mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Remove a couple more initializer lists and constexpr dependencies. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216998 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			693 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			693 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ADT_STRATIFIEDSETS_H
 | 
						|
#define LLVM_ADT_STRATIFIEDSETS_H
 | 
						|
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include <bitset>
 | 
						|
#include <cassert>
 | 
						|
#include <cmath>
 | 
						|
#include <limits>
 | 
						|
#include <type_traits>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
// \brief An index into Stratified Sets.
 | 
						|
typedef unsigned StratifiedIndex;
 | 
						|
// NOTE: ^ This can't be a short -- bootstrapping clang has a case where
 | 
						|
// ~1M sets exist.
 | 
						|
 | 
						|
// \brief Container of information related to a value in a StratifiedSet.
 | 
						|
struct StratifiedInfo {
 | 
						|
  StratifiedIndex Index;
 | 
						|
  // For field sensitivity, etc. we can tack attributes on to this struct.
 | 
						|
};
 | 
						|
 | 
						|
// The number of attributes that StratifiedAttrs should contain. Attributes are
 | 
						|
// described below, and 32 was an arbitrary choice because it fits nicely in 32
 | 
						|
// bits (because we use a bitset for StratifiedAttrs).
 | 
						|
static const unsigned NumStratifiedAttrs = 32;
 | 
						|
 | 
						|
// These are attributes that the users of StratifiedSets/StratifiedSetBuilders
 | 
						|
// may use for various purposes. These also have the special property of that
 | 
						|
// they are merged down. So, if set A is above set B, and one decides to set an
 | 
						|
// attribute in set A, then the attribute will automatically be set in set B.
 | 
						|
typedef std::bitset<NumStratifiedAttrs> StratifiedAttrs;
 | 
						|
 | 
						|
// \brief A "link" between two StratifiedSets.
 | 
						|
struct StratifiedLink {
 | 
						|
  // \brief This is a value used to signify "does not exist" where
 | 
						|
  // the StratifiedIndex type is used. This is used instead of
 | 
						|
  // Optional<StratifiedIndex> because Optional<StratifiedIndex> would
 | 
						|
  // eat up a considerable amount of extra memory, after struct
 | 
						|
  // padding/alignment is taken into account.
 | 
						|
  static const StratifiedIndex SetSentinel;
 | 
						|
 | 
						|
  // \brief The index for the set "above" current
 | 
						|
  StratifiedIndex Above;
 | 
						|
 | 
						|
  // \brief The link for the set "below" current
 | 
						|
  StratifiedIndex Below;
 | 
						|
 | 
						|
  // \brief Attributes for these StratifiedSets.
 | 
						|
  StratifiedAttrs Attrs;
 | 
						|
 | 
						|
  StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}
 | 
						|
 | 
						|
  bool hasBelow() const { return Below != SetSentinel; }
 | 
						|
  bool hasAbove() const { return Above != SetSentinel; }
 | 
						|
 | 
						|
  void clearBelow() { Below = SetSentinel; }
 | 
						|
  void clearAbove() { Above = SetSentinel; }
 | 
						|
};
 | 
						|
 | 
						|
// \brief These are stratified sets, as described in "Fast algorithms for
 | 
						|
// Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
 | 
						|
// R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
 | 
						|
// of Value*s. If two Value*s are in the same set, or if both sets have 
 | 
						|
// overlapping attributes, then the Value*s are said to alias.
 | 
						|
//
 | 
						|
// Sets may be related by position, meaning that one set may be considered as
 | 
						|
// above or below another. In CFL Alias Analysis, this gives us an indication
 | 
						|
// of how two variables are related; if the set of variable A is below a set
 | 
						|
// containing variable B, then at some point, a variable that has interacted
 | 
						|
// with B (or B itself) was either used in order to extract the variable A, or
 | 
						|
// was used as storage of variable A.
