mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	When Reassociator optimize "(x | C1)" ^ "(X & C2)", it may swap the two subexpressions, however, it forgot to swap cached constants (of C1 and C2) accordingly. rdar://13739160 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180676 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2013 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2013 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass reassociates commutative expressions in an order that is designed
 | 
						|
// to promote better constant propagation, GCSE, LICM, PRE, etc.
 | 
						|
//
 | 
						|
// For example: 4 + (x + 5) -> x + (4 + 5)
 | 
						|
//
 | 
						|
// In the implementation of this algorithm, constants are assigned rank = 0,
 | 
						|
// function arguments are rank = 1, and other values are assigned ranks
 | 
						|
// corresponding to the reverse post order traversal of current function
 | 
						|
// (starting at 2), which effectively gives values in deep loops higher rank
 | 
						|
// than values not in loops.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "reassociate"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ValueHandle.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumChanged, "Number of insts reassociated");
 | 
						|
STATISTIC(NumAnnihil, "Number of expr tree annihilated");
 | 
						|
STATISTIC(NumFactor , "Number of multiplies factored");
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct ValueEntry {
 | 
						|
    unsigned Rank;
 | 
						|
    Value *Op;
 | 
						|
    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
 | 
						|
  };
 | 
						|
  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
 | 
						|
    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// PrintOps - Print out the expression identified in the Ops list.
 | 
						|
///
 | 
						|
static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
 | 
						|
  Module *M = I->getParent()->getParent()->getParent();
 | 
						|
  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
 | 
						|
       << *Ops[0].Op->getType() << '\t';
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
    dbgs() << "[ ";
 | 
						|
    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
 | 
						|
    dbgs() << ", #" << Ops[i].Rank << "] ";
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// \brief Utility class representing a base and exponent pair which form one
 | 
						|
  /// factor of some product.
 | 
						|
  struct Factor {
 | 
						|
    Value *Base;
 | 
						|
    unsigned Power;
 | 
						|
 | 
						|
    Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
 | 
						|
 | 
						|
    /// \brief Sort factors by their Base.
 | 
						|
    struct BaseSorter {
 | 
						|
      bool operator()(const Factor &LHS, const Factor &RHS) {
 | 
						|
        return LHS.Base < RHS.Base;
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    /// \brief Compare factors for equal bases.
 | 
						|
    struct BaseEqual {
 | 
						|
      bool operator()(const Factor &LHS, const Factor &RHS) {
 | 
						|
        return LHS.Base == RHS.Base;
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    /// \brief Sort factors in descending order by their power.
 | 
						|
    struct PowerDescendingSorter {
 | 
						|
      bool operator()(const Factor &LHS, const Factor &RHS) {
 | 
						|
        return LHS.Power > RHS.Power;
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    /// \brief Compare factors for equal powers.
 | 
						|
    struct PowerEqual {
 | 
						|
      bool operator()(const Factor &LHS, const Factor &RHS) {
 | 
						|
        return LHS.Power == RHS.Power;
 | 
						|
      }
 | 
						|
    };
 | 
						|
  };
 | 
						|
  
 | 
						|
  /// Utility class representing a non-constant Xor-operand. We classify
 | 
						|
  /// non-constant Xor-Operands into two categories:
 | 
						|
  ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
 | 
						|
  ///  C2)
 | 
						|
  ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
 | 
						|
  ///          constant.
 | 
						|
  ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
 | 
						|
  ///          operand as "E | 0"
 | 
						|
  class XorOpnd {
 | 
						|
  public:
 | 
						|
    XorOpnd(Value *V);
 | 
						|
    const XorOpnd &operator=(const XorOpnd &That);
 | 
						|
 | 
						|
    bool isInvalid() const { return SymbolicPart == 0; }
 | 
						|
    bool isOrExpr() const { return isOr; }
 | 
						|
    Value *getValue() const { return OrigVal; }
 | 
						|
    Value *getSymbolicPart() const { return SymbolicPart; }
 | 
						|
    unsigned getSymbolicRank() const { return SymbolicRank; }
 | 
						|
    const APInt &getConstPart() const { return ConstPart; }
 | 
						|
 | 
						|
    void Invalidate() { SymbolicPart = OrigVal = 0; }
 | 
						|
    void setSymbolicRank(unsigned R) { SymbolicRank = R; }
 | 
						|
 | 
						|
    // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
 | 
						|
    // The purpose is twofold:
 | 
						|
    // 1) Cluster together the operands sharing the same symbolic-value.
 | 
						|
    // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 
 | 
						|
    //   could potentially shorten crital path, and expose more loop-invariants.
 | 
						|
    //   Note that values' rank are basically defined in RPO order (FIXME). 
 | 
						|
    //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 
 | 
						|
    //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
 | 
						|
    //   "z" in the order of X-Y-Z is better than any other orders.
 | 
						|
    struct PtrSortFunctor {
 | 
						|
      bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
 | 
						|
        return LHS->getSymbolicRank() < RHS->getSymbolicRank();
 | 
						|
      }
 | 
						|
    };
 | 
						|
  private:
 | 
						|
    Value *OrigVal;
 | 
						|
    Value *SymbolicPart;
 | 
						|
    APInt ConstPart;
 | 
						|
    unsigned SymbolicRank;
 | 
						|
    bool isOr;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  class Reassociate : public FunctionPass {
 | 
						|
    DenseMap<BasicBlock*, unsigned> RankMap;
 | 
						|
    DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
 | 
						|
    SetVector<AssertingVH<Instruction> > RedoInsts;
 | 
						|
    bool MadeChange;
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    Reassociate() : FunctionPass(ID) {
 | 
						|
      initializeReassociatePass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    void BuildRankMap(Function &F);
 | 
						|
    unsigned getRank(Value *V);
 | 
						|
    void ReassociateExpression(BinaryOperator *I);
 | 
						|
    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
 | 
						|
    Value *OptimizeExpression(BinaryOperator *I,
 | 
						|
                              SmallVectorImpl<ValueEntry> &Ops);
 | 
						|
    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
 | 
						|
    Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
 | 
						|
    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
 | 
						|
                        Value *&Res);
 | 
						|
    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
 | 
						|
                        APInt &ConstOpnd, Value *&Res);
 | 
						|
    bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
 | 
						|
                                SmallVectorImpl<Factor> &Factors);
 | 
						|
    Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
 | 
						|
                                   SmallVectorImpl<Factor> &Factors);
 | 
						|
    Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
 | 
						|
    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
 | 
						|
    void EraseInst(Instruction *I);
 | 
						|
    void OptimizeInst(Instruction *I);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
XorOpnd::XorOpnd(Value *V) {
 | 
						|
  assert(!isa<ConstantInt>(V) && "No ConstantInt");
 | 
						|
  OrigVal = V;
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  SymbolicRank = 0;
 | 
						|
 | 
						|
  if (I && (I->getOpcode() == Instruction::Or ||
 | 
						|
            I->getOpcode() == Instruction::And)) {
 | 
						|
    Value *V0 = I->getOperand(0);
 | 
						|
    Value *V1 = I->getOperand(1);
 | 
						|
    if (isa<ConstantInt>(V0))
 | 
						|
      std::swap(V0, V1);
 | 
						|
 | 
						|
    if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
 | 
						|
      ConstPart = C->getValue();
 | 
						|
      SymbolicPart = V0;
 | 
						|
      isOr = (I->getOpcode() == Instruction::Or);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // view the operand as "V | 0"
 | 
						|
  SymbolicPart = V;
 | 
						|
  ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
 | 
						|
  isOr = true;
 | 
						|
}
 | 
						|
 | 
						|
const XorOpnd &XorOpnd::operator=(const XorOpnd &That) {
 | 
						|
  OrigVal = That.OrigVal;
 | 
						|
  SymbolicPart = That.SymbolicPart;
 | 
						|
  ConstPart = That.ConstPart;
 | 
						|
  SymbolicRank = That.SymbolicRank;
 | 
						|
  isOr = That.isOr;
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
char Reassociate::ID = 0;
 | 
						|
INITIALIZE_PASS(Reassociate, "reassociate",
 | 
						|
                "Reassociate expressions", false, false)
 | 
						|
 | 
						|
// Public interface to the Reassociate pass
 | 
						|
FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
 | 
						|
 | 
						|
/// isReassociableOp - Return true if V is an instruction of the specified
 | 
						|
/// opcode and if it only has one use.
 | 
						|
static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
 | 
						|
  if (V->hasOneUse() && isa<Instruction>(V) &&
 | 
						|
      cast<Instruction>(V)->getOpcode() == Opcode)
 | 
						|
    return cast<BinaryOperator>(V);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool isUnmovableInstruction(Instruction *I) {
 | 
						|
  if (I->getOpcode() == Instruction::PHI ||
 | 
						|
      I->getOpcode() == Instruction::LandingPad ||
 | 
						|
      I->getOpcode() == Instruction::Alloca ||
 | 
						|
      I->getOpcode() == Instruction::Load ||
 | 
						|
      I->getOpcode() == Instruction::Invoke ||
 | 
						|
      (I->getOpcode() == Instruction::Call &&
 | 
						|
       !isa<DbgInfoIntrinsic>(I)) ||
 | 
						|
      I->getOpcode() == Instruction::UDiv ||
 | 
						|
      I->getOpcode() == Instruction::SDiv ||
 | 
						|
      I->getOpcode() == Instruction::FDiv ||
 | 
						|
      I->getOpcode() == Instruction::URem ||
 | 
						|
      I->getOpcode() == Instruction::SRem ||
 | 
						|
      I->getOpcode() == Instruction::FRem)
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Reassociate::BuildRankMap(Function &F) {
 | 
						|
  unsigned i = 2;
 | 
						|
 | 
						|
  // Assign distinct ranks to function arguments
 | 
						|
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
 | 
						|
    ValueRankMap[&*I] = ++i;
 | 
						|
 | 
						|
  ReversePostOrderTraversal<Function*> RPOT(&F);
 | 
						|
  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
 | 
						|
         E = RPOT.end(); I != E; ++I) {
 | 
						|
    BasicBlock *BB = *I;
 | 
						|
    unsigned BBRank = RankMap[BB] = ++i << 16;
 | 
						|
 | 
						|
    // Walk the basic block, adding precomputed ranks for any instructions that
 | 
						|
    // we cannot move.  This ensures that the ranks for these instructions are
 | 
						|
    // all different in the block.
