there is a return value, scavenge the result from the location the call
 | |
|   // leaves it in...
 | |
|   //
 | |
|   if (Ret.Ty != Type::VoidTy) {
 | |
|     unsigned DestClass = getClassB(Ret.Ty);
 | |
|     switch (DestClass) {
 | |
|     case cByte:
 | |
|     case cShort:
 | |
|     case cInt:
 | |
|       // Integral results are in r3
 | |
|       BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
 | |
|       break;
 | |
|     case cFP32:   // Floating-point return values live in f1
 | |
|     case cFP64:
 | |
|       BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1);
 | |
|       break;
 | |
|     case cLong:   // Long values are in r3:r4
 | |
|       BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
 | |
|       BuildMI(BB, PPC::OR, 2, Ret.Reg+1).addReg(PPC::R4).addReg(PPC::R4);
 | |
|       break;
 | |
|     default: assert(0 && "Unknown class!");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitCallInst - Push args on stack and do a procedure call instruction.
 | |
| void PPC32ISel::visitCallInst(CallInst &CI) {
 | |
|   MachineInstr *TheCall;
 | |
|   Function *F = CI.getCalledFunction();
 | |
|   if (F) {
 | |
|     // Is it an intrinsic function call?
 | |
|     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
 | |
|       visitIntrinsicCall(ID, CI);   // Special intrinsics are not handled here
 | |
|       return;
 | |
|     }
 | |
|     // Emit a CALL instruction with PC-relative displacement.
 | |
|     TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true);
 | |
|   } else {  // Emit an indirect call through the CTR
 | |
|     unsigned Reg = getReg(CI.getCalledValue());
 | |
|     BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Reg).addReg(Reg);
 | |
|     BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12);
 | |
|     TheCall = BuildMI(PPC::CALLindirect, 3).addZImm(20).addZImm(0)
 | |
|       .addReg(PPC::R12);
 | |
|   }
 | |
| 
 | |
|   std::vector<ValueRecord> Args;
 | |
|   for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
 | |
|     Args.push_back(ValueRecord(CI.getOperand(i)));
 | |
| 
 | |
|   unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
 | |
|   bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
 | |
|   doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
 | |
| ///
 | |
| static Value *dyncastIsNan(Value *V) {
 | |
|   if (CallInst *CI = dyn_cast<CallInst>(V))
 | |
|     if (Function *F = CI->getCalledFunction())
 | |
|       if (F->getIntrinsicID() == Intrinsic::isunordered)
 | |
|         return CI->getOperand(1);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
 | |
| /// or's whos operands are all calls to the isnan predicate.
 | |
| static bool isOnlyUsedByUnorderedComparisons(Value *V) {
 | |
|   assert(dyncastIsNan(V) && "The value isn't an isnan call!");
 | |
| 
 | |
|   // Check all uses, which will be or's of isnans if this predicate is true.
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
 | |
|     Instruction *I = cast<Instruction>(*UI);
 | |
|     if (I->getOpcode() != Instruction::Or) return false;
 | |
|     if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
 | |
|     if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
 | |
| /// function, lowering any calls to unknown intrinsic functions into the
 | |
| /// equivalent LLVM code.
 | |
| ///
 | |
| void PPC32ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
 | |
|   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
 | |
|       if (CallInst *CI = dyn_cast<CallInst>(I++))
 | |
|         if (Function *F = CI->getCalledFunction())
 | |
|           switch (F->getIntrinsicID()) {
 | |
|           case Intrinsic::not_intrinsic:
 | |
|           case Intrinsic::vastart:
 | |
|           case Intrinsic::vacopy:
 | |
|           case Intrinsic::vaend:
 | |
|           case Intrinsic::returnaddress:
 | |
|           case Intrinsic::frameaddress:
 | |
|             // FIXME: should lower these ourselves
 | |
|             // case Intrinsic::isunordered:
 | |
|             // case Intrinsic::memcpy: -> doCall().  system memcpy almost
 | |
|             // guaranteed to be faster than anything we generate ourselves
 | |
|             // We directly implement these intrinsics
 | |
|             break;
 | |
|           case Intrinsic::readio: {
 | |
|             // On PPC, memory operations are in-order.  Lower this intrinsic
 | |
|             // into a volatile load.
 | |
|             LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
 | |
|             CI->replaceAllUsesWith(LI);
 | |
|             BB->getInstList().erase(CI);
 | |
|             break;
 | |
|           }
 | |
|           case Intrinsic::writeio: {
 | |
|             // On PPC, memory operations are in-order.  Lower this intrinsic
 | |
|             // into a volatile store.
 | |
|             StoreInst *SI = new StoreInst(CI->getOperand(1),
 | |
|                                           CI->getOperand(2), true, CI);
 | |
|             CI->replaceAllUsesWith(SI);
 | |
|             BB->getInstList().erase(CI);
 | |
|             break;
 | |
|           }
 | |
|           default: {
 | |
|             // All other intrinsic calls we must lower.
 | |
|             BasicBlock::iterator me(CI);
 | |
|             bool atBegin(BB->begin() == me);
 | |
|             if (!atBegin)
 | |
|               --me;
 | |
|             TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
 | |
|             // Move iterator to instruction after call
 | |
|             I = atBegin ? BB->begin() : ++me;
 | |
|           }
 | |
|           }
 | |
| }
 | |
| 
 | |
| void PPC32ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
 | |
|   unsigned TmpReg1, TmpReg2, TmpReg3;
 | |
|   switch (ID) {
 | |
|   case Intrinsic::vastart:
 | |
|     //FIXME: need to store, not return a value
 | |
|     // Get the address of the first vararg value...
 | |
|     TmpReg1 = getReg(CI);
 | |
|     addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex,
 | |
|                       0, false);
 | |
|     return;
 | |
| 
 | |
|   case Intrinsic::vacopy:
 | |
|     //FIXME: need to store into first arg the value of the second
 | |
|     TmpReg1 = getReg(CI);
 | |
|     TmpReg2 = getReg(CI.getOperand(1));
 | |
|     BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
 | |
|     return;
 | |
|   case Intrinsic::vaend: return;
 | |
| 
 | |
|   case Intrinsic::returnaddress:
 | |
|     TmpReg1 = getReg(CI);
 | |
|     if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
 | |
|       MachineFrameInfo *MFI = F->getFrameInfo();
 | |
|       unsigned NumBytes = MFI->getStackSize();
 | |
| 
 | |
|       BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
 | |
|         .addReg(PPC::R1);
 | |
|     } else {
 | |
|       // Values other than zero are not implemented yet.
 | |
|       BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
 | |
|     }
 | |
|     return;
 | |
| 
 | |
|   case Intrinsic::frameaddress:
 | |
|     TmpReg1 = getReg(CI);
 | |
|     if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
 | |
|       BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1);
 | |
|     } else {
 | |
|       // Values other than zero are not implemented yet.
 | |
|       BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
 | |
|     }
 | |
|     return;
 | |
| 
 | |
| #if 0
 | |
|     // This may be useful for supporting isunordered
 | |
|   case Intrinsic::isnan:
 | |
|     // If this is only used by 'isunordered' style comparisons, don't emit it.
 | |
|     if (isOnlyUsedByUnorderedComparisons(&CI)) return;
 | |
|     TmpReg1 = getReg(CI.getOperand(1));
 | |
|     emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
 | |
|     TmpReg2 = makeAnotherReg(Type::IntTy);
 | |
|     BuildMI(BB, PPC::MFCR, TmpReg2);
 | |
|     TmpReg3 = getReg(CI);
 | |
|     BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
 | |
|     return;
 | |
| #endif
 | |
| 
 | |
|   default: assert(0 && "Error: unknown intrinsics should have been lowered!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// visitSimpleBinary - Implement simple binary operators for integral types...
 | |
| /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
 | |
| /// Xor.
 | |
| ///
 | |
| void PPC32ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
 | |
|   if (std::find(SkipList.begin(), SkipList.end(), &B) != SkipList.end())
 | |
|     return;
 | |
| 
 | |
|   unsigned DestReg = getReg(B);
 | |
|   MachineBasicBlock::iterator MI = BB->end();
 | |
|   RlwimiRec RR = InsertMap[&B];
 | |
|   if (RR.Target != 0) {
 | |
|     unsigned TargetReg = getReg(RR.Target, BB, MI);
 | |
|     unsigned InsertReg = getReg(RR.Insert, BB, MI);
 | |
|     BuildMI(*BB, MI, PPC::RLWIMI, 5, DestReg).addReg(TargetReg)
 | |
|       .addReg(InsertReg).addImm(RR.Shift).addImm(RR.MB).addImm(RR.ME);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned Class = getClassB(B.getType());
 | |
|   Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
 | |
|   emitSimpleBinaryOperation(BB, MI, &B, Op0, Op1, OperatorClass, DestReg);
 | |
| }
 | |
| 
 | |
| /// emitBinaryFPOperation - This method handles emission of floating point
 | |
| /// Add (0), Sub (1), Mul (2), and Div (3) operations.
 | |
| void PPC32ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
 | |
|                                       MachineBasicBlock::iterator IP,
 | |
|                                       Value *Op0, Value *Op1,
 | |
|                                       unsigned OperatorClass, unsigned DestReg){
 | |
| 
 | |
|   static const unsigned OpcodeTab[][4] = {
 | |
|     { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS },  // Float
 | |
|     { PPC::FADD,  PPC::FSUB,  PPC::FMUL,  PPC::FDIV },   // Double
 | |
|   };
 | |
| 
 | |
|   // Special case: R1 = op <const fp>, R2
 | |
|   if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
 | |
|     if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
 | |
|       // -0.0 - X === -X
 | |
|       unsigned op1Reg = getReg(Op1, BB, IP);
 | |
|       BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   unsigned Opcode = OpcodeTab[Op0->getType() == Type::DoubleTy][OperatorClass];
 | |
|   unsigned Op0r = getReg(Op0, BB, IP);
 | |
|   unsigned Op1r = getReg(Op1, BB, IP);
 | |
|   BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
 | |
| }
 | |
| 
 | |
| // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It
 | |
| // returns zero when the input is not exactly a power of two.
 | |
| static unsigned ExactLog2(unsigned Val) {
 | |
|   if (Val == 0 || (Val & (Val-1))) return 0;
 | |
|   unsigned Count = 0;
 | |
|   while (Val != 1) {
 | |
|     Val >>= 1;
 | |
|     ++Count;
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| // isRunOfOnes - returns true if Val consists of one contiguous run of 1's with
 | |
| // any number of 0's on either side.  the 1's are allowed to wrap from LSB to
 | |
| // MSB.  so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
 | |
| // not, since all 1's are not contiguous.
 | |
| static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
 | |
|   bool isRun = true;
 | |
|   MB = 0;
 | |
|   ME = 0;
 | |
| 
 | |
|   // look for first set bit
 | |
|   int i = 0;
 | |
|   for (; i < 32; i++) {
 | |
|     if ((Val & (1 << (31 - i))) != 0) {
 | |
|       MB = i;
 | |
|       ME = i;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // look for last set bit
 | |
|   for (; i < 32; i++) {
 | |
|     if ((Val & (1 << (31 - i))) == 0)
 | |
|       break;
 | |
|     ME = i;
 | |
|   }
 | |
| 
 | |
|   // look for next set bit
 | |
|   for (; i < 32; i++) {
 | |
|     if ((Val & (1 << (31 - i))) != 0)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // if we exhausted all the bits, we found a match at this point for 0*1*0*
 | |
|   if (i == 32)
 | |
|     return true;
 | |
| 
 | |
|   // since we just encountered more 1's, if it doesn't wrap around to the
 | |
|   // most significant bit of the word, then we did not find a match to 1*0*1* so
 | |
|   // exit.