 | 
						|
//
 | 
						|
// Sets may also have attributes (as noted above). These attributes are
 | 
						|
// generally used for noting whether a variable in the set has interacted with
 | 
						|
// a variable whose origins we don't quite know (i.e. globals/arguments), or if
 | 
						|
// the variable may have had operations performed on it (modified in a function
 | 
						|
// call). All attributes that exist in a set A must exist in all sets marked as
 | 
						|
// below set A.
 | 
						|
template <typename T> class StratifiedSets {
 | 
						|
public:
 | 
						|
  StratifiedSets() {}
 | 
						|
 | 
						|
  StratifiedSets(DenseMap<T, StratifiedInfo> Map,
 | 
						|
                 std::vector<StratifiedLink> Links)
 | 
						|
      : Values(std::move(Map)), Links(std::move(Links)) {}
 | 
						|
 | 
						|
  StratifiedSets(StratifiedSets<T> &&Other) { *this = std::move(Other); }
 | 
						|
 | 
						|
  StratifiedSets &operator=(StratifiedSets<T> &&Other) {
 | 
						|
    Values = std::move(Other.Values);
 | 
						|
    Links = std::move(Other.Links);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  Optional<StratifiedInfo> find(const T &Elem) const {
 | 
						|
    auto Iter = Values.find(Elem);
 | 
						|
    if (Iter == Values.end()) {
 | 
						|
      return NoneType();
 | 
						|
    }
 | 
						|
    return Iter->second;
 | 
						|
  }
 | 
						|
 | 
						|
  const StratifiedLink &getLink(StratifiedIndex Index) const {
 | 
						|
    assert(inbounds(Index));
 | 
						|
    return Links[Index];
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  DenseMap<T, StratifiedInfo> Values;
 | 
						|
  std::vector<StratifiedLink> Links;
 | 
						|
 | 
						|
  bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
 | 
						|
};
 | 
						|
 | 
						|
// \brief Generic Builder class that produces StratifiedSets instances.
 | 
						|
//
 | 
						|
// The goal of this builder is to efficiently produce correct StratifiedSets
 | 
						|
// instances. To this end, we use a few tricks:
 | 
						|
//   > Set chains (A method for linking sets together)
 | 
						|
//   > Set remaps (A method for marking a set as an alias [irony?] of another)
 | 
						|
//
 | 
						|
// ==== Set chains ====
 | 
						|
// This builder has a notion of some value A being above, below, or with some
 | 
						|
// other value B:
 | 
						|
//   > The `A above B` relationship implies that there is a reference edge going
 | 
						|
//   from A to B. Namely, it notes that A can store anything in B's set.
 | 
						|
//   > The `A below B` relationship is the opposite of `A above B`. It implies
 | 
						|
//   that there's a dereference edge going from A to B.
 | 
						|
//   > The `A with B` relationship states that there's an assignment edge going
 | 
						|
//   from A to B, and that A and B should be treated as equals.
 | 
						|
//
 | 
						|
// As an example, take the following code snippet:
 | 
						|
//
 | 
						|
// %a = alloca i32, align 4
 | 
						|
// %ap = alloca i32*, align 8
 | 
						|
// %app = alloca i32**, align 8
 | 
						|
// store %a, %ap
 | 
						|
// store %ap, %app
 | 
						|
// %aw = getelementptr %ap, 0
 | 
						|
//
 | 
						|
// Given this, the follow relations exist:
 | 
						|
//   - %a below %ap & %ap above %a
 | 
						|
//   - %ap below %app & %app above %ap
 | 
						|
//   - %aw with %ap & %ap with %aw
 | 
						|
//
 | 
						|
// These relations produce the following sets:
 | 
						|
//   [{%a}, {%ap, %aw}, {%app}]
 | 
						|
//
 | 
						|
// ...Which states that the only MayAlias relationship in the above program is
 | 
						|
// between %ap and %aw.
 | 
						|
//
 | 
						|
// Life gets more complicated when we actually have logic in our programs. So,
 | 
						|
// we either must remove this logic from our programs, or make consessions for
 | 
						|
// it in our AA algorithms. In this case, we have decided to select the latter
 | 
						|
// option.
