mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	automatically generated from a target description. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22470 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2487 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2487 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PPC32ISelPattern.cpp - A pattern matching inst selector for PPC32 -===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Nate Begeman and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a pattern matching instruction selector for 32 bit PowerPC.
 | |
| // Magic number generation for integer divide from the PowerPC Compiler Writer's
 | |
| // Guide, section 3.2.3.5
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "PowerPC.h"
 | |
| #include "PowerPCInstrBuilder.h"
 | |
| #include "PowerPCInstrInfo.h"
 | |
| #include "PPC32TargetMachine.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <set>
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  PPC32TargetLowering - PPC32 Implementation of the TargetLowering interface
 | |
| namespace {
 | |
|   class PPC32TargetLowering : public TargetLowering {
 | |
|     int VarArgsFrameIndex;            // FrameIndex for start of varargs area.
 | |
|     int ReturnAddrIndex;              // FrameIndex for return slot.
 | |
|   public:
 | |
|     PPC32TargetLowering(TargetMachine &TM) : TargetLowering(TM) {
 | |
|       // Fold away setcc operations if possible.
 | |
|       setSetCCIsExpensive();
 | |
| 
 | |
|       // Set up the register classes.
 | |
|       addRegisterClass(MVT::i32, PPC32::GPRCRegisterClass);
 | |
|       addRegisterClass(MVT::f32, PPC32::FPRCRegisterClass);
 | |
|       addRegisterClass(MVT::f64, PPC32::FPRCRegisterClass);
 | |
| 
 | |
|       // PowerPC has no intrinsics for these particular operations
 | |
|       setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
 | |
|       setOperationAction(ISD::MEMSET, MVT::Other, Expand);
 | |
|       setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
 | |
| 
 | |
|       // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
 | |
|       setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
 | |
|       setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
 | |
| 
 | |
|       // PowerPC has no SREM/UREM instructions
 | |
|       setOperationAction(ISD::SREM, MVT::i32, Expand);
 | |
|       setOperationAction(ISD::UREM, MVT::i32, Expand);
 | |
| 
 | |
|       // We don't support sin/cos/sqrt/fmod
 | |
|       setOperationAction(ISD::FSIN , MVT::f64, Expand);
 | |
|       setOperationAction(ISD::FCOS , MVT::f64, Expand);
 | |
|       setOperationAction(ISD::FSQRT, MVT::f64, Expand);
 | |
|       setOperationAction(ISD::SREM , MVT::f64, Expand);
 | |
|       setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | |
|       setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | |
|       setOperationAction(ISD::FSQRT, MVT::f32, Expand);
 | |
|       setOperationAction(ISD::SREM , MVT::f32, Expand);
 | |
| 
 | |
|       //PowerPC does not have CTPOP or CTTZ
 | |
|       setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
 | |
|       setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
 | |
| 
 | |
|       setSetCCResultContents(ZeroOrOneSetCCResult);
 | |
|       addLegalFPImmediate(+0.0); // Necessary for FSEL
 | |
|       addLegalFPImmediate(-0.0); //
 | |
| 
 | |
|       computeRegisterProperties();
 | |
|     }
 | |
| 
 | |
|     /// LowerArguments - This hook must be implemented to indicate how we should
 | |
|     /// lower the arguments for the specified function, into the specified DAG.
 | |
|     virtual std::vector<SDOperand>
 | |
|     LowerArguments(Function &F, SelectionDAG &DAG);
 | |
| 
 | |
|     /// LowerCallTo - This hook lowers an abstract call to a function into an
 | |
|     /// actual call.
 | |
|     virtual std::pair<SDOperand, SDOperand>
 | |
|     LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC,
 | |
|                 bool isTailCall, SDOperand Callee, ArgListTy &Args,
 | |
|                 SelectionDAG &DAG);
 | |
| 
 | |
|     virtual SDOperand LowerVAStart(SDOperand Chain, SDOperand VAListP,
 | |
|                                    Value *VAListV, SelectionDAG &DAG);
 | |
|     
 | |
|     virtual std::pair<SDOperand,SDOperand>
 | |
|       LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
 | |
|                  const Type *ArgTy, SelectionDAG &DAG);
 | |
|     
 | |
|     virtual std::pair<SDOperand, SDOperand>
 | |
|     LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
 | |
|                             SelectionDAG &DAG);
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| std::vector<SDOperand>
 | |
| PPC32TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
 | |
|   //
 | |
|   // add beautiful description of PPC stack frame format, or at least some docs
 | |
|   //
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   MachineBasicBlock& BB = MF.front();
 | |
|   std::vector<SDOperand> ArgValues;
 | |
| 
 | |
|   // Due to the rather complicated nature of the PowerPC ABI, rather than a
 | |
|   // fixed size array of physical args, for the sake of simplicity let the STL
 | |
|   // handle tracking them for us.
 | |
|   std::vector<unsigned> argVR, argPR, argOp;
 | |
|   unsigned ArgOffset = 24;
 | |
|   unsigned GPR_remaining = 8;
 | |
|   unsigned FPR_remaining = 13;
 | |
|   unsigned GPR_idx = 0, FPR_idx = 0;
 | |
|   static const unsigned GPR[] = {
 | |
|     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|   };
 | |
|   static const unsigned FPR[] = {
 | |
|     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | |
|     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
 | |
|   };
 | |
| 
 | |
|   // Add DAG nodes to load the arguments...  On entry to a function on PPC,
 | |
|   // the arguments start at offset 24, although they are likely to be passed
 | |
|   // in registers.
 | |
|   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
 | |
|     SDOperand newroot, argt;
 | |
|     unsigned ObjSize;
 | |
|     bool needsLoad = false;
 | |
|     bool ArgLive = !I->use_empty();
 | |
|     MVT::ValueType ObjectVT = getValueType(I->getType());
 | |
| 
 | |
|     switch (ObjectVT) {
 | |
|     default: assert(0 && "Unhandled argument type!");
 | |
|     case MVT::i1:
 | |
|     case MVT::i8:
 | |
|     case MVT::i16:
 | |
|     case MVT::i32:
 | |
|       ObjSize = 4;
 | |
|       if (!ArgLive) break;
 | |
|       if (GPR_remaining > 0) {
 | |
|         MF.addLiveIn(GPR[GPR_idx]);
 | |
|         argt = newroot = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32,
 | |
|                                             DAG.getRoot());
 | |
|         if (ObjectVT != MVT::i32)
 | |
|           argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, newroot);
 | |
|       } else {
 | |
|         needsLoad = true;
 | |
|       }
 | |
|       break;
 | |
|       case MVT::i64: ObjSize = 8;
 | |
|       if (!ArgLive) break;
 | |
|       if (GPR_remaining > 0) {
 | |
|         SDOperand argHi, argLo;
 | |
|         MF.addLiveIn(GPR[GPR_idx]);
 | |
|         argHi = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32, DAG.getRoot());
 | |
|         // If we have two or more remaining argument registers, then both halves
 | |
|         // of the i64 can be sourced from there.  Otherwise, the lower half will
 | |
|         // have to come off the stack.  This can happen when an i64 is preceded
 | |
|         // by 28 bytes of arguments.
 | |
|         if (GPR_remaining > 1) {
 | |
|           MF.addLiveIn(GPR[GPR_idx+1]);
 | |
|           argLo = DAG.getCopyFromReg(GPR[GPR_idx+1], MVT::i32, argHi);
 | |
|         } else {
 | |
|           int FI = MFI->CreateFixedObject(4, ArgOffset+4);
 | |
|           SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
 | |
|           argLo = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN,
 | |
|                               DAG.getSrcValue(NULL));
 | |
|         }
 | |
|         // Build the outgoing arg thingy
 | |
|         argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi);
 | |
|         newroot = argLo;
 | |
|       } else {
 | |
|         needsLoad = true;
 | |
|       }
 | |
|       break;
 | |
|       case MVT::f32:
 | |
|       case MVT::f64:
 | |
|       ObjSize = (ObjectVT == MVT::f64) ? 8 : 4;
 | |
|       if (!ArgLive) break;
 | |
|       if (FPR_remaining > 0) {
 | |
|         MF.addLiveIn(FPR[FPR_idx]);
 | |
|         argt = newroot = DAG.getCopyFromReg(FPR[FPR_idx], ObjectVT,
 | |
|                                             DAG.getRoot());
 | |
|         --FPR_remaining;
 | |
|         ++FPR_idx;
 | |
|       } else {
 | |
|         needsLoad = true;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // We need to load the argument to a virtual register if we determined above
 | |
|     // that we ran out of physical registers of the appropriate type
 | |
|     if (needsLoad) {
 | |
|       unsigned SubregOffset = 0;
 | |
|       if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3;
 | |
|       if (ObjectVT == MVT::i16) SubregOffset = 2;
 | |
|       int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
 | |
|       SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
 | |
|       FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN,
 | |
|                         DAG.getConstant(SubregOffset, MVT::i32));
 | |
|       argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
 | |
|                                    DAG.getSrcValue(NULL));
 | |
|     }
 | |
| 
 | |
|     // Every 4 bytes of argument space consumes one of the GPRs available for
 | |
|     // argument passing.
 | |
|     if (GPR_remaining > 0) {
 | |
|       unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
 | |
|       GPR_remaining -= delta;
 | |
|       GPR_idx += delta;
 | |
|     }
 | |
|     ArgOffset += ObjSize;
 | |
|     if (newroot.Val)
 | |
|       DAG.setRoot(newroot.getValue(1));
 | |
| 
 | |
|     ArgValues.push_back(argt);
 | |
|   }
 | |
| 
 | |
|   // If the function takes variable number of arguments, make a frame index for
 | |
|   // the start of the first vararg value... for expansion of llvm.va_start.
 | |
|   if (F.isVarArg()) {
 | |
|     VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
 | |
|     SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
 | |
|     // If this function is vararg, store any remaining integer argument regs
 | |
|     // to their spots on the stack so that they may be loaded by deferencing the
 | |
|     // result of va_next.
 | |
|     std::vector<SDOperand> MemOps;
 | |
|     for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
 | |
|       MF.addLiveIn(GPR[GPR_idx]);
 | |
|       SDOperand Val = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32, DAG.getRoot());
 | |
|       SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
 | |
|                                     Val, FIN, DAG.getSrcValue(NULL));
 | |
|       MemOps.push_back(Store);
 | |
|       // Increment the address by four for the next argument to store
 | |
|       SDOperand PtrOff = DAG.getConstant(4, getPointerTy());
 | |
|       FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
 | |
|     }
 | |
|     DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps));
 | |
|   }
 | |
| 
 | |
|   // Finally, inform the code generator which regs we return values in.
 | |
|   switch (getValueType(F.getReturnType())) {
 | |
|   default: assert(0 && "Unknown type!");
 | |
|   case MVT::isVoid: break;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|   case MVT::i32:
 | |
|     MF.addLiveOut(PPC::R3);
 | |
|     break;
 | |
|   case MVT::i64:
 | |
|     MF.addLiveOut(PPC::R3);
 | |
|     MF.addLiveOut(PPC::R4);
 | |
|     break;
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     MF.addLiveOut(PPC::F1);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return ArgValues;
 | |
| }
 | |
| 
 | |
| std::pair<SDOperand, SDOperand>
 | |
| PPC32TargetLowering::LowerCallTo(SDOperand Chain,
 | |
|                                  const Type *RetTy, bool isVarArg,
 | |
|                                  unsigned CallingConv, bool isTailCall, 
 | |
|                                  SDOperand Callee, ArgListTy &Args,
 | |
|                                  SelectionDAG &DAG) {
 | |
|   // args_to_use will accumulate outgoing args for the ISD::CALL case in
 | |
|   // SelectExpr to use to put the arguments in the appropriate registers.
 | |
|   std::vector<SDOperand> args_to_use;
 | |
| 
 | |
|   // Count how many bytes are to be pushed on the stack, including the linkage
 | |
|   // area, and parameter passing area.
 | |
|   unsigned NumBytes = 24;
 | |
| 
 | |
|   if (Args.empty()) {
 | |
|     Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
 | |
|                         DAG.getConstant(NumBytes, getPointerTy()));
 | |
|   } else {
 | |
|     for (unsigned i = 0, e = Args.size(); i != e; ++i)
 | |
|       switch (getValueType(Args[i].second)) {
 | |
|       default: assert(0 && "Unknown value type!");
 | |
|       case MVT::i1:
 | |
|       case MVT::i8:
 | |
|       case MVT::i16:
 | |
|       case MVT::i32:
 | |
|       case MVT::f32:
 | |
|         NumBytes += 4;
 | |
|         break;
 | |
|       case MVT::i64:
 | |
|       case MVT::f64:
 | |
|         NumBytes += 8;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     // Just to be safe, we'll always reserve the full 24 bytes of linkage area
 | |
|     // plus 32 bytes of argument space in case any called code gets funky on us.
 | |
|     if (NumBytes < 56) NumBytes = 56;
 | |
| 
 | |
|     // Adjust the stack pointer for the new arguments...
 | |
|     // These operations are automatically eliminated by the prolog/epilog pass
 | |
|     Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
 | |
|                         DAG.getConstant(NumBytes, getPointerTy()));
 | |
| 
 | |
|     // Set up a copy of the stack pointer for use loading and storing any
 | |
|     // arguments that may not fit in the registers available for argument
 | |
|     // passing.
 | |
|     SDOperand StackPtr = DAG.getCopyFromReg(PPC::R1, MVT::i32,
 | |
|                                             DAG.getEntryNode());
 | |
| 
 | |
|     // Figure out which arguments are going to go in registers, and which in
 | |
|     // memory.  Also, if this is a vararg function, floating point operations
 | |
|     // must be stored to our stack, and loaded into integer regs as well, if
 | |
|     // any integer regs are available for argument passing.
 | |
|     unsigned ArgOffset = 24;
 | |
|     unsigned GPR_remaining = 8;
 | |
|     unsigned FPR_remaining = 13;
 | |
| 
 | |
|     std::vector<SDOperand> MemOps;
 | |
|     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|       // PtrOff will be used to store the current argument to the stack if a
 | |
|       // register cannot be found for it.
 | |
|       SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
 | |
|       PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
 | |
|       MVT::ValueType ArgVT = getValueType(Args[i].second);
 | |
| 
 | |
|       switch (ArgVT) {
 | |
|       default: assert(0 && "Unexpected ValueType for argument!");
 | |
|       case MVT::i1:
 | |
|       case MVT::i8:
 | |
|       case MVT::i16:
 | |
|         // Promote the integer to 32 bits.  If the input type is signed use a
 | |
|         // sign extend, otherwise use a zero extend.