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
      if (isUnmovableInstruction(I))
 | 
						|
        ValueRankMap[&*I] = ++BBRank;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned Reassociate::getRank(Value *V) {
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (I == 0) {
 | 
						|
    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
 | 
						|
    return 0;  // Otherwise it's a global or constant, rank 0.
 | 
						|
  }
 | 
						|
 | 
						|
  if (unsigned Rank = ValueRankMap[I])
 | 
						|
    return Rank;    // Rank already known?
 | 
						|
 | 
						|
  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
 | 
						|
  // we can reassociate expressions for code motion!  Since we do not recurse
 | 
						|
  // for PHI nodes, we cannot have infinite recursion here, because there
 | 
						|
  // cannot be loops in the value graph that do not go through PHI nodes.
 | 
						|
  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
 | 
						|
  for (unsigned i = 0, e = I->getNumOperands();
 | 
						|
       i != e && Rank != MaxRank; ++i)
 | 
						|
    Rank = std::max(Rank, getRank(I->getOperand(i)));
 | 
						|
 | 
						|
  // If this is a not or neg instruction, do not count it for rank.  This
 | 
						|
  // assures us that X and ~X will have the same rank.
 | 
						|
  if (!I->getType()->isIntegerTy() ||
 | 
						|
      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
 | 
						|
    ++Rank;
 | 
						|
 | 
						|
  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
 | 
						|
  //     << Rank << "\n");
 | 
						|
 | 
						|
  return ValueRankMap[I] = Rank;
 | 
						|
}
 | 
						|
 | 
						|
/// LowerNegateToMultiply - Replace 0-X with X*-1.
 | 
						|
///
 | 
						|
static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
 | 
						|
  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
 | 
						|
 | 
						|
  BinaryOperator *Res =
 | 
						|
    BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
 | 
						|
  Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
 | 
						|
  Res->takeName(Neg);
 | 
						|
  Neg->replaceAllUsesWith(Res);
 | 
						|
  Res->setDebugLoc(Neg->getDebugLoc());
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
 | 
						|
/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
 | 
						|
/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
 | 
						|
/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
 | 
						|
/// even x in Bitwidth-bit arithmetic.
 | 
						|
static unsigned CarmichaelShift(unsigned Bitwidth) {
 | 
						|
  if (Bitwidth < 3)
 | 
						|
    return Bitwidth - 1;
 | 
						|
  return Bitwidth - 2;
 | 
						|
}
 | 
						|
 | 
						|
/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
 | 
						|
/// reducing the combined weight using any special properties of the operation.
 | 
						|
/// The existing weight LHS represents the computation X op X op ... op X where
 | 
						|
/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
 | 
						|
/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
 | 
						|
/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
 | 
						|
/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
 | 
						|
static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
 | 
						|
  // If we were working with infinite precision arithmetic then the combined
 | 
						|
  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
 | 
						|
  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
 | 
						|
  // for nilpotent operations and addition, but not for idempotent operations
 | 
						|
  // and multiplication), so it is important to correctly reduce the combined
 | 
						|
  // weight back into range if wrapping would be wrong.
 | 
						|
 | 
						|
  // If RHS is zero then the weight didn't change.
 | 
						|
  if (RHS.isMinValue())
 | 
						|
    return;
 | 
						|
  // If LHS is zero then the combined weight is RHS.
 | 
						|
  if (LHS.isMinValue()) {
 | 
						|
    LHS = RHS;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // From this point on we know that neither LHS nor RHS is zero.
 | 
						|
 | 
						|
  if (Instruction::isIdempotent(Opcode)) {
 | 
						|
    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
 | 
						|
    // weight of 1.  Keeping weights at zero or one also means that wrapping is
 | 
						|
    // not a problem.
 | 
						|
    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
 | 
						|
    return; // Return a weight of 1.
 | 
						|
  }
 | 
						|
  if (Instruction::isNilpotent(Opcode)) {
 | 
						|
    // Nilpotent means X op X === 0, so reduce weights modulo 2.
 | 
						|
    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
 | 
						|
    LHS = 0; // 1 + 1 === 0 modulo 2.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (Opcode == Instruction::Add) {
 | 
						|
    // TODO: Reduce the weight by exploiting nsw/nuw?
 | 
						|
    LHS += RHS;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Opcode == Instruction::Mul && "Unknown associative operation!");
 | 
						|
  unsigned Bitwidth = LHS.getBitWidth();
 | 
						|
  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
 | 
						|
  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
 | 
						|
  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
 | 
						|
  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
 | 
						|
  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
 | 
						|
  // which by a happy accident means that they can always be represented using
 | 
						|
  // Bitwidth bits.
 | 
						|
  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
 | 
						|
  // the Carmichael number).
 | 
						|
  if (Bitwidth > 3) {
 | 
						|
    /// CM - The value of Carmichael's lambda function.
 | 
						|
    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
 | 
						|
    // Any weight W >= Threshold can be replaced with W - CM.
 | 
						|
    APInt Threshold = CM + Bitwidth;
 | 
						|
    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
 | 
						|
    // For Bitwidth 4 or more the following sum does not overflow.
 | 
						|
    LHS += RHS;
 | 
						|
    while (LHS.uge(Threshold))
 | 
						|
      LHS -= CM;
 | 
						|
  } else {
 | 
						|
    // To avoid problems with overflow do everything the same as above but using
 | 
						|
    // a larger type.
 | 
						|
    unsigned CM = 1U << CarmichaelShift(Bitwidth);
 | 
						|
    unsigned Threshold = CM + Bitwidth;
 | 
						|
    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
 | 
						|
           "Weights not reduced!");
 | 
						|
    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
 | 
						|
    while (Total >= Threshold)
 | 
						|
      Total -= CM;
 | 
						|
    LHS = Total;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
typedef std::pair<Value*, APInt> RepeatedValue;
 | 
						|
 | 
						|
/// LinearizeExprTree - Given an associative binary expression, return the leaf
 | 
						|
/// nodes in Ops along with their weights (how many times the leaf occurs).  The
 | 
						|
/// original expression is the same as
 | 
						|
///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
 | 
						|
/// op
 | 
						|
///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
 | 
						|
/// op
 | 
						|
///   ...
 | 
						|
/// op
 | 
						|
///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
 | 
						|
///
 | 
						|
/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
 | 
						|
///
 | 
						|
/// This routine may modify the function, in which case it returns 'true'.  The
 | 
						|
/// changes it makes may well be destructive, changing the value computed by 'I'
 | 
						|
/// to something completely different.  Thus if the routine returns 'true' then
 | 
						|
/// you MUST either replace I with a new expression computed from the Ops array,
 | 
						|
/// or use RewriteExprTree to put the values back in.
 | 
						|
///
 | 
						|
/// A leaf node is either not a binary operation of the same kind as the root
 | 
						|
/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
 | 
						|
/// opcode), or is the same kind of binary operator but has a use which either
 | 
						|
/// does not belong to the expression, or does belong to the expression but is
 | 
						|
/// a leaf node.  Every leaf node has at least one use that is a non-leaf node
 | 
						|
/// of the expression, while for non-leaf nodes (except for the root 'I') every
 | 
						|
/// use is a non-leaf node of the expression.
 | 
						|
///
 | 
						|
/// For example:
 | 
						|
///           expression graph        node names
 | 
						|
///
 | 
						|
///                     +        |        I
 | 
						|
///                    / \       |
 | 
						|
///                   +   +      |      A,  B
 | 
						|
///                  / \ / \     |
 | 
						|
///                 *   +   *    |    C,  D,  E
 | 
						|
///                / \ / \ / \   |
 | 
						|
///                   +   *      |      F,  G
 | 
						|
///
 | 
						|
/// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
 | 
						|
/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
 | 
						|
///
 | 
						|
/// The expression is maximal: if some instruction is a binary operator of the
 | 
						|
/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
 | 
						|
/// then the instruction also belongs to the expression, is not a leaf node of
 | 
						|
/// it, and its operands also belong to the expression (but may be leaf nodes).
 | 
						|
///
 | 
						|
/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
 | 
						|
/// order to ensure that every non-root node in the expression has *exactly one*
 | 
						|
/// use by a non-leaf node of the expression.  This destruction means that the
 | 
						|
/// caller MUST either replace 'I' with a new expression or use something like
 | 
						|
/// RewriteExprTree to put the values back in if the routine indicates that it
 | 
						|
/// made a change by returning 'true'.
 | 
						|
///
 | 
						|
/// In the above example either the right operand of A or the left operand of B
 | 
						|
/// will be replaced by undef.  If it is B's operand then this gives:
 | 
						|
///
 | 
						|
///                     +        |        I
 | 
						|
///                    / \       |
 | 
						|
///                   +   +      |      A,  B - operand of B replaced with undef
 | 
						|
///                  / \   \     |
 | 
						|
///                 *   +   *    |    C,  D,  E
 | 
						|
///                / \ / \ / \   |
 | 
						|
///                   +   *      |      F,  G
 | 
						|
///
 | 
						|
/// Note that such undef operands can only be reached by passing through 'I'.
 | 
						|
/// For example, if you visit operands recursively starting from a leaf node
 | 
						|
/// then you will never see such an undef operand unless you get back to 'I',
 | 
						|
/// which requires passing through a phi node.
 | 
						|
///
 | 
						|
/// Note that this routine may also mutate binary operators of the wrong type
 | 
						|
/// that have all uses inside the expression (i.e. only used by non-leaf nodes
 | 
						|
/// of the expression) if it can turn them into binary operators of the right
 | 
						|
/// type and thus make the expression bigger.
 | 
						|
 | 
						|
static bool LinearizeExprTree(BinaryOperator *I,
 | 
						|
                              SmallVectorImpl<RepeatedValue> &Ops) {
 | 
						|
  DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
 | 
						|
  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
 | 
						|
  unsigned Opcode = I->getOpcode();
 | 
						|
  assert(Instruction::isAssociative(Opcode) &&
 | 
						|
         Instruction::isCommutative(Opcode) &&
 | 
						|
         "Expected an associative and commutative operation!");
 | 
						|
 | 
						|
  // Visit all operands of the expression, keeping track of their weight (the
 | 
						|
  // number of paths from the expression root to the operand, or if you like
 | 
						|
  // the number of times that operand occurs in the linearized expression).
 | 
						|
  // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
 | 
						|
  // while A has weight two.
 | 
						|
 | 
						|
  // Worklist of non-leaf nodes (their operands are in the expression too) along
 | 
						|
  // with their weights, representing a certain number of paths to the operator.
