mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89683 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			356 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			356 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements routines for translating functions from LLVM IR into
 | |
| // Machine IR.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "function-lowering-info"
 | |
| #include "FunctionLoweringInfo.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Analysis/DebugInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetFrameInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetIntrinsicInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
 | |
| /// of insertvalue or extractvalue indices that identify a member, return
 | |
| /// the linearized index of the start of the member.
 | |
| ///
 | |
| unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
 | |
|                                   const unsigned *Indices,
 | |
|                                   const unsigned *IndicesEnd,
 | |
|                                   unsigned CurIndex) {
 | |
|   // Base case: We're done.
 | |
|   if (Indices && Indices == IndicesEnd)
 | |
|     return CurIndex;
 | |
| 
 | |
|   // Given a struct type, recursively traverse the elements.
 | |
|   if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     for (StructType::element_iterator EB = STy->element_begin(),
 | |
|                                       EI = EB,
 | |
|                                       EE = STy->element_end();
 | |
|         EI != EE; ++EI) {
 | |
|       if (Indices && *Indices == unsigned(EI - EB))
 | |
|         return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
 | |
|       CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
 | |
|     }
 | |
|     return CurIndex;
 | |
|   }
 | |
|   // Given an array type, recursively traverse the elements.
 | |
|   else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     const Type *EltTy = ATy->getElementType();
 | |
|     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
 | |
|       if (Indices && *Indices == i)
 | |
|         return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
 | |
|       CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
 | |
|     }
 | |
|     return CurIndex;
 | |
|   }
 | |
|   // We haven't found the type we're looking for, so keep searching.
 | |
|   return CurIndex + 1;
 | |
| }
 | |
| 
 | |
| /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
 | |
| /// EVTs that represent all the individual underlying
 | |
| /// non-aggregate types that comprise it.
 | |
| ///
 | |
| /// If Offsets is non-null, it points to a vector to be filled in
 | |
| /// with the in-memory offsets of each of the individual values.
 | |
| ///
 | |
| void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
 | |
|                            SmallVectorImpl<EVT> &ValueVTs,
 | |
|                            SmallVectorImpl<uint64_t> *Offsets,
 | |
|                            uint64_t StartingOffset) {
 | |
|   // Given a struct type, recursively traverse the elements.
 | |
|   if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
 | |
|     for (StructType::element_iterator EB = STy->element_begin(),
 | |
|                                       EI = EB,
 | |
|                                       EE = STy->element_end();
 | |
|          EI != EE; ++EI)
 | |
|       ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
 | |
|                       StartingOffset + SL->getElementOffset(EI - EB));
 | |
|     return;
 | |
|   }
 | |
|   // Given an array type, recursively traverse the elements.
 | |
|   if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     const Type *EltTy = ATy->getElementType();
 | |
|     uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
 | |
|     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
 | |
|       ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
 | |
|                       StartingOffset + i * EltSize);
 | |
|     return;
 | |
|   }
 | |
|   // Interpret void as zero return values.
 | |
|   if (Ty == Type::getVoidTy(Ty->getContext()))
 | |
|     return;
 | |
|   // Base case: we can get an EVT for this LLVM IR type.
 | |
|   ValueVTs.push_back(TLI.getValueType(Ty));
 | |
|   if (Offsets)
 | |
|     Offsets->push_back(StartingOffset);
 | |
| }
 | |
| 
 | |
| /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
 | |
| /// PHI nodes or outside of the basic block that defines it, or used by a
 | |
| /// switch or atomic instruction, which may expand to multiple basic blocks.
 | |
| static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
 | |
|   if (isa<PHINode>(I)) return true;
 | |
|   BasicBlock *BB = I->getParent();
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
 | |
|     if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
 | |
| /// entry block, return true.  This includes arguments used by switches, since
 | |
| /// the switch may expand into multiple basic blocks.
 | |
| static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
 | |
|   // With FastISel active, we may be splitting blocks, so force creation
 | |
|   // of virtual registers for all non-dead arguments.