 | |
|         if (Args[i].second->isSigned())
 | |
|           Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
 | |
|         else
 | |
|           Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
 | |
|         // FALL THROUGH
 | |
|       case MVT::i32:
 | |
|         if (GPR_remaining > 0) {
 | |
|           args_to_use.push_back(Args[i].first);
 | |
|           --GPR_remaining;
 | |
|         } else {
 | |
|           MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | |
|                                        Args[i].first, PtrOff,
 | |
|                                        DAG.getSrcValue(NULL)));
 | |
|         }
 | |
|         ArgOffset += 4;
 | |
|         break;
 | |
|       case MVT::i64:
 | |
|         // If we have one free GPR left, we can place the upper half of the i64
 | |
|         // in it, and store the other half to the stack.  If we have two or more
 | |
|         // free GPRs, then we can pass both halves of the i64 in registers.
 | |
|         if (GPR_remaining > 0) {
 | |
|           SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
 | |
|             Args[i].first, DAG.getConstant(1, MVT::i32));
 | |
|           SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
 | |
|             Args[i].first, DAG.getConstant(0, MVT::i32));
 | |
|           args_to_use.push_back(Hi);
 | |
|           --GPR_remaining;
 | |
|           if (GPR_remaining > 0) {
 | |
|             args_to_use.push_back(Lo);
 | |
|             --GPR_remaining;
 | |
|           } else {
 | |
|             SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
 | |
|             PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
 | |
|             MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | |
|                                          Lo, PtrOff, DAG.getSrcValue(NULL)));
 | |
|           }
 | |
|         } else {
 | |
|           MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | |
|                                        Args[i].first, PtrOff,
 | |
|                                        DAG.getSrcValue(NULL)));
 | |
|         }
 | |
|         ArgOffset += 8;
 | |
|         break;
 | |
|       case MVT::f32:
 | |
|       case MVT::f64:
 | |
|         if (FPR_remaining > 0) {
 | |
|           args_to_use.push_back(Args[i].first);
 | |
|           --FPR_remaining;
 | |
|           if (isVarArg) {
 | |
|             SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | |
|                                           Args[i].first, PtrOff,
 | |
|                                           DAG.getSrcValue(NULL));
 | |
|             MemOps.push_back(Store);
 | |
|             // Float varargs are always shadowed in available integer registers
 | |
|             if (GPR_remaining > 0) {
 | |
|               SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
 | |
|                                            DAG.getSrcValue(NULL));
 | |
|               MemOps.push_back(Load);
 | |
|               args_to_use.push_back(Load);
 | |
|               --GPR_remaining;
 | |
|             }
 | |
|             if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
 | |
|               SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
 | |
|               PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
 | |
|               SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
 | |
|                                            DAG.getSrcValue(NULL));
 | |
|               MemOps.push_back(Load);
 | |
|               args_to_use.push_back(Load);
 | |
|               --GPR_remaining;
 | |
|             }
 | |
|           } else {
 | |
|             // If we have any FPRs remaining, we may also have GPRs remaining.
 | |
|             // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
 | |
|             // GPRs.
 | |
|             if (GPR_remaining > 0) {
 | |
|               args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
 | |
|               --GPR_remaining;
 | |
|             }
 | |
|             if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
 | |
|               args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
 | |
|               --GPR_remaining;
 | |
|             }
 | |
|           }
 | |
|         } else {
 | |
|           MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | |
|                                        Args[i].first, PtrOff,
 | |
|                                        DAG.getSrcValue(NULL)));
 | |
|         }
 | |
|         ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (!MemOps.empty())
 | |
|       Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
 | |
|   }
 | |
| 
 | |
|   std::vector<MVT::ValueType> RetVals;
 | |
|   MVT::ValueType RetTyVT = getValueType(RetTy);
 | |
|   if (RetTyVT != MVT::isVoid)
 | |
|     RetVals.push_back(RetTyVT);
 | |
|   RetVals.push_back(MVT::Other);
 | |
| 
 | |
|   SDOperand TheCall = SDOperand(DAG.getCall(RetVals,
 | |
|                                             Chain, Callee, args_to_use), 0);
 | |
|   Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
 | |
|   Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
 | |
|                       DAG.getConstant(NumBytes, getPointerTy()));
 | |
|   return std::make_pair(TheCall, Chain);
 | |
| }
 | |
| 
 | |
| SDOperand PPC32TargetLowering::LowerVAStart(SDOperand Chain, SDOperand VAListP,
 | |
|                                             Value *VAListV, SelectionDAG &DAG) {
 | |
|   // vastart just stores the address of the VarArgsFrameIndex slot into the
 | |
|   // memory location argument.
 | |
|   SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
 | |
|   return DAG.getNode(ISD::STORE, MVT::Other, Chain, FR, VAListP,
 | |
|                      DAG.getSrcValue(VAListV));
 | |
| }
 | |
| 
 | |
| std::pair<SDOperand,SDOperand>
 | |
| PPC32TargetLowering::LowerVAArg(SDOperand Chain,
 | |
|                                 SDOperand VAListP, Value *VAListV,
 | |
|                                 const Type *ArgTy, SelectionDAG &DAG) {
 | |
|   MVT::ValueType ArgVT = getValueType(ArgTy);
 | |
| 
 | |
|   SDOperand VAList =
 | |
|     DAG.getLoad(MVT::i32, Chain, VAListP, DAG.getSrcValue(VAListV));
 | |
|   SDOperand Result = DAG.getLoad(ArgVT, Chain, VAList, DAG.getSrcValue(NULL));
 | |
|   unsigned Amt;
 | |
|   if (ArgVT == MVT::i32 || ArgVT == MVT::f32)
 | |
|     Amt = 4;
 | |
|   else {
 | |
|     assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) &&
 | |
|            "Other types should have been promoted for varargs!");
 | |
|     Amt = 8;
 | |
|   }
 | |
|   VAList = DAG.getNode(ISD::ADD, VAList.getValueType(), VAList,
 | |
|                       DAG.getConstant(Amt, VAList.getValueType()));
 | |
|   Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | |
|                       VAList, VAListP, DAG.getSrcValue(VAListV));
 | |
|   return std::make_pair(Result, Chain);
 | |
| }
 | |
| 
 | |
| 
 | |
| std::pair<SDOperand, SDOperand> PPC32TargetLowering::
 | |
| LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
 | |
|                         SelectionDAG &DAG) {
 | |
|   assert(0 && "LowerFrameReturnAddress unimplemented");
 | |
|   abort();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| Statistic<>Recorded("ppc-codegen", "Number of recording ops emitted");
 | |
| Statistic<>FusedFP("ppc-codegen", "Number of fused fp operations");
 | |
| Statistic<>MultiBranch("ppc-codegen", "Number of setcc logical ops collapsed");
 | |
| //===--------------------------------------------------------------------===//
 | |
| /// ISel - PPC32 specific code to select PPC32 machine instructions for
 | |
| /// SelectionDAG operations.
 | |
| //===--------------------------------------------------------------------===//
 | |
| class ISel : public SelectionDAGISel {
 | |
|   PPC32TargetLowering PPC32Lowering;
 | |
|   SelectionDAG *ISelDAG;  // Hack to support us having a dag->dag transform
 | |
|                           // for sdiv and udiv until it is put into the future
 | |
|                           // dag combiner.
 | |
| 
 | |
|   /// ExprMap - As shared expressions are codegen'd, we keep track of which
 | |
|   /// vreg the value is produced in, so we only emit one copy of each compiled
 | |
|   /// tree.
 | |
|   std::map<SDOperand, unsigned> ExprMap;
 | |
| 
 | |
|   unsigned GlobalBaseReg;
 | |
|   bool GlobalBaseInitialized;
 | |
|   bool RecordSuccess;
 | |
| public:
 | |
|   ISel(TargetMachine &TM) : SelectionDAGISel(PPC32Lowering), PPC32Lowering(TM),
 | |
|                             ISelDAG(0) {}
 | |
| 
 | |
|   /// runOnFunction - Override this function in order to reset our per-function
 | |
|   /// variables.
 | |
|   virtual bool runOnFunction(Function &Fn) {
 | |
|     // Make sure we re-emit a set of the global base reg if necessary
 | |
|     GlobalBaseInitialized = false;
 | |
|     return SelectionDAGISel::runOnFunction(Fn);
 | |
|   }
 | |
| 
 | |
|   /// InstructionSelectBasicBlock - This callback is invoked by
 | |
|   /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | |
|   virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
 | |
|     DEBUG(BB->dump());
 | |
|     // Codegen the basic block.
 | |
|     ISelDAG = &DAG;
 | |
|     Select(DAG.getRoot());
 | |
| 
 | |
|     // Clear state used for selection.
 | |
|     ExprMap.clear();
 | |
|     ISelDAG = 0;
 | |
|   }
 | |
| 
 | |
|   // dag -> dag expanders for integer divide by constant
 | |
|   SDOperand BuildSDIVSequence(SDOperand N);
 | |
|   SDOperand BuildUDIVSequence(SDOperand N);
 | |
| 
 | |
|   unsigned getGlobalBaseReg();
 | |
|   unsigned getConstDouble(double floatVal, unsigned Result);
 | |
|   void MoveCRtoGPR(unsigned CCReg, bool Inv, unsigned Idx, unsigned Result);
 | |
|   bool SelectBitfieldInsert(SDOperand OR, unsigned Result);
 | |
|   unsigned FoldIfWideZeroExtend(SDOperand N);
 | |
|   unsigned SelectCC(SDOperand CC, unsigned &Opc, bool &Inv, unsigned &Idx);
 | |
|   unsigned SelectCCExpr(SDOperand N, unsigned& Opc, bool &Inv, unsigned &Idx);
 | |
|   unsigned SelectExpr(SDOperand N, bool Recording=false);
 | |
|   void Select(SDOperand N);
 | |
| 
 | |
|   bool SelectAddr(SDOperand N, unsigned& Reg, int& offset);
 | |
|   void SelectBranchCC(SDOperand N);
 | |
| };
 | |
| 
 | |
| /// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It
 | |
| /// returns zero when the input is not exactly a power of two.
 | |
| static unsigned ExactLog2(unsigned Val) {
 | |
|   if (Val == 0 || (Val & (Val-1))) return 0;
 | |
|   unsigned Count = 0;
 | |
|   while (Val != 1) {
 | |
|     Val >>= 1;
 | |
|     ++Count;
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| // IsRunOfOnes - returns true if Val consists of one contiguous run of 1's with
 | |
| // any number of 0's on either side.  the 1's are allowed to wrap from LSB to
 | |
| // MSB.  so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
 | |
| // not, since all 1's are not contiguous.
 | |
| static bool IsRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
 | |
|   bool isRun = true;
 | |
|   MB = 0;
 | |
|   ME = 0;
 | |
| 
 | |
|   // look for first set bit
 | |
|   int i = 0;
 | |
|   for (; i < 32; i++) {
 | |
|     if ((Val & (1 << (31 - i))) != 0) {
 | |
|       MB = i;
 | |
|       ME = i;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // look for last set bit
 | |
|   for (; i < 32; i++) {
 | |
|     if ((Val & (1 << (31 - i))) == 0)
 | |
|       break;
 | |
|     ME = i;
 | |
|   }
 | |
| 
 | |
|   // look for next set bit
 | |
|   for (; i < 32; i++) {
 | |
|     if ((Val & (1 << (31 - i))) != 0)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // if we exhausted all the bits, we found a match at this point for 0*1*0*
 | |
|   if (i == 32)
 | |
|     return true;
 | |
| 
 | |
|   // since we just encountered more 1's, if it doesn't wrap around to the
 | |
|   // most significant bit of the word, then we did not find a match to 1*0*1* so
 | |
|   // exit.
 | |
|   if (MB != 0)
 | |
|     return false;
 | |
| 
 | |
|   // look for last set bit
 | |
|   for (MB = i; i < 32; i++) {
 | |
|     if ((Val & (1 << (31 - i))) == 0)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // if we exhausted all the bits, then we found a match for 1*0*1*, otherwise,
 | |
|   // the value is not a run of ones.
 | |
|   if (i == 32)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getImmediateForOpcode - This method returns a value indicating whether
 | |
| /// the ConstantSDNode N can be used as an immediate to Opcode.  The return
 | |
| /// values are either 0, 1 or 2.  0 indicates that either N is not a
 | |
| /// ConstantSDNode, or is not suitable for use by that opcode.
 | |
| /// Return value codes for turning into an enum someday:
 | |
| /// 1: constant may be used in normal immediate form.
 | |
| /// 2: constant may be used in shifted immediate form.
 | |
| /// 3: log base 2 of the constant may be used.
 | |
| /// 4: constant is suitable for integer division conversion
 | |
| /// 5: constant is a bitfield mask
 | |
| ///
 | |
| static unsigned getImmediateForOpcode(SDOperand N, unsigned Opcode,
 | |
|                                       unsigned& Imm, bool U = false) {
 | |
|   if (N.getOpcode() != ISD::Constant) return 0;
 | |
| 
 | |
|   int v = (int)cast<ConstantSDNode>(N)->getSignExtended();
 | |
| 
 | |
|   switch(Opcode) {
 | |
|   default: return 0;
 | |
|   case ISD::ADD:
 | |
|     if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; }
 | |
|     if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; }
 | |
|     break;
 | |
|   case ISD::AND: {
 | |
|     unsigned MB, ME;
 | |
|     if (IsRunOfOnes(v, MB, ME)) { Imm = MB << 16 | ME & 0xFFFF; return 5; }
 | |
|     if (v >= 0 && v <= 65535) { Imm = v & 0xFFFF; return 1; }
 | |
|     if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::XOR:
 | |
|   case ISD::OR:
 | |
|     if (v >= 0 && v <= 65535) { Imm = v & 0xFFFF; return 1; }
 | |
|     if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; }
 | |
|     break;
 | |
|   case ISD::MUL:
 | |
|     if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; }
 | |
|     break;
 | |
|   case ISD::SUB:
 | |
|     // handle subtract-from separately from subtract, since subi is really addi
 | |
|     if (U && v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; }
 | |
|     if (!U && v <= 32768 && v >= -32767) { Imm = (-v) & 0xFFFF; return 1; }
 | |
|     break;
 | |
|   case ISD::SETCC:
 | |
|     if (U && (v >= 0 && v <= 65535)) { Imm = v & 0xFFFF; return 1; }
 | |
|     if (!U && (v <= 32767 && v >= -32768)) { Imm = v & 0xFFFF; return 1; }
 | |
|     break;
 | |
|   case ISD::SDIV:
 | |
|     if ((Imm = ExactLog2(v))) { return 3; }
 | |
|     if ((Imm = ExactLog2(-v))) { Imm = -Imm; return 3; }
 | |
|     if (v <= -2 || v >= 2) { return 4; }
 | |
|     break;
 | |
|   case ISD::UDIV:
 | |
|     if (v > 1) { return 4; }
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// NodeHasRecordingVariant - If SelectExpr can always produce code for
 | |
| /// NodeOpcode that also sets CR0 as a side effect, return true.  Otherwise,
 | |
| /// return false.