 | 
						|
  // If an operator occurs in the worklist multiple times then we found multiple
 | 
						|
  // ways to get to it.
 | 
						|
  SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
 | 
						|
  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Leaves of the expression are values that either aren't the right kind of
 | 
						|
  // operation (eg: a constant, or a multiply in an add tree), or are, but have
 | 
						|
  // some uses that are not inside the expression.  For example, in I = X + X,
 | 
						|
  // X = A + B, the value X has two uses (by I) that are in the expression.  If
 | 
						|
  // X has any other uses, for example in a return instruction, then we consider
 | 
						|
  // X to be a leaf, and won't analyze it further.  When we first visit a value,
 | 
						|
  // if it has more than one use then at first we conservatively consider it to
 | 
						|
  // be a leaf.  Later, as the expression is explored, we may discover some more
 | 
						|
  // uses of the value from inside the expression.  If all uses turn out to be
 | 
						|
  // from within the expression (and the value is a binary operator of the right
 | 
						|
  // kind) then the value is no longer considered to be a leaf, and its operands
 | 
						|
  // are explored.
 | 
						|
 | 
						|
  // Leaves - Keeps track of the set of putative leaves as well as the number of
 | 
						|
  // paths to each leaf seen so far.
 | 
						|
  typedef DenseMap<Value*, APInt> LeafMap;
 | 
						|
  LeafMap Leaves; // Leaf -> Total weight so far.
 | 
						|
  SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
 | 
						|
#endif
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
 | 
						|
    I = P.first; // We examine the operands of this binary operator.
 | 
						|
 | 
						|
    for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
 | 
						|
      Value *Op = I->getOperand(OpIdx);
 | 
						|
      APInt Weight = P.second; // Number of paths to this operand.
 | 
						|
      DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
 | 
						|
      assert(!Op->use_empty() && "No uses, so how did we get to it?!");
 | 
						|
 | 
						|
      // If this is a binary operation of the right kind with only one use then
 | 
						|
      // add its operands to the expression.
 | 
						|
      if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
 | 
						|
        assert(Visited.insert(Op) && "Not first visit!");
 | 
						|
        DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
 | 
						|
        Worklist.push_back(std::make_pair(BO, Weight));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Appears to be a leaf.  Is the operand already in the set of leaves?
 | 
						|
      LeafMap::iterator It = Leaves.find(Op);
 | 
						|
      if (It == Leaves.end()) {
 | 
						|
        // Not in the leaf map.  Must be the first time we saw this operand.
 | 
						|
        assert(Visited.insert(Op) && "Not first visit!");
 | 
						|
        if (!Op->hasOneUse()) {
 | 
						|
          // This value has uses not accounted for by the expression, so it is
 | 
						|
          // not safe to modify.  Mark it as being a leaf.
 | 
						|
          DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
 | 
						|
          LeafOrder.push_back(Op);
 | 
						|
          Leaves[Op] = Weight;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // No uses outside the expression, try morphing it.
 | 
						|
      } else if (It != Leaves.end()) {
 | 
						|
        // Already in the leaf map.
 | 
						|
        assert(Visited.count(Op) && "In leaf map but not visited!");
 | 
						|
 | 
						|
        // Update the number of paths to the leaf.
 | 
						|
        IncorporateWeight(It->second, Weight, Opcode);
 | 
						|
 | 
						|
#if 0   // TODO: Re-enable once PR13021 is fixed.
 | 
						|
        // The leaf already has one use from inside the expression.  As we want
 | 
						|
        // exactly one such use, drop this new use of the leaf.
 | 
						|
        assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
 | 
						|
        I->setOperand(OpIdx, UndefValue::get(I->getType()));
 | 
						|
        MadeChange = true;
 | 
						|
 | 
						|
        // If the leaf is a binary operation of the right kind and we now see
 | 
						|
        // that its multiple original uses were in fact all by nodes belonging
 | 
						|
        // to the expression, then no longer consider it to be a leaf and add
 | 
						|
        // its operands to the expression.
 | 
						|
        if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
 | 
						|
          DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
 | 
						|
          Worklist.push_back(std::make_pair(BO, It->second));
 | 
						|
          Leaves.erase(It);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
 | 
						|
        // If we still have uses that are not accounted for by the expression
 | 
						|
        // then it is not safe to modify the value.
 | 
						|
        if (!Op->hasOneUse())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // No uses outside the expression, try morphing it.
 | 
						|
        Weight = It->second;
 | 
						|
        Leaves.erase(It); // Since the value may be morphed below.
 | 
						|
      }
 | 
						|
 | 
						|
      // At this point we have a value which, first of all, is not a binary
 | 
						|
      // expression of the right kind, and secondly, is only used inside the
 | 
						|
      // expression.  This means that it can safely be modified.  See if we
 | 
						|
      // can usefully morph it into an expression of the right kind.
 | 
						|
      assert((!isa<Instruction>(Op) ||
 | 
						|
              cast<Instruction>(Op)->getOpcode() != Opcode) &&
 | 
						|
             "Should have been handled above!");
 | 
						|
      assert(Op->hasOneUse() && "Has uses outside the expression tree!");
 | 
						|
 | 
						|
      // If this is a multiply expression, turn any internal negations into
 | 
						|
      // multiplies by -1 so they can be reassociated.
 | 
						|
      BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
 | 
						|
      if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
 | 
						|
        DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
 | 
						|
        BO = LowerNegateToMultiply(BO);
 | 
						|
        DEBUG(dbgs() << *BO << 'n');
 | 
						|
        Worklist.push_back(std::make_pair(BO, Weight));
 | 
						|
        MadeChange = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Failed to morph into an expression of the right type.  This really is
 | 
						|
      // a leaf.
 | 
						|
      DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
 | 
						|
      assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
 | 
						|
      LeafOrder.push_back(Op);
 | 
						|
      Leaves[Op] = Weight;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The leaves, repeated according to their weights, represent the linearized
 | 
						|
  // form of the expression.
 | 
						|
  for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
 | 
						|
    Value *V = LeafOrder[i];
 | 
						|
    LeafMap::iterator It = Leaves.find(V);
 | 
						|
    if (It == Leaves.end())
 | 
						|
      // Node initially thought to be a leaf wasn't.
 | 
						|
      continue;
 | 
						|
    assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
 | 
						|
    APInt Weight = It->second;
 | 
						|
    if (Weight.isMinValue())
 | 
						|
      // Leaf already output or weight reduction eliminated it.
 | 
						|
      continue;
 | 
						|
    // Ensure the leaf is only output once.
 | 
						|
    It->second = 0;
 | 
						|
    Ops.push_back(std::make_pair(V, Weight));
 | 
						|
  }
 | 
						|
 | 
						|
  // For nilpotent operations or addition there may be no operands, for example
 | 
						|
  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
 | 
						|
  // in both cases the weight reduces to 0 causing the value to be skipped.
 | 
						|
  if (Ops.empty()) {
 | 
						|
    Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
 | 
						|
    assert(Identity && "Associative operation without identity!");
 | 
						|
    Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
// RewriteExprTree - Now that the operands for this expression tree are
 | 
						|
// linearized and optimized, emit them in-order.
 | 
						|
void Reassociate::RewriteExprTree(BinaryOperator *I,
 | 
						|
                                  SmallVectorImpl<ValueEntry> &Ops) {
 | 
						|
  assert(Ops.size() > 1 && "Single values should be used directly!");
 | 
						|
 | 
						|
  // Since our optimizations should never increase the number of operations, the
 | 
						|
  // new expression can usually be written reusing the existing binary operators
 | 
						|
  // from the original expression tree, without creating any new instructions,
 | 
						|
  // though the rewritten expression may have a completely different topology.
 | 
						|
  // We take care to not change anything if the new expression will be the same
 | 
						|
  // as the original.  If more than trivial changes (like commuting operands)
 | 
						|
  // were made then we are obliged to clear out any optional subclass data like
 | 
						|
  // nsw flags.
 | 
						|
 | 
						|
  /// NodesToRewrite - Nodes from the original expression available for writing
 | 
						|
  /// the new expression into.
 | 
						|
  SmallVector<BinaryOperator*, 8> NodesToRewrite;
 | 
						|
  unsigned Opcode = I->getOpcode();
 | 
						|
  BinaryOperator *Op = I;
 | 
						|
 | 
						|
  /// NotRewritable - The operands being written will be the leaves of the new
 | 
						|
  /// expression and must not be used as inner nodes (via NodesToRewrite) by
 | 
						|
  /// mistake.  Inner nodes are always reassociable, and usually leaves are not
 | 
						|
  /// (if they were they would have been incorporated into the expression and so
 | 
						|
  /// would not be leaves), so most of the time there is no danger of this.  But
 | 
						|
  /// in rare cases a leaf may become reassociable if an optimization kills uses
 | 
						|
  /// of it, or it may momentarily become reassociable during rewriting (below)
 | 
						|
  /// due it being removed as an operand of one of its uses.  Ensure that misuse
 | 
						|
  /// of leaf nodes as inner nodes cannot occur by remembering all of the future
 | 
						|
  /// leaves and refusing to reuse any of them as inner nodes.
 | 
						|
  SmallPtrSet<Value*, 8> NotRewritable;
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
    NotRewritable.insert(Ops[i].Op);
 | 
						|
 | 
						|
  // ExpressionChanged - Non-null if the rewritten expression differs from the
 | 
						|
  // original in some non-trivial way, requiring the clearing of optional flags.
 | 
						|
  // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
 | 
						|
  BinaryOperator *ExpressionChanged = 0;
 | 
						|
  for (unsigned i = 0; ; ++i) {
 | 
						|
    // The last operation (which comes earliest in the IR) is special as both
 | 
						|
    // operands will come from Ops, rather than just one with the other being
 | 
						|
    // a subexpression.
 | 
						|
    if (i+2 == Ops.size()) {
 | 
						|
      Value *NewLHS = Ops[i].Op;
 | 
						|
      Value *NewRHS = Ops[i+1].Op;
 | 
						|
      Value *OldLHS = Op->getOperand(0);
 | 
						|
      Value *OldRHS = Op->getOperand(1);
 | 
						|
 | 
						|
      if (NewLHS == OldLHS && NewRHS == OldRHS)
 | 
						|
        // Nothing changed, leave it alone.
 | 
						|
        break;
 | 
						|
 | 
						|
      if (NewLHS == OldRHS && NewRHS == OldLHS) {
 | 
						|
        // The order of the operands was reversed.  Swap them.
