mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	This is a common pattern with dyn_cast and similar constructs, when the PHI no longer depends on the select it can often be turned into a simpler construct or even get hoisted out of the loop. PR15340. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175995 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			322 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			322 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the Correlated Value Propagation pass.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "correlated-value-propagation"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LazyValueInfo.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumPhis,      "Number of phis propagated");
 | 
						|
STATISTIC(NumSelects,   "Number of selects propagated");
 | 
						|
STATISTIC(NumMemAccess, "Number of memory access targets propagated");
 | 
						|
STATISTIC(NumCmps,      "Number of comparisons propagated");
 | 
						|
STATISTIC(NumDeadCases, "Number of switch cases removed");
 | 
						|
 | 
						|
namespace {
 | 
						|
  class CorrelatedValuePropagation : public FunctionPass {
 | 
						|
    LazyValueInfo *LVI;
 | 
						|
 | 
						|
    bool processSelect(SelectInst *SI);
 | 
						|
    bool processPHI(PHINode *P);
 | 
						|
    bool processMemAccess(Instruction *I);
 | 
						|
    bool processCmp(CmpInst *C);
 | 
						|
    bool processSwitch(SwitchInst *SI);
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    CorrelatedValuePropagation(): FunctionPass(ID) {
 | 
						|
     initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<LazyValueInfo>();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char CorrelatedValuePropagation::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation",
 | 
						|
                "Value Propagation", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
 | 
						|
INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation",
 | 
						|
                "Value Propagation", false, false)
 | 
						|
 | 
						|
// Public interface to the Value Propagation pass
 | 
						|
Pass *llvm::createCorrelatedValuePropagationPass() {
 | 
						|
  return new CorrelatedValuePropagation();
 | 
						|
}
 | 
						|
 | 
						|
bool CorrelatedValuePropagation::processSelect(SelectInst *S) {
 | 
						|
  if (S->getType()->isVectorTy()) return false;
 | 
						|
  if (isa<Constant>(S->getOperand(0))) return false;
 | 
						|
 | 
						|
  Constant *C = LVI->getConstant(S->getOperand(0), S->getParent());
 | 
						|
  if (!C) return false;
 | 
						|
 | 
						|
  ConstantInt *CI = dyn_cast<ConstantInt>(C);
 | 
						|
  if (!CI) return false;
 | 
						|
 | 
						|
  Value *ReplaceWith = S->getOperand(1);
 | 
						|
  Value *Other = S->getOperand(2);
 | 
						|
  if (!CI->isOne()) std::swap(ReplaceWith, Other);
 | 
						|
  if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType());
 | 
						|
 | 
						|
  S->replaceAllUsesWith(ReplaceWith);
 | 
						|
  S->eraseFromParent();
 | 
						|
 | 
						|
  ++NumSelects;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CorrelatedValuePropagation::processPHI(PHINode *P) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  BasicBlock *BB = P->getParent();
 | 
						|
  for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
 | 
						|
    Value *Incoming = P->getIncomingValue(i);
 | 
						|
    if (isa<Constant>(Incoming)) continue;
 | 
						|
 | 
						|
    Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB);
 | 
						|
 | 
						|
    // Look if the incoming value is a select with a constant but LVI tells us
 | 
						|
    // that the incoming value can never be that constant. In that case replace
 | 
						|
    // the incoming value with the other value of the select. This often allows
 | 
						|
    // us to remove the select later.