 | |
|   if (MB != 0)
 | |
|     return false;
 | |
| 
 | |
|   // look for last set bit
 | |
|   for (MB = i; i < 32; i++) {
 | |
|     if ((Val & (1 << (31 - i))) == 0)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // if we exhausted all the bits, then we found a match for 1*0*1*, otherwise,
 | |
|   // the value is not a run of ones.
 | |
|   if (i == 32)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isInsertAndHalf - Helper function for emitBitfieldInsert.  Returns true if
 | |
| /// OpUser has one use, is used by an or instruction, and is itself an and whose
 | |
| /// second operand is a constant int.  Optionally, set OrI to the Or instruction
 | |
| /// that is the sole user of OpUser, and Op1User to the other operand of the Or
 | |
| /// instruction.
 | |
| static bool isInsertAndHalf(User *OpUser, Instruction **Op1User,
 | |
|                             Instruction **OrI, unsigned &Mask) {
 | |
|   // If this instruction doesn't have one use, then return false.
 | |
|   if (!OpUser->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   Mask = 0xFFFFFFFF;
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(OpUser))
 | |
|     if (BO->getOpcode() == Instruction::And) {
 | |
|       Value *AndUse = *(OpUser->use_begin());
 | |
|       if (BinaryOperator *Or = dyn_cast<BinaryOperator>(AndUse)) {
 | |
|         if (Or->getOpcode() == Instruction::Or) {
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(OpUser->getOperand(1))) {
 | |
|             if (OrI) *OrI = Or;
 | |
|             if (Op1User) {
 | |
|               if (Or->getOperand(0) == OpUser)
 | |
|                 *Op1User = dyn_cast<Instruction>(Or->getOperand(1));
 | |
|               else
 | |
|                 *Op1User = dyn_cast<Instruction>(Or->getOperand(0));
 | |
|             }
 | |
|             Mask &= CI->getRawValue();
 | |
|             return true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isInsertShiftHalf - Helper function for emitBitfieldInsert.  Returns true if
 | |
| /// OpUser has one use, is used by an or instruction, and is itself a shift
 | |
| /// instruction that is either used directly by the or instruction, or is used
 | |
| /// by an and instruction whose second operand is a constant int, and which is
 | |
| /// used by the or instruction.
 | |
| static bool isInsertShiftHalf(User *OpUser, Instruction **Op1User,
 | |
|                               Instruction **OrI, Instruction **OptAndI,
 | |
|                               unsigned &Shift, unsigned &Mask) {
 | |
|   // If this instruction doesn't have one use, then return false.
 | |
|   if (!OpUser->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   Mask = 0xFFFFFFFF;
 | |
|   if (ShiftInst *SI = dyn_cast<ShiftInst>(OpUser)) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getOperand(1))) {
 | |
|       Shift = CI->getRawValue();
 | |
|       if (SI->getOpcode() == Instruction::Shl)
 | |
|         Mask <<= Shift;
 | |
|       else if (!SI->getOperand(0)->getType()->isSigned()) {
 | |
|         Mask >>= Shift;
 | |
|         Shift = 32 - Shift;
 | |
|       }
 | |
| 
 | |
|       // Now check to see if the shift instruction is used by an or.
 | |
|       Value *ShiftUse = *(OpUser->use_begin());
 | |
|       Value *OptAndICopy = 0;
 | |
|       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ShiftUse)) {
 | |
|         if (BO->getOpcode() == Instruction::And && BO->hasOneUse()) {
 | |
|           if (ConstantInt *ACI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | |
|             if (OptAndI) *OptAndI = BO;
 | |
|             OptAndICopy = BO;
 | |
|             Mask &= ACI->getRawValue();
 | |
|             BO = dyn_cast<BinaryOperator>(*(BO->use_begin()));
 | |
|           }
 | |
|         }
 | |
|         if (BO && BO->getOpcode() == Instruction::Or) {
 | |
|           if (OrI) *OrI = BO;
 | |
|           if (Op1User) {
 | |
|             if (BO->getOperand(0) == OpUser || BO->getOperand(0) == OptAndICopy)
 | |
|               *Op1User = dyn_cast<Instruction>(BO->getOperand(1));
 | |
|             else
 | |
|               *Op1User = dyn_cast<Instruction>(BO->getOperand(0));
 | |
|           }
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// emitBitfieldInsert - turn a shift used only by an and with immediate into
 | |
| /// the rotate left word immediate then mask insert (rlwimi) instruction.
 | |
| /// Patterns matched:
 | |
| /// 1. or shl, and   5. or (shl-and), and   9. or and, and
 | |
| /// 2. or and, shl   6. or and, (shl-and)
 | |
| /// 3. or shr, and   7. or (shr-and), and
 | |
| /// 4. or and, shr   8. or and, (shr-and)
 | |
| bool PPC32ISel::emitBitfieldInsert(User *OpUser, unsigned DestReg) {
 | |
|   // Instructions to skip if we match any of the patterns
 | |
|   Instruction *Op0User, *Op1User = 0, *OptAndI = 0, *OrI = 0;
 | |
|   unsigned TgtMask, InsMask, Amount = 0;
 | |
|   bool matched = false;
 | |
| 
 | |
|   // We require OpUser to be an instruction to continue
 | |
|   Op0User = dyn_cast<Instruction>(OpUser);
 | |
|   if (0 == Op0User)
 | |
|     return false;
 | |
| 
 | |
|   // Look for cases 2, 4, 6, 8, and 9
 | |
|   if (isInsertAndHalf(Op0User, &Op1User, &OrI, TgtMask))
 | |
|     if (Op1User)
 | |
|       if (isInsertAndHalf(Op1User, 0, 0, InsMask))
 | |
|         matched = true;
 | |
|       else if (isInsertShiftHalf(Op1User, 0, 0, &OptAndI, Amount, InsMask))
 | |
|         matched = true;
 | |
| 
 | |
|   // Look for cases 1, 3, 5, and 7.  Force the shift argument to be the one
 | |
|   // inserted into the target, since rlwimi can only rotate the value inserted,
 | |
|   // not the value being inserted into.
 | |
|   if (matched == false)
 | |
|     if (isInsertShiftHalf(Op0User, &Op1User, &OrI, &OptAndI, Amount, InsMask))
 | |
|       if (Op1User && isInsertAndHalf(Op1User, 0, 0, TgtMask)) {
 | |
|         std::swap(Op0User, Op1User);
 | |
|         matched = true;
 | |
|       }
 | |
| 
 | |
|   // We didn't succeed in matching one of the patterns, so return false
 | |
|   if (matched == false)
 | |
|     return false;
 | |
| 
 | |
|   // If the masks xor to -1, and the insert mask is a run of ones, then we have
 | |
|   // succeeded in matching one of the cases for generating rlwimi.  Update the
 | |
|   // skip lists and users of the Instruction::Or.
 | |
|   unsigned MB, ME;
 | |
|   if (((TgtMask ^ InsMask) == 0xFFFFFFFF) && isRunOfOnes(InsMask, MB, ME)) {
 | |
|     SkipList.push_back(Op0User);
 | |
|     SkipList.push_back(Op1User);
 | |
|     SkipList.push_back(OptAndI);
 | |
|     InsertMap[OrI] = RlwimiRec(Op0User->getOperand(0), Op1User->getOperand(0),
 | |
|                                Amount, MB, ME);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// emitBitfieldExtract - turn a shift used only by an and with immediate into the
 | |
| /// rotate left word immediate then and with mask (rlwinm) instruction.
 | |
| bool PPC32ISel::emitBitfieldExtract(MachineBasicBlock *MBB,
 | |
|                                     MachineBasicBlock::iterator IP,
 | |
|                                     User *OpUser, unsigned DestReg) {
 | |
|   return false;
 | |
|   /*
 | |
|   // Instructions to skip if we match any of the patterns
 | |
|   Instruction *Op0User, *Op1User = 0;
 | |
|   unsigned ShiftMask, AndMask, Amount = 0;
 | |
|   bool matched = false;
 | |
| 
 | |
|   // We require OpUser to be an instruction to continue
 | |
|   Op0User = dyn_cast<Instruction>(OpUser);
 | |
|   if (0 == Op0User)
 | |
|     return false;
 | |
| 
 | |
|   if (isExtractShiftHalf)
 | |
|     if (isExtractAndHalf)
 | |
|       matched = true;
 | |
| 
 | |
|   if (matched == false && isExtractAndHalf)
 | |
|     if (isExtractShiftHalf)
 | |
|     matched = true;
 | |
| 
 | |
|   if (matched == false)
 | |
|     return false;
 | |
| 
 | |
|   if (isRunOfOnes(Imm, MB, ME)) {
 | |
|     unsigned SrcReg = getReg(Op, MBB, IP);
 | |
|     BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(Rotate)
 | |
|       .addImm(MB).addImm(ME);
 | |
|     Op1User->replaceAllUsesWith(Op0User);
 | |
|     SkipList.push_back(BO);
 | |
|     return true;
 | |
|   }
 | |
|   */
 | |
| }
 | |
| 
 | |
| /// emitBinaryConstOperation - Implement simple binary operators for integral
 | |
| /// types with a constant operand.  Opcode is one of: 0 for Add, 1 for Sub,
 | |
| /// 2 for And, 3 for Or, 4 for Xor, and 5 for Subtract-From.
 | |
| ///
 | |
| void PPC32ISel::emitBinaryConstOperation(MachineBasicBlock *MBB,
 | |
|                                          MachineBasicBlock::iterator IP,
 | |
|                                          unsigned Op0Reg, ConstantInt *Op1,
 | |
|                                          unsigned Opcode, unsigned DestReg) {
 | |
|   static const unsigned OpTab[] = {
 | |
|     PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR, PPC::SUBF
 | |
|   };
 | |
|   static const unsigned ImmOpTab[2][6] = {
 | |
|     {  PPC::ADDI,  PPC::ADDI,  PPC::ANDIo,  PPC::ORI,  PPC::XORI, PPC::SUBFIC },
 | |
|     { PPC::ADDIS, PPC::ADDIS, PPC::ANDISo, PPC::ORIS, PPC::XORIS, PPC::SUBFIC }
 | |
|   };
 | |
| 
 | |
|   // Handle subtract now by inverting the constant value: X-4 == X+(-4)
 | |
|   if (Opcode == 1) {
 | |
|     Op1 = cast<ConstantInt>(ConstantExpr::getNeg(Op1));
 | |
|     Opcode = 0;
 | |
|   }
 | |
| 
 | |
|   // xor X, -1 -> not X
 | |
|   if (Opcode == 4 && Op1->isAllOnesValue()) {
 | |
|     BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Opcode == 2 && !Op1->isNullValue()) {
 | |
|     unsigned MB, ME, mask = Op1->getRawValue();
 | |
|     if (isRunOfOnes(mask, MB, ME)) {
 | |
|       BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(Op0Reg).addImm(0)
 | |
|         .addImm(MB).addImm(ME);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // PowerPC 16 bit signed immediates are sign extended before use by the
 | |
|   // instruction.  Therefore, we can only split up an add of a reg with a 32 bit
 | |
|   // immediate into addis and addi if the sign bit of the low 16 bits is cleared
 | |
|   // so that for register A, const imm X, we don't end up with
 | |
|   // A + XXXX0000 + FFFFXXXX.