 | 
						|
//
 | 
						|
// First complication: Conditionals
 | 
						|
// Motivation:
 | 
						|
//  %ad = alloca int, align 4
 | 
						|
//  %a = alloca int*, align 8
 | 
						|
//  %b = alloca int*, align 8
 | 
						|
//  %bp = alloca int**, align 8
 | 
						|
//  %c = call i1 @SomeFunc()
 | 
						|
//  %k = select %c, %ad, %bp
 | 
						|
//  store %ad, %a
 | 
						|
//  store %b, %bp
 | 
						|
//
 | 
						|
// %k has 'with' edges to both %a and %b, which ordinarily would not be linked
 | 
						|
// together. So, we merge the set that contains %a with the set that contains
 | 
						|
// %b. We then recursively merge the set above %a with the set above %b, and
 | 
						|
// the set below  %a with the set below %b, etc. Ultimately, the sets for this
 | 
						|
// program would end up like: {%ad}, {%a, %b, %k}, {%bp}, where {%ad} is below
 | 
						|
// {%a, %b, %c} is below {%ad}.
 | 
						|
//
 | 
						|
// Second complication: Arbitrary casts
 | 
						|
// Motivation:
 | 
						|
//  %ip = alloca int*, align 8
 | 
						|
//  %ipp = alloca int**, align 8
 | 
						|
//  %i = bitcast ipp to int
 | 
						|
//  store %ip, %ipp
 | 
						|
//  store %i, %ip
 | 
						|
//
 | 
						|
// This is impossible to construct with any of the rules above, because a set
 | 
						|
// containing both {%i, %ipp} is supposed to exist, the set with %i is supposed
 | 
						|
// to be below the set with %ip, and the set with %ip is supposed to be below
 | 
						|
// the set with %ipp. Because we don't allow circular relationships like this,
 | 
						|
// we merge all concerned sets into one. So, the above code would generate a
 | 
						|
// single StratifiedSet: {%ip, %ipp, %i}.
 | 
						|
//
 | 
						|
// ==== Set remaps ====
 | 
						|
// More of an implementation detail than anything -- when merging sets, we need
 | 
						|
// to update the numbers of all of the elements mapped to those sets. Rather
 | 
						|
// than doing this at each merge, we note in the BuilderLink structure that a
 | 
						|
// remap has occurred, and use this information so we can defer renumbering set
 | 
						|
// elements until build time.
 | 
						|
template <typename T> class StratifiedSetsBuilder {
 | 
						|
  // \brief Represents a Stratified Set, with information about the Stratified
 | 
						|
  // Set above it, the set below it, and whether the current set has been
 | 
						|
  // remapped to another.
 | 
						|
  struct BuilderLink {
 | 
						|
    const StratifiedIndex Number;
 | 
						|
 | 
						|
    BuilderLink(StratifiedIndex N) : Number(N) {
 | 
						|
      Remap = StratifiedLink::SetSentinel;
 | 
						|
    }
 | 
						|
 | 
						|
    bool hasAbove() const {
 | 
						|
      assert(!isRemapped());
 | 
						|
      return Link.hasAbove();
 | 
						|
    }
 | 
						|
 | 
						|
    bool hasBelow() const {
 | 
						|
      assert(!isRemapped());
 | 
						|
      return Link.hasBelow();
 | 
						|
    }
 | 
						|
 | 
						|
    void setBelow(StratifiedIndex I) {
 | 
						|
      assert(!isRemapped());
 | 
						|
      Link.Below = I;
 | 
						|
    }
 | 
						|
 | 
						|
    void setAbove(StratifiedIndex I) {
 | 
						|
      assert(!isRemapped());
 | 
						|
      Link.Above = I;
 | 
						|
    }
 | 
						|
 | 
						|
    void clearBelow() {
 | 
						|
      assert(!isRemapped());
 | 
						|
      Link.clearBelow();
 | 
						|
    }
 | 
						|
 | 
						|
    void clearAbove() {
 | 
						|
      assert(!isRemapped());
 | 
						|
      Link.clearAbove();
 | 
						|
    }
 | 
						|
 | 
						|
    StratifiedIndex getBelow() const {
 | 
						|
      assert(!isRemapped());
 | 
						|
      assert(hasBelow());
 | 
						|
