mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	things that occur in types. "operands" are things that occur in values. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92322 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			421 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			421 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the ValueEnumerator class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ValueEnumerator.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/TypeSymbolTable.h"
 | |
| #include "llvm/ValueSymbolTable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| static bool isSingleValueType(const std::pair<const llvm::Type*,
 | |
|                               unsigned int> &P) {
 | |
|   return P.first->isSingleValueType();
 | |
| }
 | |
| 
 | |
| static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
 | |
|   return isa<IntegerType>(V.first->getType());
 | |
| }
 | |
| 
 | |
| static bool CompareByFrequency(const std::pair<const llvm::Type*,
 | |
|                                unsigned int> &P1,
 | |
|                                const std::pair<const llvm::Type*,
 | |
|                                unsigned int> &P2) {
 | |
|   return P1.second > P2.second;
 | |
| }
 | |
| 
 | |
| /// ValueEnumerator - Enumerate module-level information.
 | |
| ValueEnumerator::ValueEnumerator(const Module *M) {
 | |
|   InstructionCount = 0;
 | |
| 
 | |
|   // Enumerate the global variables.
 | |
|   for (Module::const_global_iterator I = M->global_begin(),
 | |
|          E = M->global_end(); I != E; ++I)
 | |
|     EnumerateValue(I);
 | |
| 
 | |
|   // Enumerate the functions.
 | |
|   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
 | |
|     EnumerateValue(I);
 | |
|     EnumerateAttributes(cast<Function>(I)->getAttributes());
 | |
|   }
 | |
| 
 | |
|   // Enumerate the aliases.
 | |
|   for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
 | |
|        I != E; ++I)
 | |
|     EnumerateValue(I);
 | |
| 
 | |
|   // Remember what is the cutoff between globalvalue's and other constants.
 | |
|   unsigned FirstConstant = Values.size();
 | |
| 
 | |
|   // Enumerate the global variable initializers.
 | |
|   for (Module::const_global_iterator I = M->global_begin(),
 | |
|          E = M->global_end(); I != E; ++I)
 | |
|     if (I->hasInitializer())
 | |
|       EnumerateValue(I->getInitializer());
 | |
| 
 | |
|   // Enumerate the aliasees.
 | |
|   for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
 | |
|        I != E; ++I)
 | |
|     EnumerateValue(I->getAliasee());
 | |
| 
 | |
|   // Enumerate types used by the type symbol table.
 | |
|   EnumerateTypeSymbolTable(M->getTypeSymbolTable());
 | |
| 
 | |
|   // Insert constants that are named at module level into the slot pool so that
 | |
|   // the module symbol table can refer to them...
 | |
|   EnumerateValueSymbolTable(M->getValueSymbolTable());
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
 | |
| 
 | |
|   // Enumerate types used by function bodies and argument lists.
 | |
|   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
 | |
| 
 | |
|     for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|          I != E; ++I)
 | |
|       EnumerateType(I->getType());
 | |
| 
 | |
|     for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | |
|       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
 | |
|         for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
 | |
|              OI != E; ++OI)
 | |
|           EnumerateOperandType(*OI);
 | |
|         EnumerateType(I->getType());
 | |
|         if (const CallInst *CI = dyn_cast<CallInst>(I))
 | |
|           EnumerateAttributes(CI->getAttributes());
 | |
|         else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
 | |
|           EnumerateAttributes(II->getAttributes());
 | |
| 
 | |
|         // Enumerate metadata attached with this instruction.
 | |
|         MDs.clear();
 | |
|         I->getAllMetadata(MDs);
 | |
|         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
 | |
|           EnumerateMetadata(MDs[i].second);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Optimize constant ordering.
 | |
|   OptimizeConstants(FirstConstant, Values.size());
 | |
| 
 | |
|   // Sort the type table by frequency so that most commonly used types are early
 | |
|   // in the table (have low bit-width).