 | |
| static bool NodeHasRecordingVariant(unsigned NodeOpcode) {
 | |
|   switch(NodeOpcode) {
 | |
|   default: return false;
 | |
|   case ISD::AND:
 | |
|   case ISD::OR:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
 | |
| /// to Condition.  If the Condition is unordered or unsigned, the bool argument
 | |
| /// U is set to true, otherwise it is set to false.
 | |
| static unsigned getBCCForSetCC(unsigned Condition, bool& U) {
 | |
|   U = false;
 | |
|   switch (Condition) {
 | |
|   default: assert(0 && "Unknown condition!"); abort();
 | |
|   case ISD::SETEQ:  return PPC::BEQ;
 | |
|   case ISD::SETNE:  return PPC::BNE;
 | |
|   case ISD::SETULT: U = true;
 | |
|   case ISD::SETLT:  return PPC::BLT;
 | |
|   case ISD::SETULE: U = true;
 | |
|   case ISD::SETLE:  return PPC::BLE;
 | |
|   case ISD::SETUGT: U = true;
 | |
|   case ISD::SETGT:  return PPC::BGT;
 | |
|   case ISD::SETUGE: U = true;
 | |
|   case ISD::SETGE:  return PPC::BGE;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getCROpForOp - Return the condition register opcode (or inverted opcode)
 | |
| /// associated with the SelectionDAG opcode.
 | |
| static unsigned getCROpForSetCC(unsigned Opcode, bool Inv1, bool Inv2) {
 | |
|   switch (Opcode) {
 | |
|   default: assert(0 && "Unknown opcode!"); abort();
 | |
|   case ISD::AND:
 | |
|     if (Inv1 && Inv2) return PPC::CRNOR; // De Morgan's Law
 | |
|     if (!Inv1 && !Inv2) return PPC::CRAND;
 | |
|     if (Inv1 ^ Inv2) return PPC::CRANDC;
 | |
|   case ISD::OR:
 | |
|     if (Inv1 && Inv2) return PPC::CRNAND; // De Morgan's Law
 | |
|     if (!Inv1 && !Inv2) return PPC::CROR;
 | |
|     if (Inv1 ^ Inv2) return PPC::CRORC;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getCRIdxForSetCC - Return the index of the condition register field
 | |
| /// associated with the SetCC condition, and whether or not the field is
 | |
| /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
 | |
| static unsigned getCRIdxForSetCC(unsigned Condition, bool& Inv) {
 | |
|   switch (Condition) {
 | |
|   default: assert(0 && "Unknown condition!"); abort();
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETLT:  Inv = false;  return 0;
 | |
|   case ISD::SETUGE:
 | |
|   case ISD::SETGE:  Inv = true;   return 0;
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETGT:  Inv = false;  return 1;
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETLE:  Inv = true;   return 1;
 | |
|   case ISD::SETEQ:  Inv = false;  return 2;
 | |
|   case ISD::SETNE:  Inv = true;   return 2;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// IndexedOpForOp - Return the indexed variant for each of the PowerPC load
 | |
| /// and store immediate instructions.
 | |
| static unsigned IndexedOpForOp(unsigned Opcode) {
 | |
|   switch(Opcode) {
 | |
|   default: assert(0 && "Unknown opcode!"); abort();
 | |
|   case PPC::LBZ: return PPC::LBZX;  case PPC::STB: return PPC::STBX;
 | |
|   case PPC::LHZ: return PPC::LHZX;  case PPC::STH: return PPC::STHX;
 | |
|   case PPC::LHA: return PPC::LHAX;  case PPC::STW: return PPC::STWX;
 | |
|   case PPC::LWZ: return PPC::LWZX;  case PPC::STFS: return PPC::STFSX;
 | |
|   case PPC::LFS: return PPC::LFSX;  case PPC::STFD: return PPC::STFDX;
 | |
|   case PPC::LFD: return PPC::LFDX;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Structure used to return the necessary information to codegen an SDIV as
 | |
| // a multiply.
 | |
| struct ms {
 | |
|   int m; // magic number
 | |
|   int s; // shift amount
 | |
| };
 | |
| 
 | |
| struct mu {
 | |
|   unsigned int m; // magic number
 | |
|   int a;          // add indicator
 | |
|   int s;          // shift amount
 | |
| };
 | |
| 
 | |
| /// magic - calculate the magic numbers required to codegen an integer sdiv as
 | |
| /// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
 | |
| /// or -1.
 | |
| static struct ms magic(int d) {
 | |
|   int p;
 | |
|   unsigned int ad, anc, delta, q1, r1, q2, r2, t;
 | |
|   const unsigned int two31 = 2147483648U; // 2^31
 | |
|   struct ms mag;
 | |
| 
 | |
|   ad = abs(d);
 | |
|   t = two31 + ((unsigned int)d >> 31);
 | |
|   anc = t - 1 - t%ad;   // absolute value of nc
 | |
|   p = 31;               // initialize p
 | |
|   q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
 | |
|   r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
 | |
|   q2 = two31/ad;        // initialize q2 = 2p/abs(d)
 | |
|   r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
 | |
|   do {
 | |
|     p = p + 1;
 | |
|     q1 = 2*q1;        // update q1 = 2p/abs(nc)
 | |
|     r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
 | |
|     if (r1 >= anc) {  // must be unsigned comparison
 | |
|       q1 = q1 + 1;
 | |
|       r1 = r1 - anc;
 | |
|     }
 | |
|     q2 = 2*q2;        // update q2 = 2p/abs(d)
 | |
|     r2 = 2*r2;        // update r2 = rem(2p/abs(d))
 | |
|     if (r2 >= ad) {   // must be unsigned comparison
 | |
|       q2 = q2 + 1;
 | |
|       r2 = r2 - ad;
 | |
|     }
 | |
|     delta = ad - r2;
 | |
|   } while (q1 < delta || (q1 == delta && r1 == 0));
 | |
| 
 | |
|   mag.m = q2 + 1;
 | |
|   if (d < 0) mag.m = -mag.m; // resulting magic number
 | |
|   mag.s = p - 32;            // resulting shift
 | |
|   return mag;
 | |
| }
 | |
| 
 | |
| /// magicu - calculate the magic numbers required to codegen an integer udiv as
 | |
| /// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
 | |
| static struct mu magicu(unsigned d)
 | |
| {
 | |
|   int p;
 | |
|   unsigned int nc, delta, q1, r1, q2, r2;
 | |
|   struct mu magu;
 | |
|   magu.a = 0;               // initialize "add" indicator
 | |
|   nc = - 1 - (-d)%d;
 | |
|   p = 31;                   // initialize p
 | |
|   q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
 | |
|   r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
 | |
|   q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
 | |
|   r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
 | |
|   do {
 | |
|     p = p + 1;
 | |
|     if (r1 >= nc - r1 ) {
 | |
|       q1 = 2*q1 + 1;  // update q1
 | |
|       r1 = 2*r1 - nc; // update r1
 | |
|     }
 | |
|     else {
 | |
|       q1 = 2*q1; // update q1
 | |
|       r1 = 2*r1; // update r1
 | |
|     }
 | |
|     if (r2 + 1 >= d - r2) {
 | |
|       if (q2 >= 0x7FFFFFFF) magu.a = 1;
 | |
|       q2 = 2*q2 + 1;     // update q2
 | |
|       r2 = 2*r2 + 1 - d; // update r2
 | |
|     }
 | |
|     else {
 | |
|       if (q2 >= 0x80000000) magu.a = 1;
 | |
|       q2 = 2*q2;     // update q2
 | |
|       r2 = 2*r2 + 1; // update r2
 | |
|     }
 | |
|     delta = d - 1 - r2;
 | |
|   } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
 | |
|   magu.m = q2 + 1; // resulting magic number
 | |
|   magu.s = p - 32;  // resulting shift
 | |
|   return magu;
 | |
| }
 | |
| }
 | |
| 
 | |
| /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
 | |
| /// return a DAG expression to select that will generate the same value by
 | |
| /// multiplying by a magic number.  See:
 | |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
 | |
| SDOperand ISel::BuildSDIVSequence(SDOperand N) {
 | |
|   int d = (int)cast<ConstantSDNode>(N.getOperand(1))->getSignExtended();
 | |
|   ms magics = magic(d);
 | |
|   // Multiply the numerator (operand 0) by the magic value
 | |
|   SDOperand Q = ISelDAG->getNode(ISD::MULHS, MVT::i32, N.getOperand(0),
 | |
|                                  ISelDAG->getConstant(magics.m, MVT::i32));
 | |
|   // If d > 0 and m < 0, add the numerator
 | |
|   if (d > 0 && magics.m < 0)
 | |
|     Q = ISelDAG->getNode(ISD::ADD, MVT::i32, Q, N.getOperand(0));
 | |
|   // If d < 0 and m > 0, subtract the numerator.
 | |
|   if (d < 0 && magics.m > 0)
 | |
|     Q = ISelDAG->getNode(ISD::SUB, MVT::i32, Q, N.getOperand(0));
 | |
|   // Shift right algebraic if shift value is nonzero
 | |
|   if (magics.s > 0)
 | |
|     Q = ISelDAG->getNode(ISD::SRA, MVT::i32, Q,
 | |
|                          ISelDAG->getConstant(magics.s, MVT::i32));
 | |
|   // Extract the sign bit and add it to the quotient
 | |
|   SDOperand T =
 | |
|     ISelDAG->getNode(ISD::SRL, MVT::i32, Q, ISelDAG->getConstant(31, MVT::i32));
 | |
|   return ISelDAG->getNode(ISD::ADD, MVT::i32, Q, T);
 | |
| }
 | |
| 
 | |
| /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
 | |
| /// return a DAG expression to select that will generate the same value by
 | |
| /// multiplying by a magic number.  See:
 | |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
 | |
| SDOperand ISel::BuildUDIVSequence(SDOperand N) {
 | |
|   unsigned d =
 | |
|     (unsigned)cast<ConstantSDNode>(N.getOperand(1))->getSignExtended();
 | |
|   mu magics = magicu(d);
 | |
|   // Multiply the numerator (operand 0) by the magic value
 | |
|   SDOperand Q = ISelDAG->getNode(ISD::MULHU, MVT::i32, N.getOperand(0),
 | |
|                                  ISelDAG->getConstant(magics.m, MVT::i32));
 | |
|   if (magics.a == 0) {
 | |
|     Q = ISelDAG->getNode(ISD::SRL, MVT::i32, Q,
 | |
|                          ISelDAG->getConstant(magics.s, MVT::i32));
 | |
|   } else {
 | |
|     SDOperand NPQ = ISelDAG->getNode(ISD::SUB, MVT::i32, N.getOperand(0), Q);
 | |
|     NPQ = ISelDAG->getNode(ISD::SRL, MVT::i32, NPQ,
 | |
|                            ISelDAG->getConstant(1, MVT::i32));
 | |
|     NPQ = ISelDAG->getNode(ISD::ADD, MVT::i32, NPQ, Q);
 | |
|     Q = ISelDAG->getNode(ISD::SRL, MVT::i32, NPQ,
 | |
|                            ISelDAG->getConstant(magics.s-1, MVT::i32));
 | |
|   }
 | |
|   return Q;
 | |
| }
 | |
| 
 | |
| /// getGlobalBaseReg - Output the instructions required to put the
 | |
| /// base address to use for accessing globals into a register.
 | |
| ///
 | |
| unsigned ISel::getGlobalBaseReg() {
 | |
|   if (!GlobalBaseInitialized) {
 | |
|     // Insert the set of GlobalBaseReg into the first MBB of the function
 | |
|     MachineBasicBlock &FirstMBB = BB->getParent()->front();
 | |
|     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | |
|     GlobalBaseReg = MakeReg(MVT::i32);
 | |
|     BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
 | |
|     BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg).addReg(PPC::LR);
 | |
|     GlobalBaseInitialized = true;
 | |
|   }
 | |
|   return GlobalBaseReg;
 | |
| }
 | |
| 
 | |
| /// getConstDouble - Loads a floating point value into a register, via the
 | |
| /// Constant Pool.  Optionally takes a register in which to load the value.
 | |
| unsigned ISel::getConstDouble(double doubleVal, unsigned Result=0) {
 | |
|   unsigned Tmp1 = MakeReg(MVT::i32);
 | |
|   if (0 == Result) Result = MakeReg(MVT::f64);
 | |
|   MachineConstantPool *CP = BB->getParent()->getConstantPool();
 | |
|   ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, doubleVal);
 | |
|   unsigned CPI = CP->getConstantPoolIndex(CFP);
 | |
|   BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg())
 | |
|     .addConstantPoolIndex(CPI);
 | |
|   BuildMI(BB, PPC::LFD, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// MoveCRtoGPR - Move CCReg[Idx] to the least significant bit of Result.  If
 | |
| /// Inv is true, then invert the result.
 | |
| void ISel::MoveCRtoGPR(unsigned CCReg, bool Inv, unsigned Idx, unsigned Result){
 | |
|   unsigned IntCR = MakeReg(MVT::i32);
 | |
|   BuildMI(BB, PPC::MCRF, 1, PPC::CR7).addReg(CCReg);
 | |
|   BuildMI(BB, PPC::MFCR, 1, IntCR).addReg(PPC::CR7);
 | |
|   if (Inv) {
 | |
|     unsigned Tmp1 = MakeReg(MVT::i32);
 | |
|     BuildMI(BB, PPC::RLWINM, 4, Tmp1).addReg(IntCR).addImm(32-(3-Idx))
 | |
|       .addImm(31).addImm(31);
 | |
|     BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp1).addImm(1);
 | |
|   } else {
 | |
|     BuildMI(BB, PPC::RLWINM, 4, Result).addReg(IntCR).addImm(32-(3-Idx))
 | |
|       .addImm(31).addImm(31);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// SelectBitfieldInsert - turn an or of two masked values into
 | |
| /// the rotate left word immediate then mask insert (rlwimi) instruction.
 | |
| /// Returns true on success, false if the caller still needs to select OR.