 | |
|   bool WontSignExtend = (0 == (Op1->getRawValue() & 0x8000));
 | |
| 
 | |
|   // For Add, Sub, and SubF the instruction takes a signed immediate.  For And,
 | |
|   // Or, and Xor, the instruction takes an unsigned immediate.  There is no
 | |
|   // shifted immediate form of SubF so disallow its opcode for those constants.
 | |
|   if (canUseAsImmediateForOpcode(Op1, Opcode, false)) {
 | |
|     if (Opcode < 2 || Opcode == 5)
 | |
|       BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(Op0Reg)
 | |
|         .addSImm(Op1->getRawValue());
 | |
|     else
 | |
|       BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(Op0Reg)
 | |
|         .addZImm(Op1->getRawValue());
 | |
|   } else if (canUseAsImmediateForOpcode(Op1, Opcode, true) && (Opcode < 5)) {
 | |
|     if (Opcode < 2)
 | |
|       BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, DestReg).addReg(Op0Reg)
 | |
|         .addSImm(Op1->getRawValue() >> 16);
 | |
|     else
 | |
|       BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, DestReg).addReg(Op0Reg)
 | |
|         .addZImm(Op1->getRawValue() >> 16);
 | |
|   } else if ((Opcode < 2 && WontSignExtend) || Opcode == 3 || Opcode == 4) {
 | |
|     unsigned TmpReg = makeAnotherReg(Op1->getType());
 | |
|     if (Opcode < 2) {
 | |
|       BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, TmpReg).addReg(Op0Reg)
 | |
|         .addSImm(Op1->getRawValue() >> 16);
 | |
|       BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(TmpReg)
 | |
|         .addSImm(Op1->getRawValue());
 | |
|     } else {
 | |
|       BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, TmpReg).addReg(Op0Reg)
 | |
|         .addZImm(Op1->getRawValue() >> 16);
 | |
|       BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(TmpReg)
 | |
|         .addZImm(Op1->getRawValue());
 | |
|     }
 | |
|   } else {
 | |
|     unsigned Op1Reg = getReg(Op1, MBB, IP);
 | |
|     BuildMI(*MBB, IP, OpTab[Opcode], 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// emitSimpleBinaryOperation - Implement simple binary operators for integral
 | |
| /// types...  OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
 | |
| /// Or, 4 for Xor.
 | |
| ///
 | |
| void PPC32ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
 | |
|                                           MachineBasicBlock::iterator IP,
 | |
|                                           BinaryOperator *BO,
 | |
|                                           Value *Op0, Value *Op1,
 | |
|                                           unsigned OperatorClass,
 | |
|                                           unsigned DestReg) {
 | |
|   // Arithmetic and Bitwise operators
 | |
|   static const unsigned OpcodeTab[] = {
 | |
|     PPC::ADD, PPC::SUBF, PPC::AND, PPC::OR, PPC::XOR
 | |
|   };
 | |
|   static const unsigned LongOpTab[2][5] = {
 | |
|     { PPC::ADDC, PPC::SUBFC, PPC::AND, PPC::OR, PPC::XOR },
 | |
|     { PPC::ADDE, PPC::SUBFE, PPC::AND, PPC::OR, PPC::XOR }
 | |
|   };
 | |
| 
 | |
|   unsigned Class = getClassB(Op0->getType());
 | |
| 
 | |
|   if (Class == cFP32 || Class == cFP64) {
 | |
|     assert(OperatorClass < 2 && "No logical ops for FP!");
 | |
|     emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Op0->getType() == Type::BoolTy) {
 | |
|     if (OperatorClass == 3)
 | |
|       // If this is an or of two isnan's, emit an FP comparison directly instead
 | |
|       // of or'ing two isnan's together.
 | |
|       if (Value *LHS = dyncastIsNan(Op0))
 | |
|         if (Value *RHS = dyncastIsNan(Op1)) {
 | |
|           unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
 | |
|           unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
|           emitUCOM(MBB, IP, Op0Reg, Op1Reg);
 | |
|           BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
 | |
|           BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
 | |
|             .addImm(31).addImm(31);
 | |
|           return;
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   // Special case: op <const int>, Reg
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
 | |
|     if (Class != cLong) {
 | |
|       unsigned Opcode = (OperatorClass == 1) ? 5 : OperatorClass;
 | |
|       unsigned Op1r = getReg(Op1, MBB, IP);
 | |
|       emitBinaryConstOperation(MBB, IP, Op1r, CI, Opcode, DestReg);
 | |
|       return;
 | |
|     }
 | |
|   // Special case: op Reg, <const int>
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
 | |
|     if (Class != cLong) {
 | |
|       if (emitBitfieldInsert(BO, DestReg))
 | |
|         return;
 | |
| 
 | |
|       unsigned Op0r = getReg(Op0, MBB, IP);
 | |
|       emitBinaryConstOperation(MBB, IP, Op0r, CI, OperatorClass, DestReg);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   // We couldn't generate an immediate variant of the op, load both halves into
 | |
|   // registers and emit the appropriate opcode.
 | |
|   unsigned Op0r = getReg(Op0, MBB, IP);
 | |
|   unsigned Op1r = getReg(Op1, MBB, IP);
 | |
| 
 | |
|   // Subtracts have their operands swapped
 | |
|   if (OperatorClass == 1) {
 | |
|     if (Class != cLong) {
 | |
|       BuildMI(*MBB, IP, PPC::SUBF, 2, DestReg).addReg(Op1r).addReg(Op0r);
 | |
|     } else {
 | |
|       BuildMI(*MBB, IP, PPC::SUBFC, 2, DestReg+1).addReg(Op1r+1).addReg(Op0r+1);
 | |
|       BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(Op1r).addReg(Op0r);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Class != cLong) {
 | |
|     unsigned Opcode = OpcodeTab[OperatorClass];
 | |
|     BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
 | |
|   } else {
 | |
|     BuildMI(*MBB, IP, LongOpTab[0][OperatorClass], 2, DestReg+1).addReg(Op0r+1)
 | |
|       .addReg(Op1r+1);
 | |
|     BuildMI(*MBB, IP, LongOpTab[1][OperatorClass], 2, DestReg).addReg(Op0r)
 | |
|       .addReg(Op1r);
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// doMultiply - Emit appropriate instructions to multiply together the
 | |
| /// Values Op0 and Op1, and put the result in DestReg.
 | |
| ///
 | |
| void PPC32ISel::doMultiply(MachineBasicBlock *MBB,
 | |
|                            MachineBasicBlock::iterator IP,
 | |
|                            unsigned DestReg, Value *Op0, Value *Op1) {
 | |
|   unsigned Class0 = getClass(Op0->getType());
 | |
|   unsigned Class1 = getClass(Op1->getType());
 | |
| 
 | |
|   unsigned Op0r = getReg(Op0, MBB, IP);
 | |
|   unsigned Op1r = getReg(Op1, MBB, IP);
 | |
| 
 | |
|   // 64 x 64 -> 64
 | |
|   if (Class0 == cLong && Class1 == cLong) {
 | |
|     unsigned Tmp1 = makeAnotherReg(Type::IntTy);
 | |
|     unsigned Tmp2 = makeAnotherReg(Type::IntTy);
 | |
|     unsigned Tmp3 = makeAnotherReg(Type::IntTy);
 | |
|     unsigned Tmp4 = makeAnotherReg(Type::IntTy);
 | |
|     BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
 | |
|     BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
 | |
|     BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
 | |
|     BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
 | |
|     BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
 | |
|     BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
 | |
|   if (Class0 == cLong && Class1 <= cInt) {
 | |
|     unsigned Tmp0 = makeAnotherReg(Type::IntTy);
 | |
|     unsigned Tmp1 = makeAnotherReg(Type::IntTy);
 | |
|     unsigned Tmp2 = makeAnotherReg(Type::IntTy);
 | |
|     unsigned Tmp3 = makeAnotherReg(Type::IntTy);
 | |
|     unsigned Tmp4 = makeAnotherReg(Type::IntTy);
 | |
|     if (Op1->getType()->isSigned())
 | |
|       BuildMI(*MBB, IP, PPC::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
 | |
|     else
 | |
|       BuildMI(*MBB, IP, PPC::LI, 2, Tmp0).addSImm(0);
 | |
|     BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
 | |
|     BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
 | |
|     BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
 | |
|     BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
 | |
|     BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
 | |
|     BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // 32 x 32 -> 32
 | |
|   if (Class0 <= cInt && Class1 <= cInt) {
 | |
|     BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(0 && "doMultiply cannot operate on unknown type!");
 | |
| }
 | |
| 
 | |
| /// doMultiplyConst - This method will multiply the value in Op0 by the
 | |
| /// value of the ContantInt *CI
 | |
| void PPC32ISel::doMultiplyConst(MachineBasicBlock *MBB,
 | |
|                                 MachineBasicBlock::iterator IP,
 | |
|                                 unsigned DestReg, Value *Op0, ConstantInt *CI) {
 | |
|   unsigned Class = getClass(Op0->getType());
 | |
| 
 | |
|   // Mul op0, 0 ==> 0
 | |
|   if (CI->isNullValue()) {
 | |
|     BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
 | |
|     if (Class == cLong)
 | |
|       BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Mul op0, 1 ==> op0
 | |
|   if (CI->equalsInt(1)) {
 | |
|     unsigned Op0r = getReg(Op0, MBB, IP);
 | |
|     BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
 | |
|     if (Class == cLong)
 | |
|       BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the element size is exactly a power of 2, use a shift to get it.
 | |
|   if (unsigned Shift = ExactLog2(CI->getRawValue())) {
 | |
|     ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
 | |
|     emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), 0, DestReg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If 32 bits or less and immediate is in right range, emit mul by immediate
 | |
|   if (Class == cByte || Class == cShort || Class == cInt) {
 | |
|     if (canUseAsImmediateForOpcode(CI, 0, false)) {
 | |
|       unsigned Op0r = getReg(Op0, MBB, IP);
 | |
|       unsigned imm = CI->getRawValue() & 0xFFFF;
 | |
|       BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   doMultiply(MBB, IP, DestReg, Op0, CI);
 | |
| }
 | |
| 
 | |
| void PPC32ISel::visitMul(BinaryOperator &I) {
 | |
|   unsigned ResultReg = getReg(I);
 | |
| 
 | |
|   Value *Op0 = I.getOperand(0);
 | |
|   Value *Op1 = I.getOperand(1);
 | |
| 
 | |
|   MachineBasicBlock::iterator IP = BB->end();
 | |
|   emitMultiply(BB, IP, Op0, Op1, ResultReg);
 | |
| }
 | |
| 
 | |
| void PPC32ISel::emitMultiply(MachineBasicBlock *MBB,
 | |
|                              MachineBasicBlock::iterator IP,
 | |
|                              Value *Op0, Value *Op1, unsigned DestReg) {
 | |
|   TypeClass Class = getClass(Op0->getType());
 | |
| 
 | |
|   switch (Class) {
 | |
|   case cByte:
 | |
|   case cShort:
 | |
|   case cInt:
 | |
|   case cLong:
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|       doMultiplyConst(MBB, IP, DestReg, Op0, CI);
 | |
|     } else {
 | |
|       doMultiply(MBB, IP, DestReg, Op0, Op1);
 | |
|     }
 | |
|     return;
 | |
|   case cFP32:
 | |
|   case cFP64:
 | |
|     emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
 | |
|     return;
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitDivRem - Handle division and remainder instructions... these
 | |
| /// instruction both require the same instructions to be generated, they just
 | |
| /// select the result from a different register.  Note that both of these
 | |
| /// instructions work differently for signed and unsigned operands.