 | |
|   std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
 | |
| 
 | |
|   // Partition the Type ID's so that the single-value types occur before the
 | |
|   // aggregate types.  This allows the aggregate types to be dropped from the
 | |
|   // type table after parsing the global variable initializers.
 | |
|   std::partition(Types.begin(), Types.end(), isSingleValueType);
 | |
| 
 | |
|   // Now that we rearranged the type table, rebuild TypeMap.
 | |
|   for (unsigned i = 0, e = Types.size(); i != e; ++i)
 | |
|     TypeMap[Types[i].first] = i+1;
 | |
| }
 | |
| 
 | |
| unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
 | |
|   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
 | |
|   assert (I != InstructionMap.end() && "Instruction is not mapped!");
 | |
|     return I->second;
 | |
| }
 | |
| 
 | |
| void ValueEnumerator::setInstructionID(const Instruction *I) {
 | |
|   InstructionMap[I] = InstructionCount++;
 | |
| }
 | |
| 
 | |
| unsigned ValueEnumerator::getValueID(const Value *V) const {
 | |
|   if (isa<MetadataBase>(V)) {
 | |
|     ValueMapType::const_iterator I = MDValueMap.find(V);
 | |
|     assert(I != MDValueMap.end() && "Value not in slotcalculator!");
 | |
|     return I->second-1;
 | |
|   }
 | |
| 
 | |
|   ValueMapType::const_iterator I = ValueMap.find(V);
 | |
|   assert(I != ValueMap.end() && "Value not in slotcalculator!");
 | |
|   return I->second-1;
 | |
| }
 | |
| 
 | |
| // Optimize constant ordering.
 | |
| namespace {
 | |
|   struct CstSortPredicate {
 | |
|     ValueEnumerator &VE;
 | |
|     explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
 | |
|     bool operator()(const std::pair<const Value*, unsigned> &LHS,
 | |
|                     const std::pair<const Value*, unsigned> &RHS) {
 | |
|       // Sort by plane.
 | |
|       if (LHS.first->getType() != RHS.first->getType())
 | |
|         return VE.getTypeID(LHS.first->getType()) <
 | |
|                VE.getTypeID(RHS.first->getType());
 | |
|       // Then by frequency.
 | |
|       return LHS.second > RHS.second;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// OptimizeConstants - Reorder constant pool for denser encoding.
 | |
| void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
 | |
|   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
 | |
| 
 | |
|   CstSortPredicate P(*this);
 | |
|   std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
 | |
| 
 | |
|   // Ensure that integer constants are at the start of the constant pool.  This
 | |
|   // is important so that GEP structure indices come before gep constant exprs.
 | |
|   std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
 | |
|                  isIntegerValue);
 | |
| 
 | |
|   // Rebuild the modified portion of ValueMap.
 | |
|   for (; CstStart != CstEnd; ++CstStart)
 | |
|     ValueMap[Values[CstStart].first] = CstStart+1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
 | |
| /// table.
 | |
| void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
 | |
|   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
 | |
|        TI != TE; ++TI)
 | |
|     EnumerateType(TI->second);
 | |
| }
 | |
| 
 | |
| /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
 | |
| /// table into the values table.
 | |
| void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
 | |
|   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
 | |
|        VI != VE; ++VI)
 | |
|     EnumerateValue(VI->getValue());
 | |
| }
 | |
| 
 | |
| void ValueEnumerator::EnumerateMetadata(const MetadataBase *MD) {
 | |
|   // Check to see if it's already in!
 | |
|   unsigned &MDValueID = MDValueMap[MD];
 | |
|   if (MDValueID) {
 | |
|     // Increment use count.
 | |
|     MDValues[MDValueID-1].second++;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Enumerate the type of this value.