 | 
						|
        DEBUG(dbgs() << "RA: " << *Op << '\n');
 | 
						|
        Op->swapOperands();
 | 
						|
        DEBUG(dbgs() << "TO: " << *Op << '\n');
 | 
						|
        MadeChange = true;
 | 
						|
        ++NumChanged;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // The new operation differs non-trivially from the original. Overwrite
 | 
						|
      // the old operands with the new ones.
 | 
						|
      DEBUG(dbgs() << "RA: " << *Op << '\n');
 | 
						|
      if (NewLHS != OldLHS) {
 | 
						|
        BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
 | 
						|
        if (BO && !NotRewritable.count(BO))
 | 
						|
          NodesToRewrite.push_back(BO);
 | 
						|
        Op->setOperand(0, NewLHS);
 | 
						|
      }
 | 
						|
      if (NewRHS != OldRHS) {
 | 
						|
        BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
 | 
						|
        if (BO && !NotRewritable.count(BO))
 | 
						|
          NodesToRewrite.push_back(BO);
 | 
						|
        Op->setOperand(1, NewRHS);
 | 
						|
      }
 | 
						|
      DEBUG(dbgs() << "TO: " << *Op << '\n');
 | 
						|
 | 
						|
      ExpressionChanged = Op;
 | 
						|
      MadeChange = true;
 | 
						|
      ++NumChanged;
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Not the last operation.  The left-hand side will be a sub-expression
 | 
						|
    // while the right-hand side will be the current element of Ops.
 | 
						|
    Value *NewRHS = Ops[i].Op;
 | 
						|
    if (NewRHS != Op->getOperand(1)) {
 | 
						|
      DEBUG(dbgs() << "RA: " << *Op << '\n');
 | 
						|
      if (NewRHS == Op->getOperand(0)) {
 | 
						|
        // The new right-hand side was already present as the left operand.  If
 | 
						|
        // we are lucky then swapping the operands will sort out both of them.
 | 
						|
        Op->swapOperands();
 | 
						|
      } else {
 | 
						|
        // Overwrite with the new right-hand side.
 | 
						|
        BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
 | 
						|
        if (BO && !NotRewritable.count(BO))
 | 
						|
          NodesToRewrite.push_back(BO);
 | 
						|
        Op->setOperand(1, NewRHS);
 | 
						|
        ExpressionChanged = Op;
 | 
						|
      }
 | 
						|
      DEBUG(dbgs() << "TO: " << *Op << '\n');
 | 
						|
      MadeChange = true;
 | 
						|
      ++NumChanged;
 | 
						|
    }
 | 
						|
 | 
						|
    // Now deal with the left-hand side.  If this is already an operation node
 | 
						|
    // from the original expression then just rewrite the rest of the expression
 | 
						|
    // into it.
 | 
						|
    BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
 | 
						|
    if (BO && !NotRewritable.count(BO)) {
 | 
						|
      Op = BO;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, grab a spare node from the original expression and use that as
 | 
						|
    // the left-hand side.  If there are no nodes left then the optimizers made
 | 
						|
    // an expression with more nodes than the original!  This usually means that
 | 
						|
    // they did something stupid but it might mean that the problem was just too
 | 
						|
    // hard (finding the mimimal number of multiplications needed to realize a
 | 
						|
    // multiplication expression is NP-complete).  Whatever the reason, smart or
 | 
						|
    // stupid, create a new node if there are none left.
 | 
						|
    BinaryOperator *NewOp;
 | 
						|
    if (NodesToRewrite.empty()) {
 | 
						|
      Constant *Undef = UndefValue::get(I->getType());
 | 
						|
      NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
 | 
						|
                                     Undef, Undef, "", I);
 | 
						|
    } else {
 | 
						|
      NewOp = NodesToRewrite.pop_back_val();
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "RA: " << *Op << '\n');
 | 
						|
    Op->setOperand(0, NewOp);
 | 
						|
    DEBUG(dbgs() << "TO: " << *Op << '\n');
 | 
						|
    ExpressionChanged = Op;
 | 
						|
    MadeChange = true;
 | 
						|
    ++NumChanged;
 | 
						|
    Op = NewOp;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the expression changed non-trivially then clear out all subclass data
 | 
						|
  // starting from the operator specified in ExpressionChanged, and compactify
 | 
						|
  // the operators to just before the expression root to guarantee that the
 | 
						|
  // expression tree is dominated by all of Ops.
 | 
						|
  if (ExpressionChanged)
 | 
						|
    do {
 | 
						|
      ExpressionChanged->clearSubclassOptionalData();
 | 
						|
      if (ExpressionChanged == I)
 | 
						|
        break;
 | 
						|
      ExpressionChanged->moveBefore(I);
 | 
						|
      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
 | 
						|
    } while (1);
 | 
						|
 | 
						|
  // Throw away any left over nodes from the original expression.
 | 
						|
  for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
 | 
						|
    RedoInsts.insert(NodesToRewrite[i]);
 | 
						|
}
 | 
						|
 | 
						|
/// NegateValue - Insert instructions before the instruction pointed to by BI,
 | 
						|
/// that computes the negative version of the value specified.  The negative
 | 
						|
/// version of the value is returned, and BI is left pointing at the instruction
 | 
						|
/// that should be processed next by the reassociation pass.
 | 
						|
static Value *NegateValue(Value *V, Instruction *BI) {
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return ConstantExpr::getNeg(C);
 | 
						|
 | 
						|
  // We are trying to expose opportunity for reassociation.  One of the things
 | 
						|
  // that we want to do to achieve this is to push a negation as deep into an
 | 
						|
  // expression chain as possible, to expose the add instructions.  In practice,
 | 
						|
  // this means that we turn this:
 | 
						|
  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
 | 
						|
  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
 | 
						|
  // the constants.  We assume that instcombine will clean up the mess later if
 | 
						|
  // we introduce tons of unnecessary negation instructions.
 | 
						|
  //
 | 
						|
  if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
 | 
						|
    // Push the negates through the add.
 | 
						|
    I->setOperand(0, NegateValue(I->getOperand(0), BI));
 | 
						|
    I->setOperand(1, NegateValue(I->getOperand(1), BI));
 | 
						|
 | 
						|
    // We must move the add instruction here, because the neg instructions do
 | 
						|
    // not dominate the old add instruction in general.  By moving it, we are
 | 
						|
    // assured that the neg instructions we just inserted dominate the
 | 
						|
    // instruction we are about to insert after them.
 | 
						|
    //
 | 
						|
    I->moveBefore(BI);
 | 
						|
    I->setName(I->getName()+".neg");
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we need to materialize a negated version of V with an instruction.
 | 
						|
  // Scan the use lists of V to see if we have one already.
 | 
						|
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
 | 
						|
    User *U = *UI;
 | 
						|
    if (!BinaryOperator::isNeg(U)) continue;
 | 
						|
 | 
						|
    // We found one!  Now we have to make sure that the definition dominates
 | 
						|
    // this use.  We do this by moving it to the entry block (if it is a
 | 
						|
    // non-instruction value) or right after the definition.  These negates will
 | 
						|
    // be zapped by reassociate later, so we don't need much finesse here.
 | 
						|
    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
 | 
						|
 | 
						|
    // Verify that the negate is in this function, V might be a constant expr.
 | 
						|
    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
 | 
						|
      continue;
 | 
						|
 | 
						|
    BasicBlock::iterator InsertPt;
 | 
						|
    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
 | 
						|
      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
 | 
						|
        InsertPt = II->getNormalDest()->begin();
 | 
						|
      } else {
 | 
						|
        InsertPt = InstInput;
 | 
						|
        ++InsertPt;
 | 
						|
      }
 | 
						|
      while (isa<PHINode>(InsertPt)) ++InsertPt;
 | 
						|
    } else {
 | 
						|
      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
 | 
						|
    }
 | 
						|
    TheNeg->moveBefore(InsertPt);
 | 
						|
    return TheNeg;
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert a 'neg' instruction that subtracts the value from zero to get the
 | 
						|
  // negation.
 | 
						|
  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
 | 
						|
}
 | 
						|
 | 
						|
/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
 | 
						|
/// X-Y into (X + -Y).
 | 
						|
static bool ShouldBreakUpSubtract(Instruction *Sub) {
 | 
						|
  // If this is a negation, we can't split it up!
 | 
						|
  if (BinaryOperator::isNeg(Sub))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't bother to break this up unless either the LHS is an associable add or
 | 
						|
  // subtract or if this is only used by one.
 | 
						|
  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
 | 
						|
      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
 | 
						|
    return true;
 | 
						|
  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
 | 
						|
      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
 | 
						|
    return true;
 | 
						|
  if (Sub->hasOneUse() &&
 | 
						|
      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
 | 
						|
       isReassociableOp(Sub->use_back(), Instruction::Sub)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
 | 
						|
/// only used by an add, transform this into (X+(0-Y)) to promote better
 | 
						|
/// reassociation.
 | 
						|
static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
 | 
						|
  // Convert a subtract into an add and a neg instruction. This allows sub
 | 
						|
  // instructions to be commuted with other add instructions.
 | 
						|
  //
 | 
						|
  // Calculate the negative value of Operand 1 of the sub instruction,
 | 
						|
  // and set it as the RHS of the add instruction we just made.
 | 
						|
  //
 | 
						|
  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
 | 
						|
  BinaryOperator *New =
 | 
						|
    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
 | 
						|
  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
 | 
						|
  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
 | 
						|
  New->takeName(Sub);
 | 
						|
 | 
						|
  // Everyone now refers to the add instruction.
 | 
						|
  Sub->replaceAllUsesWith(New);
 | 
						|
  New->setDebugLoc(Sub->getDebugLoc());
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Negated: " << *New << '\n');
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
 | 
						|
/// by one, change this into a multiply by a constant to assist with further
 | 
						|
/// reassociation.
 | 
						|
static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
 | 
						|
  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
 | 
						|
  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
 | 
						|
 | 
						|
  BinaryOperator *Mul =
 | 
						|
    BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
 | 
						|
  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
 | 
						|
  Mul->takeName(Shl);
 | 
						|
  Shl->replaceAllUsesWith(Mul);
 | 
						|
  Mul->setDebugLoc(Shl->getDebugLoc());
 | 
						|
  return Mul;
 | 
						|
}
 | 
						|
 | 
						|
/// FindInOperandList - Scan backwards and forwards among values with the same
 | 
						|
/// rank as element i to see if X exists.  If X does not exist, return i.  This
 | 
						|
/// is useful when scanning for 'x' when we see '-x' because they both get the
 | 
						|
/// same rank.