 | |
| ///
 | |
| /// Patterns matched:
 | |
| /// 1. or shl, and   5. or and, and
 | |
| /// 2. or and, shl   6. or shl, shr
 | |
| /// 3. or shr, and   7. or shr, shl
 | |
| /// 4. or and, shr
 | |
| bool ISel::SelectBitfieldInsert(SDOperand OR, unsigned Result) {
 | |
|   bool IsRotate = false;
 | |
|   unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, Amount = 0;
 | |
|   
 | |
|   SDOperand Op0 = OR.getOperand(0);
 | |
|   SDOperand Op1 = OR.getOperand(1);
 | |
| 
 | |
|   unsigned Op0Opc = Op0.getOpcode();
 | |
|   unsigned Op1Opc = Op1.getOpcode();
 | |
| 
 | |
|   // Verify that we have the correct opcodes
 | |
|   if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc)
 | |
|     return false;
 | |
|   if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc)
 | |
|     return false;
 | |
| 
 | |
|   // Generate Mask value for Target
 | |
|   if (ConstantSDNode *CN =
 | |
|       dyn_cast<ConstantSDNode>(Op0.getOperand(1).Val)) {
 | |
|     switch(Op0Opc) {
 | |
|     case ISD::SHL: TgtMask <<= (unsigned)CN->getValue(); break;
 | |
|     case ISD::SRL: TgtMask >>= (unsigned)CN->getValue(); break;
 | |
|     case ISD::AND: TgtMask &= (unsigned)CN->getValue(); break;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Generate Mask value for Insert
 | |
|   if (ConstantSDNode *CN =
 | |
|       dyn_cast<ConstantSDNode>(Op1.getOperand(1).Val)) {
 | |
|     switch(Op1Opc) {
 | |
|     case ISD::SHL:
 | |
|       Amount = CN->getValue();
 | |
|       InsMask <<= Amount;
 | |
|       if (Op0Opc == ISD::SRL) IsRotate = true;
 | |
|       break;
 | |
|     case ISD::SRL:
 | |
|       Amount = CN->getValue();
 | |
|       InsMask >>= Amount;
 | |
|       Amount = 32-Amount;
 | |
|       if (Op0Opc == ISD::SHL) IsRotate = true;
 | |
|       break;
 | |
|     case ISD::AND:
 | |
|       InsMask &= (unsigned)CN->getValue();
 | |
|       break;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Tmp3 = 0;
 | |
| 
 | |
|   // If both of the inputs are ANDs and one of them has a logical shift by
 | |
|   // constant as its input, make that the inserted value so that we can combine
 | |
|   // the shift into the rotate part of the rlwimi instruction
 | |
|   if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
 | |
|     if (Op1.getOperand(0).getOpcode() == ISD::SHL || 
 | |
|         Op1.getOperand(0).getOpcode() == ISD::SRL) {
 | |
|       if (ConstantSDNode *CN = 
 | |
|           dyn_cast<ConstantSDNode>(Op1.getOperand(0).getOperand(1).Val)) {
 | |
|         Amount = Op1.getOperand(0).getOpcode() == ISD::SHL ? 
 | |
|           CN->getValue() : 32 - CN->getValue();
 | |
|         Tmp3 = SelectExpr(Op1.getOperand(0).getOperand(0));
 | |
|       }
 | |
|     } else if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
 | |
|                Op0.getOperand(0).getOpcode() == ISD::SRL) {
 | |
|       if (ConstantSDNode *CN = 
 | |
|           dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(1).Val)) {
 | |
|         std::swap(Op0, Op1);
 | |
|         std::swap(TgtMask, InsMask);
 | |
|         Amount = Op1.getOperand(0).getOpcode() == ISD::SHL ? 
 | |
|           CN->getValue() : 32 - CN->getValue();
 | |
|         Tmp3 = SelectExpr(Op1.getOperand(0).getOperand(0));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Verify that the Target mask and Insert mask together form a full word mask
 | |
|   // and that the Insert mask is a run of set bits (which implies both are runs
 | |
|   // of set bits).  Given that, Select the arguments and generate the rlwimi
 | |
|   // instruction.
 | |
|   unsigned MB, ME;
 | |
|   if (((TgtMask & InsMask) == 0) && IsRunOfOnes(InsMask, MB, ME)) {
 | |
|     unsigned Tmp1, Tmp2;
 | |
|     bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF;
 | |
|     // Check for rotlwi / rotrwi here, a special case of bitfield insert
 | |
|     // where both bitfield halves are sourced from the same value.
 | |
|     if (IsRotate && fullMask &&
 | |
|         OR.getOperand(0).getOperand(0) == OR.getOperand(1).getOperand(0)) {
 | |
|       Tmp1 = SelectExpr(OR.getOperand(0).getOperand(0));
 | |
|       BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Amount)
 | |
|         .addImm(0).addImm(31);
 | |
|       return true;
 | |
|     }
 | |
|     if (Op0Opc == ISD::AND && fullMask)
 | |
|       Tmp1 = SelectExpr(Op0.getOperand(0));
 | |
|     else
 | |
|       Tmp1 = SelectExpr(Op0);
 | |
|     Tmp2 = Tmp3 ? Tmp3 : SelectExpr(Op1.getOperand(0));
 | |
|     BuildMI(BB, PPC::RLWIMI, 5, Result).addReg(Tmp1).addReg(Tmp2)
 | |
|       .addImm(Amount).addImm(MB).addImm(ME);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FoldIfWideZeroExtend - 32 bit PowerPC implicit masks shift amounts to the
 | |
| /// low six bits.  If the shift amount is an ISD::AND node with a mask that is
 | |
| /// wider than the implicit mask, then we can get rid of the AND and let the
 | |
| /// shift do the mask.
 | |
| unsigned ISel::FoldIfWideZeroExtend(SDOperand N) {
 | |
|   unsigned C;
 | |
|   if (N.getOpcode() == ISD::AND &&
 | |
|       5 == getImmediateForOpcode(N.getOperand(1), ISD::AND, C) && // isMask
 | |
|       31 == (C & 0xFFFF) && // ME
 | |
|       26 >= (C >> 16))      // MB
 | |
|     return SelectExpr(N.getOperand(0));
 | |
|   else
 | |
|     return SelectExpr(N);
 | |
| }
 | |
| 
 | |
| unsigned ISel::SelectCC(SDOperand CC, unsigned& Opc, bool &Inv, unsigned& Idx) {
 | |
|   unsigned Result, Tmp1, Tmp2;
 | |
|   bool AlreadySelected = false;
 | |
|   static const unsigned CompareOpcodes[] =
 | |
|     { PPC::FCMPU, PPC::FCMPU, PPC::CMPW, PPC::CMPLW };
 | |
| 
 | |
|   // Allocate a condition register for this expression
 | |
|   Result = RegMap->createVirtualRegister(PPC32::CRRCRegisterClass);
 | |
| 
 | |
|   // If the first operand to the select is a SETCC node, then we can fold it
 | |
|   // into the branch that selects which value to return.
 | |
|   if (SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(CC.Val)) {
 | |
|     bool U;
 | |
|     Opc = getBCCForSetCC(SetCC->getCondition(), U);
 | |
|     Idx = getCRIdxForSetCC(SetCC->getCondition(), Inv);
 | |
| 
 | |
|     // Pass the optional argument U to getImmediateForOpcode for SETCC,
 | |
|     // so that it knows whether the SETCC immediate range is signed or not.
 | |
|     if (1 == getImmediateForOpcode(SetCC->getOperand(1), ISD::SETCC,
 | |
|                                    Tmp2, U)) {
 | |
|       // For comparisons against zero, we can implicity set CR0 if a recording
 | |
|       // variant (e.g. 'or.' instead of 'or') of the instruction that defines
 | |
|       // operand zero of the SetCC node is available.
 | |
|       if (0 == Tmp2 &&
 | |
|           NodeHasRecordingVariant(SetCC->getOperand(0).getOpcode()) &&
 | |
|           SetCC->getOperand(0).Val->hasOneUse()) {
 | |
|         RecordSuccess = false;
 | |
|         Tmp1 = SelectExpr(SetCC->getOperand(0), true);
 | |
|         if (RecordSuccess) {
 | |
|           ++Recorded;
 | |
|           BuildMI(BB, PPC::MCRF, 1, Result).addReg(PPC::CR0);
 | |
|           return Result;
 | |
|         }
 | |
|         AlreadySelected = true;
 | |
|       }
 | |
|       // If we could not implicitly set CR0, then emit a compare immediate
 | |
|       // instead.
 | |
|       if (!AlreadySelected) Tmp1 = SelectExpr(SetCC->getOperand(0));
 | |
|       if (U)
 | |
|         BuildMI(BB, PPC::CMPLWI, 2, Result).addReg(Tmp1).addImm(Tmp2);
 | |
|       else
 | |
|         BuildMI(BB, PPC::CMPWI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
 | |
|     } else {
 | |
|       bool IsInteger = MVT::isInteger(SetCC->getOperand(0).getValueType());
 | |
|       unsigned CompareOpc = CompareOpcodes[2 * IsInteger + U];
 | |
|       Tmp1 = SelectExpr(SetCC->getOperand(0));
 | |
|       Tmp2 = SelectExpr(SetCC->getOperand(1));
 | |
|       BuildMI(BB, CompareOpc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     }
 | |
|   } else {
 | |
|     // If this isn't a SetCC, then select the value and compare it against zero,
 | |
|     // treating it as if it were a boolean.
 | |
|     Opc = PPC::BNE;
 | |
|     Idx = getCRIdxForSetCC(ISD::SETNE, Inv);
 | |
|     Tmp1 = SelectExpr(CC);
 | |
|     BuildMI(BB, PPC::CMPLWI, 2, Result).addReg(Tmp1).addImm(0);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| unsigned ISel::SelectCCExpr(SDOperand N, unsigned& Opc, bool &Inv,
 | |
|                             unsigned &Idx) {
 | |
|   bool Inv0, Inv1;
 | |
|   unsigned Idx0, Idx1, CROpc, Opc1, Tmp1, Tmp2;
 | |
| 
 | |
|   // Allocate a condition register for this expression
 | |
|   unsigned Result = RegMap->createVirtualRegister(PPC32::CRRCRegisterClass);
 | |
| 
 | |
|   // Check for the operations we support:
 | |
|   switch(N.getOpcode()) {
 | |
|   default:
 | |
|     Opc = PPC::BNE;
 | |
|     Idx = getCRIdxForSetCC(ISD::SETNE, Inv);
 | |
|     Tmp1 = SelectExpr(N);
 | |
|     BuildMI(BB, PPC::CMPLWI, 2, Result).addReg(Tmp1).addImm(0);
 | |
|     break;
 | |
|   case ISD::OR:
 | |
|   case ISD::AND:
 | |
|     ++MultiBranch;
 | |
|     Tmp1 = SelectCCExpr(N.getOperand(0), Opc, Inv0, Idx0);
 | |
|     Tmp2 = SelectCCExpr(N.getOperand(1), Opc1, Inv1, Idx1);
 | |
|     CROpc = getCROpForSetCC(N.getOpcode(), Inv0, Inv1);
 | |
|     if (Inv0 && !Inv1) {
 | |
|       std::swap(Tmp1, Tmp2);
 | |
|       std::swap(Idx0, Idx1);
 | |
|       Opc = Opc1;
 | |
|     }
 | |
|     if (Inv0 && Inv1) Opc = PPC32InstrInfo::invertPPCBranchOpcode(Opc);
 | |
|     BuildMI(BB, CROpc, 5, Result).addImm(Idx0).addReg(Tmp1).addImm(Idx0)
 | |
|       .addReg(Tmp2).addImm(Idx1);
 | |
|     Inv = false;
 | |
|     Idx = Idx0;
 | |
|     break;
 | |
|   case ISD::SETCC:
 | |
|     Tmp1 = SelectCC(N, Opc, Inv, Idx);
 | |
|     Result = Tmp1;
 | |
|     break;
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Check to see if the load is a constant offset from a base register
 | |
| bool ISel::SelectAddr(SDOperand N, unsigned& Reg, int& offset)
 | |
| {
 | |
|   unsigned imm = 0, opcode = N.getOpcode();
 | |
|   if (N.getOpcode() == ISD::ADD) {
 | |
|     Reg = SelectExpr(N.getOperand(0));
 | |
|     if (1 == getImmediateForOpcode(N.getOperand(1), opcode, imm)) {
 | |
|       offset = imm;
 | |
|       return false;
 | |
|     }
 | |
|     offset = SelectExpr(N.getOperand(1));
 | |
|     return true;
 | |
|   }
 | |
|   Reg = SelectExpr(N);
 | |
|   offset = 0;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void ISel::SelectBranchCC(SDOperand N)
 | |
| {
 | |
|   MachineBasicBlock *Dest =
 | |
|     cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
 | |
| 
 | |
|   bool Inv;
 | |
|   unsigned Opc, CCReg, Idx;
 | |
|   Select(N.getOperand(0));  //chain
 | |
|   CCReg = SelectCC(N.getOperand(1), Opc, Inv, Idx);
 | |
| 
 | |
|   // Iterate to the next basic block
 | |
|   ilist<MachineBasicBlock>::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   // If this is a two way branch, then grab the fallthrough basic block argument
 | |
|   // and build a PowerPC branch pseudo-op, suitable for long branch conversion
 | |
|   // if necessary by the branch selection pass.  Otherwise, emit a standard
 | |
|   // conditional branch.
 | |
|   if (N.getOpcode() == ISD::BRCONDTWOWAY) {
 | |
|     MachineBasicBlock *Fallthrough =
 | |
|       cast<BasicBlockSDNode>(N.getOperand(3))->getBasicBlock();
 | |
|     if (Dest != It) {
 | |
|       BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc)
 | |
|         .addMBB(Dest).addMBB(Fallthrough);
 | |
|       if (Fallthrough != It)
 | |
|         BuildMI(BB, PPC::B, 1).addMBB(Fallthrough);
 | |
|     } else {
 | |
|       if (Fallthrough != It) {
 | |
|         Opc = PPC32InstrInfo::invertPPCBranchOpcode(Opc);
 | |
|         BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc)
 | |
|           .addMBB(Fallthrough).addMBB(Dest);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // If the fallthrough path is off the end of the function, which would be
 | |
|     // undefined behavior, set it to be the same as the current block because
 | |
|     // we have nothing better to set it to, and leaving it alone will cause the
 | |
|     // PowerPC Branch Selection pass to crash.