 | |
|   // Don't force virtual registers for byval arguments though, because
 | |
|   // fast-isel can't handle those in all cases.
 | |
|   if (EnableFastISel && !A->hasByValAttr())
 | |
|     return A->use_empty();
 | |
| 
 | |
|   BasicBlock *Entry = A->getParent()->begin();
 | |
|   for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
 | |
|     if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
 | |
|       return false;  // Use not in entry block.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
 | |
|   : TLI(tli) {
 | |
| }
 | |
| 
 | |
| void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
 | |
|                                bool EnableFastISel) {
 | |
|   Fn = &fn;
 | |
|   MF = &mf;
 | |
|   RegInfo = &MF->getRegInfo();
 | |
| 
 | |
|   // Create a vreg for each argument register that is not dead and is used
 | |
|   // outside of the entry block for the function.
 | |
|   for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
 | |
|        AI != E; ++AI)
 | |
|     if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
 | |
|       InitializeRegForValue(AI);
 | |
| 
 | |
|   // Initialize the mapping of values to registers.  This is only set up for
 | |
|   // instruction values that are used outside of the block that defines
 | |
|   // them.
 | |
|   Function::iterator BB = Fn->begin(), EB = Fn->end();
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | |
|       if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
 | |
|         const Type *Ty = AI->getAllocatedType();
 | |
|         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
 | |
|         unsigned Align =
 | |
|           std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
 | |
|                    AI->getAlignment());
 | |
| 
 | |
|         TySize *= CUI->getZExtValue();   // Get total allocated size.
 | |
|         if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
 | |
|         StaticAllocaMap[AI] =
 | |
|           MF->getFrameInfo()->CreateStackObject(TySize, Align, false);
 | |
|       }
 | |
| 
 | |
|   for (; BB != EB; ++BB)
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|       if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
 | |
|         if (!isa<AllocaInst>(I) ||
 | |
|             !StaticAllocaMap.count(cast<AllocaInst>(I)))
 | |
|           InitializeRegForValue(I);
 | |
| 
 | |
|   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
 | |
|   // also creates the initial PHI MachineInstrs, though none of the input
 | |
|   // operands are populated.
 | |
|   for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
 | |
|     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
 | |
|     MBBMap[BB] = MBB;
 | |
|     MF->push_back(MBB);
 | |
| 
 | |
|     // Transfer the address-taken flag. This is necessary because there could
 | |
|     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
 | |
|     // the first one should be marked.
 | |
|     if (BB->hasAddressTaken())
 | |
|       MBB->setHasAddressTaken();
 | |
| 
 | |
|     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
 | |
|     // appropriate.
 | |
|     PHINode *PN;
 | |
|     DebugLoc DL;
 | |
|     for (BasicBlock::iterator
 | |
|            I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
| 
 | |
|       PN = dyn_cast<PHINode>(I);
 | |
|       if (!PN || PN->use_empty()) continue;
 | |
| 
 | |
|       unsigned PHIReg = ValueMap[PN];
 | |
|       assert(PHIReg && "PHI node does not have an assigned virtual register!");
 | |
| 
 | |
|       SmallVector<EVT, 4> ValueVTs;
 | |
|       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
 | |
|       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
 | |
|         EVT VT = ValueVTs[vti];
 | |
|         unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
 | |
|         const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
 | |
|         for (unsigned i = 0; i != NumRegisters; ++i)
 | |
|           BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i);
 | |
|         PHIReg += NumRegisters;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// clear - Clear out all the function-specific state. This returns this
 | |
| /// FunctionLoweringInfo to an empty state, ready to be used for a
 | |
| /// different function.
 | |
| void FunctionLoweringInfo::clear() {
 | |
|   MBBMap.clear();
 | |
|   ValueMap.clear();
 | |
|   StaticAllocaMap.clear();
 | |
| #ifndef NDEBUG
 | |
|   CatchInfoLost.clear();
 | |
|   CatchInfoFound.clear();
 | |
| #endif
 | |
|   LiveOutRegInfo.clear();
 | |
| }
 | |
| 
 | |
| unsigned FunctionLoweringInfo::MakeReg(EVT VT) {
 | |
|   return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
 | |
| }
 | |
| 
 | |
| /// CreateRegForValue - Allocate the appropriate number of virtual registers of
 | |
| /// the correctly promoted or expanded types.  Assign these registers
 | |
| /// consecutive vreg numbers and return the first assigned number.