 | 
						|
static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
 | 
						|
                                  Value *X) {
 | 
						|
  unsigned XRank = Ops[i].Rank;
 | 
						|
  unsigned e = Ops.size();
 | 
						|
  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
 | 
						|
    if (Ops[j].Op == X)
 | 
						|
      return j;
 | 
						|
  // Scan backwards.
 | 
						|
  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
 | 
						|
    if (Ops[j].Op == X)
 | 
						|
      return j;
 | 
						|
  return i;
 | 
						|
}
 | 
						|
 | 
						|
/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
 | 
						|
/// and returning the result.  Insert the tree before I.
 | 
						|
static Value *EmitAddTreeOfValues(Instruction *I,
 | 
						|
                                  SmallVectorImpl<WeakVH> &Ops){
 | 
						|
  if (Ops.size() == 1) return Ops.back();
 | 
						|
 | 
						|
  Value *V1 = Ops.back();
 | 
						|
  Ops.pop_back();
 | 
						|
  Value *V2 = EmitAddTreeOfValues(I, Ops);
 | 
						|
  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveFactorFromExpression - If V is an expression tree that is a
 | 
						|
/// multiplication sequence, and if this sequence contains a multiply by Factor,
 | 
						|
/// remove Factor from the tree and return the new tree.
 | 
						|
Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
 | 
						|
  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
 | 
						|
  if (!BO) return 0;
 | 
						|
 | 
						|
  SmallVector<RepeatedValue, 8> Tree;
 | 
						|
  MadeChange |= LinearizeExprTree(BO, Tree);
 | 
						|
  SmallVector<ValueEntry, 8> Factors;
 | 
						|
  Factors.reserve(Tree.size());
 | 
						|
  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
 | 
						|
    RepeatedValue E = Tree[i];
 | 
						|
    Factors.append(E.second.getZExtValue(),
 | 
						|
                   ValueEntry(getRank(E.first), E.first));
 | 
						|
  }
 | 
						|
 | 
						|
  bool FoundFactor = false;
 | 
						|
  bool NeedsNegate = false;
 | 
						|
  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
 | 
						|
    if (Factors[i].Op == Factor) {
 | 
						|
      FoundFactor = true;
 | 
						|
      Factors.erase(Factors.begin()+i);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a negative version of this factor, remove it.
 | 
						|
    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
 | 
						|
      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
 | 
						|
        if (FC1->getValue() == -FC2->getValue()) {
 | 
						|
          FoundFactor = NeedsNegate = true;
 | 
						|
          Factors.erase(Factors.begin()+i);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FoundFactor) {
 | 
						|
    // Make sure to restore the operands to the expression tree.
 | 
						|
    RewriteExprTree(BO, Factors);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock::iterator InsertPt = BO; ++InsertPt;
 | 
						|
 | 
						|
  // If this was just a single multiply, remove the multiply and return the only
 | 
						|
  // remaining operand.
 | 
						|
  if (Factors.size() == 1) {
 | 
						|
    RedoInsts.insert(BO);
 | 
						|
    V = Factors[0].Op;
 | 
						|
  } else {
 | 
						|
    RewriteExprTree(BO, Factors);
 | 
						|
    V = BO;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NeedsNegate)
 | 
						|
    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
 | 
						|
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
 | 
						|
/// add its operands as factors, otherwise add V to the list of factors.
 | 
						|
///
 | 
						|
/// Ops is the top-level list of add operands we're trying to factor.
 | 
						|
static void FindSingleUseMultiplyFactors(Value *V,
 | 
						|
                                         SmallVectorImpl<Value*> &Factors,
 | 
						|
                                       const SmallVectorImpl<ValueEntry> &Ops) {
 | 
						|
  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
 | 
						|
  if (!BO) {
 | 
						|
    Factors.push_back(V);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, add the LHS and RHS to the list of factors.
 | 
						|
  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
 | 
						|
  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
 | 
						|
/// instruction.  This optimizes based on identities.  If it can be reduced to
 | 
						|
/// a single Value, it is returned, otherwise the Ops list is mutated as
 | 
						|
/// necessary.
 | 
						|
static Value *OptimizeAndOrXor(unsigned Opcode,
 | 
						|
                               SmallVectorImpl<ValueEntry> &Ops) {
 | 
						|
  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
 | 
						|
  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
    // First, check for X and ~X in the operand list.
 | 
						|
    assert(i < Ops.size());
 | 
						|
    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
 | 
						|
      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
 | 
						|
      unsigned FoundX = FindInOperandList(Ops, i, X);
 | 
						|
      if (FoundX != i) {
 | 
						|
        if (Opcode == Instruction::And)   // ...&X&~X = 0
 | 
						|
          return Constant::getNullValue(X->getType());
 | 
						|
 | 
						|
        if (Opcode == Instruction::Or)    // ...|X|~X = -1
 | 
						|
          return Constant::getAllOnesValue(X->getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Next, check for duplicate pairs of values, which we assume are next to
 | 
						|
    // each other, due to our sorting criteria.
 | 
						|
    assert(i < Ops.size());
 | 
						|
    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
 | 
						|
      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
 | 
						|
        // Drop duplicate values for And and Or.
 | 
						|
        Ops.erase(Ops.begin()+i);
 | 
						|
        --i; --e;
 | 
						|
        ++NumAnnihil;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Drop pairs of values for Xor.
 | 
						|
      assert(Opcode == Instruction::Xor);
 | 
						|
      if (e == 2)
 | 
						|
        return Constant::getNullValue(Ops[0].Op->getType());
 | 
						|
 | 
						|
      // Y ^ X^X -> Y
 | 
						|
      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
 | 
						|
      i -= 1; e -= 2;
 | 
						|
      ++NumAnnihil;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
 | 
						|
/// instruction with the given two operands, and return the resulting
 | 
						|
/// instruction. There are two special cases: 1) if the constant operand is 0,
 | 
						|
/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
 | 
						|
/// be returned.
 | 
						|
static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 
 | 
						|
                             const APInt &ConstOpnd) {
 | 
						|
  if (ConstOpnd != 0) {
 | 
						|
    if (!ConstOpnd.isAllOnesValue()) {
 | 
						|
      LLVMContext &Ctx = Opnd->getType()->getContext();
 | 
						|
      Instruction *I;
 | 
						|
      I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
 | 
						|
                                    "and.ra", InsertBefore);
 | 
						|
      I->setDebugLoc(InsertBefore->getDebugLoc());
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
    return Opnd;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
 | 
						|
// into "R ^ C", where C would be 0, and R is a symbolic value.
 | 
						|
//
 | 
						|
// If it was successful, true is returned, and the "R" and "C" is returned
 | 
						|
// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
 | 
						|
// and both "Res" and "ConstOpnd" remain unchanged.
 | 
						|
//  
 | 
						|
bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
 | 
						|
                                 APInt &ConstOpnd, Value *&Res) {
 | 
						|
  // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 
 | 
						|
  //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
 | 
						|
  //                       = (x & ~c1) ^ (c1 ^ c2)
 | 
						|
  // It is useful only when c1 == c2.
 | 
						|
  if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
 | 
						|
    if (!Opnd1->getValue()->hasOneUse())
 | 
						|
      return false;
 | 
						|
 | 
						|
    const APInt &C1 = Opnd1->getConstPart();
 | 
						|
    if (C1 != ConstOpnd)
 | 
						|
      return false;
 | 
						|
 | 
						|
    Value *X = Opnd1->getSymbolicPart();
 | 
						|
    Res = createAndInstr(I, X, ~C1);
 | 
						|
    // ConstOpnd was C2, now C1 ^ C2.
 | 
						|
    ConstOpnd ^= C1;
 | 
						|
 | 
						|
    if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
 | 
						|
      RedoInsts.insert(T);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
                           
 | 
						|
// Helper function of OptimizeXor(). It tries to simplify
 | 
						|
// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
 | 
						|
// symbolic value. 
 | 
						|
// 
 | 
						|
// If it was successful, true is returned, and the "R" and "C" is returned 
 | 
						|
// via "Res" and "ConstOpnd", respectively (If the entire expression is
 | 
						|
// evaluated to a constant, the Res is set to NULL); otherwise, false is
 | 
						|
// returned, and both "Res" and "ConstOpnd" remain unchanged.
 | 
						|
bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
 | 
						|
                                 APInt &ConstOpnd, Value *&Res) {
 | 
						|
  Value *X = Opnd1->getSymbolicPart();
 | 
						|
  if (X != Opnd2->getSymbolicPart())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
 | 
						|
  int DeadInstNum = 1;
 | 
						|
  if (Opnd1->getValue()->hasOneUse())
 | 
						|
    DeadInstNum++;
 | 
						|
  if (Opnd2->getValue()->hasOneUse())
 | 
						|
    DeadInstNum++;
 | 
						|
 | 
						|
  // Xor-Rule 2:
 | 
						|
  //  (x | c1) ^ (x & c2)
 | 
						|
  //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
 | 
						|
  //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
 | 
						|
  //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
 | 
						|
  //
 | 
						|
  if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
 | 
						|
    if (Opnd2->isOrExpr())
 | 
						|
      std::swap(Opnd1, Opnd2);
 | 
						|
 | 
						|
    const APInt &C1 = Opnd1->getConstPart();
 | 
						|
    const APInt &C2 = Opnd2->getConstPart();
 | 
						|
    APInt C3((~C1) ^ C2);
 | 
						|
 | 
						|
    // Do not increase code size!
 | 
						|
    if (C3 != 0 && !C3.isAllOnesValue()) {
 | 
						|
      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
 | 
						|
      if (NewInstNum > DeadInstNum)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    Res = createAndInstr(I, X, C3);
 | 
						|
    ConstOpnd ^= C1;
 | 
						|
 | 
						|
  } else if (Opnd1->isOrExpr()) {
 | 
						|
    // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
 | 
						|
    //
 | 
						|
    const APInt &C1 = Opnd1->getConstPart();
 | 
						|
    const APInt &C2 = Opnd2->getConstPart();
 | 
						|
    APInt C3 = C1 ^ C2;
 | 
						|
    
 | 
						|
    // Do not increase code size
 | 
						|
    if (C3 != 0 && !C3.isAllOnesValue()) {
 | 
						|
      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
 | 
						|
      if (NewInstNum > DeadInstNum)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    Res = createAndInstr(I, X, C3);
 | 
						|
    ConstOpnd ^= C3;
 | 
						|
  } else {
 | 
						|
    // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
 | 
						|
    //
 | 
						|
    const APInt &C1 = Opnd1->getConstPart();
 | 
						|
    const APInt &C2 = Opnd2->getConstPart();
 | 
						|
    APInt C3 = C1 ^ C2;
 | 
						|
    Res = createAndInstr(I, X, C3);
 | 
						|
  }
 | 
						|
 | 
						|
  // Put the original operands in the Redo list; hope they will be deleted
 | 
						|
  // as dead code.