 | 
						|
    if (!V) {
 | 
						|
      SelectInst *SI = dyn_cast<SelectInst>(Incoming);
 | 
						|
      if (!SI) continue;
 | 
						|
 | 
						|
      Constant *C = dyn_cast<Constant>(SI->getFalseValue());
 | 
						|
      if (!C) continue;
 | 
						|
 | 
						|
      if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
 | 
						|
                                  P->getIncomingBlock(i), BB) !=
 | 
						|
          LazyValueInfo::False)
 | 
						|
        continue;
 | 
						|
 | 
						|
      DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
 | 
						|
      V = SI->getTrueValue();
 | 
						|
    }
 | 
						|
 | 
						|
    P->setIncomingValue(i, V);
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Value *V = SimplifyInstruction(P)) {
 | 
						|
    P->replaceAllUsesWith(V);
 | 
						|
    P->eraseFromParent();
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Changed)
 | 
						|
    ++NumPhis;
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool CorrelatedValuePropagation::processMemAccess(Instruction *I) {
 | 
						|
  Value *Pointer = 0;
 | 
						|
  if (LoadInst *L = dyn_cast<LoadInst>(I))
 | 
						|
    Pointer = L->getPointerOperand();
 | 
						|
  else
 | 
						|
    Pointer = cast<StoreInst>(I)->getPointerOperand();
 | 
						|
 | 
						|
  if (isa<Constant>(Pointer)) return false;
 | 
						|
 | 
						|
  Constant *C = LVI->getConstant(Pointer, I->getParent());
 | 
						|
  if (!C) return false;
 | 
						|
 | 
						|
  ++NumMemAccess;
 | 
						|
  I->replaceUsesOfWith(Pointer, C);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// processCmp - If the value of this comparison could be determined locally,
 | 
						|
/// constant propagation would already have figured it out.  Instead, walk
 | 
						|
/// the predecessors and statically evaluate the comparison based on information
 | 
						|
/// available on that edge.  If a given static evaluation is true on ALL
 | 
						|
/// incoming edges, then it's true universally and we can simplify the compare.
 | 
						|
bool CorrelatedValuePropagation::processCmp(CmpInst *C) {
 | 
						|
  Value *Op0 = C->getOperand(0);
 | 
						|
  if (isa<Instruction>(Op0) &&
 | 
						|
      cast<Instruction>(Op0)->getParent() == C->getParent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
 | 
						|
  if (!Op1) return false;
 | 
						|
 | 
						|
  pred_iterator PI = pred_begin(C->getParent()), PE = pred_end(C->getParent());
 | 
						|
  if (PI == PE) return false;
 | 
						|
 | 
						|
  LazyValueInfo::Tristate Result = LVI->getPredicateOnEdge(C->getPredicate(),
 | 
						|
                                    C->getOperand(0), Op1, *PI, C->getParent());
 | 
						|
  if (Result == LazyValueInfo::Unknown) return false;
 | 
						|
 | 
						|
  ++PI;
 | 
						|
  while (PI != PE) {
 | 
						|
    LazyValueInfo::Tristate Res = LVI->getPredicateOnEdge(C->getPredicate(),
 | 
						|
                                    C->getOperand(0), Op1, *PI, C->getParent());
 | 
						|
    if (Res != Result) return false;
 | 
						|
    ++PI;
 | 
						|
  }
 | 
						|
 | 
						|
  ++NumCmps;
 | 
						|
 | 
						|
  if (Result == LazyValueInfo::True)
 | 
						|
    C->replaceAllUsesWith(ConstantInt::getTrue(C->getContext()));
 | 
						|
  else
 | 
						|
    C->replaceAllUsesWith(ConstantInt::getFalse(C->getContext()));
 | 
						|
 | 
						|
  C->eraseFromParent();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// processSwitch - Simplify a switch instruction by removing cases which can
 | 
						|
/// never fire.  If the uselessness of a case could be determined locally then
 | 
						|
/// constant propagation would already have figured it out.  Instead, walk the
 | 
						|
/// predecessors and statically evaluate cases based on information available
 | 
						|
/// on that edge.  Cases that cannot fire no matter what the incoming edge can
 | 
						|
/// safely be removed.  If a case fires on every incoming edge then the entire
 | 
						|
/// switch can be removed and replaced with a branch to the case destination.
 | 
						|
bool CorrelatedValuePropagation::processSwitch(SwitchInst *SI) {
 | 
						|
  Value *Cond = SI->getCondition();
 | 
						|
  BasicBlock *BB = SI->getParent();
 | 
						|
 | 
						|
  // If the condition was defined in same block as the switch then LazyValueInfo
 | 
						|
  // currently won't say anything useful about it, though in theory it could.
 | 
						|
  if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the switch is unreachable then trying to improve it is a waste of time.