 | |
| ///
 | |
| void PPC32ISel::visitDivRem(BinaryOperator &I) {
 | |
|   unsigned ResultReg = getReg(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   MachineBasicBlock::iterator IP = BB->end();
 | |
|   emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
 | |
|                       ResultReg);
 | |
| }
 | |
| 
 | |
| void PPC32ISel::emitDivRemOperation(MachineBasicBlock *MBB,
 | |
|                                     MachineBasicBlock::iterator IP,
 | |
|                                     Value *Op0, Value *Op1, bool isDiv,
 | |
|                                     unsigned ResultReg) {
 | |
|   const Type *Ty = Op0->getType();
 | |
|   unsigned Class = getClass(Ty);
 | |
|   switch (Class) {
 | |
|   case cFP32:
 | |
|     if (isDiv) {
 | |
|       // Floating point divide...
 | |
|       emitBinaryFPOperation(MBB, IP, Op0, Op1, 3, ResultReg);
 | |
|       return;
 | |
|     } else {
 | |
|       // Floating point remainder via fmodf(float x, float y);
 | |
|       unsigned Op0Reg = getReg(Op0, MBB, IP);
 | |
|       unsigned Op1Reg = getReg(Op1, MBB, IP);
 | |
|       MachineInstr *TheCall =
 | |
|         BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
 | |
|       std::vector<ValueRecord> Args;
 | |
|       Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
 | |
|       Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
 | |
|       doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
 | |
|     }
 | |
|     return;
 | |
|   case cFP64:
 | |
|     if (isDiv) {
 | |
|       // Floating point divide...
 | |
|       emitBinaryFPOperation(MBB, IP, Op0, Op1, 3, ResultReg);
 | |
|       return;
 | |
|     } else {
 | |
|       // Floating point remainder via fmod(double x, double y);
 | |
|       unsigned Op0Reg = getReg(Op0, MBB, IP);
 | |
|       unsigned Op1Reg = getReg(Op1, MBB, IP);
 | |
|       MachineInstr *TheCall =
 | |
|         BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
 | |
|       std::vector<ValueRecord> Args;
 | |
|       Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
 | |
|       Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
 | |
|       doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
 | |
|     }
 | |
|     return;
 | |
|   case cLong: {
 | |
|     static Function* const Funcs[] =
 | |
|       { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
 | |
|     unsigned Op0Reg = getReg(Op0, MBB, IP);
 | |
|     unsigned Op1Reg = getReg(Op1, MBB, IP);
 | |
|     unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
 | |
|     MachineInstr *TheCall =
 | |
|       BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
 | |
| 
 | |
|     std::vector<ValueRecord> Args;
 | |
|     Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
 | |
|     Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
 | |
|     doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
 | |
|     return;
 | |
|   }
 | |
|   case cByte: case cShort: case cInt:
 | |
|     break;          // Small integrals, handled below...
 | |
|   default: assert(0 && "Unknown class!");
 | |
|   }
 | |
| 
 | |
|   // Special case signed division by power of 2.
 | |
|   if (isDiv)
 | |
|     if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
 | |
|       assert(Class != cLong && "This doesn't handle 64-bit divides!");
 | |
|       int V = CI->getValue();
 | |
| 
 | |
|       if (V == 1) {       // X /s 1 => X
 | |
|         unsigned Op0Reg = getReg(Op0, MBB, IP);
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (V == -1) {      // X /s -1 => -X
 | |
|         unsigned Op0Reg = getReg(Op0, MBB, IP);
 | |
|         BuildMI(*MBB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       unsigned log2V = ExactLog2(V);
 | |
|       if (log2V != 0 && Ty->isSigned()) {
 | |
|         unsigned Op0Reg = getReg(Op0, MBB, IP);
 | |
|         unsigned TmpReg = makeAnotherReg(Op0->getType());
 | |
| 
 | |
|         BuildMI(*MBB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
 | |
|         BuildMI(*MBB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   unsigned Op0Reg = getReg(Op0, MBB, IP);
 | |
| 
 | |
|   if (isDiv) {
 | |
|     unsigned Op1Reg = getReg(Op1, MBB, IP);
 | |
|     unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU;
 | |
|     BuildMI(*MBB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
 | |
|   } else { // Remainder
 | |
|     // FIXME: don't load the CI part of a CI divide twice
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(Op1);
 | |
|     unsigned TmpReg1 = makeAnotherReg(Op0->getType());
 | |
|     unsigned TmpReg2 = makeAnotherReg(Op0->getType());
 | |
|     emitDivRemOperation(MBB, IP, Op0, Op1, true, TmpReg1);
 | |
|     if (CI && canUseAsImmediateForOpcode(CI, 0, false)) {
 | |
|       BuildMI(*MBB, IP, PPC::MULLI, 2, TmpReg2).addReg(TmpReg1)
 | |
|         .addSImm(CI->getRawValue());
 | |
|     } else {
 | |
|       unsigned Op1Reg = getReg(Op1, MBB, IP);
 | |
|       BuildMI(*MBB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
 | |
|     }
 | |
|     BuildMI(*MBB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
 | |
| /// for constant immediate shift values, and for constant immediate
 | |
| /// shift values equal to 1. Even the general case is sort of special,
 | |
| /// because the shift amount has to be in CL, not just any old register.
 | |
| ///
 | |
| void PPC32ISel::visitShiftInst(ShiftInst &I) {
 | |
|   if (std::find(SkipList.begin(), SkipList.end(), &I) != SkipList.end())
 | |
|     return;
 | |
| 
 | |
|   MachineBasicBlock::iterator IP = BB->end();
 | |
|   emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
 | |
|                      I.getOpcode() == Instruction::Shl, I.getType(),
 | |
|                      &I, getReg(I));
 | |
| }
 | |
| 
 | |
| /// emitShiftOperation - Common code shared between visitShiftInst and
 | |
| /// constant expression support.
 | |
| ///
 | |
| void PPC32ISel::emitShiftOperation(MachineBasicBlock *MBB,
 | |
|                                    MachineBasicBlock::iterator IP,
 | |
|                                    Value *Op, Value *ShiftAmount,
 | |
|                                    bool isLeftShift, const Type *ResultTy,
 | |
|                                    ShiftInst *SI, unsigned DestReg) {
 | |
|   bool isSigned = ResultTy->isSigned ();
 | |
|   unsigned Class = getClass (ResultTy);
 | |
| 
 | |
|   // Longs, as usual, are handled specially...
 | |
|   if (Class == cLong) {
 | |
|     unsigned SrcReg = getReg (Op, MBB, IP);
 | |
|     // If we have a constant shift, we can generate much more efficient code
 | |
|     // than for a variable shift by using the rlwimi instruction.
 | |
|     if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
 | |
|       unsigned Amount = CUI->getValue();
 | |
|       if (Amount == 0) {
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1)
 | |
|           .addReg(SrcReg+1).addReg(SrcReg+1);
 | |
| 
 | |
|       } else if (Amount < 32) {
 | |
|         unsigned TempReg = makeAnotherReg(ResultTy);
 | |
|         if (isLeftShift) {
 | |
|           BuildMI(*MBB, IP, PPC::RLWINM, 4, TempReg).addReg(SrcReg)
 | |
|             .addImm(Amount).addImm(0).addImm(31-Amount);
 | |
|           BuildMI(*MBB, IP, PPC::RLWIMI, 5, DestReg).addReg(TempReg)
 | |
|             .addReg(SrcReg+1).addImm(Amount).addImm(32-Amount).addImm(31);
 | |
|           BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
 | |
|             .addImm(Amount).addImm(0).addImm(31-Amount);
 | |
|         } else {
 | |
|           BuildMI(*MBB, IP, PPC::RLWINM, 4, TempReg).addReg(SrcReg+1)
 | |
|             .addImm(32-Amount).addImm(Amount).addImm(31);
 | |
|           BuildMI(*MBB, IP, PPC::RLWIMI, 5, DestReg+1).addReg(TempReg)
 | |
|             .addReg(SrcReg).addImm(32-Amount).addImm(0).addImm(Amount-1);
 | |
|           if (isSigned) {
 | |
|             BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg)
 | |
|               .addImm(Amount);
 | |
|           } else {
 | |
|             BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
 | |
|               .addImm(32-Amount).addImm(Amount).addImm(31);
 | |
|           }
 | |
|         }
 | |
|       } else {                 // Shifting more than 32 bits
 | |
|         Amount -= 32;
 | |
|         if (isLeftShift) {
 | |
|           if (Amount != 0) {
 | |
|             BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg+1)
 | |
|               .addImm(Amount).addImm(0).addImm(31-Amount);
 | |
|           } else {
 | |
|             BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg+1)
 | |
|               .addReg(SrcReg+1);
 | |
|           }
 | |
|           BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
 | |
|         } else {
 | |
|           if (Amount != 0) {
 | |
|             if (isSigned)
 | |
|               BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg+1).addReg(SrcReg)
 | |
|                 .addImm(Amount);
 | |
|             else
 | |
|               BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg)
 | |
|                 .addImm(32-Amount).addImm(Amount).addImm(31);
 | |
|           } else {
 | |
|             BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
 | |
|               .addReg(SrcReg);
 | |
|           }
 | |
|           if (isSigned)
 | |
|             BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg)
 | |
|               .addImm(31);
 | |
|           else
 | |
|             BuildMI(*MBB, IP,PPC::LI, 1, DestReg).addSImm(0);
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
 | |
|       unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
 | |
|       unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
 | |
|       unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
 | |
|       unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
 | |
|       unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
 | |
|       unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
 | |
| 
 | |
|       if (isLeftShift) {
 | |
|         BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
 | |
|           .addSImm(32);
 | |
|         BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg2).addReg(SrcReg)
 | |
|           .addReg(ShiftAmountReg);
 | |
|         BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg3).addReg(SrcReg+1)
 | |
|           .addReg(TmpReg1);
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
 | |
|         BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
 | |
|           .addSImm(-32);
 | |
|         BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg6).addReg(SrcReg+1)
 | |
|           .addReg(TmpReg5);
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(TmpReg4)
 | |
|           .addReg(TmpReg6);
 | |
|         BuildMI(*MBB, IP, PPC::SLW, 2, DestReg+1).addReg(SrcReg+1)
 | |
|           .addReg(ShiftAmountReg);
 | |
|       } else {
 | |
|         if (isSigned) { // shift right algebraic
 | |
|           MachineBasicBlock *TmpMBB =new MachineBasicBlock(BB->getBasicBlock());
 | |
|           MachineBasicBlock *PhiMBB =new MachineBasicBlock(BB->getBasicBlock());
 | |
|           MachineBasicBlock *OldMBB = BB;
 | |
|           ilist<MachineBasicBlock>::iterator It = BB; ++It;
 | |
|           F->getBasicBlockList().insert(It, TmpMBB);
 | |
|           F->getBasicBlockList().insert(It, PhiMBB);
 | |
|           BB->addSuccessor(TmpMBB);
 | |
|           BB->addSuccessor(PhiMBB);
 | |
| 
 | |
|           BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
 | |
|             .addSImm(32);
 | |
|           BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1)
 | |
|             .addReg(ShiftAmountReg);
 | |
|           BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg)
 | |
|             .addReg(TmpReg1);
 | |
|           BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2)
 | |
|             .addReg(TmpReg3);
 | |
|           BuildMI(*MBB, IP, PPC::ADDICo, 2, TmpReg5).addReg(ShiftAmountReg)
 | |
|             .addSImm(-32);
 | |
|           BuildMI(*MBB, IP, PPC::SRAW, 2, TmpReg6).addReg(SrcReg)
 | |
|             .addReg(TmpReg5);
 | |
|           BuildMI(*MBB, IP, PPC::SRAW, 2, DestReg).addReg(SrcReg)
 | |
|             .addReg(ShiftAmountReg);
 | |
|           BuildMI(*MBB, IP, PPC::BLE, 2).addReg(PPC::CR0).addMBB(PhiMBB);
 | |
| 
 | |
|           // OrMBB:
 | |
|           //   Select correct least significant half if the shift amount > 32
 | |
|           BB = TmpMBB;
 | |
|           unsigned OrReg = makeAnotherReg(Type::IntTy);
 | |
|           BuildMI(BB, PPC::OR, 2, OrReg).addReg(TmpReg6).addReg(TmpReg6);
 | |
|           TmpMBB->addSuccessor(PhiMBB);
 | |
| 
 | |
|           BB = PhiMBB;
 | |
|           BuildMI(BB, PPC::PHI, 4, DestReg+1).addReg(TmpReg4).addMBB(OldMBB)
 | |
|             .addReg(OrReg).addMBB(TmpMBB);
 | |
|         } else { // shift right logical
 | |
|           BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
 | |
|             .addSImm(32);
 | |
|           BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1)
 | |
|             .addReg(ShiftAmountReg);
 | |
|           BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg)
 | |
|             .addReg(TmpReg1);
 | |
|           BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2)
 | |
|             .addReg(TmpReg3);
 | |
|           BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
 | |
|             .addSImm(-32);
 | |
|           BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg6).addReg(SrcReg)
 | |
|             .addReg(TmpReg5);
 | |
|           BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(TmpReg4)
 | |
|             .addReg(TmpReg6);
 | |
|           BuildMI(*MBB, IP, PPC::SRW, 2, DestReg).addReg(SrcReg)
 | |
|             .addReg(ShiftAmountReg);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
 | |
|     // The shift amount is constant, guaranteed to be a ubyte. Get its value.