 | 
						|
  if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
 | 
						|
    RedoInsts.insert(T);
 | 
						|
  if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
 | 
						|
    RedoInsts.insert(T);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
 | 
						|
/// to a single Value, it is returned, otherwise the Ops list is mutated as
 | 
						|
/// necessary.
 | 
						|
Value *Reassociate::OptimizeXor(Instruction *I,
 | 
						|
                                SmallVectorImpl<ValueEntry> &Ops) {
 | 
						|
  if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
 | 
						|
    return V;
 | 
						|
      
 | 
						|
  if (Ops.size() == 1)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  SmallVector<XorOpnd, 8> Opnds;
 | 
						|
  SmallVector<XorOpnd*, 8> OpndPtrs;
 | 
						|
  Type *Ty = Ops[0].Op->getType();
 | 
						|
  APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
 | 
						|
 | 
						|
  // Step 1: Convert ValueEntry to XorOpnd
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
    Value *V = Ops[i].Op;
 | 
						|
    if (!isa<ConstantInt>(V)) {
 | 
						|
      XorOpnd O(V);
 | 
						|
      O.setSymbolicRank(getRank(O.getSymbolicPart()));
 | 
						|
      Opnds.push_back(O);
 | 
						|
    } else
 | 
						|
      ConstOpnd ^= cast<ConstantInt>(V)->getValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
 | 
						|
  //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
 | 
						|
  //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
 | 
						|
  //  with the previous loop --- the iterator of the "Opnds" may be invalidated
 | 
						|
  //  when new elements are added to the vector.
 | 
						|
  for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
 | 
						|
    OpndPtrs.push_back(&Opnds[i]);
 | 
						|
 | 
						|
  // Step 2: Sort the Xor-Operands in a way such that the operands containing
 | 
						|
  //  the same symbolic value cluster together. For instance, the input operand
 | 
						|
  //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
 | 
						|
  //  ("x | 123", "x & 789", "y & 456").
 | 
						|
  std::sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
 | 
						|
 | 
						|
  // Step 3: Combine adjacent operands
 | 
						|
  XorOpnd *PrevOpnd = 0;
 | 
						|
  bool Changed = false;
 | 
						|
  for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
 | 
						|
    XorOpnd *CurrOpnd = OpndPtrs[i];
 | 
						|
    // The combined value
 | 
						|
    Value *CV;
 | 
						|
 | 
						|
    // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
 | 
						|
    if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
 | 
						|
      Changed = true;
 | 
						|
      if (CV)
 | 
						|
        *CurrOpnd = XorOpnd(CV);
 | 
						|
      else {
 | 
						|
        CurrOpnd->Invalidate();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
 | 
						|
      PrevOpnd = CurrOpnd;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // step 3.2: When previous and current operands share the same symbolic
 | 
						|
    //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 
 | 
						|
    //    
 | 
						|
    if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
 | 
						|
      // Remove previous operand
 | 
						|
      PrevOpnd->Invalidate();
 | 
						|
      if (CV) {
 | 
						|
        *CurrOpnd = XorOpnd(CV);
 | 
						|
        PrevOpnd = CurrOpnd;
 | 
						|
      } else {
 | 
						|
        CurrOpnd->Invalidate();
 | 
						|
        PrevOpnd = 0;
 | 
						|
      }
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Step 4: Reassemble the Ops
 | 
						|
  if (Changed) {
 | 
						|
    Ops.clear();
 | 
						|
    for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
 | 
						|
      XorOpnd &O = Opnds[i];
 | 
						|
      if (O.isInvalid())
 | 
						|
        continue;
 | 
						|
      ValueEntry VE(getRank(O.getValue()), O.getValue());
 | 
						|
      Ops.push_back(VE);
 | 
						|
    }
 | 
						|
    if (ConstOpnd != 0) {
 | 
						|
      Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
 | 
						|
      ValueEntry VE(getRank(C), C);
 | 
						|
      Ops.push_back(VE);
 | 
						|
    }
 | 
						|
    int Sz = Ops.size();
 | 
						|
    if (Sz == 1)
 | 
						|
      return Ops.back().Op;
 | 
						|
    else if (Sz == 0) {
 | 
						|
      assert(ConstOpnd == 0);
 | 
						|
      return ConstantInt::get(Ty->getContext(), ConstOpnd);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
 | 
						|
/// optimizes based on identities.  If it can be reduced to a single Value, it
 | 
						|
/// is returned, otherwise the Ops list is mutated as necessary.
 | 
						|
Value *Reassociate::OptimizeAdd(Instruction *I,
 | 
						|
                                SmallVectorImpl<ValueEntry> &Ops) {
 | 
						|
  // Scan the operand lists looking for X and -X pairs.  If we find any, we
 | 
						|
  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
 | 
						|
  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
 | 
						|
  //
 | 
						|
  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
 | 
						|
  //
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
    Value *TheOp = Ops[i].Op;
 | 
						|
    // Check to see if we've seen this operand before.  If so, we factor all
 | 
						|
    // instances of the operand together.  Due to our sorting criteria, we know
 | 
						|
    // that these need to be next to each other in the vector.
 | 
						|
    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
 | 
						|
      // Rescan the list, remove all instances of this operand from the expr.
 | 
						|
      unsigned NumFound = 0;
 | 
						|
      do {
 | 
						|
        Ops.erase(Ops.begin()+i);
 | 
						|
        ++NumFound;
 | 
						|
      } while (i != Ops.size() && Ops[i].Op == TheOp);
 | 
						|
 | 
						|
      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
 | 
						|
      ++NumFactor;
 | 
						|
 | 
						|
      // Insert a new multiply.
 | 
						|
      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
 | 
						|
      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
 | 
						|
 | 
						|
      // Now that we have inserted a multiply, optimize it. This allows us to
 | 
						|
      // handle cases that require multiple factoring steps, such as this:
 | 
						|
      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
 | 
						|
      RedoInsts.insert(cast<Instruction>(Mul));
 | 
						|
 | 
						|
      // If every add operand was a duplicate, return the multiply.
 | 
						|
      if (Ops.empty())
 | 
						|
        return Mul;
 | 
						|
 | 
						|
      // Otherwise, we had some input that didn't have the dupe, such as
 | 
						|
      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
 | 
						|
      // things being added by this operation.
 | 
						|
      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
 | 
						|
 | 
						|
      --i;
 | 
						|
      e = Ops.size();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for X and -X in the operand list.
 | 
						|
    if (!BinaryOperator::isNeg(TheOp))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Value *X = BinaryOperator::getNegArgument(TheOp);
 | 
						|
    unsigned FoundX = FindInOperandList(Ops, i, X);
 | 
						|
    if (FoundX == i)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Remove X and -X from the operand list.
 | 
						|
    if (Ops.size() == 2)
 | 
						|
      return Constant::getNullValue(X->getType());
 | 
						|
 | 
						|
    Ops.erase(Ops.begin()+i);
 | 
						|
    if (i < FoundX)
 | 
						|
      --FoundX;
 | 
						|
    else
 | 
						|
      --i;   // Need to back up an extra one.
 | 
						|
    Ops.erase(Ops.begin()+FoundX);
 | 
						|
    ++NumAnnihil;
 | 
						|
    --i;     // Revisit element.
 | 
						|
    e -= 2;  // Removed two elements.
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan the operand list, checking to see if there are any common factors
 | 
						|
  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
 | 
						|
  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
 | 
						|
  // To efficiently find this, we count the number of times a factor occurs
 | 
						|
  // for any ADD operands that are MULs.
 | 
						|
  DenseMap<Value*, unsigned> FactorOccurrences;
 | 
						|
 | 
						|
  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
 | 
						|
  // where they are actually the same multiply.
 | 
						|
  unsigned MaxOcc = 0;
 | 
						|
  Value *MaxOccVal = 0;
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
    BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
 | 
						|
    if (!BOp)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Compute all of the factors of this added value.
 | 
						|
    SmallVector<Value*, 8> Factors;
 | 
						|
    FindSingleUseMultiplyFactors(BOp, Factors, Ops);
 | 
						|
    assert(Factors.size() > 1 && "Bad linearize!");
 | 
						|
 | 
						|
    // Add one to FactorOccurrences for each unique factor in this op.
 | 
						|
    SmallPtrSet<Value*, 8> Duplicates;
 | 
						|
    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
 | 
						|
      Value *Factor = Factors[i];
 | 
						|
      if (!Duplicates.insert(Factor)) continue;
 | 
						|
 | 
						|
      unsigned Occ = ++FactorOccurrences[Factor];
 | 
						|
      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
 | 
						|
 | 
						|
      // If Factor is a negative constant, add the negated value as a factor
 | 
						|
      // because we can percolate the negate out.  Watch for minint, which
 | 
						|
      // cannot be positivified.
 | 
						|
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
 | 
						|
        if (CI->isNegative() && !CI->isMinValue(true)) {
 | 
						|
          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
 | 
						|
          assert(!Duplicates.count(Factor) &&
 | 
						|
                 "Shouldn't have two constant factors, missed a canonicalize");
 | 
						|
 | 
						|
          unsigned Occ = ++FactorOccurrences[Factor];
 | 
						|
          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If any factor occurred more than one time, we can pull it out.
 | 
						|
  if (MaxOcc > 1) {
 | 
						|
    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
 | 
						|
    ++NumFactor;
 | 
						|
 | 
						|
    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
 | 
						|
    // this, we could otherwise run into situations where removing a factor
 | 
						|
    // from an expression will drop a use of maxocc, and this can cause
 | 
						|
    // RemoveFactorFromExpression on successive values to behave differently.
 | 
						|
    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
 | 
						|
    SmallVector<WeakVH, 4> NewMulOps;
 | 
						|
    for (unsigned i = 0; i != Ops.size(); ++i) {
 | 
						|
      // Only try to remove factors from expressions we're allowed to.
 | 
						|
      BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
 | 
						|
      if (!BOp)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
 | 
						|
        // The factorized operand may occur several times.  Convert them all in
 | 
						|
        // one fell swoop.