 | |
|   EnumerateType(MD->getType());
 | |
| 
 | |
|   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
 | |
|     MDValues.push_back(std::make_pair(MD, 1U));
 | |
|     MDValueMap[MD] = MDValues.size();
 | |
|     MDValueID = MDValues.size();
 | |
|     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {    
 | |
|       if (Value *V = N->getOperand(i))
 | |
|         EnumerateValue(V);
 | |
|       else
 | |
|         EnumerateType(Type::getVoidTy(MD->getContext()));
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (const NamedMDNode *N = dyn_cast<NamedMDNode>(MD)) {
 | |
|     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|       EnumerateValue(N->getOperand(i));
 | |
|     MDValues.push_back(std::make_pair(MD, 1U));
 | |
|     MDValueMap[MD] = Values.size();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Add the value.
 | |
|   assert(isa<MDString>(MD) && "Unknown metadata kind");
 | |
|   MDValues.push_back(std::make_pair(MD, 1U));
 | |
|   MDValueID = MDValues.size();
 | |
| }
 | |
| 
 | |
| void ValueEnumerator::EnumerateValue(const Value *V) {
 | |
|   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
 | |
|   if (const MetadataBase *MB = dyn_cast<MetadataBase>(V))
 | |
|     return EnumerateMetadata(MB);
 | |
| 
 | |
|   // Check to see if it's already in!
 | |
|   unsigned &ValueID = ValueMap[V];
 | |
|   if (ValueID) {
 | |
|     // Increment use count.
 | |
|     Values[ValueID-1].second++;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Enumerate the type of this value.
 | |
|   EnumerateType(V->getType());
 | |
| 
 | |
|   if (const Constant *C = dyn_cast<Constant>(V)) {
 | |
|     if (isa<GlobalValue>(C)) {
 | |
|       // Initializers for globals are handled explicitly elsewhere.
 | |
|     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
 | |
|       // Do not enumerate the initializers for an array of simple characters.
 | |
|       // The initializers just polute the value table, and we emit the strings
 | |
|       // specially.
 | |
|     } else if (C->getNumOperands()) {
 | |
|       // If a constant has operands, enumerate them.  This makes sure that if a
 | |
|       // constant has uses (for example an array of const ints), that they are
 | |
|       // inserted also.
 | |
| 
 | |
|       // We prefer to enumerate them with values before we enumerate the user
 | |
|       // itself.  This makes it more likely that we can avoid forward references
 | |
|       // in the reader.  We know that there can be no cycles in the constants
 | |
|       // graph that don't go through a global variable.
 | |
|       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
 | |
|            I != E; ++I)
 | |
|         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
 | |
|           EnumerateValue(*I);
 | |
| 
 | |
|       // Finally, add the value.  Doing this could make the ValueID reference be
 | |
|       // dangling, don't reuse it.
 | |
|       Values.push_back(std::make_pair(V, 1U));
 | |
|       ValueMap[V] = Values.size();
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add the value.
 | |
|   Values.push_back(std::make_pair(V, 1U));
 | |
|   ValueID = Values.size();
 | |
| }
 | |
| 
 | |
| 
 | |
| void ValueEnumerator::EnumerateType(const Type *Ty) {
 | |
|   unsigned &TypeID = TypeMap[Ty];
 | |
| 
 | |
|   if (TypeID) {
 | |
|     // If we've already seen this type, just increase its occurrence count.
 | |
|     Types[TypeID-1].second++;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // First time we saw this type, add it.
 | |
|   Types.push_back(std::make_pair(Ty, 1U));
 | |
|   TypeID = Types.size();
 | |
| 
 | |
|   // Enumerate subtypes.
 | |
|   for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
 | |
|        I != E; ++I)
 | |
|     EnumerateType(*I);
 | |
| }
 | |
| 
 | |
| // Enumerate the types for the specified value.  If the value is a constant,
 | |
| // walk through it, enumerating the types of the constant.
 | |
| void ValueEnumerator::EnumerateOperandType(const Value *V) {
 | |
|   EnumerateType(V->getType());
 | |
|   if (const Constant *C = dyn_cast<Constant>(V)) {
 | |
|     // If this constant is already enumerated, ignore it, we know its type must
 | |
|     // be enumerated.