 | |
|     assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
 | |
|     unsigned Amount = CUI->getValue();
 | |
| 
 | |
|     // If this is a shift with one use, and that use is an And instruction,
 | |
|     // then attempt to emit a bitfield operation.
 | |
|     if (SI && emitBitfieldInsert(SI, DestReg))
 | |
|       return;
 | |
| 
 | |
|     unsigned SrcReg = getReg (Op, MBB, IP);
 | |
|     if (Amount == 0) {
 | |
|       BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|     } else if (isLeftShift) {
 | |
|       BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
 | |
|         .addImm(Amount).addImm(0).addImm(31-Amount);
 | |
|     } else {
 | |
|       if (isSigned) {
 | |
|         BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
 | |
|       } else {
 | |
|         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
 | |
|           .addImm(32-Amount).addImm(Amount).addImm(31);
 | |
|       }
 | |
|     }
 | |
|   } else {                  // The shift amount is non-constant.
 | |
|     unsigned SrcReg = getReg (Op, MBB, IP);
 | |
|     unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
 | |
| 
 | |
|     if (isLeftShift) {
 | |
|       BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg)
 | |
|         .addReg(ShiftAmountReg);
 | |
|     } else {
 | |
|       BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg)
 | |
|         .addReg(SrcReg).addReg(ShiftAmountReg);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LoadNeedsSignExtend - On PowerPC, there is no load byte with sign extend.
 | |
| /// Therefore, if this is a byte load and the destination type is signed, we
 | |
| /// would normally need to also emit a sign extend instruction after the load.
 | |
| /// However, store instructions don't care whether a signed type was sign
 | |
| /// extended across a whole register.  Also, a SetCC instruction will emit its
 | |
| /// own sign extension to force the value into the appropriate range, so we
 | |
| /// need not emit it here.  Ideally, this kind of thing wouldn't be necessary
 | |
| /// once LLVM's type system is improved.
 | |
| static bool LoadNeedsSignExtend(LoadInst &LI) {
 | |
|   if (cByte == getClassB(LI.getType()) && LI.getType()->isSigned()) {
 | |
|     bool AllUsesAreStoresOrSetCC = true;
 | |
|     for (Value::use_iterator I = LI.use_begin(), E = LI.use_end(); I != E; ++I){
 | |
|       if (isa<SetCondInst>(*I))
 | |
|         continue;
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(*I))
 | |
|         if (cByte == getClassB(SI->getOperand(0)->getType()))
 | |
|         continue;
 | |
|       AllUsesAreStoresOrSetCC = false;
 | |
|       break;
 | |
|     }
 | |
|     if (!AllUsesAreStoresOrSetCC)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// visitLoadInst - Implement LLVM load instructions.  Pretty straightforward
 | |
| /// mapping of LLVM classes to PPC load instructions, with the exception of
 | |
| /// signed byte loads, which need a sign extension following them.
 | |
| ///
 | |
| void PPC32ISel::visitLoadInst(LoadInst &I) {
 | |
|   // Immediate opcodes, for reg+imm addressing
 | |
|   static const unsigned ImmOpcodes[] = {
 | |
|     PPC::LBZ, PPC::LHZ, PPC::LWZ,
 | |
|     PPC::LFS, PPC::LFD, PPC::LWZ
 | |
|   };
 | |
|   // Indexed opcodes, for reg+reg addressing
 | |
|   static const unsigned IdxOpcodes[] = {
 | |
|     PPC::LBZX, PPC::LHZX, PPC::LWZX,
 | |
|     PPC::LFSX, PPC::LFDX, PPC::LWZX
 | |
|   };
 | |
| 
 | |
|   unsigned Class     = getClassB(I.getType());
 | |
|   unsigned ImmOpcode = ImmOpcodes[Class];
 | |
|   unsigned IdxOpcode = IdxOpcodes[Class];
 | |
|   unsigned DestReg   = getReg(I);
 | |
|   Value *SourceAddr  = I.getOperand(0);
 | |
| 
 | |
|   if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA;
 | |
|   if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX;
 | |
| 
 | |
|   // If this is a fixed size alloca, emit a load directly from the stack slot
 | |
|   // corresponding to it.
 | |
|   if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
 | |
|     unsigned FI = getFixedSizedAllocaFI(AI);
 | |
|     if (Class == cLong) {
 | |
|       addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
 | |
|       addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4);
 | |
|     } else if (LoadNeedsSignExtend(I)) {
 | |
|       unsigned TmpReg = makeAnotherReg(I.getType());
 | |
|       addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
 | |
|       BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
 | |
|     } else {
 | |
|       addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the offset fits in 16 bits, we can emit a reg+imm load, otherwise, we
 | |
|   // use the index from the FoldedGEP struct and use reg+reg addressing.
 | |
|   if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
 | |
| 
 | |
|     // Generate the code for the GEP and get the components of the folded GEP
 | |
|     emitGEPOperation(BB, BB->end(), GEPI, true);
 | |
|     unsigned baseReg = GEPMap[GEPI].base;
 | |
|     unsigned indexReg = GEPMap[GEPI].index;
 | |
|     ConstantSInt *offset = GEPMap[GEPI].offset;
 | |
| 
 | |
|     if (Class != cLong) {
 | |
|       unsigned TmpReg = LoadNeedsSignExtend(I) ? makeAnotherReg(I.getType())
 | |
|                                                : DestReg;
 | |
|       if (indexReg == 0)
 | |
|         BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
 | |
|           .addReg(baseReg);
 | |
|       else
 | |
|         BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg);
 | |
|       if (LoadNeedsSignExtend(I))
 | |
|         BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
 | |
|     } else {
 | |
|       indexReg = (indexReg != 0) ? indexReg : getReg(offset);
 | |
|       unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
 | |
|       BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
 | |
|       BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
 | |
|       BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The fallback case, where the load was from a source that could not be
 | |
|   // folded into the load instruction.
 | |
|   unsigned SrcAddrReg = getReg(SourceAddr);
 | |
| 
 | |
|   if (Class == cLong) {
 | |
|     BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
 | |
|     BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
 | |
|   } else if (LoadNeedsSignExtend(I)) {
 | |
|     unsigned TmpReg = makeAnotherReg(I.getType());
 | |
|     BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
 | |
|     BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
 | |
|   } else {
 | |
|     BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// visitStoreInst - Implement LLVM store instructions
 | |
| ///
 | |
| void PPC32ISel::visitStoreInst(StoreInst &I) {
 | |
|   // Immediate opcodes, for reg+imm addressing
 | |
|   static const unsigned ImmOpcodes[] = {
 | |
|     PPC::STB, PPC::STH, PPC::STW,
 | |
|     PPC::STFS, PPC::STFD, PPC::STW
 | |
|   };
 | |
|   // Indexed opcodes, for reg+reg addressing
 | |
|   static const unsigned IdxOpcodes[] = {
 | |
|     PPC::STBX, PPC::STHX, PPC::STWX,
 | |
|     PPC::STFSX, PPC::STFDX, PPC::STWX
 | |
|   };
 | |
| 
 | |
|   Value *SourceAddr  = I.getOperand(1);
 | |
|   const Type *ValTy  = I.getOperand(0)->getType();
 | |
|   unsigned Class     = getClassB(ValTy);
 | |
|   unsigned ImmOpcode = ImmOpcodes[Class];
 | |
|   unsigned IdxOpcode = IdxOpcodes[Class];
 | |
|   unsigned ValReg    = getReg(I.getOperand(0));
 | |
| 
 | |
|   // If this is a fixed size alloca, emit a store directly to the stack slot
 | |
|   // corresponding to it.
 | |
|   if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
 | |
|     unsigned FI = getFixedSizedAllocaFI(AI);
 | |
|     addFrameReference(BuildMI(BB, ImmOpcode, 3).addReg(ValReg), FI);
 | |
|     if (Class == cLong)
 | |
|       addFrameReference(BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1), FI, 4);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the offset fits in 16 bits, we can emit a reg+imm store, otherwise, we
 | |
|   // use the index from the FoldedGEP struct and use reg+reg addressing.
 | |
|   if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
 | |
|     // Generate the code for the GEP and get the components of the folded GEP
 | |
|     emitGEPOperation(BB, BB->end(), GEPI, true);
 | |
|     unsigned baseReg = GEPMap[GEPI].base;
 | |
|     unsigned indexReg = GEPMap[GEPI].index;
 | |
|     ConstantSInt *offset = GEPMap[GEPI].offset;
 | |
| 
 | |
|     if (Class != cLong) {
 | |
|       if (indexReg == 0)
 | |
|         BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
 | |
|           .addReg(baseReg);
 | |
|       else
 | |
|         BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg)
 | |
|           .addReg(baseReg);
 | |
|     } else {
 | |
|       indexReg = (indexReg != 0) ? indexReg : getReg(offset);
 | |
|       unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
 | |
|       BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
 | |
|       BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
 | |
|       BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4)
 | |
|         .addReg(baseReg);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the store address wasn't the only use of a GEP, we fall back to the
 | |
|   // standard path: store the ValReg at the value in AddressReg.