 | 
						|
        for (unsigned j = Ops.size(); j != i;) {
 | 
						|
          --j;
 | 
						|
          if (Ops[j].Op == Ops[i].Op) {
 | 
						|
            NewMulOps.push_back(V);
 | 
						|
            Ops.erase(Ops.begin()+j);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        --i;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // No need for extra uses anymore.
 | 
						|
    delete DummyInst;
 | 
						|
 | 
						|
    unsigned NumAddedValues = NewMulOps.size();
 | 
						|
    Value *V = EmitAddTreeOfValues(I, NewMulOps);
 | 
						|
 | 
						|
    // Now that we have inserted the add tree, optimize it. This allows us to
 | 
						|
    // handle cases that require multiple factoring steps, such as this:
 | 
						|
    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
 | 
						|
    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
 | 
						|
    (void)NumAddedValues;
 | 
						|
    if (Instruction *VI = dyn_cast<Instruction>(V))
 | 
						|
      RedoInsts.insert(VI);
 | 
						|
 | 
						|
    // Create the multiply.
 | 
						|
    Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
 | 
						|
 | 
						|
    // Rerun associate on the multiply in case the inner expression turned into
 | 
						|
    // a multiply.  We want to make sure that we keep things in canonical form.
 | 
						|
    RedoInsts.insert(V2);
 | 
						|
 | 
						|
    // If every add operand included the factor (e.g. "A*B + A*C"), then the
 | 
						|
    // entire result expression is just the multiply "A*(B+C)".
 | 
						|
    if (Ops.empty())
 | 
						|
      return V2;
 | 
						|
 | 
						|
    // Otherwise, we had some input that didn't have the factor, such as
 | 
						|
    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
 | 
						|
    // things being added by this operation.
 | 
						|
    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// \brief Predicate tests whether a ValueEntry's op is in a map.
 | 
						|
  struct IsValueInMap {
 | 
						|
    const DenseMap<Value *, unsigned> ⤅
 | 
						|
 | 
						|
    IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
 | 
						|
 | 
						|
    bool operator()(const ValueEntry &Entry) {
 | 
						|
      return Map.find(Entry.Op) != Map.end();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build up a vector of value/power pairs factoring a product.
 | 
						|
///
 | 
						|
/// Given a series of multiplication operands, build a vector of factors and
 | 
						|
/// the powers each is raised to when forming the final product. Sort them in
 | 
						|
/// the order of descending power.
 | 
						|
///
 | 
						|
///      (x*x)          -> [(x, 2)]
 | 
						|
///     ((x*x)*x)       -> [(x, 3)]
 | 
						|
///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
 | 
						|
///
 | 
						|
/// \returns Whether any factors have a power greater than one.
 | 
						|
bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
 | 
						|
                                         SmallVectorImpl<Factor> &Factors) {
 | 
						|
  // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
 | 
						|
  // Compute the sum of powers of simplifiable factors.
 | 
						|
  unsigned FactorPowerSum = 0;
 | 
						|
  for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
 | 
						|
    Value *Op = Ops[Idx-1].Op;
 | 
						|
 | 
						|
    // Count the number of occurrences of this value.
 | 
						|
    unsigned Count = 1;
 | 
						|
    for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
 | 
						|
      ++Count;
 | 
						|
    // Track for simplification all factors which occur 2 or more times.
 | 
						|
    if (Count > 1)
 | 
						|
      FactorPowerSum += Count;
 | 
						|
  }
 | 
						|
 | 
						|
  // We can only simplify factors if the sum of the powers of our simplifiable
 | 
						|
  // factors is 4 or higher. When that is the case, we will *always* have
 | 
						|
  // a simplification. This is an important invariant to prevent cyclicly
 | 
						|
  // trying to simplify already minimal formations.
 | 
						|
  if (FactorPowerSum < 4)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Now gather the simplifiable factors, removing them from Ops.
 | 
						|
  FactorPowerSum = 0;
 | 
						|
  for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
 | 
						|
    Value *Op = Ops[Idx-1].Op;
 | 
						|
 | 
						|
    // Count the number of occurrences of this value.
 | 
						|
    unsigned Count = 1;
 | 
						|
    for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
 | 
						|
      ++Count;
 | 
						|
    if (Count == 1)
 | 
						|
      continue;
 | 
						|
    // Move an even number of occurrences to Factors.
 | 
						|
    Count &= ~1U;
 | 
						|
    Idx -= Count;
 | 
						|
    FactorPowerSum += Count;
 | 
						|
    Factors.push_back(Factor(Op, Count));
 | 
						|
    Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
 | 
						|
  }
 | 
						|
 | 
						|
  // None of the adjustments above should have reduced the sum of factor powers
 | 
						|
  // below our mininum of '4'.
 | 
						|
  assert(FactorPowerSum >= 4);
 | 
						|
 | 
						|
  std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build a tree of multiplies, computing the product of Ops.
 | 
						|
static Value *buildMultiplyTree(IRBuilder<> &Builder,
 | 
						|
                                SmallVectorImpl<Value*> &Ops) {
 | 
						|
  if (Ops.size() == 1)
 | 
						|
    return Ops.back();
 | 
						|
 | 
						|
  Value *LHS = Ops.pop_back_val();
 | 
						|
  do {
 | 
						|
    LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
 | 
						|
  } while (!Ops.empty());
 | 
						|
 | 
						|
  return LHS;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
 | 
						|
///
 | 
						|
/// Given a vector of values raised to various powers, where no two values are
 | 
						|
/// equal and the powers are sorted in decreasing order, compute the minimal
 | 
						|
/// DAG of multiplies to compute the final product, and return that product
 | 
						|
/// value.
 | 
						|
Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
 | 
						|
                                            SmallVectorImpl<Factor> &Factors) {
 | 
						|
  assert(Factors[0].Power);
 | 
						|
  SmallVector<Value *, 4> OuterProduct;
 | 
						|
  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
 | 
						|
       Idx < Size && Factors[Idx].Power > 0; ++Idx) {
 | 
						|
    if (Factors[Idx].Power != Factors[LastIdx].Power) {
 | 
						|
      LastIdx = Idx;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // We want to multiply across all the factors with the same power so that
 | 
						|
    // we can raise them to that power as a single entity. Build a mini tree
 | 
						|
    // for that.
 | 
						|
    SmallVector<Value *, 4> InnerProduct;
 | 
						|
    InnerProduct.push_back(Factors[LastIdx].Base);
 | 
						|
    do {
 | 
						|
      InnerProduct.push_back(Factors[Idx].Base);
 | 
						|
      ++Idx;
 | 
						|
    } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
 | 
						|
 | 
						|
    // Reset the base value of the first factor to the new expression tree.
 | 
						|
    // We'll remove all the factors with the same power in a second pass.
 | 
						|
    Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
 | 
						|
    if (Instruction *MI = dyn_cast<Instruction>(M))
 | 
						|
      RedoInsts.insert(MI);
 | 
						|
 | 
						|
    LastIdx = Idx;
 | 
						|
  }
 | 
						|
  // Unique factors with equal powers -- we've folded them into the first one's
 | 
						|
  // base.
 | 
						|
  Factors.erase(std::unique(Factors.begin(), Factors.end(),
 | 
						|
                            Factor::PowerEqual()),
 | 
						|
                Factors.end());
 | 
						|
 | 
						|
  // Iteratively collect the base of each factor with an add power into the
 | 
						|
  // outer product, and halve each power in preparation for squaring the
 | 
						|
  // expression.
 | 
						|
  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
 | 
						|
    if (Factors[Idx].Power & 1)
 | 
						|
      OuterProduct.push_back(Factors[Idx].Base);
 | 
						|
    Factors[Idx].Power >>= 1;
 | 
						|
  }
 | 
						|
  if (Factors[0].Power) {
 | 
						|
    Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
 | 
						|
    OuterProduct.push_back(SquareRoot);
 | 
						|
    OuterProduct.push_back(SquareRoot);
 | 
						|
  }
 | 
						|
  if (OuterProduct.size() == 1)
 | 
						|
    return OuterProduct.front();
 | 
						|
 | 
						|
  Value *V = buildMultiplyTree(Builder, OuterProduct);
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
Value *Reassociate::OptimizeMul(BinaryOperator *I,
 | 
						|
                                SmallVectorImpl<ValueEntry> &Ops) {
 | 
						|
  // We can only optimize the multiplies when there is a chain of more than
 | 
						|
  // three, such that a balanced tree might require fewer total multiplies.
 | 
						|
  if (Ops.size() < 4)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Try to turn linear trees of multiplies without other uses of the
 | 
						|
  // intermediate stages into minimal multiply DAGs with perfect sub-expression
 | 
						|
  // re-use.
 | 
						|
  SmallVector<Factor, 4> Factors;
 | 
						|
  if (!collectMultiplyFactors(Ops, Factors))
 | 
						|
    return 0; // All distinct factors, so nothing left for us to do.
 | 
						|
 | 
						|
  IRBuilder<> Builder(I);
 | 
						|
  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
 | 
						|
  if (Ops.empty())
 | 
						|
    return V;
 | 
						|
 | 
						|
  ValueEntry NewEntry = ValueEntry(getRank(V), V);
 | 
						|
  Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *Reassociate::OptimizeExpression(BinaryOperator *I,
 | 
						|
                                       SmallVectorImpl<ValueEntry> &Ops) {
 | 
						|
  // Now that we have the linearized expression tree, try to optimize it.
 | 
						|
  // Start by folding any constants that we found.
 | 
						|
  Constant *Cst = 0;
 | 
						|
  unsigned Opcode = I->getOpcode();
 | 
						|
  while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
 | 
						|
    Constant *C = cast<Constant>(Ops.pop_back_val().Op);
 | 
						|
    Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
 | 
						|
  }
 | 
						|
  // If there was nothing but constants then we are done.
 | 
						|
  if (Ops.empty())
 | 
						|
    return Cst;
 | 
						|
 | 
						|
  // Put the combined constant back at the end of the operand list, except if
 | 
						|
  // there is no point.  For example, an add of 0 gets dropped here, while a
 | 
						|
  // multiplication by zero turns the whole expression into zero.
 | 
						|
  if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
 | 
						|
    if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
 | 
						|
      return Cst;
 | 
						|
    Ops.push_back(ValueEntry(0, Cst));
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ops.size() == 1) return Ops[0].Op;
 | 
						|
 | 
						|
  // Handle destructive annihilation due to identities between elements in the
 | 
						|
  // argument list here.