      return Link.Below;
 | 
						|
    }
 | 
						|
 | 
						|
    StratifiedIndex getAbove() const {
 | 
						|
      assert(!isRemapped());
 | 
						|
      assert(hasAbove());
 | 
						|
      return Link.Above;
 | 
						|
    }
 | 
						|
 | 
						|
    StratifiedAttrs &getAttrs() {
 | 
						|
      assert(!isRemapped());
 | 
						|
      return Link.Attrs;
 | 
						|
    }
 | 
						|
 | 
						|
    void setAttr(unsigned index) {
 | 
						|
      assert(!isRemapped());
 | 
						|
      assert(index < NumStratifiedAttrs);
 | 
						|
      Link.Attrs.set(index);
 | 
						|
    }
 | 
						|
 | 
						|
    void setAttrs(const StratifiedAttrs &other) {
 | 
						|
      assert(!isRemapped());
 | 
						|
      Link.Attrs |= other;
 | 
						|
    }
 | 
						|
 | 
						|
    bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }
 | 
						|
 | 
						|
    // \brief For initial remapping to another set
 | 
						|
    void remapTo(StratifiedIndex Other) {
 | 
						|
      assert(!isRemapped());
 | 
						|
      Remap = Other;
 | 
						|
    }
 | 
						|
 | 
						|
    StratifiedIndex getRemapIndex() const {
 | 
						|
      assert(isRemapped());
 | 
						|
      return Remap;
 | 
						|
    }
 | 
						|
 | 
						|
    // \brief Should only be called when we're already remapped.
 | 
						|
    void updateRemap(StratifiedIndex Other) {
 | 
						|
      assert(isRemapped());
 | 
						|
      Remap = Other;
 | 
						|
    }
 | 
						|
 | 
						|
    // \brief Prefer the above functions to calling things directly on what's
 | 
						|
    // returned from this -- they guard against unexpected calls when the
 | 
						|
    // current BuilderLink is remapped.
 | 
						|
    const StratifiedLink &getLink() const { return Link; }
 | 
						|
 | 
						|
  private:
 | 
						|
    StratifiedLink Link;
 | 
						|
    StratifiedIndex Remap;
 | 
						|
  };
 | 
						|
 | 
						|
  // \brief This function performs all of the set unioning/value renumbering
 | 
						|
  // that we've been putting off, and generates a vector<StratifiedLink> that
 | 
						|
  // may be placed in a StratifiedSets instance.
 | 
						|
  void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
 | 
						|
    DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
 | 
						|
    for (auto &Link : Links) {
 | 
						|
      if (Link.isRemapped()) {
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      StratifiedIndex Number = StratLinks.size();
 | 
						|
      Remaps.insert(std::make_pair(Link.Number, Number));
 | 
						|
      StratLinks.push_back(Link.getLink());
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto &Link : StratLinks) {
 | 
						|
      if (Link.hasAbove()) {
 | 
						|
        auto &Above = linksAt(Link.Above);
 | 
						|
        auto Iter = Remaps.find(Above.Number);
 | 
						|
        assert(Iter != Remaps.end());
 | 
						|
        Link.Above = Iter->second;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Link.hasBelow()) {
 | 
						|
        auto &Below = linksAt(Link.Below);
 | 
						|
        auto Iter = Remaps.find(Below.Number);
 | 
						|
        assert(Iter != Remaps.end());
 | 
						|
        Link.Below = Iter->second;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto &Pair : Values) {
 | 
						|
      auto &Info = Pair.second;
 | 
						|
      auto &Link = linksAt(Info.Index);
 | 
						|
      auto Iter = Remaps.find(Link.Number);
 | 
						|
      assert(Iter != Remaps.end());
 | 
						|
      Info.Index = Iter->second;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // \brief There's a guarantee in StratifiedLink where all bits set in a
 | 
						|
  // Link.externals will be set in all Link.externals "below" it.