 | |
|   unsigned AddressReg  = getReg(I.getOperand(1));
 | |
|   if (Class == cLong) {
 | |
|     BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
 | |
|     BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
 | |
|     return;
 | |
|   }
 | |
|   BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitCastInst - Here we have various kinds of copying with or without sign
 | |
| /// extension going on.
 | |
| ///
 | |
| void PPC32ISel::visitCastInst(CastInst &CI) {
 | |
|   Value *Op = CI.getOperand(0);
 | |
| 
 | |
|   unsigned SrcClass = getClassB(Op->getType());
 | |
|   unsigned DestClass = getClassB(CI.getType());
 | |
| 
 | |
|   // Noop casts are not emitted: getReg will return the source operand as the
 | |
|   // register to use for any uses of the noop cast.
 | |
|   if (DestClass == SrcClass) return;
 | |
| 
 | |
|   // If this is a cast from a 32-bit integer to a Long type, and the only uses
 | |
|   // of the cast are GEP instructions, then the cast does not need to be
 | |
|   // generated explicitly, it will be folded into the GEP.
 | |
|   if (DestClass == cLong && SrcClass == cInt) {
 | |
|     bool AllUsesAreGEPs = true;
 | |
|     for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
 | |
|       if (!isa<GetElementPtrInst>(*I)) {
 | |
|         AllUsesAreGEPs = false;
 | |
|         break;
 | |
|       }
 | |
|     if (AllUsesAreGEPs) return;
 | |
|   }
 | |
| 
 | |
|   unsigned DestReg = getReg(CI);
 | |
|   MachineBasicBlock::iterator MI = BB->end();
 | |
| 
 | |
|   // If this is a cast from an integer type to a ubyte, with one use where the
 | |
|   // use is the shift amount argument of a shift instruction, just emit a move
 | |
|   // instead (since the shift instruction will only look at the low 5 bits
 | |
|   // regardless of how it is sign extended)
 | |
|   if (CI.getType() == Type::UByteTy && SrcClass <= cInt && CI.hasOneUse()) {
 | |
|     ShiftInst *SI = dyn_cast<ShiftInst>(*(CI.use_begin()));
 | |
|     if (SI && (SI->getOperand(1) == &CI)) {
 | |
|       unsigned SrcReg = getReg(Op, BB, MI);
 | |
|       BuildMI(*BB, MI, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is a cast from an byte, short, or int to an integer type of equal
 | |
|   // or lesser width, and all uses of the cast are store instructions then dont
 | |
|   // emit them, as the store instruction will implicitly not store the zero or
 | |
|   // sign extended bytes.
 | |
|   if (SrcClass <= cInt && SrcClass >= DestClass) {
 | |
|     bool AllUsesAreStores = true;
 | |
|     for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
 | |
|       if (!isa<StoreInst>(*I)) {
 | |
|         AllUsesAreStores = false;
 | |
|         break;
 | |
|       }
 | |
|     // Turn this cast directly into a move instruction, which the register
 | |
|     // allocator will deal with.
 | |
|     if (AllUsesAreStores) {
 | |
|       unsigned SrcReg = getReg(Op, BB, MI);
 | |
|       BuildMI(*BB, MI, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
 | |
| }
 | |
| 
 | |
| /// emitCastOperation - Common code shared between visitCastInst and constant
 | |
| /// expression cast support.
 | |
| ///
 | |
| void PPC32ISel::emitCastOperation(MachineBasicBlock *MBB,
 | |
|                                   MachineBasicBlock::iterator IP,
 | |
|                                   Value *Src, const Type *DestTy,
 | |
|                                   unsigned DestReg) {
 | |
|   const Type *SrcTy = Src->getType();
 | |
|   unsigned SrcClass = getClassB(SrcTy);
 | |
|   unsigned DestClass = getClassB(DestTy);
 | |
|   unsigned SrcReg = getReg(Src, MBB, IP);
 | |
| 
 | |
|   // Implement casts from bool to integer types as a move operation
 | |
|   if (SrcTy == Type::BoolTy) {
 | |
|     switch (DestClass) {
 | |
|     case cByte:
 | |
|     case cShort:
 | |
|     case cInt:
 | |
|       BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       return;
 | |
|     case cLong:
 | |
|       BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addImm(0);
 | |
|       BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg).addReg(SrcReg);
 | |
|       return;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Implement casts to bool by using compare on the operand followed by set if
 | |
|   // not zero on the result.
 | |
|   if (DestTy == Type::BoolTy) {
 | |
|     switch (SrcClass) {
 | |
|     case cByte:
 | |
|     case cShort:
 | |
|     case cInt: {
 | |
|       unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
|       BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
 | |
|       BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
 | |
|       break;
 | |
|     }
 | |
|     case cLong: {
 | |
|       unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
|       unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
 | |
|       BuildMI(*MBB, IP, PPC::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
 | |
|       BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
 | |
|       BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg)
 | |
|         .addReg(SrcReg2);
 | |
|       break;
 | |
|     }
 | |
|     case cFP32:
 | |
|     case cFP64:
 | |
|       unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
|       unsigned ConstZero = getReg(ConstantFP::get(Type::DoubleTy, 0.0), BB, IP);
 | |
|       BuildMI(*MBB, IP, PPC::FCMPU, PPC::CR7).addReg(SrcReg).addReg(ConstZero);
 | |
|       BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
 | |
|       BuildMI(*MBB, IP, PPC::RLWINM, DestReg).addReg(TmpReg).addImm(31)
 | |
|         .addImm(31).addImm(31);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle cast of Float -> Double
 | |
|   if (SrcClass == cFP32 && DestClass == cFP64) {
 | |
|     BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle cast of Double -> Float
 | |
|   if (SrcClass == cFP64 && DestClass == cFP32) {
 | |
|     BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle casts from integer to floating point now...
 | |
|   if (DestClass == cFP32 || DestClass == cFP64) {
 | |
| 
 | |
|     // Emit a library call for long to float conversion
 | |
|     if (SrcClass == cLong) {
 | |
|       Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
 | |
|       if (SrcTy->isSigned()) {
 | |
|         std::vector<ValueRecord> Args;
 | |
|         Args.push_back(ValueRecord(SrcReg, SrcTy));
 | |
|         MachineInstr *TheCall =
 | |
|           BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
 | |
|         doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
 | |
|       } else {
 | |
|         std::vector<ValueRecord> CmpArgs, ClrArgs, SetArgs;
 | |
|         unsigned ZeroLong = getReg(ConstantUInt::get(SrcTy, 0));
 | |
|         unsigned CondReg = makeAnotherReg(Type::IntTy);
 | |
| 
 | |
|         // Update machine-CFG edges
 | |
|         MachineBasicBlock *ClrMBB = new MachineBasicBlock(BB->getBasicBlock());
 | |
|         MachineBasicBlock *SetMBB = new MachineBasicBlock(BB->getBasicBlock());
 | |
|         MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
 | |
|         MachineBasicBlock *OldMBB = BB;
 | |
|         ilist<MachineBasicBlock>::iterator It = BB; ++It;
 | |
|         F->getBasicBlockList().insert(It, ClrMBB);
 | |
|         F->getBasicBlockList().insert(It, SetMBB);
 | |
|         F->getBasicBlockList().insert(It, PhiMBB);
 | |
|         BB->addSuccessor(ClrMBB);
 | |
|         BB->addSuccessor(SetMBB);
 | |
| 
 | |
|         CmpArgs.push_back(ValueRecord(SrcReg, SrcTy));
 | |
|         CmpArgs.push_back(ValueRecord(ZeroLong, SrcTy));
 | |
|         MachineInstr *TheCall =
 | |
|           BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(__cmpdi2Fn, true);
 | |
|         doCall(ValueRecord(CondReg, Type::IntTy), TheCall, CmpArgs, false);
 | |
|         BuildMI(*MBB, IP, PPC::CMPWI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
 | |
|         BuildMI(*MBB, IP, PPC::BLE, 2).addReg(PPC::CR0).addMBB(SetMBB);
 | |
| 
 | |
|         // ClrMBB
 | |
|         BB = ClrMBB;
 | |
|         unsigned ClrReg = makeAnotherReg(DestTy);
 | |
|         ClrArgs.push_back(ValueRecord(SrcReg, SrcTy));
 | |
|         TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
 | |
|         doCall(ValueRecord(ClrReg, DestTy), TheCall, ClrArgs, false);
 | |
|         BuildMI(BB, PPC::B, 1).addMBB(PhiMBB);
 | |
|         BB->addSuccessor(PhiMBB);
 | |
| 
 | |
|         // SetMBB
 | |
|         BB = SetMBB;
 | |
|         unsigned SetReg = makeAnotherReg(DestTy);
 | |
|         unsigned CallReg = makeAnotherReg(DestTy);
 | |
|         unsigned ShiftedReg = makeAnotherReg(SrcTy);
 | |
|         ConstantSInt *Const1 = ConstantSInt::get(Type::IntTy, 1);
 | |
|         emitShiftOperation(BB, BB->end(), Src, Const1, false, SrcTy, 0,
 | |
|                            ShiftedReg);
 | |
|         SetArgs.push_back(ValueRecord(ShiftedReg, SrcTy));
 | |
|         TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
 | |
|         doCall(ValueRecord(CallReg, DestTy), TheCall, SetArgs, false);
 | |
|         unsigned SetOpcode = (DestClass == cFP32) ? PPC::FADDS : PPC::FADD;
 | |
|         BuildMI(BB, SetOpcode, 2, SetReg).addReg(CallReg).addReg(CallReg);
 | |
|         BB->addSuccessor(PhiMBB);
 | |
| 
 | |
|         // PhiMBB
 | |
|         BB = PhiMBB;
 | |
|         BuildMI(BB, PPC::PHI, 4, DestReg).addReg(ClrReg).addMBB(ClrMBB)
 | |
|           .addReg(SetReg).addMBB(SetMBB);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Make sure we're dealing with a full 32 bits
 | |
|     if (SrcClass < cInt) {
 | |
|       unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
|       promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
 | |
|       SrcReg = TmpReg;
 | |
|     }
 | |
| 
 | |
|     // Spill the integer to memory and reload it from there.
 | |
|     // Also spill room for a special conversion constant
 | |
|     int ValueFrameIdx =
 | |
|       F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
 | |
| 
 | |
|     unsigned constantHi = makeAnotherReg(Type::IntTy);
 | |
|     unsigned TempF = makeAnotherReg(Type::DoubleTy);
 | |
| 
 | |
|     if (!SrcTy->isSigned()) {
 | |
|       ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000000p52);
 | |
|       unsigned ConstF = getReg(CFP, BB, IP);
 | |
|       BuildMI(*MBB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
 | |
|       addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(constantHi),
 | |
|                         ValueFrameIdx);
 | |
|       addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(SrcReg),
 | |
|                         ValueFrameIdx, 4);
 | |
|       addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
 | |
|       BuildMI(*MBB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
 | |
|     } else {
 | |
|       ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000008p52);
 | |
|       unsigned ConstF = getReg(CFP, BB, IP);
 | |
|       unsigned TempLo = makeAnotherReg(Type::IntTy);
 | |
|       BuildMI(*MBB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
 | |
|       addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(constantHi),
 | |
|                         ValueFrameIdx);
 | |
|       BuildMI(*MBB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
 | |
|       addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(TempLo),
 | |
|                         ValueFrameIdx, 4);
 | |
|       addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
 | |
|       BuildMI(*MBB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle casts from floating point to integer now...