 | |
|     if (It == BB->getParent()->end()) It = Dest;
 | |
|     BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc)
 | |
|       .addMBB(Dest).addMBB(It);
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| unsigned ISel::SelectExpr(SDOperand N, bool Recording) {
 | |
|   unsigned Result;
 | |
|   unsigned Tmp1, Tmp2, Tmp3;
 | |
|   unsigned Opc = 0;
 | |
|   unsigned opcode = N.getOpcode();
 | |
| 
 | |
|   SDNode *Node = N.Val;
 | |
|   MVT::ValueType DestType = N.getValueType();
 | |
| 
 | |
|   if (Node->getOpcode() == ISD::CopyFromReg &&
 | |
|       MRegisterInfo::isVirtualRegister(cast<RegSDNode>(Node)->getReg()))
 | |
|     // Just use the specified register as our input.
 | |
|     return cast<RegSDNode>(Node)->getReg();
 | |
| 
 | |
|   unsigned &Reg = ExprMap[N];
 | |
|   if (Reg) return Reg;
 | |
| 
 | |
|   switch (N.getOpcode()) {
 | |
|   default:
 | |
|     Reg = Result = (N.getValueType() != MVT::Other) ?
 | |
|                             MakeReg(N.getValueType()) : 1;
 | |
|     break;
 | |
|   case ISD::TAILCALL:
 | |
|   case ISD::CALL:
 | |
|     // If this is a call instruction, make sure to prepare ALL of the result
 | |
|     // values as well as the chain.
 | |
|     if (Node->getNumValues() == 1)
 | |
|       Reg = Result = 1;  // Void call, just a chain.
 | |
|     else {
 | |
|       Result = MakeReg(Node->getValueType(0));
 | |
|       ExprMap[N.getValue(0)] = Result;
 | |
|       for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i)
 | |
|         ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
 | |
|       ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1;
 | |
|     }
 | |
|     break;
 | |
|   case ISD::ADD_PARTS:
 | |
|   case ISD::SUB_PARTS:
 | |
|   case ISD::SHL_PARTS:
 | |
|   case ISD::SRL_PARTS:
 | |
|   case ISD::SRA_PARTS:
 | |
|     Result = MakeReg(Node->getValueType(0));
 | |
|     ExprMap[N.getValue(0)] = Result;
 | |
|     for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i)
 | |
|       ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   switch (opcode) {
 | |
|   default:
 | |
|     Node->dump();
 | |
|     assert(0 && "Node not handled!\n");
 | |
|   case ISD::UNDEF:
 | |
|     BuildMI(BB, PPC::IMPLICIT_DEF, 0, Result);
 | |
|     return Result;
 | |
|   case ISD::DYNAMIC_STACKALLOC:
 | |
|     // Generate both result values.  FIXME: Need a better commment here?
 | |
|     if (Result != 1)
 | |
|       ExprMap[N.getValue(1)] = 1;
 | |
|     else
 | |
|       Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
 | |
| 
 | |
|     // FIXME: We are currently ignoring the requested alignment for handling
 | |
|     // greater than the stack alignment.  This will need to be revisited at some
 | |
|     // point.  Align = N.getOperand(2);
 | |
|     if (!isa<ConstantSDNode>(N.getOperand(2)) ||
 | |
|         cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
 | |
|       std::cerr << "Cannot allocate stack object with greater alignment than"
 | |
|                 << " the stack alignment yet!";
 | |
|       abort();
 | |
|     }
 | |
|     Select(N.getOperand(0));
 | |
|     Tmp1 = SelectExpr(N.getOperand(1));
 | |
|     // Subtract size from stack pointer, thereby allocating some space.
 | |
|     BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(Tmp1).addReg(PPC::R1);
 | |
|     // Put a pointer to the space into the result register by copying the SP
 | |
|     BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R1).addReg(PPC::R1);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::ConstantPool:
 | |
|     Tmp1 = cast<ConstantPoolSDNode>(N)->getIndex();
 | |
|     Tmp2 = MakeReg(MVT::i32);
 | |
|     BuildMI(BB, PPC::LOADHiAddr, 2, Tmp2).addReg(getGlobalBaseReg())
 | |
|       .addConstantPoolIndex(Tmp1);
 | |
|     BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp2).addConstantPoolIndex(Tmp1);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::FrameIndex:
 | |
|     Tmp1 = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|     addFrameReference(BuildMI(BB, PPC::ADDI, 2, Result), (int)Tmp1, 0, false);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::GlobalAddress: {
 | |
|     GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
 | |
|     Tmp1 = MakeReg(MVT::i32);
 | |
|     BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg())
 | |
|       .addGlobalAddress(GV);
 | |
|     if (GV->hasWeakLinkage() || GV->isExternal()) {
 | |
|       BuildMI(BB, PPC::LWZ, 2, Result).addGlobalAddress(GV).addReg(Tmp1);
 | |
|     } else {
 | |
|       BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp1).addGlobalAddress(GV);
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::LOAD:
 | |
|   case ISD::EXTLOAD:
 | |
|   case ISD::ZEXTLOAD:
 | |
|   case ISD::SEXTLOAD: {
 | |
|     MVT::ValueType TypeBeingLoaded = (ISD::LOAD == opcode) ?
 | |
|       Node->getValueType(0) : cast<VTSDNode>(Node->getOperand(3))->getVT();
 | |
|     bool sext = (ISD::SEXTLOAD == opcode);
 | |
| 
 | |
|     // Make sure we generate both values.
 | |
|     if (Result != 1)
 | |
|       ExprMap[N.getValue(1)] = 1;   // Generate the token
 | |
|     else
 | |
|       Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
 | |
| 
 | |
|     SDOperand Chain   = N.getOperand(0);
 | |
|     SDOperand Address = N.getOperand(1);
 | |
|     Select(Chain);
 | |
| 
 | |
|     switch (TypeBeingLoaded) {
 | |
|     default: Node->dump(); assert(0 && "Cannot load this type!");
 | |
|     case MVT::i1:  Opc = PPC::LBZ; break;
 | |
|     case MVT::i8:  Opc = PPC::LBZ; break;
 | |
|     case MVT::i16: Opc = sext ? PPC::LHA : PPC::LHZ; break;
 | |
|     case MVT::i32: Opc = PPC::LWZ; break;
 | |
|     case MVT::f32: Opc = PPC::LFS; break;
 | |
|     case MVT::f64: Opc = PPC::LFD; break;
 | |
|     }
 | |
| 
 | |
|     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) {
 | |
|       Tmp1 = MakeReg(MVT::i32);
 | |
|       int CPI = CP->getIndex();
 | |
|       BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg())
 | |
|         .addConstantPoolIndex(CPI);
 | |
|       BuildMI(BB, Opc, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1);
 | |
|     }
 | |
|     else if(Address.getOpcode() == ISD::FrameIndex) {
 | |
|       Tmp1 = cast<FrameIndexSDNode>(Address)->getIndex();
 | |
|       addFrameReference(BuildMI(BB, Opc, 2, Result), (int)Tmp1);
 | |
|     } else {
 | |
|       int offset;
 | |
|       bool idx = SelectAddr(Address, Tmp1, offset);
 | |
|       if (idx) {
 | |
|         Opc = IndexedOpForOp(Opc);
 | |
|         BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(offset);
 | |
|       } else {
 | |
|         BuildMI(BB, Opc, 2, Result).addSImm(offset).addReg(Tmp1);
 | |
|       }
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::TAILCALL:
 | |
|   case ISD::CALL: {
 | |
|     unsigned GPR_idx = 0, FPR_idx = 0;
 | |
|     static const unsigned GPR[] = {
 | |
|       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|     };
 | |
|     static const unsigned FPR[] = {
 | |
|       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | |
|       PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
 | |
|     };
 | |
| 
 | |
|     // Lower the chain for this call.
 | |
|     Select(N.getOperand(0));
 | |
|     ExprMap[N.getValue(Node->getNumValues()-1)] = 1;
 | |
| 
 | |
|     MachineInstr *CallMI;
 | |
|     // Emit the correct call instruction based on the type of symbol called.
 | |
|     if (GlobalAddressSDNode *GASD =
 | |
|         dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) {
 | |
|       CallMI = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(GASD->getGlobal(),
 | |
|                                                            true);
 | |
|     } else if (ExternalSymbolSDNode *ESSDN =
 | |
|                dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) {
 | |
|       CallMI = BuildMI(PPC::CALLpcrel, 1).addExternalSymbol(ESSDN->getSymbol(),
 | |
|                                                             true);
 | |
|     } else {
 | |
|       Tmp1 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Tmp1).addReg(Tmp1);
 | |
|       BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12);
 | |
|       CallMI = BuildMI(PPC::CALLindirect, 3).addImm(20).addImm(0)
 | |
|         .addReg(PPC::R12);
 | |
|     }
 | |
| 
 | |
|     // Load the register args to virtual regs
 | |
|     std::vector<unsigned> ArgVR;
 | |
|     for(int i = 2, e = Node->getNumOperands(); i < e; ++i)
 | |
|       ArgVR.push_back(SelectExpr(N.getOperand(i)));
 | |
| 
 | |
|     // Copy the virtual registers into the appropriate argument register
 | |
|     for(int i = 0, e = ArgVR.size(); i < e; ++i) {
 | |
|       switch(N.getOperand(i+2).getValueType()) {
 | |
|       default: Node->dump(); assert(0 && "Unknown value type for call");
 | |
|       case MVT::i1:
 | |
|       case MVT::i8:
 | |
|       case MVT::i16:
 | |
|       case MVT::i32:
 | |
|         assert(GPR_idx < 8 && "Too many int args");
 | |
|         if (N.getOperand(i+2).getOpcode() != ISD::UNDEF) {
 | |
|           BuildMI(BB, PPC::OR,2,GPR[GPR_idx]).addReg(ArgVR[i]).addReg(ArgVR[i]);
 | |
|           CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
 | |
|         }
 | |
|         ++GPR_idx;
 | |
|         break;
 | |
|       case MVT::f64:
 | |
|       case MVT::f32:
 | |
|         assert(FPR_idx < 13 && "Too many fp args");
 | |
|         BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgVR[i]);
 | |
|         CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
 | |
|         ++FPR_idx;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Put the call instruction in the correct place in the MachineBasicBlock
 | |
|     BB->push_back(CallMI);
 | |
| 
 | |
|     switch (Node->getValueType(0)) {
 | |
|     default: assert(0 && "Unknown value type for call result!");
 | |
|     case MVT::Other: return 1;
 | |
|     case MVT::i1:
 | |
|     case MVT::i8:
 | |
|     case MVT::i16:
 | |
|     case MVT::i32:
 | |
|       if (Node->getValueType(1) == MVT::i32) {
 | |
|         BuildMI(BB, PPC::OR, 2, Result+1).addReg(PPC::R3).addReg(PPC::R3);
 | |
|         BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R4).addReg(PPC::R4);
 | |
|       } else {
 | |
|         BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R3).addReg(PPC::R3);
 | |
|       }
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       BuildMI(BB, PPC::FMR, 1, Result).addReg(PPC::F1);
 | |
|       break;
 | |
|     }
 | |
|     return Result+N.ResNo;
 | |
|   }
 | |
| 
 | |
|   case ISD::SIGN_EXTEND:
 | |
|   case ISD::SIGN_EXTEND_INREG:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     switch(cast<VTSDNode>(Node->getOperand(1))->getVT()) {
 | |
|     default: Node->dump(); assert(0 && "Unhandled SIGN_EXTEND type"); break;
 | |
|     case MVT::i16:
 | |
|       BuildMI(BB, PPC::EXTSH, 1, Result).addReg(Tmp1);
 | |
|       break;
 | |
|     case MVT::i8:
 | |
|       BuildMI(BB, PPC::EXTSB, 1, Result).addReg(Tmp1);
 | |
|       break;
 | |
|     case MVT::i1:
 | |
|       BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp1).addSImm(0);
 | |
|       break;
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::CopyFromReg:
 | |
|     DestType = N.getValue(0).getValueType();
 | |
|     if (Result == 1)
 | |
|       Result = ExprMap[N.getValue(0)] = MakeReg(DestType);
 | |
|     Tmp1 = dyn_cast<RegSDNode>(Node)->getReg();
 | |
|     if (MVT::isInteger(DestType))
 | |
|       BuildMI(BB, PPC::OR, 2, Result).addReg(Tmp1).addReg(Tmp1);
 | |
|     else
 | |
|       BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::SHL:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|       Tmp2 = CN->getValue() & 0x1F;
 | |
|       BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Tmp2).addImm(0)
 | |
|         .addImm(31-Tmp2);
 | |
|     } else {
 | |
|       Tmp2 = FoldIfWideZeroExtend(N.getOperand(1));
 | |
|       BuildMI(BB, PPC::SLW, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::SRL:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|       Tmp2 = CN->getValue() & 0x1F;
 | |
|       BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(32-Tmp2)
 | |
|         .addImm(Tmp2).addImm(31);
 | |
|     } else {
 | |
|       Tmp2 = FoldIfWideZeroExtend(N.getOperand(1));
 | |
|       BuildMI(BB, PPC::SRW, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::SRA:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|       Tmp2 = CN->getValue() & 0x1F;
 | |
|       BuildMI(BB, PPC::SRAWI, 2, Result).addReg(Tmp1).addImm(Tmp2);
 | |
|     } else {
 | |
|       Tmp2 = FoldIfWideZeroExtend(N.getOperand(1));
 | |
|       BuildMI(BB, PPC::SRAW, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::CTLZ:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     BuildMI(BB, PPC::CNTLZW, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::ADD:
 | |
|     if (!MVT::isInteger(DestType)) {
 | |
|       if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::MUL &&
 | |
|           N.getOperand(0).Val->hasOneUse()) {
 | |
|         ++FusedFP; // Statistic
 | |
|         Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|         Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
 | |
|         Tmp3 = SelectExpr(N.getOperand(1));
 | |
|         Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS;
 | |
|         BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
 | |
|         return Result;
 | |
|       }
 | |
|       if (!NoExcessFPPrecision && N.getOperand(1).getOpcode() == ISD::MUL &&
 | |
|           N.getOperand(1).Val->hasOneUse()) {
 | |
|         ++FusedFP; // Statistic
 | |
|         Tmp1 = SelectExpr(N.getOperand(1).getOperand(0));
 | |
|         Tmp2 = SelectExpr(N.getOperand(1).getOperand(1));
 | |
|         Tmp3 = SelectExpr(N.getOperand(0));
 | |
|         Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS;
 | |
|         BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
 | |
|         return Result;
 | |
|       }
 | |
|       Opc = DestType == MVT::f64 ? PPC::FADD : PPC::FADDS;
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|       return Result;
 | |
|     }
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
 | |
|       default: assert(0 && "unhandled result code");
 | |
|       case 0: // No immediate
 | |
|         Tmp2 = SelectExpr(N.getOperand(1));
 | |
|         BuildMI(BB, PPC::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case 1: // Low immediate
 | |
|         BuildMI(BB, PPC::ADDI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
 | |
|         break;
 | |
|       case 2: // Shifted immediate
 | |
|         BuildMI(BB, PPC::ADDIS, 2, Result).addReg(Tmp1).addSImm(Tmp2);
 | |
|         break;
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::AND:
 | |
|     // FIXME: should add check in getImmediateForOpcode to return a value
 | |
|     // indicating the immediate is a run of set bits so we can emit a bitfield
 | |
|     // clear with RLWINM instead.