 | 
						|
  static void propagateAttrs(std::vector<StratifiedLink> &Links) {
 | 
						|
    const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
 | 
						|
      const auto *Link = &Links[Idx];
 | 
						|
      while (Link->hasAbove()) {
 | 
						|
        Idx = Link->Above;
 | 
						|
        Link = &Links[Idx];
 | 
						|
      }
 | 
						|
      return Idx;
 | 
						|
    };
 | 
						|
 | 
						|
    SmallSet<StratifiedIndex, 16> Visited;
 | 
						|
    for (unsigned I = 0, E = Links.size(); I < E; ++I) {
 | 
						|
      auto CurrentIndex = getHighestParentAbove(I);
 | 
						|
      if (!Visited.insert(CurrentIndex)) {
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      while (Links[CurrentIndex].hasBelow()) {
 | 
						|
        auto &CurrentBits = Links[CurrentIndex].Attrs;
 | 
						|
        auto NextIndex = Links[CurrentIndex].Below;
 | 
						|
        auto &NextBits = Links[NextIndex].Attrs;
 | 
						|
        NextBits |= CurrentBits;
 | 
						|
        CurrentIndex = NextIndex;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  // \brief Builds a StratifiedSet from the information we've been given since
 | 
						|
  // either construction or the prior build() call.
 | 
						|
  StratifiedSets<T> build() {
 | 
						|
    std::vector<StratifiedLink> StratLinks;
 | 
						|
    finalizeSets(StratLinks);
 | 
						|
    propagateAttrs(StratLinks);
 | 
						|
    Links.clear();
 | 
						|
    return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
 | 
						|
  }
 | 
						|
 | 
						|
  std::size_t size() const { return Values.size(); }
 | 
						|
  std::size_t numSets() const { return Links.size(); }
 | 
						|
 | 
						|
  bool has(const T &Elem) const { return get(Elem).hasValue(); }
 | 
						|
 | 
						|
  bool add(const T &Main) {
 | 
						|
    if (get(Main).hasValue())
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto NewIndex = getNewUnlinkedIndex();
 | 
						|
    return addAtMerging(Main, NewIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
 | 
						|
  // set above "Main". There are some cases where this is not possible (see
 | 
						|
  // above), so we merge them such that ToAdd and Main are in the same set.
 | 
						|
  bool addAbove(const T &Main, const T &ToAdd) {
 | 
						|
    assert(has(Main));
 | 
						|
    auto Index = *indexOf(Main);
 | 
						|
    if (!linksAt(Index).hasAbove())
 | 
						|
      addLinkAbove(Index);
 | 
						|
 | 
						|
    auto Above = linksAt(Index).getAbove();
 | 
						|
    return addAtMerging(ToAdd, Above);
 | 
						|
  }
 | 
						|
 | 
						|
  // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
 | 
						|
  // set below "Main". There are some cases where this is not possible (see
 | 
						|
  // above), so we merge them such that ToAdd and Main are in the same set.