 | 
						|
  unsigned NumOps = Ops.size();
 | 
						|
  switch (Opcode) {
 | 
						|
  default: break;
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
 | 
						|
      return Result;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Xor:
 | 
						|
    if (Value *Result = OptimizeXor(I, Ops))
 | 
						|
      return Result;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Add:
 | 
						|
    if (Value *Result = OptimizeAdd(I, Ops))
 | 
						|
      return Result;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Mul:
 | 
						|
    if (Value *Result = OptimizeMul(I, Ops))
 | 
						|
      return Result;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ops.size() != NumOps)
 | 
						|
    return OptimizeExpression(I, Ops);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// EraseInst - Zap the given instruction, adding interesting operands to the
 | 
						|
/// work list.
 | 
						|
void Reassociate::EraseInst(Instruction *I) {
 | 
						|
  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
 | 
						|
  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
 | 
						|
  // Erase the dead instruction.
 | 
						|
  ValueRankMap.erase(I);
 | 
						|
  RedoInsts.remove(I);
 | 
						|
  I->eraseFromParent();
 | 
						|
  // Optimize its operands.
 | 
						|
  SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
    if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
 | 
						|
      // If this is a node in an expression tree, climb to the expression root
 | 
						|
      // and add that since that's where optimization actually happens.
 | 
						|
      unsigned Opcode = Op->getOpcode();
 | 
						|
      while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
 | 
						|
             Visited.insert(Op))
 | 
						|
        Op = Op->use_back();
 | 
						|
      RedoInsts.insert(Op);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
 | 
						|
/// instructions is not allowed.
 | 
						|
void Reassociate::OptimizeInst(Instruction *I) {
 | 
						|
  // Only consider operations that we understand.
 | 
						|
  if (!isa<BinaryOperator>(I))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (I->getOpcode() == Instruction::Shl &&
 | 
						|
      isa<ConstantInt>(I->getOperand(1)))
 | 
						|
    // If an operand of this shift is a reassociable multiply, or if the shift
 | 
						|
    // is used by a reassociable multiply or add, turn into a multiply.
 | 
						|
    if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
 | 
						|
        (I->hasOneUse() &&
 | 
						|
         (isReassociableOp(I->use_back(), Instruction::Mul) ||
 | 
						|
          isReassociableOp(I->use_back(), Instruction::Add)))) {
 | 
						|
      Instruction *NI = ConvertShiftToMul(I);
 | 
						|
      RedoInsts.insert(I);
 | 
						|
      MadeChange = true;
 | 
						|
      I = NI;
 | 
						|
    }
 | 
						|
 | 
						|
  // Floating point binary operators are not associative, but we can still
 | 
						|
  // commute (some) of them, to canonicalize the order of their operands.
 | 
						|
  // This can potentially expose more CSE opportunities, and makes writing
 | 
						|
  // other transformations simpler.
 | 
						|
  if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
 | 
						|
    // FAdd and FMul can be commuted.
 | 
						|
    if (I->getOpcode() != Instruction::FMul &&
 | 
						|
        I->getOpcode() != Instruction::FAdd)
 | 
						|
      return;
 | 
						|
 | 
						|
    Value *LHS = I->getOperand(0);
 | 
						|
    Value *RHS = I->getOperand(1);
 | 
						|
    unsigned LHSRank = getRank(LHS);
 | 
						|
    unsigned RHSRank = getRank(RHS);
 | 
						|
 | 
						|
    // Sort the operands by rank.
 | 
						|
    if (RHSRank < LHSRank) {
 | 
						|
      I->setOperand(0, RHS);
 | 
						|
      I->setOperand(1, LHS);
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Do not reassociate boolean (i1) expressions.  We want to preserve the
 | 
						|
  // original order of evaluation for short-circuited comparisons that
 | 
						|
  // SimplifyCFG has folded to AND/OR expressions.  If the expression
 | 
						|
  // is not further optimized, it is likely to be transformed back to a
 | 
						|
  // short-circuited form for code gen, and the source order may have been
 | 
						|
  // optimized for the most likely conditions.
 | 
						|
  if (I->getType()->isIntegerTy(1))
 | 
						|
    return;
 | 
						|
 | 
						|
  // If this is a subtract instruction which is not already in negate form,
 | 
						|
  // see if we can convert it to X+-Y.
 | 
						|
  if (I->getOpcode() == Instruction::Sub) {
 | 
						|
    if (ShouldBreakUpSubtract(I)) {
 | 
						|
      Instruction *NI = BreakUpSubtract(I);
 | 
						|
      RedoInsts.insert(I);
 | 
						|
      MadeChange = true;
 | 
						|
      I = NI;
 | 
						|
    } else if (BinaryOperator::isNeg(I)) {
 | 
						|
      // Otherwise, this is a negation.  See if the operand is a multiply tree
 | 
						|
      // and if this is not an inner node of a multiply tree.
 | 
						|
      if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
 | 
						|
          (!I->hasOneUse() ||
 | 
						|
           !isReassociableOp(I->use_back(), Instruction::Mul))) {
 | 
						|
        Instruction *NI = LowerNegateToMultiply(I);
 | 
						|
        RedoInsts.insert(I);
 | 
						|
        MadeChange = true;
 | 
						|
        I = NI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this instruction is an associative binary operator, process it.
 | 
						|
  if (!I->isAssociative()) return;
 | 
						|
  BinaryOperator *BO = cast<BinaryOperator>(I);
 | 
						|
 | 
						|
  // If this is an interior node of a reassociable tree, ignore it until we
 | 
						|
  // get to the root of the tree, to avoid N^2 analysis.
 | 
						|
  unsigned Opcode = BO->getOpcode();
 | 
						|
  if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If this is an add tree that is used by a sub instruction, ignore it
 | 
						|
  // until we process the subtract.
 | 
						|
  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
 | 
						|
      cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
 | 
						|
    return;
 | 
						|
 | 
						|
  ReassociateExpression(BO);
 | 
						|
}
 | 
						|
 | 
						|
void Reassociate::ReassociateExpression(BinaryOperator *I) {
 | 
						|
 | 
						|
  // First, walk the expression tree, linearizing the tree, collecting the
 | 
						|
  // operand information.
 | 
						|
  SmallVector<RepeatedValue, 8> Tree;
 | 
						|
  MadeChange |= LinearizeExprTree(I, Tree);
 | 
						|
  SmallVector<ValueEntry, 8> Ops;
 | 
						|
  Ops.reserve(Tree.size());
 | 
						|
  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
 | 
						|
    RepeatedValue E = Tree[i];
 | 
						|
    Ops.append(E.second.getZExtValue(),
 | 
						|
               ValueEntry(getRank(E.first), E.first));
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
 | 
						|
 | 
						|
  // Now that we have linearized the tree to a list and have gathered all of
 | 
						|
  // the operands and their ranks, sort the operands by their rank.  Use a
 | 
						|
  // stable_sort so that values with equal ranks will have their relative
 | 
						|
  // positions maintained (and so the compiler is deterministic).  Note that
 | 
						|
  // this sorts so that the highest ranking values end up at the beginning of
 | 
						|
  // the vector.
 | 
						|
  std::stable_sort(Ops.begin(), Ops.end());
 | 
						|
 | 
						|
  // OptimizeExpression - Now that we have the expression tree in a convenient
 | 
						|
  // sorted form, optimize it globally if possible.
 | 
						|
  if (Value *V = OptimizeExpression(I, Ops)) {
 | 
						|
    if (V == I)
 | 
						|
      // Self-referential expression in unreachable code.
 | 
						|
      return;
 | 
						|
    // This expression tree simplified to something that isn't a tree,
 | 
						|
    // eliminate it.
 | 
						|
    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
 | 
						|
    I->replaceAllUsesWith(V);
 | 
						|
    if (Instruction *VI = dyn_cast<Instruction>(V))
 | 
						|
      VI->setDebugLoc(I->getDebugLoc());
 | 
						|
    RedoInsts.insert(I);
 | 
						|
    ++NumAnnihil;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We want to sink immediates as deeply as possible except in the case where
 | 
						|
  // this is a multiply tree used only by an add, and the immediate is a -1.
 | 
						|
  // In this case we reassociate to put the negation on the outside so that we
 | 
						|
  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
 | 
						|
  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
 | 
						|
      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
 | 
						|
      isa<ConstantInt>(Ops.back().Op) &&
 | 
						|
      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
 | 
						|
    ValueEntry Tmp = Ops.pop_back_val();
 | 
						|
    Ops.insert(Ops.begin(), Tmp);
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
 | 
						|
 | 
						|
  if (Ops.size() == 1) {
 | 
						|
    if (Ops[0].Op == I)
 | 
						|
      // Self-referential expression in unreachable code.
 | 
						|
      return;
 | 
						|
 | 
						|
    // This expression tree simplified to something that isn't a tree,
 | 
						|
    // eliminate it.
 | 
						|
    I->replaceAllUsesWith(Ops[0].Op);
 | 
						|
    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
 | 
						|
      OI->setDebugLoc(I->getDebugLoc());
 | 
						|
    RedoInsts.insert(I);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we ordered and optimized the expressions, splat them back into
 | 
						|
  // the expression tree, removing any unneeded nodes.
 | 
						|
  RewriteExprTree(I, Ops);
 | 
						|
}
 | 
						|
 | 
						|
bool Reassociate::runOnFunction(Function &F) {
 | 
						|
  // Calculate the rank map for F
 | 
						|
  BuildRankMap(F);
 | 
						|
 | 
						|
  MadeChange = false;
 | 
						|
  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
 | 
						|
    // Optimize every instruction in the basic block.
 | 
						|
    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
 | 
						|
      if (isInstructionTriviallyDead(II)) {
 | 
						|
        EraseInst(II++);
 | 
						|
      } else {
 | 
						|
        OptimizeInst(II);
 | 
						|
        assert(II->getParent() == BI && "Moved to a different block!");
 | 
						|
        ++II;
 | 
						|
      }
 | 
						|
 | 
						|
    // If this produced extra instructions to optimize, handle them now.
 | 
						|
    while (!RedoInsts.empty()) {
 | 
						|
      Instruction *I = RedoInsts.pop_back_val();
 | 
						|
      if (isInstructionTriviallyDead(I))
 | 
						|
        EraseInst(I);
 | 
						|
      else
 | 
						|
        OptimizeInst(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We are done with the rank map.
 | 
						|
  RankMap.clear();
 | 
						|
  ValueRankMap.clear();
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 |