 | 
						|
  pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
 | 
						|
  if (PB == PE) return false;
 | 
						|
 | 
						|
  // Analyse each switch case in turn.  This is done in reverse order so that
 | 
						|
  // removing a case doesn't cause trouble for the iteration.
 | 
						|
  bool Changed = false;
 | 
						|
  for (SwitchInst::CaseIt CI = SI->case_end(), CE = SI->case_begin(); CI-- != CE;
 | 
						|
       ) {
 | 
						|
    ConstantInt *Case = CI.getCaseValue();
 | 
						|
 | 
						|
    // Check to see if the switch condition is equal to/not equal to the case
 | 
						|
    // value on every incoming edge, equal/not equal being the same each time.
 | 
						|
    LazyValueInfo::Tristate State = LazyValueInfo::Unknown;
 | 
						|
    for (pred_iterator PI = PB; PI != PE; ++PI) {
 | 
						|
      // Is the switch condition equal to the case value?
 | 
						|
      LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ,
 | 
						|
                                                              Cond, Case, *PI, BB);
 | 
						|
      // Give up on this case if nothing is known.
 | 
						|
      if (Value == LazyValueInfo::Unknown) {
 | 
						|
        State = LazyValueInfo::Unknown;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this was the first edge to be visited, record that all other edges
 | 
						|
      // need to give the same result.
 | 
						|
      if (PI == PB) {
 | 
						|
        State = Value;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this case is known to fire for some edges and known not to fire for
 | 
						|
      // others then there is nothing we can do - give up.
 | 
						|
      if (Value != State) {
 | 
						|
        State = LazyValueInfo::Unknown;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (State == LazyValueInfo::False) {
 | 
						|
      // This case never fires - remove it.
 | 
						|
      CI.getCaseSuccessor()->removePredecessor(BB);
 | 
						|
      SI->removeCase(CI); // Does not invalidate the iterator.
 | 
						|
 | 
						|
      // The condition can be modified by removePredecessor's PHI simplification
 | 
						|
      // logic.
 | 
						|
      Cond = SI->getCondition();
 | 
						|
 | 
						|
      ++NumDeadCases;
 | 
						|
      Changed = true;
 | 
						|
    } else if (State == LazyValueInfo::True) {
 | 
						|
      // This case always fires.  Arrange for the switch to be turned into an
 | 
						|
      // unconditional branch by replacing the switch condition with the case
 | 
						|
      // value.
 | 
						|
      SI->setCondition(Case);
 | 
						|
      NumDeadCases += SI->getNumCases();
 | 
						|
      Changed = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Changed)
 | 
						|
    // If the switch has been simplified to the point where it can be replaced
 | 
						|
    // by a branch then do so now.
 | 
						|
    ConstantFoldTerminator(BB);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool CorrelatedValuePropagation::runOnFunction(Function &F) {
 | 
						|
  LVI = &getAnalysis<LazyValueInfo>();
 | 
						|
 | 
						|
  bool FnChanged = false;
 | 
						|
 | 
						|
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
 | 
						|
    bool BBChanged = false;
 | 
						|
    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ) {
 | 
						|
      Instruction *II = BI++;
 | 
						|
      switch (II->getOpcode()) {
 | 
						|
      case Instruction::Select:
 | 
						|
        BBChanged |= processSelect(cast<SelectInst>(II));
 | 
						|
        break;
 | 
						|
      case Instruction::PHI:
 | 
						|
        BBChanged |= processPHI(cast<PHINode>(II));
 | 
						|
        break;
 | 
						|
      case Instruction::ICmp:
 | 
						|
      case Instruction::FCmp:
 | 
						|
        BBChanged |= processCmp(cast<CmpInst>(II));
 | 
						|
        break;
 | 
						|
      case Instruction::Load:
 | 
						|
      case Instruction::Store:
 | 
						|
        BBChanged |= processMemAccess(II);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *Term = FI->getTerminator();
 | 
						|
    switch (Term->getOpcode()) {
 | 
						|
    case Instruction::Switch:
 | 
						|
      BBChanged |= processSwitch(cast<SwitchInst>(Term));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    FnChanged |= BBChanged;
 | 
						|
  }
 | 
						|
 | 
						|
  return FnChanged;
 | 
						|
}
 |