 | |
|     switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
 | |
|       default: assert(0 && "unhandled result code");
 | |
|       case 0: // No immediate
 | |
|         // Check for andc: and, (xor a, -1), b
 | |
|         if (N.getOperand(0).getOpcode() == ISD::XOR &&
 | |
|           N.getOperand(0).getOperand(1).getOpcode() == ISD::Constant &&
 | |
|         cast<ConstantSDNode>(N.getOperand(0).getOperand(1))->isAllOnesValue()) {
 | |
|           Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|           Tmp2 = SelectExpr(N.getOperand(1));
 | |
|           BuildMI(BB, PPC::ANDC, 2, Result).addReg(Tmp2).addReg(Tmp1);
 | |
|           return Result;
 | |
|         }
 | |
|         // It wasn't and-with-complement, emit a regular and
 | |
|         Tmp1 = SelectExpr(N.getOperand(0));
 | |
|         Tmp2 = SelectExpr(N.getOperand(1));
 | |
|         Opc = Recording ? PPC::ANDo : PPC::AND;
 | |
|         BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case 1: // Low immediate
 | |
|         Tmp1 = SelectExpr(N.getOperand(0));
 | |
|         BuildMI(BB, PPC::ANDIo, 2, Result).addReg(Tmp1).addImm(Tmp2);
 | |
|         break;
 | |
|       case 2: // Shifted immediate
 | |
|         Tmp1 = SelectExpr(N.getOperand(0));
 | |
|         BuildMI(BB, PPC::ANDISo, 2, Result).addReg(Tmp1).addImm(Tmp2);
 | |
|         break;
 | |
|       case 5: // Bitfield mask
 | |
|         Opc = Recording ? PPC::RLWINMo : PPC::RLWINM;
 | |
|         Tmp3 = Tmp2 >> 16;  // MB
 | |
|         Tmp2 &= 0xFFFF;     // ME
 | |
| 
 | |
|         if (N.getOperand(0).getOpcode() == ISD::SRL)
 | |
|           if (ConstantSDNode *SA =
 | |
|               dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
 | |
| 
 | |
|             // We can fold the RLWINM and the SRL together if the mask is
 | |
|             // clearing the top bits which are rotated around.
 | |
|             unsigned RotAmt = 32-(SA->getValue() & 31);
 | |
|             if (Tmp2 <= RotAmt) {
 | |
|               Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|               BuildMI(BB, Opc, 4, Result).addReg(Tmp1).addImm(RotAmt)
 | |
|                 .addImm(Tmp3).addImm(Tmp2);
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|         Tmp1 = SelectExpr(N.getOperand(0));
 | |
|         BuildMI(BB, Opc, 4, Result).addReg(Tmp1).addImm(0)
 | |
|           .addImm(Tmp3).addImm(Tmp2);
 | |
|         break;
 | |
|     }
 | |
|     RecordSuccess = true;
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::OR:
 | |
|     if (SelectBitfieldInsert(N, Result))
 | |
|       return Result;
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
 | |
|       default: assert(0 && "unhandled result code");
 | |
|       case 0: // No immediate
 | |
|         Tmp2 = SelectExpr(N.getOperand(1));
 | |
|         Opc = Recording ? PPC::ORo : PPC::OR;
 | |
|         RecordSuccess = true;
 | |
|         BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case 1: // Low immediate
 | |
|         BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(Tmp2);
 | |
|         break;
 | |
|       case 2: // Shifted immediate
 | |
|         BuildMI(BB, PPC::ORIS, 2, Result).addReg(Tmp1).addImm(Tmp2);
 | |
|         break;
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::XOR: {
 | |
|     // Check for EQV: xor, (xor a, -1), b
 | |
|     if (N.getOperand(0).getOpcode() == ISD::XOR &&
 | |
|         N.getOperand(0).getOperand(1).getOpcode() == ISD::Constant &&
 | |
|         cast<ConstantSDNode>(N.getOperand(0).getOperand(1))->isAllOnesValue()) {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|       return Result;
 | |
|     }
 | |
|     // Check for NOT, NOR, EQV, and NAND: xor (copy, or, xor, and), -1
 | |
|     if (N.getOperand(1).getOpcode() == ISD::Constant &&
 | |
|         cast<ConstantSDNode>(N.getOperand(1))->isAllOnesValue()) {
 | |
|       switch(N.getOperand(0).getOpcode()) {
 | |
|       case ISD::OR:
 | |
|         Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|         Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
 | |
|         BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::AND:
 | |
|         Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|         Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
 | |
|         BuildMI(BB, PPC::NAND, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case ISD::XOR:
 | |
|         Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|         Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
 | |
|         BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       default:
 | |
|         Tmp1 = SelectExpr(N.getOperand(0));
 | |
|         BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp1);
 | |
|         break;
 | |
|       }
 | |
|       return Result;
 | |
|     }
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
 | |
|       default: assert(0 && "unhandled result code");
 | |
|       case 0: // No immediate
 | |
|         Tmp2 = SelectExpr(N.getOperand(1));
 | |
|         BuildMI(BB, PPC::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|         break;
 | |
|       case 1: // Low immediate
 | |
|         BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp1).addImm(Tmp2);
 | |
|         break;
 | |
|       case 2: // Shifted immediate
 | |
|         BuildMI(BB, PPC::XORIS, 2, Result).addReg(Tmp1).addImm(Tmp2);
 | |
|         break;
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::SUB:
 | |
|     if (!MVT::isInteger(DestType)) {
 | |
|       if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::MUL &&
 | |
|           N.getOperand(0).Val->hasOneUse()) {
 | |
|         ++FusedFP; // Statistic
 | |
|         Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|         Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
 | |
|         Tmp3 = SelectExpr(N.getOperand(1));
 | |
|         Opc = DestType == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS;
 | |
|         BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
 | |
|         return Result;
 | |
|       }
 | |
|       if (!NoExcessFPPrecision && N.getOperand(1).getOpcode() == ISD::MUL &&
 | |
|           N.getOperand(1).Val->hasOneUse()) {
 | |
|         ++FusedFP; // Statistic
 | |
|         Tmp1 = SelectExpr(N.getOperand(1).getOperand(0));
 | |
|         Tmp2 = SelectExpr(N.getOperand(1).getOperand(1));
 | |
|         Tmp3 = SelectExpr(N.getOperand(0));
 | |
|         Opc = DestType == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS;
 | |
|         BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
 | |
|         return Result;
 | |
|       }
 | |
|       Opc = DestType == MVT::f64 ? PPC::FSUB : PPC::FSUBS;
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|       return Result;
 | |
|     }
 | |
|     if (1 == getImmediateForOpcode(N.getOperand(0), opcode, Tmp1, true)) {
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp2).addSImm(Tmp1);
 | |
|     } else if (1 == getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       BuildMI(BB, PPC::ADDI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
 | |
|     } else {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp2).addReg(Tmp1);
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::MUL:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     if (1 == getImmediateForOpcode(N.getOperand(1), opcode, Tmp2))
 | |
|       BuildMI(BB, PPC::MULLI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
 | |
|     else {
 | |
|       Tmp2 = SelectExpr(N.getOperand(1));
 | |
|       switch (DestType) {
 | |
|       default: assert(0 && "Unknown type to ISD::MUL"); break;
 | |
|       case MVT::i32: Opc = PPC::MULLW; break;
 | |
|       case MVT::f32: Opc = PPC::FMULS; break;
 | |
|       case MVT::f64: Opc = PPC::FMUL; break;
 | |
|       }
 | |
|       BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::MULHS:
 | |
|   case ISD::MULHU:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     Opc = (ISD::MULHU == opcode) ? PPC::MULHWU : PPC::MULHW;
 | |
|     BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::SDIV:
 | |
|   case ISD::UDIV:
 | |
|     switch (getImmediateForOpcode(N.getOperand(1), opcode, Tmp3)) {
 | |
|     default: break;
 | |
|     // If this is an sdiv by a power of two, we can use an srawi/addze pair.
 | |
|     case 3:
 | |
|       Tmp1 = MakeReg(MVT::i32);
 | |
|       Tmp2 = SelectExpr(N.getOperand(0));
 | |
|       if ((int)Tmp3 < 0) {
 | |
|         unsigned Tmp4 = MakeReg(MVT::i32);
 | |
|         BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(-Tmp3);
 | |
|         BuildMI(BB, PPC::ADDZE, 1, Tmp4).addReg(Tmp1);
 | |
|         BuildMI(BB, PPC::NEG, 1, Result).addReg(Tmp4);
 | |
|       } else {
 | |
|         BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(Tmp3);
 | |
|         BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp1);
 | |
|       }
 | |
|       return Result;
 | |
|     // If this is a divide by constant, we can emit code using some magic
 | |
|     // constants to implement it as a multiply instead.
 | |
|     case 4:
 | |
|       ExprMap.erase(N);
 | |
|       if (opcode == ISD::SDIV)
 | |
|         return SelectExpr(BuildSDIVSequence(N));
 | |
|       else
 | |
|         return SelectExpr(BuildUDIVSequence(N));
 | |
|     }    
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     Tmp2 = SelectExpr(N.getOperand(1));
 | |
|     switch (DestType) {
 | |
|     default: assert(0 && "Unknown type to ISD::SDIV"); break;
 | |
|     case MVT::i32: Opc = (ISD::UDIV == opcode) ? PPC::DIVWU : PPC::DIVW; break;
 | |
|     case MVT::f32: Opc = PPC::FDIVS; break;
 | |
|     case MVT::f64: Opc = PPC::FDIV; break;
 | |
|     }
 | |
|     BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::ADD_PARTS:
 | |
|   case ISD::SUB_PARTS: {
 | |
|     assert(N.getNumOperands() == 4 && N.getValueType() == MVT::i32 &&
 | |
|            "Not an i64 add/sub!");
 | |
|     // Emit all of the operands.