 | 
						|
  bool addBelow(const T &Main, const T &ToAdd) {
 | 
						|
    assert(has(Main));
 | 
						|
    auto Index = *indexOf(Main);
 | 
						|
    if (!linksAt(Index).hasBelow())
 | 
						|
      addLinkBelow(Index);
 | 
						|
 | 
						|
    auto Below = linksAt(Index).getBelow();
 | 
						|
    return addAtMerging(ToAdd, Below);
 | 
						|
  }
 | 
						|
 | 
						|
  bool addWith(const T &Main, const T &ToAdd) {
 | 
						|
    assert(has(Main));
 | 
						|
    auto MainIndex = *indexOf(Main);
 | 
						|
    return addAtMerging(ToAdd, MainIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  void noteAttribute(const T &Main, unsigned AttrNum) {
 | 
						|
    assert(has(Main));
 | 
						|
    assert(AttrNum < StratifiedLink::SetSentinel);
 | 
						|
    auto *Info = *get(Main);
 | 
						|
    auto &Link = linksAt(Info->Index);
 | 
						|
    Link.setAttr(AttrNum);
 | 
						|
  }
 | 
						|
 | 
						|
  void noteAttributes(const T &Main, const StratifiedAttrs &NewAttrs) {
 | 
						|
    assert(has(Main));
 | 
						|
    auto *Info = *get(Main);
 | 
						|
    auto &Link = linksAt(Info->Index);
 | 
						|
    Link.setAttrs(NewAttrs);
 | 
						|
  }
 | 
						|
 | 
						|
  StratifiedAttrs getAttributes(const T &Main) {
 | 
						|
    assert(has(Main));
 | 
						|
    auto *Info = *get(Main);
 | 
						|
    auto *Link = &linksAt(Info->Index);
 | 
						|
    auto Attrs = Link->getAttrs();
 | 
						|
    while (Link->hasAbove()) {
 | 
						|
      Link = &linksAt(Link->getAbove());
 | 
						|
      Attrs |= Link->getAttrs();
 | 
						|
    }
 | 
						|
 | 
						|
    return Attrs;
 | 
						|
  }
 | 
						|
 | 
						|
  bool getAttribute(const T &Main, unsigned AttrNum) {
 | 
						|
    assert(AttrNum < StratifiedLink::SetSentinel);
 | 
						|
    auto Attrs = getAttributes(Main);
 | 
						|
    return Attrs[AttrNum];
 | 
						|
  }
 | 
						|
 | 
						|
  // \brief Gets the attributes that have been applied to the set that Main
 | 
						|
  // belongs to. It ignores attributes in any sets above the one that Main
 | 
						|
  // resides in.
 | 
						|
  StratifiedAttrs getRawAttributes(const T &Main) {
 | 
						|
    assert(has(Main));
 | 
						|
    auto *Info = *get(Main);
 | 
						|
    auto &Link = linksAt(Info->Index);
 | 
						|
    return Link.getAttrs();
 | 
						|
  }
 | 
						|
 | 
						|
  // \brief Gets an attribute from the attributes that have been applied to the
 | 
						|
  // set that Main belongs to. It ignores attributes in any sets above the one
 | 
						|
  // that Main resides in.
 | 
						|
  bool getRawAttribute(const T &Main, unsigned AttrNum) {
 | 
						|
    assert(AttrNum < StratifiedLink::SetSentinel);
 | 
						|
    auto Attrs = getRawAttributes(Main);
 | 
						|
    return Attrs[AttrNum];
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  DenseMap<T, StratifiedInfo> Values;
 | 
						|
  std::vector<BuilderLink> Links;
 | 
						|
 | 
						|
  // \brief Adds the given element at the given index, merging sets if
 | 
						|
  // necessary.
 | 
						|
  bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
 | 
						|
    StratifiedInfo Info = {Index};
 | 
						|
    auto Pair = Values.insert(std::make_pair(ToAdd, Info));
 | 
						|
    if (Pair.second)
 | 
						|
      return true;
 | 
						|
 | 
						|
    auto &Iter = Pair.first;
 | 
						|
    auto &IterSet = linksAt(Iter->second.Index);
 | 
						|
    auto &ReqSet = linksAt(Index);
 | 
						|
 | 
						|
    // Failed to add where we wanted to. Merge the sets.
 | 
						|
    if (&IterSet != &ReqSet)
 | 
						|
      merge(IterSet.Number, ReqSet.Number);
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // \brief Gets the BuilderLink at the given index, taking set remapping into
 | 
						|
  // account.