 | |
|     if (ValueMap.count(V)) return;
 | |
| 
 | |
|     // This constant may have operands, make sure to enumerate the types in
 | |
|     // them.
 | |
|     for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
 | |
|       const User *Op = C->getOperand(i);
 | |
|       
 | |
|       // Don't enumerate basic blocks here, this happens as operands to
 | |
|       // blockaddress.
 | |
|       if (isa<BasicBlock>(Op)) continue;
 | |
|       
 | |
|       EnumerateOperandType(cast<Constant>(Op));
 | |
|     }
 | |
| 
 | |
|     if (const MDNode *N = dyn_cast<MDNode>(V)) {
 | |
|       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|         if (Value *Elem = N->getOperand(i))
 | |
|           EnumerateOperandType(Elem);
 | |
|     }
 | |
|   } else if (isa<MDString>(V) || isa<MDNode>(V))
 | |
|     EnumerateValue(V);
 | |
| }
 | |
| 
 | |
| void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
 | |
|   if (PAL.isEmpty()) return;  // null is always 0.
 | |
|   // Do a lookup.
 | |
|   unsigned &Entry = AttributeMap[PAL.getRawPointer()];
 | |
|   if (Entry == 0) {
 | |
|     // Never saw this before, add it.
 | |
|     Attributes.push_back(PAL);
 | |
|     Entry = Attributes.size();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void ValueEnumerator::incorporateFunction(const Function &F) {
 | |
|   NumModuleValues = Values.size();
 | |
| 
 | |
|   // Adding function arguments to the value table.
 | |
|   for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
 | |
|       I != E; ++I)
 | |
|     EnumerateValue(I);
 | |
| 
 | |
|   FirstFuncConstantID = Values.size();
 | |
| 
 | |
|   // Add all function-level constants to the value table.
 | |
|   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | |
|     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
 | |
|       for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
 | |
|            OI != E; ++OI) {
 | |
|         if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
 | |
|             isa<InlineAsm>(*OI))
 | |
|           EnumerateValue(*OI);
 | |
|       }
 | |
|     BasicBlocks.push_back(BB);
 | |
|     ValueMap[BB] = BasicBlocks.size();
 | |
|   }
 | |
| 
 | |
|   // Optimize the constant layout.
 | |
|   OptimizeConstants(FirstFuncConstantID, Values.size());
 | |
| 
 | |
|   // Add the function's parameter attributes so they are available for use in
 | |
|   // the function's instruction.
 | |
|   EnumerateAttributes(F.getAttributes());
 | |
| 
 | |
|   FirstInstID = Values.size();
 | |
| 
 | |
|   // Add all of the instructions.
 | |
|   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | |
|     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
 | |
|       if (I->getType() != Type::getVoidTy(F.getContext()))
 | |
|         EnumerateValue(I);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ValueEnumerator::purgeFunction() {
 | |
|   /// Remove purged values from the ValueMap.
 | |
|   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
 | |
|     ValueMap.erase(Values[i].first);
 | |
|   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
 | |
|     ValueMap.erase(BasicBlocks[i]);
 | |
| 
 | |
|   Values.resize(NumModuleValues);
 | |
|   BasicBlocks.clear();
 | |
| }
 | |
| 
 | |
| static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
 | |
|                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
 | |
|   unsigned Counter = 0;
 | |
|   for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | |
|     IDMap[BB] = ++Counter;
 | |
| }
 | |
| 
 | |
| /// getGlobalBasicBlockID - This returns the function-specific ID for the
 | |
| /// specified basic block.  This is relatively expensive information, so it
 | |
| /// should only be used by rare constructs such as address-of-label.
 | |
| unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
 | |
|   unsigned &Idx = GlobalBasicBlockIDs[BB];
 | |
|   if (Idx != 0)
 | |
|     return Idx-1;
 | |
| 
 | |
|   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
 | |
|   return getGlobalBasicBlockID(BB);
 | |
| }
 | |
| 
 |