 | |
|     std::vector<unsigned> InVals;
 | |
|     for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)
 | |
|       InVals.push_back(SelectExpr(N.getOperand(i)));
 | |
|     if (N.getOpcode() == ISD::ADD_PARTS) {
 | |
|       BuildMI(BB, PPC::ADDC, 2, Result).addReg(InVals[0]).addReg(InVals[2]);
 | |
|       BuildMI(BB, PPC::ADDE, 2, Result+1).addReg(InVals[1]).addReg(InVals[3]);
 | |
|     } else {
 | |
|       BuildMI(BB, PPC::SUBFC, 2, Result).addReg(InVals[2]).addReg(InVals[0]);
 | |
|       BuildMI(BB, PPC::SUBFE, 2, Result+1).addReg(InVals[3]).addReg(InVals[1]);
 | |
|     }
 | |
|     return Result+N.ResNo;
 | |
|   }
 | |
| 
 | |
|   case ISD::SHL_PARTS:
 | |
|   case ISD::SRA_PARTS:
 | |
|   case ISD::SRL_PARTS: {
 | |
|     assert(N.getNumOperands() == 3 && N.getValueType() == MVT::i32 &&
 | |
|            "Not an i64 shift!");
 | |
|     unsigned ShiftOpLo = SelectExpr(N.getOperand(0));
 | |
|     unsigned ShiftOpHi = SelectExpr(N.getOperand(1));
 | |
|     unsigned SHReg = FoldIfWideZeroExtend(N.getOperand(2));
 | |
|     Tmp1 = MakeReg(MVT::i32);
 | |
|     Tmp2 = MakeReg(MVT::i32);
 | |
|     Tmp3 = MakeReg(MVT::i32);
 | |
|     unsigned Tmp4 = MakeReg(MVT::i32);
 | |
|     unsigned Tmp5 = MakeReg(MVT::i32);
 | |
|     unsigned Tmp6 = MakeReg(MVT::i32);
 | |
|     BuildMI(BB, PPC::SUBFIC, 2, Tmp1).addReg(SHReg).addSImm(32);
 | |
|     if (ISD::SHL_PARTS == opcode) {
 | |
|       BuildMI(BB, PPC::SLW, 2, Tmp2).addReg(ShiftOpHi).addReg(SHReg);
 | |
|       BuildMI(BB, PPC::SRW, 2, Tmp3).addReg(ShiftOpLo).addReg(Tmp1);
 | |
|       BuildMI(BB, PPC::OR, 2, Tmp4).addReg(Tmp2).addReg(Tmp3);
 | |
|       BuildMI(BB, PPC::ADDI, 2, Tmp5).addReg(SHReg).addSImm(-32);
 | |
|       BuildMI(BB, PPC::SLW, 2, Tmp6).addReg(ShiftOpLo).addReg(Tmp5);
 | |
|       BuildMI(BB, PPC::OR, 2, Result+1).addReg(Tmp4).addReg(Tmp6);
 | |
|       BuildMI(BB, PPC::SLW, 2, Result).addReg(ShiftOpLo).addReg(SHReg);
 | |
|     } else if (ISD::SRL_PARTS == opcode) {
 | |
|       BuildMI(BB, PPC::SRW, 2, Tmp2).addReg(ShiftOpLo).addReg(SHReg);
 | |
|       BuildMI(BB, PPC::SLW, 2, Tmp3).addReg(ShiftOpHi).addReg(Tmp1);
 | |
|       BuildMI(BB, PPC::OR, 2, Tmp4).addReg(Tmp2).addReg(Tmp3);
 | |
|       BuildMI(BB, PPC::ADDI, 2, Tmp5).addReg(SHReg).addSImm(-32);
 | |
|       BuildMI(BB, PPC::SRW, 2, Tmp6).addReg(ShiftOpHi).addReg(Tmp5);
 | |
|       BuildMI(BB, PPC::OR, 2, Result).addReg(Tmp4).addReg(Tmp6);
 | |
|       BuildMI(BB, PPC::SRW, 2, Result+1).addReg(ShiftOpHi).addReg(SHReg);
 | |
|     } else {
 | |
|       MachineBasicBlock *TmpMBB = new MachineBasicBlock(BB->getBasicBlock());
 | |
|       MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
 | |
|       MachineBasicBlock *OldMBB = BB;
 | |
|       MachineFunction *F = BB->getParent();
 | |
|       ilist<MachineBasicBlock>::iterator It = BB; ++It;
 | |
|       F->getBasicBlockList().insert(It, TmpMBB);
 | |
|       F->getBasicBlockList().insert(It, PhiMBB);
 | |
|       BB->addSuccessor(TmpMBB);
 | |
|       BB->addSuccessor(PhiMBB);
 | |
|       BuildMI(BB, PPC::SRW, 2, Tmp2).addReg(ShiftOpLo).addReg(SHReg);
 | |
|       BuildMI(BB, PPC::SLW, 2, Tmp3).addReg(ShiftOpHi).addReg(Tmp1);
 | |
|       BuildMI(BB, PPC::OR, 2, Tmp4).addReg(Tmp2).addReg(Tmp3);
 | |
|       BuildMI(BB, PPC::ADDICo, 2, Tmp5).addReg(SHReg).addSImm(-32);
 | |
|       BuildMI(BB, PPC::SRAW, 2, Tmp6).addReg(ShiftOpHi).addReg(Tmp5);
 | |
|       BuildMI(BB, PPC::SRAW, 2, Result+1).addReg(ShiftOpHi).addReg(SHReg);
 | |
|       BuildMI(BB, PPC::BLE, 2).addReg(PPC::CR0).addMBB(PhiMBB);
 | |
|       // Select correct least significant half if the shift amount > 32
 | |
|       BB = TmpMBB;
 | |
|       unsigned Tmp7 = MakeReg(MVT::i32);
 | |
|       BuildMI(BB, PPC::OR, 2, Tmp7).addReg(Tmp6).addReg(Tmp6);
 | |
|       TmpMBB->addSuccessor(PhiMBB);
 | |
|       BB = PhiMBB;
 | |
|       BuildMI(BB, PPC::PHI, 4, Result).addReg(Tmp4).addMBB(OldMBB)
 | |
|         .addReg(Tmp7).addMBB(TmpMBB);
 | |
|     }
 | |
|     return Result+N.ResNo;
 | |
|   }
 | |
| 
 | |
|   case ISD::FP_TO_UINT:
 | |
|   case ISD::FP_TO_SINT: {
 | |
|     bool U = (ISD::FP_TO_UINT == opcode);
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     if (!U) {
 | |
|       Tmp2 = MakeReg(MVT::f64);
 | |
|       BuildMI(BB, PPC::FCTIWZ, 1, Tmp2).addReg(Tmp1);
 | |
|       int FrameIdx = BB->getParent()->getFrameInfo()->CreateStackObject(8, 8);
 | |
|       addFrameReference(BuildMI(BB, PPC::STFD, 3).addReg(Tmp2), FrameIdx);
 | |
|       addFrameReference(BuildMI(BB, PPC::LWZ, 2, Result), FrameIdx, 4);
 | |
|       return Result;
 | |
|     } else {
 | |
|       unsigned Zero = getConstDouble(0.0);
 | |
|       unsigned MaxInt = getConstDouble((1LL << 32) - 1);
 | |
|       unsigned Border = getConstDouble(1LL << 31);
 | |
|       unsigned UseZero = MakeReg(MVT::f64);
 | |
|       unsigned UseMaxInt = MakeReg(MVT::f64);
 | |
|       unsigned UseChoice = MakeReg(MVT::f64);
 | |
|       unsigned TmpReg = MakeReg(MVT::f64);
 | |
|       unsigned TmpReg2 = MakeReg(MVT::f64);
 | |
|       unsigned ConvReg = MakeReg(MVT::f64);
 | |
|       unsigned IntTmp = MakeReg(MVT::i32);
 | |
|       unsigned XorReg = MakeReg(MVT::i32);
 | |
|       MachineFunction *F = BB->getParent();
 | |
|       int FrameIdx = F->getFrameInfo()->CreateStackObject(8, 8);
 | |
|       // Update machine-CFG edges
 | |
|       MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
 | |
|       MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
 | |
|       MachineBasicBlock *OldMBB = BB;
 | |
|       ilist<MachineBasicBlock>::iterator It = BB; ++It;
 | |
|       F->getBasicBlockList().insert(It, XorMBB);
 | |
|       F->getBasicBlockList().insert(It, PhiMBB);
 | |
|       BB->addSuccessor(XorMBB);
 | |
|       BB->addSuccessor(PhiMBB);
 | |
|       // Convert from floating point to unsigned 32-bit value
 | |
|       // Use 0 if incoming value is < 0.0
 | |
|       BuildMI(BB, PPC::FSEL, 3, UseZero).addReg(Tmp1).addReg(Tmp1).addReg(Zero);
 | |
|       // Use 2**32 - 1 if incoming value is >= 2**32
 | |
|       BuildMI(BB, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(Tmp1);
 | |
|       BuildMI(BB, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt).addReg(UseZero)
 | |
|         .addReg(MaxInt);
 | |
|       // Subtract 2**31
 | |
|       BuildMI(BB, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
 | |
|       // Use difference if >= 2**31
 | |
|       BuildMI(BB, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice).addReg(Border);
 | |
|       BuildMI(BB, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
 | |
|         .addReg(UseChoice);
 | |
|       // Convert to integer
 | |
|       BuildMI(BB, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
 | |
|       addFrameReference(BuildMI(BB, PPC::STFD, 3).addReg(ConvReg), FrameIdx);
 | |
|       addFrameReference(BuildMI(BB, PPC::LWZ, 2, IntTmp), FrameIdx, 4);
 | |
|       BuildMI(BB, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
 | |
|       BuildMI(BB, PPC::B, 1).addMBB(XorMBB);
 | |
| 
 | |
|       // XorMBB:
 | |
|       //   add 2**31 if input was >= 2**31
 | |
|       BB = XorMBB;
 | |
|       BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
 | |
|       XorMBB->addSuccessor(PhiMBB);
 | |
| 
 | |
|       // PhiMBB:
 | |
|       //   DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
 | |
|       BB = PhiMBB;
 | |
|       BuildMI(BB, PPC::PHI, 4, Result).addReg(IntTmp).addMBB(OldMBB)
 | |
|         .addReg(XorReg).addMBB(XorMBB);
 | |
|       return Result;
 | |
|     }
 | |
|     assert(0 && "Should never get here");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case ISD::SETCC:
 | |
|     if (SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Node)) {
 | |
|       if (ConstantSDNode *CN =
 | |
|           dyn_cast<ConstantSDNode>(SetCC->getOperand(1).Val)) {
 | |
|         // We can codegen setcc op, imm very efficiently compared to a brcond.
 | |
|         // Check for those cases here.
 | |
|         // setcc op, 0
 | |
|         if (CN->getValue() == 0) {
 | |
|           Tmp1 = SelectExpr(SetCC->getOperand(0));
 | |
|           switch (SetCC->getCondition()) {
 | |
|           default: SetCC->dump(); assert(0 && "Unhandled SetCC condition"); abort();
 | |
|           case ISD::SETEQ:
 | |
|             Tmp2 = MakeReg(MVT::i32);
 | |
|             BuildMI(BB, PPC::CNTLZW, 1, Tmp2).addReg(Tmp1);
 | |
|             BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp2).addImm(27)
 | |
|               .addImm(5).addImm(31);
 | |
|             break;
 | |
|           case ISD::SETNE:
 | |
|             Tmp2 = MakeReg(MVT::i32);
 | |
|             BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(-1);
 | |
|             BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp2).addReg(Tmp1);
 | |
|             break;
 | |
|           case ISD::SETLT:
 | |
|             BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(1)
 | |
|               .addImm(31).addImm(31);
 | |
|             break;
 | |
|           case ISD::SETGT:
 | |
|             Tmp2 = MakeReg(MVT::i32);
 | |
|             Tmp3 = MakeReg(MVT::i32);
 | |
|             BuildMI(BB, PPC::NEG, 2, Tmp2).addReg(Tmp1);
 | |
|             BuildMI(BB, PPC::ANDC, 2, Tmp3).addReg(Tmp2).addReg(Tmp1);
 | |
|             BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp3).addImm(1)
 | |
|               .addImm(31).addImm(31);
 | |
|             break;
 | |
|           }
 | |
|           return Result;
 | |
|         }
 | |
|         // setcc op, -1
 | |
|         if (CN->isAllOnesValue()) {
 | |
|           Tmp1 = SelectExpr(SetCC->getOperand(0));
 | |
|           switch (SetCC->getCondition()) {
 | |
|           default: assert(0 && "Unhandled SetCC condition"); abort();
 | |
|           case ISD::SETEQ:
 | |
|             Tmp2 = MakeReg(MVT::i32);
 | |
|             Tmp3 = MakeReg(MVT::i32);
 | |
|             BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(1);
 | |
|             BuildMI(BB, PPC::LI, 1, Tmp3).addSImm(0);
 | |
|             BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp3);
 | |
|             break;
 | |
|           case ISD::SETNE:
 | |
|             Tmp2 = MakeReg(MVT::i32);
 | |
|             Tmp3 = MakeReg(MVT::i32);
 | |
|             BuildMI(BB, PPC::NOR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
 | |
|             BuildMI(BB, PPC::ADDIC, 2, Tmp3).addReg(Tmp2).addSImm(-1);
 | |
|             BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp3).addReg(Tmp2);
 | |
|             break;
 | |
|           case ISD::SETLT:
 | |
|             Tmp2 = MakeReg(MVT::i32);
 | |
|             Tmp3 = MakeReg(MVT::i32);
 | |
|             BuildMI(BB, PPC::ADDI, 2, Tmp2).addReg(Tmp1).addSImm(1);
 | |
|             BuildMI(BB, PPC::AND, 2, Tmp3).addReg(Tmp2).addReg(Tmp1);
 | |
|             BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp3).addImm(1)
 | |
|               .addImm(31).addImm(31);
 | |
|             break;
 | |
|           case ISD::SETGT:
 | |
|             Tmp2 = MakeReg(MVT::i32);
 | |
|             BuildMI(BB, PPC::RLWINM, 4, Tmp2).addReg(Tmp1).addImm(1)
 | |
|               .addImm(31).addImm(31);
 | |
|             BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp2).addImm(1);
 | |
|             break;
 | |
|           }
 | |
|           return Result;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       bool Inv;
 | |
|       unsigned CCReg = SelectCC(N, Opc, Inv, Tmp2);
 | |
|       MoveCRtoGPR(CCReg, Inv, Tmp2, Result);
 | |
|       return Result;
 | |
|     }
 | |
|     assert(0 && "Is this legal?");
 | |
|     return 0;
 | |
| 
 | |
|   case ISD::SELECT: {
 | |
|     SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(N.getOperand(0).Val);
 | |
|     if (SetCC && N.getOperand(0).getOpcode() == ISD::SETCC &&
 | |
|         !MVT::isInteger(SetCC->getOperand(0).getValueType()) &&
 | |
|         !MVT::isInteger(N.getOperand(1).getValueType()) &&
 | |
|         !MVT::isInteger(N.getOperand(2).getValueType()) &&
 | |
|         SetCC->getCondition() != ISD::SETEQ &&
 | |
|         SetCC->getCondition() != ISD::SETNE) {
 | |
|       MVT::ValueType VT = SetCC->getOperand(0).getValueType();
 | |
|       unsigned TV = SelectExpr(N.getOperand(1)); // Use if TRUE
 | |
|       unsigned FV = SelectExpr(N.getOperand(2)); // Use if FALSE
 | |
| 
 | |
|       ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(1));
 | |
|       if (CN && (CN->isExactlyValue(-0.0) || CN->isExactlyValue(0.0))) {
 | |
|         switch(SetCC->getCondition()) {
 | |
|         default: assert(0 && "Invalid FSEL condition"); abort();
 | |
|         case ISD::SETULT:
 | |
|         case ISD::SETLT:
 | |
|           std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | |
|         case ISD::SETUGE:
 | |
|         case ISD::SETGE:
 | |
|           Tmp1 = SelectExpr(SetCC->getOperand(0));   // Val to compare against
 | |
|           BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp1).addReg(TV).addReg(FV);
 | |
|           return Result;
 | |
|         case ISD::SETUGT:
 | |
|         case ISD::SETGT:
 | |
|           std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | |
|         case ISD::SETULE:
 | |
|         case ISD::SETLE: {
 | |
|           if (SetCC->getOperand(0).getOpcode() == ISD::FNEG) {
 | |
|             Tmp2 = SelectExpr(SetCC->getOperand(0).getOperand(0));
 | |
|           } else {
 | |
|             Tmp2 = MakeReg(VT);
 | |
|             Tmp1 = SelectExpr(SetCC->getOperand(0));   // Val to compare against
 | |
|             BuildMI(BB, PPC::FNEG, 1, Tmp2).addReg(Tmp1);
 | |
|           }
 | |
|           BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp2).addReg(TV).addReg(FV);
 | |
|           return Result;
 | |
|         }
 | |
|         }
 | |
|       } else {
 | |
|         Opc = (MVT::f64 == VT) ? PPC::FSUB : PPC::FSUBS;
 | |
|         Tmp1 = SelectExpr(SetCC->getOperand(0));   // Val to compare against
 | |
|         Tmp2 = SelectExpr(SetCC->getOperand(1));
 | |
|         Tmp3 =  MakeReg(VT);
 | |
|         switch(SetCC->getCondition()) {
 | |
|         default: assert(0 && "Invalid FSEL condition"); abort();
 | |
|         case ISD::SETULT:
 | |
|         case ISD::SETLT:
 | |
|           BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
 | |
|           BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(FV).addReg(TV);
 | |
|           return Result;
 | |
|         case ISD::SETUGE:
 | |
|         case ISD::SETGE:
 | |
|           BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
 | |
|           BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(TV).addReg(FV);
 | |
|           return Result;
 | |
|         case ISD::SETUGT:
 | |
|         case ISD::SETGT:
 | |
|           BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp2).addReg(Tmp1);
 | |
|           BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(FV).addReg(TV);
 | |
|           return Result;
 | |
|         case ISD::SETULE:
 | |
|         case ISD::SETLE:
 | |
|           BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp2).addReg(Tmp1);
 | |
|           BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(TV).addReg(FV);
 | |
|           return Result;
 | |
|         }
 | |
|       }
 | |
|       assert(0 && "Should never get here");
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     bool Inv;
 | |
|     unsigned TrueValue = SelectExpr(N.getOperand(1)); //Use if TRUE
 | |
|     unsigned FalseValue = SelectExpr(N.getOperand(2)); //Use if FALSE
 | |
|     unsigned CCReg = SelectCC(N.getOperand(0), Opc, Inv, Tmp3);
 | |
| 
 | |
|     // Create an iterator with which to insert the MBB for copying the false
 | |
|     // value and the MBB to hold the PHI instruction for this SetCC.