 | |
|   if (SrcClass == cFP32 || SrcClass == cFP64) {
 | |
|     static Function* const Funcs[] =
 | |
|       { __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn };
 | |
|     // emit library call
 | |
|     if (DestClass == cLong) {
 | |
|       bool isDouble = SrcClass == cFP64;
 | |
|       unsigned nameIndex = 2 * DestTy->isSigned() + isDouble;
 | |
|       std::vector<ValueRecord> Args;
 | |
|       Args.push_back(ValueRecord(SrcReg, SrcTy));
 | |
|       Function *floatFn = Funcs[nameIndex];
 | |
|       MachineInstr *TheCall =
 | |
|         BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
 | |
|       doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     int ValueFrameIdx =
 | |
|       F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
 | |
| 
 | |
|     if (DestTy->isSigned()) {
 | |
|       unsigned TempReg = makeAnotherReg(Type::DoubleTy);
 | |
| 
 | |
|       // Convert to integer in the FP reg and store it to a stack slot
 | |
|       BuildMI(*MBB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg);
 | |
|       addFrameReference(BuildMI(*MBB, IP, PPC::STFD, 3)
 | |
|                           .addReg(TempReg), ValueFrameIdx);
 | |
| 
 | |
|       // There is no load signed byte opcode, so we must emit a sign extend for
 | |
|       // that particular size.  Make sure to source the new integer from the
 | |
|       // correct offset.
 | |
|       if (DestClass == cByte) {
 | |
|         unsigned TempReg2 = makeAnotherReg(DestTy);
 | |
|         addFrameReference(BuildMI(*MBB, IP, PPC::LBZ, 2, TempReg2),
 | |
|                           ValueFrameIdx, 7);
 | |
|         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(TempReg2);
 | |
|       } else {
 | |
|         int offset = (DestClass == cShort) ? 6 : 4;
 | |
|         unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ;
 | |
|         addFrameReference(BuildMI(*MBB, IP, LoadOp, 2, DestReg),
 | |
|                           ValueFrameIdx, offset);
 | |
|       }
 | |
|     } else {
 | |
|       unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
 | |
|       double maxInt = (1LL << 32) - 1;
 | |
|       unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
 | |
|       double border = 1LL << 31;
 | |
|       unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
 | |
|       unsigned UseZero = makeAnotherReg(Type::DoubleTy);
 | |
|       unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
 | |
|       unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
 | |
|       unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
 | |
|       unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
 | |
|       unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
 | |
|       unsigned IntTmp = makeAnotherReg(Type::IntTy);
 | |
|       unsigned XorReg = makeAnotherReg(Type::IntTy);
 | |
|       int FrameIdx =
 | |
|         F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
 | |
|       // Update machine-CFG edges
 | |
|       MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
 | |
|       MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
 | |
|       MachineBasicBlock *OldMBB = BB;
 | |
|       ilist<MachineBasicBlock>::iterator It = BB; ++It;
 | |
|       F->getBasicBlockList().insert(It, XorMBB);
 | |
|       F->getBasicBlockList().insert(It, PhiMBB);
 | |
|       BB->addSuccessor(XorMBB);
 | |
|       BB->addSuccessor(PhiMBB);
 | |
| 
 | |
|       // Convert from floating point to unsigned 32-bit value
 | |
|       // Use 0 if incoming value is < 0.0
 | |
|       BuildMI(*MBB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
 | |
|         .addReg(Zero);
 | |
|       // Use 2**32 - 1 if incoming value is >= 2**32
 | |
|       BuildMI(*MBB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
 | |
|       BuildMI(*MBB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt)
 | |
|         .addReg(UseZero).addReg(MaxInt);
 | |
|       // Subtract 2**31
 | |
|       BuildMI(*MBB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
 | |
|       // Use difference if >= 2**31
 | |
|       BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice)
 | |
|         .addReg(Border);
 | |
|       BuildMI(*MBB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
 | |
|         .addReg(UseChoice);
 | |
|       // Convert to integer
 | |
|       BuildMI(*MBB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
 | |
|       addFrameReference(BuildMI(*MBB, IP, PPC::STFD, 3).addReg(ConvReg),
 | |
|                         FrameIdx);
 | |
|       if (DestClass == cByte) {
 | |
|         addFrameReference(BuildMI(*MBB, IP, PPC::LBZ, 2, DestReg),
 | |
|                           FrameIdx, 7);
 | |
|       } else if (DestClass == cShort) {
 | |
|         addFrameReference(BuildMI(*MBB, IP, PPC::LHZ, 2, DestReg),
 | |
|                           FrameIdx, 6);
 | |
|       } if (DestClass == cInt) {
 | |
|         addFrameReference(BuildMI(*MBB, IP, PPC::LWZ, 2, IntTmp),
 | |
|                           FrameIdx, 4);
 | |
|         BuildMI(*MBB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
 | |
|         BuildMI(*MBB, IP, PPC::B, 1).addMBB(XorMBB);
 | |
| 
 | |
|         // XorMBB:
 | |
|         //   add 2**31 if input was >= 2**31
 | |
|         BB = XorMBB;
 | |
|         BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
 | |
|         XorMBB->addSuccessor(PhiMBB);
 | |
| 
 | |
|         // PhiMBB:
 | |
|         //   DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
 | |
|         BB = PhiMBB;
 | |
|         BuildMI(BB, PPC::PHI, 4, DestReg).addReg(IntTmp).addMBB(OldMBB)
 | |
|           .addReg(XorReg).addMBB(XorMBB);
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check our invariants
 | |
|   assert((SrcClass <= cInt || SrcClass == cLong) &&
 | |
|          "Unhandled source class for cast operation!");
 | |
|   assert((DestClass <= cInt || DestClass == cLong) &&
 | |
|          "Unhandled destination class for cast operation!");
 | |
| 
 | |
|   bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
 | |
|   bool destUnsigned = DestTy->isUnsigned();
 | |
| 
 | |
|   // Unsigned -> Unsigned, clear if larger,
 | |
|   if (sourceUnsigned && destUnsigned) {
 | |
|     // handle long dest class now to keep switch clean
 | |
|     if (DestClass == cLong) {
 | |
|       BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
 | |
|       BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
 | |
|         .addReg(SrcReg);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // handle u{ byte, short, int } x u{ byte, short, int }
 | |
|     unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
 | |
|     switch (SrcClass) {
 | |
|     case cByte:
 | |
|     case cShort:
 | |
|       BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
 | |
|         .addImm(0).addImm(clearBits).addImm(31);
 | |
|       break;
 | |
|     case cLong:
 | |
|       ++SrcReg;
 | |
|       // Fall through
 | |
|     case cInt:
 | |
|       BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
 | |
|         .addImm(0).addImm(clearBits).addImm(31);
 | |
|       break;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Signed -> Signed
 | |
|   if (!sourceUnsigned && !destUnsigned) {
 | |
|     // handle long dest class now to keep switch clean
 | |
|     if (DestClass == cLong) {
 | |
|       BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
 | |
|       BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
 | |
|         .addReg(SrcReg);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // handle { byte, short, int } x { byte, short, int }
 | |
|     switch (SrcClass) {
 | |
|     case cByte:
 | |
|       BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
 | |
|       break;
 | |
|     case cShort:
 | |
|       if (DestClass == cByte)
 | |
|         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
 | |
|       break;
 | |
|     case cLong:
 | |
|       ++SrcReg;
 | |
|       // Fall through
 | |
|     case cInt:
 | |
|       if (DestClass == cByte)
 | |
|         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
 | |
|       else if (DestClass == cShort)
 | |
|         BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       break;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Unsigned -> Signed
 | |
|   if (sourceUnsigned && !destUnsigned) {
 | |
|     // handle long dest class now to keep switch clean
 | |
|     if (DestClass == cLong) {
 | |
|       BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
 | |
|       BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
 | |
|         .addReg(SrcReg);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // handle u{ byte, short, int } -> { byte, short, int }
 | |
|     switch (SrcClass) {
 | |
|     case cByte:
 | |
|       // uByte 255 -> signed short/int == 255
 | |
|       BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
 | |
|         .addImm(24).addImm(31);
 | |
|       break;
 | |
|     case cShort:
 | |
|       if (DestClass == cByte)
 | |
|         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
 | |
|           .addImm(16).addImm(31);
 | |
|       break;
 | |
|     case cLong:
 | |
|       ++SrcReg;
 | |
|       // Fall through
 | |
|     case cInt:
 | |
|       if (DestClass == cByte)
 | |
|         BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
 | |
|       else if (DestClass == cShort)
 | |
|         BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       break;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Signed -> Unsigned
 | |
|   if (!sourceUnsigned && destUnsigned) {
 | |
|     // handle long dest class now to keep switch clean
 | |
|     if (DestClass == cLong) {
 | |
|       BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
 | |
|       BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
 | |
|         .addReg(SrcReg);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // handle { byte, short, int } -> u{ byte, short, int }
 | |
|     unsigned clearBits = (DestClass == cByte) ? 24 : 16;
 | |
|     switch (SrcClass) {
 | |
|     case cByte:
 | |
|        BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
 | |
|        break;
 | |
|     case cShort:
 | |
|       if (DestClass == cByte)
 | |
|         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
 | |
|           .addImm(0).addImm(clearBits).addImm(31);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
 | |
|       break;
 | |
|     case cLong:
 | |
|       ++SrcReg;
 | |
|       // Fall through
 | |
|     case cInt:
 | |
|       if (DestClass == cInt)
 | |
|         BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
 | |
|           .addImm(0).addImm(clearBits).addImm(31);
 | |
|       break;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Anything we haven't handled already, we can't (yet) handle at all.
 | |
|   std::cerr << "Unhandled cast from " << SrcTy->getDescription()
 | |
|             << "to " << DestTy->getDescription() << '\n';
 | |
|   abort();
 | |
| }
 | |
| 
 | |
| void PPC32ISel::visitVAArgInst(VAArgInst &I) {
 | |
|   unsigned VAListPtr = getReg(I.getOperand(0));
 | |
|   unsigned DestReg = getReg(I);
 | |
|   unsigned VAList = makeAnotherReg(Type::IntTy);
 | |
|   BuildMI(BB, PPC::LWZ, 2, VAList).addSImm(0).addReg(VAListPtr);
 | |
|   int Size;
 | |
| 
 | |
|   switch (I.getType()->getTypeID()) {
 | |
|   default:
 | |
|     std::cerr << I;
 | |
|     assert(0 && "Error: bad type for va_next instruction!");
 | |
|     return;
 | |
|   case Type::PointerTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::IntTyID:
 | |
|     Size = 4;
 | |
|     BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
 | |
|     break;
 | |
|   case Type::ULongTyID:
 | |
|   case Type::LongTyID:
 | |
|     Size = 8;
 | |
|     BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
 | |
|     BuildMI(BB, PPC::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
 | |
|     break;
 | |
|   case Type::FloatTyID:
 | |
|     Size = 4; //?? Bad value?
 | |
|     BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList);
 | |
|     break;
 | |
|   case Type::DoubleTyID:
 | |
|     Size = 8;
 | |
|     BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList);
 | |
|     break;
 | |
|   }
 | |
|   // Increment the VAList pointer...