 | 
						|
  BuilderLink &linksAt(StratifiedIndex Index) {
 | 
						|
    auto *Start = &Links[Index];
 | 
						|
    if (!Start->isRemapped())
 | 
						|
      return *Start;
 | 
						|
 | 
						|
    auto *Current = Start;
 | 
						|
    while (Current->isRemapped())
 | 
						|
      Current = &Links[Current->getRemapIndex()];
 | 
						|
 | 
						|
    auto NewRemap = Current->Number;
 | 
						|
 | 
						|
    // Run through everything that has yet to be updated, and update them to
 | 
						|
    // remap to NewRemap
 | 
						|
    Current = Start;
 | 
						|
    while (Current->isRemapped()) {
 | 
						|
      auto *Next = &Links[Current->getRemapIndex()];
 | 
						|
      Current->updateRemap(NewRemap);
 | 
						|
      Current = Next;
 | 
						|
    }
 | 
						|
 | 
						|
    return *Current;
 | 
						|
  }
 | 
						|
 | 
						|
  // \brief Merges two sets into one another. Assumes that these sets are not
 | 
						|
  // already one in the same
 | 
						|
  void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
 | 
						|
    assert(inbounds(Idx1) && inbounds(Idx2));
 | 
						|
    assert(&linksAt(Idx1) != &linksAt(Idx2) &&
 | 
						|
           "Merging a set into itself is not allowed");
 | 
						|
 | 
						|
    // CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
 | 
						|
    // both the
 | 
						|
    // given sets, and all sets between them, into one.
 | 
						|
    if (tryMergeUpwards(Idx1, Idx2))
 | 
						|
      return;
 | 
						|
 | 
						|
    if (tryMergeUpwards(Idx2, Idx1))
 | 
						|
      return;
 | 
						|
 | 
						|
    // CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
 | 
						|
    // We therefore need to merge the two chains together.
 | 
						|
    mergeDirect(Idx1, Idx2);
 | 
						|
  }
 | 
						|
 | 
						|
  // \brief Merges two sets assuming that the set at `Idx1` is unreachable from
 | 
						|
  // traversing above or below the set at `Idx2`.
 | 
						|
  void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
 | 
						|
    assert(inbounds(Idx1) && inbounds(Idx2));
 | 
						|
 | 
						|
    auto *LinksInto = &linksAt(Idx1);
 | 
						|
    auto *LinksFrom = &linksAt(Idx2);
 | 
						|
    // Merging everything above LinksInto then proceeding to merge everything
 | 
						|
    // below LinksInto becomes problematic, so we go as far "up" as possible!
 | 
						|
    while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
 | 
						|
      LinksInto = &linksAt(LinksInto->getAbove());
 | 
						|
      LinksFrom = &linksAt(LinksFrom->getAbove());
 | 
						|
    }
 | 
						|
 | 
						|
    if (LinksFrom->hasAbove()) {
 | 
						|
      LinksInto->setAbove(LinksFrom->getAbove());
 | 
						|
      auto &NewAbove = linksAt(LinksInto->getAbove());
 | 
						|
      NewAbove.setBelow(LinksInto->Number);
 | 
						|
    }
 | 
						|
 | 
						|
    // Merging strategy:
 | 
						|
    //  > If neither has links below, stop.
 | 
						|
    //  > If only `LinksInto` has links below, stop.
 | 
						|
    //  > If only `LinksFrom` has links below, reset `LinksInto.Below` to
 | 
						|
    //  match `LinksFrom.Below`
 | 
						|
    //  > If both have links above, deal with those next.
 | 
						|
    while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
 | 
						|
      auto &FromAttrs = LinksFrom->getAttrs();
 | 
						|
      LinksInto->setAttrs(FromAttrs);
 | 
						|
 | 
						|
      // Remap needs to happen after getBelow(), but before
 | 
						|
      // assignment of LinksFrom
 | 
						|
      auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
 | 
						|
      LinksFrom->remapTo(LinksInto->Number);
 | 
						|
      LinksFrom = NewLinksFrom;
 | 
						|
      LinksInto = &linksAt(LinksInto->getBelow());
 | 
						|
    }
 | 
						|
 | 
						|
    if (LinksFrom->hasBelow()) {
 | 
						|
      LinksInto->setBelow(LinksFrom->getBelow());
 | 
						|
      auto &NewBelow = linksAt(LinksInto->getBelow());
 | 
						|
      NewBelow.setAbove(LinksInto->Number);
 | 
						|
    }
 | 
						|
 | 
						|
    LinksFrom->remapTo(LinksInto->Number);
 | 
						|
  }
 | 
						|
 | 
						|
  // \brief Checks to see if lowerIndex is at a level lower than upperIndex.