 | |
|     MachineBasicBlock *thisMBB = BB;
 | |
|     const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|     ilist<MachineBasicBlock>::iterator It = BB;
 | |
|     ++It;
 | |
| 
 | |
|     //  thisMBB:
 | |
|     //  ...
 | |
|     //   TrueVal = ...
 | |
|     //   cmpTY ccX, r1, r2
 | |
|     //   bCC copy1MBB
 | |
|     //   fallthrough --> copy0MBB
 | |
|     MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
 | |
|     BuildMI(BB, Opc, 2).addReg(CCReg).addMBB(sinkMBB);
 | |
|     MachineFunction *F = BB->getParent();
 | |
|     F->getBasicBlockList().insert(It, copy0MBB);
 | |
|     F->getBasicBlockList().insert(It, sinkMBB);
 | |
|     // Update machine-CFG edges
 | |
|     BB->addSuccessor(copy0MBB);
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     //  copy0MBB:
 | |
|     //   %FalseValue = ...
 | |
|     //   # fallthrough to sinkMBB
 | |
|     BB = copy0MBB;
 | |
|     // Update machine-CFG edges
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     //  sinkMBB:
 | |
|     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | |
|     //  ...
 | |
|     BB = sinkMBB;
 | |
|     BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue)
 | |
|       .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::Constant:
 | |
|     switch (N.getValueType()) {
 | |
|     default: assert(0 && "Cannot use constants of this type!");
 | |
|     case MVT::i1:
 | |
|       BuildMI(BB, PPC::LI, 1, Result)
 | |
|         .addSImm(!cast<ConstantSDNode>(N)->isNullValue());
 | |
|       break;
 | |
|     case MVT::i32:
 | |
|       {
 | |
|         int v = (int)cast<ConstantSDNode>(N)->getSignExtended();
 | |
|         if (v < 32768 && v >= -32768) {
 | |
|           BuildMI(BB, PPC::LI, 1, Result).addSImm(v);
 | |
|         } else {
 | |
|           Tmp1 = MakeReg(MVT::i32);
 | |
|           BuildMI(BB, PPC::LIS, 1, Tmp1).addSImm(v >> 16);
 | |
|           BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(v & 0xFFFF);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::ConstantFP: {
 | |
|     ConstantFPSDNode *CN = cast<ConstantFPSDNode>(N);
 | |
|     Result = getConstDouble(CN->getValue(), Result);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::FNEG:
 | |
|     if (!NoExcessFPPrecision &&
 | |
|         ISD::ADD == N.getOperand(0).getOpcode() &&
 | |
|         N.getOperand(0).Val->hasOneUse() &&
 | |
|         ISD::MUL == N.getOperand(0).getOperand(0).getOpcode() &&
 | |
|         N.getOperand(0).getOperand(0).Val->hasOneUse()) {
 | |
|       ++FusedFP; // Statistic
 | |
|       Tmp1 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(1));
 | |
|       Tmp3 = SelectExpr(N.getOperand(0).getOperand(1));
 | |
|       Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS;
 | |
|       BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
 | |
|     } else if (!NoExcessFPPrecision &&
 | |
|         ISD::ADD == N.getOperand(0).getOpcode() &&
 | |
|         N.getOperand(0).Val->hasOneUse() &&
 | |
|         ISD::MUL == N.getOperand(0).getOperand(1).getOpcode() &&
 | |
|         N.getOperand(0).getOperand(1).Val->hasOneUse()) {
 | |
|       ++FusedFP; // Statistic
 | |
|       Tmp1 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(0));
 | |
|       Tmp2 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(1));
 | |
|       Tmp3 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|       Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS;
 | |
|       BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
 | |
|     } else if (ISD::FABS == N.getOperand(0).getOpcode()) {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
 | |
|       BuildMI(BB, PPC::FNABS, 1, Result).addReg(Tmp1);
 | |
|     } else {
 | |
|       Tmp1 = SelectExpr(N.getOperand(0));
 | |
|       BuildMI(BB, PPC::FNEG, 1, Result).addReg(Tmp1);
 | |
|     }
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::FABS:
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     BuildMI(BB, PPC::FABS, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::FP_ROUND:
 | |
|     assert (DestType == MVT::f32 &&
 | |
|             N.getOperand(0).getValueType() == MVT::f64 &&
 | |
|             "only f64 to f32 conversion supported here");
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     BuildMI(BB, PPC::FRSP, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::FP_EXTEND:
 | |
|     assert (DestType == MVT::f64 &&
 | |
|             N.getOperand(0).getValueType() == MVT::f32 &&
 | |
|             "only f32 to f64 conversion supported here");
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));
 | |
|     BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1);
 | |
|     return Result;
 | |
| 
 | |
|   case ISD::UINT_TO_FP:
 | |
|   case ISD::SINT_TO_FP: {
 | |
|     assert (N.getOperand(0).getValueType() == MVT::i32
 | |
|             && "int to float must operate on i32");
 | |
|     bool IsUnsigned = (ISD::UINT_TO_FP == opcode);
 | |
|     Tmp1 = SelectExpr(N.getOperand(0));  // Get the operand register
 | |
|     Tmp2 = MakeReg(MVT::f64); // temp reg to load the integer value into
 | |
|     Tmp3 = MakeReg(MVT::i32); // temp reg to hold the conversion constant
 | |
| 
 | |
|     int FrameIdx = BB->getParent()->getFrameInfo()->CreateStackObject(8, 8);
 | |
|     MachineConstantPool *CP = BB->getParent()->getConstantPool();
 | |
| 
 | |
|     if (IsUnsigned) {
 | |
|       unsigned ConstF = getConstDouble(0x1.000000p52);
 | |
|       // Store the hi & low halves of the fp value, currently in int regs
 | |
|       BuildMI(BB, PPC::LIS, 1, Tmp3).addSImm(0x4330);
 | |
|       addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(Tmp3), FrameIdx);
 | |
|       addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(Tmp1), FrameIdx, 4);
 | |
|       addFrameReference(BuildMI(BB, PPC::LFD, 2, Tmp2), FrameIdx);
 | |
|       // Generate the return value with a subtract
 | |
|       BuildMI(BB, PPC::FSUB, 2, Result).addReg(Tmp2).addReg(ConstF);
 | |
|     } else {
 | |
|       unsigned ConstF = getConstDouble(0x1.000008p52);
 | |
|       unsigned TmpL = MakeReg(MVT::i32);
 | |
|       // Store the hi & low halves of the fp value, currently in int regs
 | |
|       BuildMI(BB, PPC::LIS, 1, Tmp3).addSImm(0x4330);
 | |
|       addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(Tmp3), FrameIdx);
 | |
|       BuildMI(BB, PPC::XORIS, 2, TmpL).addReg(Tmp1).addImm(0x8000);
 | |
|       addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(TmpL), FrameIdx, 4);
 | |
|       addFrameReference(BuildMI(BB, PPC::LFD, 2, Tmp2), FrameIdx);
 | |
|       // Generate the return value with a subtract
 | |
|       BuildMI(BB, PPC::FSUB, 2, Result).addReg(Tmp2).addReg(ConstF);
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void ISel::Select(SDOperand N) {
 | |
|   unsigned Tmp1, Tmp2, Opc;
 | |
|   unsigned opcode = N.getOpcode();
 | |
| 
 | |
|   if (!ExprMap.insert(std::make_pair(N, 1)).second)
 | |
|     return;  // Already selected.
 | |
| 
 | |
|   SDNode *Node = N.Val;
 | |
| 
 | |
|   switch (Node->getOpcode()) {
 | |
|   default:
 | |
|     Node->dump(); std::cerr << "\n";
 | |
|     assert(0 && "Node not handled yet!");
 | |
|   case ISD::EntryToken: return;  // Noop
 | |
|   case ISD::TokenFactor:
 | |
|     for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
 | |
|       Select(Node->getOperand(i));
 | |
|     return;
 | |
|   case ISD::CALLSEQ_START:
 | |
|   case ISD::CALLSEQ_END:
 | |
|     Select(N.getOperand(0));
 | |
|     Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
 | |
|     Opc = N.getOpcode() == ISD::CALLSEQ_START ? PPC::ADJCALLSTACKDOWN :
 | |
|       PPC::ADJCALLSTACKUP;
 | |
|     BuildMI(BB, Opc, 1).addImm(Tmp1);
 | |
|     return;
 | |
|   case ISD::BR: {
 | |
|     MachineBasicBlock *Dest =
 | |
|       cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
 | |
|     Select(N.getOperand(0));
 | |
|     BuildMI(BB, PPC::B, 1).addMBB(Dest);
 | |
|     return;
 | |
|   }
 | |
|   case ISD::BRCOND:
 | |
|   case ISD::BRCONDTWOWAY:
 | |
|     SelectBranchCC(N);
 | |
|     return;
 | |
|   case ISD::CopyToReg:
 | |
|     Select(N.getOperand(0));
 | |
|     Tmp1 = SelectExpr(N.getOperand(1));
 | |
|     Tmp2 = cast<RegSDNode>(N)->getReg();
 | |
| 
 | |
|     if (Tmp1 != Tmp2) {
 | |
|       if (N.getOperand(1).getValueType() == MVT::f64 ||
 | |
|           N.getOperand(1).getValueType() == MVT::f32)
 | |
|         BuildMI(BB, PPC::FMR, 1, Tmp2).addReg(Tmp1);
 | |
|       else
 | |
|         BuildMI(BB, PPC::OR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
 | |
|     }
 | |
|     return;
 | |
|   case ISD::ImplicitDef:
 | |
|     Select(N.getOperand(0));
 | |
|     BuildMI(BB, PPC::IMPLICIT_DEF, 0, cast<RegSDNode>(N)->getReg());
 | |
|     return;
 | |
|   case ISD::RET:
 | |
|     switch (N.getNumOperands()) {
 | |
|     default:
 | |
|       assert(0 && "Unknown return instruction!");
 | |
|     case 3:
 | |
|       assert(N.getOperand(1).getValueType() == MVT::i32 &&
 | |
|              N.getOperand(2).getValueType() == MVT::i32 &&
 | |
|              "Unknown two-register value!");
 | |
|       Select(N.getOperand(0));
 | |
|       Tmp1 = SelectExpr(N.getOperand(1));
 | |
|       Tmp2 = SelectExpr(N.getOperand(2));
 | |
|       BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp2).addReg(Tmp2);
 | |
|       BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(Tmp1).addReg(Tmp1);
 | |
|       break;
 | |
|     case 2:
 | |
|       Select(N.getOperand(0));
 | |
|       Tmp1 = SelectExpr(N.getOperand(1));
 | |
|       switch (N.getOperand(1).getValueType()) {
 | |
|         default:
 | |
|           assert(0 && "Unknown return type!");
 | |
|         case MVT::f64:
 | |
|         case MVT::f32:
 | |
|           BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(Tmp1);
 | |
|           break;
 | |
|         case MVT::i32:
 | |
|           BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1);
 | |
|           break;
 | |
|       }
 | |
|     case 1:
 | |
|       Select(N.getOperand(0));
 | |
|       break;
 | |
|     }
 | |
|     BuildMI(BB, PPC::BLR, 0); // Just emit a 'ret' instruction
 | |
|     return;
 | |
|   case ISD::TRUNCSTORE:
 | |
|   case ISD::STORE:
 | |
|     {
 | |
|       SDOperand Chain   = N.getOperand(0);
 | |
|       SDOperand Value   = N.getOperand(1);
 | |
|       SDOperand Address = N.getOperand(2);
 | |
|       Select(Chain);
 | |
| 
 | |
|       Tmp1 = SelectExpr(Value); //value
 | |
| 
 | |
|       if (opcode == ISD::STORE) {
 | |
|         switch(Value.getValueType()) {
 | |
|         default: assert(0 && "unknown Type in store");
 | |
|         case MVT::i32: Opc = PPC::STW; break;
 | |
|         case MVT::f64: Opc = PPC::STFD; break;
 | |
|         case MVT::f32: Opc = PPC::STFS; break;
 | |
|         }
 | |
|       } else { //ISD::TRUNCSTORE
 | |
|         switch(cast<VTSDNode>(Node->getOperand(4))->getVT()) {
 | |
|         default: assert(0 && "unknown Type in store");
 | |
|         case MVT::i1:
 | |
|         case MVT::i8: Opc  = PPC::STB; break;
 | |
|         case MVT::i16: Opc = PPC::STH; break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if(Address.getOpcode() == ISD::FrameIndex)
 | |
|       {
 | |
|         Tmp2 = cast<FrameIndexSDNode>(Address)->getIndex();
 | |
|         addFrameReference(BuildMI(BB, Opc, 3).addReg(Tmp1), (int)Tmp2);
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         int offset;
 | |
|         bool idx = SelectAddr(Address, Tmp2, offset);
 | |
|         if (idx) {
 | |
|           Opc = IndexedOpForOp(Opc);
 | |
|           BuildMI(BB, Opc, 3).addReg(Tmp1).addReg(Tmp2).addReg(offset);
 | |
|         } else {
 | |
|           BuildMI(BB, Opc, 3).addReg(Tmp1).addImm(offset).addReg(Tmp2);
 | |
|         }
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|   case ISD::EXTLOAD:
 | |
|   case ISD::SEXTLOAD:
 | |
|   case ISD::ZEXTLOAD:
 | |
|   case ISD::LOAD:
 | |
|   case ISD::CopyFromReg:
 | |
|   case ISD::TAILCALL:
 | |
|   case ISD::CALL:
 | |
|   case ISD::DYNAMIC_STACKALLOC:
 | |
|     ExprMap.erase(N);
 | |
|     SelectExpr(N);
 | |
|     return;
 | |
|   }
 | |
|   assert(0 && "Should not be reached!");
 | |
| }
 | |
| 
 | |
| 
 | |
| /// createPPC32PatternInstructionSelector - This pass converts an LLVM function
 | |
| /// into a machine code representation using pattern matching and a machine
 | |
| /// description file.
 | |
| ///
 | |
| FunctionPass *llvm::createPPC32ISelPattern(TargetMachine &TM) {
 | |
|   return new ISel(TM);
 | |
| }
 | |
| 
 |