 | |
|   unsigned NP = makeAnotherReg(Type::IntTy);
 | |
|   BuildMI(BB, PPC::ADDI, 2, NP).addReg(VAList).addSImm(Size);
 | |
|   BuildMI(BB, PPC::STW, 3).addReg(NP).addSImm(0).addReg(VAListPtr);
 | |
| }
 | |
| 
 | |
| /// visitGetElementPtrInst - instruction-select GEP instructions
 | |
| ///
 | |
| void PPC32ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
 | |
|   if (canFoldGEPIntoLoadOrStore(&I))
 | |
|     return;
 | |
| 
 | |
|   emitGEPOperation(BB, BB->end(), &I, false);
 | |
| }
 | |
| 
 | |
| /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
 | |
| /// constant expression GEP support.
 | |
| ///
 | |
| void PPC32ISel::emitGEPOperation(MachineBasicBlock *MBB,
 | |
|                                  MachineBasicBlock::iterator IP,
 | |
|                                  GetElementPtrInst *GEPI, bool GEPIsFolded) {
 | |
|   // If we've already emitted this particular GEP, just return to avoid
 | |
|   // multiple definitions of the base register.
 | |
|   if (GEPIsFolded && (GEPMap[GEPI].base != 0))
 | |
|     return;
 | |
| 
 | |
|   Value *Src = GEPI->getOperand(0);
 | |
|   User::op_iterator IdxBegin = GEPI->op_begin()+1;
 | |
|   User::op_iterator IdxEnd = GEPI->op_end();
 | |
|   const TargetData &TD = TM.getTargetData();
 | |
|   const Type *Ty = Src->getType();
 | |
|   int32_t constValue = 0;
 | |
| 
 | |
|   // Record the operations to emit the GEP in a vector so that we can emit them
 | |
|   // after having analyzed the entire instruction.
 | |
|   std::vector<CollapsedGepOp> ops;
 | |
| 
 | |
|   // GEPs have zero or more indices; we must perform a struct access
 | |
|   // or array access for each one.
 | |
|   for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
 | |
|        ++oi) {
 | |
|     Value *idx = *oi;
 | |
|     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
 | |
|       // It's a struct access.  idx is the index into the structure,
 | |
|       // which names the field. Use the TargetData structure to
 | |
|       // pick out what the layout of the structure is in memory.
 | |
|       // Use the (constant) structure index's value to find the
 | |
|       // right byte offset from the StructLayout class's list of
 | |
|       // structure member offsets.
 | |
|       unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
 | |
| 
 | |
|       // StructType member offsets are always constant values.  Add it to the
 | |
|       // running total.
 | |
|       constValue += TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
 | |
| 
 | |
|       // The next type is the member of the structure selected by the index.
 | |
|       Ty = StTy->getElementType (fieldIndex);
 | |
|     } else if (const SequentialType *SqTy = dyn_cast<SequentialType>(Ty)) {
 | |
|       // Many GEP instructions use a [cast (int/uint) to LongTy] as their
 | |
|       // operand.  Handle this case directly now...
 | |
|       if (CastInst *CI = dyn_cast<CastInst>(idx))
 | |
|         if (CI->getOperand(0)->getType() == Type::IntTy ||
 | |
|             CI->getOperand(0)->getType() == Type::UIntTy)
 | |
|           idx = CI->getOperand(0);
 | |
| 
 | |
|       // It's an array or pointer access: [ArraySize x ElementType].
 | |
|       // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
 | |
|       // must find the size of the pointed-to type (Not coincidentally, the next
 | |
|       // type is the type of the elements in the array).
 | |
|       Ty = SqTy->getElementType();
 | |
|       unsigned elementSize = TD.getTypeSize(Ty);
 | |
| 
 | |
|       if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
 | |
|         if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
 | |
|           constValue += CS->getValue() * elementSize;
 | |
|         else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
 | |
|           constValue += CU->getValue() * elementSize;
 | |
|         else
 | |
|           assert(0 && "Invalid ConstantInt GEP index type!");
 | |
|       } else {
 | |
|         // Push current gep state to this point as an add and multiply
 | |
|         ops.push_back(CollapsedGepOp(
 | |
|           ConstantSInt::get(Type::IntTy, constValue),
 | |
|           idx, ConstantUInt::get(Type::UIntTy, elementSize)));
 | |
| 
 | |
|         constValue = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Emit instructions for all the collapsed ops
 | |
|   unsigned indexReg = 0;
 | |
|   for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
 | |
|       cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
 | |
|     CollapsedGepOp& cgo = *cgo_i;
 | |
| 
 | |
|     // Avoid emitting known move instructions here for the register allocator
 | |
|     // to deal with later.  val * 1 == val.  val + 0 == val.
 | |
|     unsigned TmpReg1;
 | |
|     if (cgo.size->getValue() == 1) {
 | |
|       TmpReg1 = getReg(cgo.index, MBB, IP);
 | |
|     } else {
 | |
|       TmpReg1 = makeAnotherReg(Type::IntTy);
 | |
|       doMultiplyConst(MBB, IP, TmpReg1, cgo.index, cgo.size);
 | |
|     }
 | |
| 
 | |
|     unsigned TmpReg2;
 | |
|     if (cgo.offset->isNullValue()) {
 | |
|       TmpReg2 = TmpReg1;
 | |
|     } else {
 | |
|       TmpReg2 = makeAnotherReg(Type::IntTy);
 | |
|       emitBinaryConstOperation(MBB, IP, TmpReg1, cgo.offset, 0, TmpReg2);
 | |
|     }
 | |
| 
 | |
|     if (indexReg == 0)
 | |
|       indexReg = TmpReg2;
 | |
|     else {
 | |
|       unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
 | |
|       BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg3).addReg(indexReg).addReg(TmpReg2);
 | |
|       indexReg = TmpReg3;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We now have a base register, an index register, and possibly a constant
 | |
|   // remainder.  If the GEP is going to be folded, we try to generate the
 | |
|   // optimal addressing mode.
 | |
|   ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
 | |
| 
 | |
|   // If we are emitting this during a fold, copy the current base register to
 | |
|   // the target, and save the current constant offset so the folding load or
 | |
|   // store can try and use it as an immediate.
 | |
|   if (GEPIsFolded) {
 | |
|     if (indexReg == 0) {
 | |
|       if (!canUseAsImmediateForOpcode(remainder, 0, false)) {
 | |
|         indexReg = getReg(remainder, MBB, IP);
 | |
|         remainder = 0;
 | |
|       }
 | |
|     } else if (!remainder->isNullValue()) {
 | |
|       unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
|       emitBinaryConstOperation(MBB, IP, indexReg, remainder, 0, TmpReg);
 | |
|       indexReg = TmpReg;
 | |
|       remainder = 0;
 | |
|     }
 | |
|     unsigned basePtrReg = getReg(Src, MBB, IP);
 | |
|     GEPMap[GEPI] = FoldedGEP(basePtrReg, indexReg, remainder);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We're not folding, so collapse the base, index, and any remainder into the
 | |
|   // destination register.
 | |
|   unsigned TargetReg = getReg(GEPI, MBB, IP);
 | |
|   unsigned basePtrReg = getReg(Src, MBB, IP);
 | |
| 
 | |
|   if ((indexReg == 0) && remainder->isNullValue()) {
 | |
|     BuildMI(*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
 | |
|       .addReg(basePtrReg);
 | |
|     return;
 | |
|   }
 | |
|   if (!remainder->isNullValue()) {
 | |
|     unsigned TmpReg = (indexReg == 0) ? TargetReg : makeAnotherReg(Type::IntTy);
 | |
|     emitBinaryConstOperation(MBB, IP, basePtrReg, remainder, 0, TmpReg);
 | |
|     basePtrReg = TmpReg;
 | |
|   }
 | |
|   if (indexReg != 0)
 | |
|     BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(indexReg)
 | |
|       .addReg(basePtrReg);
 | |
| }
 | |
| 
 | |
| /// visitAllocaInst - If this is a fixed size alloca, allocate space from the
 | |
| /// frame manager, otherwise do it the hard way.
 | |
| ///
 | |
| void PPC32ISel::visitAllocaInst(AllocaInst &I) {
 | |
|   // If this is a fixed size alloca in the entry block for the function, we
 | |
|   // statically stack allocate the space, so we don't need to do anything here.
 | |
|   //
 | |
|   if (dyn_castFixedAlloca(&I)) return;
 | |
| 
 | |
|   // Find the data size of the alloca inst's getAllocatedType.
 | |
|   const Type *Ty = I.getAllocatedType();
 | |
|   unsigned TySize = TM.getTargetData().getTypeSize(Ty);
 | |
| 
 | |
|   // Create a register to hold the temporary result of multiplying the type size
 | |
|   // constant by the variable amount.
 | |
|   unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
 | |
| 
 | |
|   // TotalSizeReg = mul <numelements>, <TypeSize>
 | |
|   MachineBasicBlock::iterator MBBI = BB->end();
 | |
|   ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
 | |
|   doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
 | |
| 
 | |
|   // AddedSize = add <TotalSizeReg>, 15
 | |
|   unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
 | |
|   BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
 | |
| 
 | |
|   // AlignedSize = and <AddedSize>, ~15
 | |
|   unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
 | |
|   BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
 | |
|     .addImm(0).addImm(27);
 | |
| 
 | |
|   // Subtract size from stack pointer, thereby allocating some space.
 | |
|   BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(AlignedSize).addReg(PPC::R1);
 | |
| 
 | |
|   // Put a pointer to the space into the result register, by copying
 | |
|   // the stack pointer.
 | |
|   BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1);
 | |
| 
 | |
|   // Inform the Frame Information that we have just allocated a variable-sized
 | |
|   // object.
 | |
|   F->getFrameInfo()->CreateVariableSizedObject();
 | |
| }
 | |
| 
 | |
| /// visitMallocInst - Malloc instructions are code generated into direct calls
 | |
| /// to the library malloc.
 | |
| ///
 | |
| void PPC32ISel::visitMallocInst(MallocInst &I) {
 | |
|   unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
 | |
|   unsigned Arg;
 | |
| 
 | |
|   if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
 | |
|     Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
 | |
|   } else {
 | |
|     Arg = makeAnotherReg(Type::UIntTy);
 | |
|     MachineBasicBlock::iterator MBBI = BB->end();
 | |
|     ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
 | |
|     doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
 | |
|   }
 | |
| 
 | |
|   std::vector<ValueRecord> Args;
 | |
|   Args.push_back(ValueRecord(Arg, Type::UIntTy));
 | |
|   MachineInstr *TheCall =
 | |
|     BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
 | |
|   doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
 | |
| }
 | |
| 
 | |
| /// visitFreeInst - Free instructions are code gen'd to call the free libc
 | |
| /// function.
 | |
| ///
 | |
| void PPC32ISel::visitFreeInst(FreeInst &I) {
 | |
|   std::vector<ValueRecord> Args;
 | |
|   Args.push_back(ValueRecord(I.getOperand(0)));
 | |
|   MachineInstr *TheCall =
 | |
|     BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true);
 | |
|   doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
 | |
| }
 | |
| 
 | |
| /// createPPC32ISelSimple - This pass converts an LLVM function into a machine
 | |
| /// code representation is a very simple peep-hole fashion.
 | |
| ///
 | |
| FunctionPass *llvm::createPPC32ISelSimple(TargetMachine &TM) {
 | |
|   return new PPC32ISel(TM);
 | |
| }
 |