 | |
| ///
 | |
| /// In the case that the given value has struct or array type, this function
 | |
| /// will assign registers for each member or element.
 | |
| ///
 | |
| unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(TLI, V->getType(), ValueVTs);
 | |
| 
 | |
|   unsigned FirstReg = 0;
 | |
|   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|     EVT ValueVT = ValueVTs[Value];
 | |
|     EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT);
 | |
| 
 | |
|     unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT);
 | |
|     for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|       unsigned R = MakeReg(RegisterVT);
 | |
|       if (!FirstReg) FirstReg = R;
 | |
|     }
 | |
|   }
 | |
|   return FirstReg;
 | |
| }
 | |
| 
 | |
| /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
 | |
| GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
 | |
|   V = V->stripPointerCasts();
 | |
|   GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
 | |
|   assert ((GV || isa<ConstantPointerNull>(V)) &&
 | |
|           "TypeInfo must be a global variable or NULL");
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| /// AddCatchInfo - Extract the personality and type infos from an eh.selector
 | |
| /// call, and add them to the specified machine basic block.
 | |
| void llvm::AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
 | |
|                         MachineBasicBlock *MBB) {
 | |
|   // Inform the MachineModuleInfo of the personality for this landing pad.
 | |
|   ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
 | |
|   assert(CE->getOpcode() == Instruction::BitCast &&
 | |
|          isa<Function>(CE->getOperand(0)) &&
 | |
|          "Personality should be a function");
 | |
|   MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
 | |
| 
 | |
|   // Gather all the type infos for this landing pad and pass them along to
 | |
|   // MachineModuleInfo.
 | |
|   std::vector<GlobalVariable *> TyInfo;
 | |
|   unsigned N = I.getNumOperands();
 | |
| 
 | |
|   for (unsigned i = N - 1; i > 2; --i) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
 | |
|       unsigned FilterLength = CI->getZExtValue();
 | |
|       unsigned FirstCatch = i + FilterLength + !FilterLength;
 | |
|       assert (FirstCatch <= N && "Invalid filter length");
 | |
| 
 | |
|       if (FirstCatch < N) {
 | |
|         TyInfo.reserve(N - FirstCatch);
 | |
|         for (unsigned j = FirstCatch; j < N; ++j)
 | |
|           TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
 | |
|         MMI->addCatchTypeInfo(MBB, TyInfo);
 | |
|         TyInfo.clear();
 | |
|       }
 | |
| 
 | |
|       if (!FilterLength) {
 | |
|         // Cleanup.
 | |
|         MMI->addCleanup(MBB);
 | |
|       } else {
 | |
|         // Filter.
 | |
|         TyInfo.reserve(FilterLength - 1);
 | |
|         for (unsigned j = i + 1; j < FirstCatch; ++j)
 | |
|           TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
 | |
|         MMI->addFilterTypeInfo(MBB, TyInfo);
 | |
|         TyInfo.clear();
 | |
|       }
 | |
| 
 | |
|       N = i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (N > 3) {
 | |
|     TyInfo.reserve(N - 3);
 | |
|     for (unsigned j = 3; j < N; ++j)
 | |
|       TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
 | |
|     MMI->addCatchTypeInfo(MBB, TyInfo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void llvm::CopyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
 | |
|                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
 | |
|   for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
 | |
|     if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
 | |
|       // Apply the catch info to DestBB.
 | |
|       AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
 | |
| #ifndef NDEBUG
 | |
|       if (!FLI.MBBMap[SrcBB]->isLandingPad())
 | |
|         FLI.CatchInfoFound.insert(EHSel);
 | |
| #endif
 | |
|     }
 | |
| }
 |