 | 
						|
  // If so, it will merge lowerIndex with upperIndex (and all of the sets
 | 
						|
  // between) and return true. Otherwise, it will return false.
 | 
						|
  bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
 | 
						|
    assert(inbounds(LowerIndex) && inbounds(UpperIndex));
 | 
						|
    auto *Lower = &linksAt(LowerIndex);
 | 
						|
    auto *Upper = &linksAt(UpperIndex);
 | 
						|
    if (Lower == Upper)
 | 
						|
      return true;
 | 
						|
 | 
						|
    SmallVector<BuilderLink *, 8> Found;
 | 
						|
    auto *Current = Lower;
 | 
						|
    auto Attrs = Current->getAttrs();
 | 
						|
    while (Current->hasAbove() && Current != Upper) {
 | 
						|
      Found.push_back(Current);
 | 
						|
      Attrs |= Current->getAttrs();
 | 
						|
      Current = &linksAt(Current->getAbove());
 | 
						|
    }
 | 
						|
 | 
						|
    if (Current != Upper)
 | 
						|
      return false;
 | 
						|
 | 
						|
    Upper->setAttrs(Attrs);
 | 
						|
 | 
						|
    if (Lower->hasBelow()) {
 | 
						|
      auto NewBelowIndex = Lower->getBelow();
 | 
						|
      Upper->setBelow(NewBelowIndex);
 | 
						|
      auto &NewBelow = linksAt(NewBelowIndex);
 | 
						|
      NewBelow.setAbove(UpperIndex);
 | 
						|
    } else {
 | 
						|
      Upper->clearBelow();
 | 
						|
    }
 | 
						|
 | 
						|
    for (const auto &Ptr : Found)
 | 
						|
      Ptr->remapTo(Upper->Number);
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Optional<const StratifiedInfo *> get(const T &Val) const {
 | 
						|
    auto Result = Values.find(Val);
 | 
						|
    if (Result == Values.end())
 | 
						|
      return NoneType();
 | 
						|
    return &Result->second;
 | 
						|
  }
 | 
						|
 | 
						|
  Optional<StratifiedInfo *> get(const T &Val) {
 | 
						|
    auto Result = Values.find(Val);
 | 
						|
    if (Result == Values.end())
 | 
						|
      return NoneType();
 | 
						|
    return &Result->second;
 | 
						|
  }
 | 
						|
 | 
						|
  Optional<StratifiedIndex> indexOf(const T &Val) {
 | 
						|
    auto MaybeVal = get(Val);
 | 
						|
    if (!MaybeVal.hasValue())
 | 
						|
      return NoneType();
 | 
						|
    auto *Info = *MaybeVal;
 | 
						|
    auto &Link = linksAt(Info->Index);
 | 
						|
    return Link.Number;
 | 
						|
  }
 | 
						|
 | 
						|
  StratifiedIndex addLinkBelow(StratifiedIndex Set) {
 | 
						|
    auto At = addLinks();
 | 
						|
    Links[Set].setBelow(At);
 | 
						|
    Links[At].setAbove(Set);
 | 
						|
    return At;
 | 
						|
  }
 | 
						|
 | 
						|
  StratifiedIndex addLinkAbove(StratifiedIndex Set) {
 | 
						|
    auto At = addLinks();
 | 
						|
    Links[At].setBelow(Set);
 | 
						|
    Links[Set].setAbove(At);
 | 
						|
    return At;
 | 
						|
  }
 | 
						|
 | 
						|
  StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }
 | 
						|
 | 
						|
  StratifiedIndex addLinks() {
 | 
						|
    auto Link = Links.size();
 | 
						|
    Links.push_back(BuilderLink(Link));
 | 
						|
    return Link;
 | 
						|
  }
 | 
						|
 | 
						|
  bool inbounds(StratifiedIndex N) const { return N < Links.size(); }
 | 
						|
};
 | 
						|
}
 | 
						|
#endif // LLVM_ADT_STRATIFIEDSETS_H
 |