mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	MCOperand::Create*() methods renamed to MCOperand::create*(). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237275 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2225 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2225 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // It contains the tablegen backend that emits the decoder functions for
 | |
| // targets with fixed length instruction set.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenTarget.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/MC/MCFixedLenDisassembler.h"
 | |
| #include "llvm/Support/DataTypes.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/FormattedStream.h"
 | |
| #include "llvm/Support/LEB128.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/TableGen/Error.h"
 | |
| #include "llvm/TableGen/Record.h"
 | |
| #include <map>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "decoder-emitter"
 | |
| 
 | |
| namespace {
 | |
| struct EncodingField {
 | |
|   unsigned Base, Width, Offset;
 | |
|   EncodingField(unsigned B, unsigned W, unsigned O)
 | |
|     : Base(B), Width(W), Offset(O) { }
 | |
| };
 | |
| 
 | |
| struct OperandInfo {
 | |
|   std::vector<EncodingField> Fields;
 | |
|   std::string Decoder;
 | |
| 
 | |
|   OperandInfo(std::string D)
 | |
|     : Decoder(D) { }
 | |
| 
 | |
|   void addField(unsigned Base, unsigned Width, unsigned Offset) {
 | |
|     Fields.push_back(EncodingField(Base, Width, Offset));
 | |
|   }
 | |
| 
 | |
|   unsigned numFields() const { return Fields.size(); }
 | |
| 
 | |
|   typedef std::vector<EncodingField>::const_iterator const_iterator;
 | |
| 
 | |
|   const_iterator begin() const { return Fields.begin(); }
 | |
|   const_iterator end() const   { return Fields.end();   }
 | |
| };
 | |
| 
 | |
| typedef std::vector<uint8_t> DecoderTable;
 | |
| typedef uint32_t DecoderFixup;
 | |
| typedef std::vector<DecoderFixup> FixupList;
 | |
| typedef std::vector<FixupList> FixupScopeList;
 | |
| typedef SetVector<std::string> PredicateSet;
 | |
| typedef SetVector<std::string> DecoderSet;
 | |
| struct DecoderTableInfo {
 | |
|   DecoderTable Table;
 | |
|   FixupScopeList FixupStack;
 | |
|   PredicateSet Predicates;
 | |
|   DecoderSet Decoders;
 | |
| };
 | |
| 
 | |
| } // End anonymous namespace
 | |
| 
 | |
| namespace {
 | |
| class FixedLenDecoderEmitter {
 | |
|   const std::vector<const CodeGenInstruction*> *NumberedInstructions;
 | |
| public:
 | |
| 
 | |
|   // Defaults preserved here for documentation, even though they aren't
 | |
|   // strictly necessary given the way that this is currently being called.
 | |
|   FixedLenDecoderEmitter(RecordKeeper &R,
 | |
|                          std::string PredicateNamespace,
 | |
|                          std::string GPrefix  = "if (",
 | |
|                          std::string GPostfix = " == MCDisassembler::Fail)"
 | |
|                          " return MCDisassembler::Fail;",
 | |
|                          std::string ROK      = "MCDisassembler::Success",
 | |
|                          std::string RFail    = "MCDisassembler::Fail",
 | |
|                          std::string L        = "") :
 | |
|     Target(R),
 | |
|     PredicateNamespace(PredicateNamespace),
 | |
|     GuardPrefix(GPrefix), GuardPostfix(GPostfix),
 | |
|     ReturnOK(ROK), ReturnFail(RFail), Locals(L) {}
 | |
| 
 | |
|   // Emit the decoder state machine table.
 | |
|   void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
 | |
|                  unsigned Indentation, unsigned BitWidth,
 | |
|                  StringRef Namespace) const;
 | |
|   void emitPredicateFunction(formatted_raw_ostream &OS,
 | |
|                              PredicateSet &Predicates,
 | |
|                              unsigned Indentation) const;
 | |
|   void emitDecoderFunction(formatted_raw_ostream &OS,
 | |
|                            DecoderSet &Decoders,
 | |
|                            unsigned Indentation) const;
 | |
| 
 | |
|   // run - Output the code emitter
 | |
|   void run(raw_ostream &o);
 | |
| 
 | |
| private:
 | |
|   CodeGenTarget Target;
 | |
| public:
 | |
|   std::string PredicateNamespace;
 | |
|   std::string GuardPrefix, GuardPostfix;
 | |
|   std::string ReturnOK, ReturnFail;
 | |
|   std::string Locals;
 | |
| };
 | |
| } // End anonymous namespace
 | |
| 
 | |
| // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
 | |
| // for a bit value.
 | |
| //
 | |
| // BIT_UNFILTERED is used as the init value for a filter position.  It is used
 | |
| // only for filter processings.
 | |
| typedef enum {
 | |
|   BIT_TRUE,      // '1'
 | |
|   BIT_FALSE,     // '0'
 | |
|   BIT_UNSET,     // '?'
 | |
|   BIT_UNFILTERED // unfiltered
 | |
| } bit_value_t;
 | |
| 
 | |
| static bool ValueSet(bit_value_t V) {
 | |
|   return (V == BIT_TRUE || V == BIT_FALSE);
 | |
| }
 | |
| static bool ValueNotSet(bit_value_t V) {
 | |
|   return (V == BIT_UNSET);
 | |
| }
 | |
| static int Value(bit_value_t V) {
 | |
|   return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
 | |
| }
 | |
| static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
 | |
|   if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
 | |
|     return bit->getValue() ? BIT_TRUE : BIT_FALSE;
 | |
| 
 | |
|   // The bit is uninitialized.
 | |
|   return BIT_UNSET;
 | |
| }
 | |
| // Prints the bit value for each position.
 | |
| static void dumpBits(raw_ostream &o, const BitsInit &bits) {
 | |
|   for (unsigned index = bits.getNumBits(); index > 0; --index) {
 | |
|     switch (bitFromBits(bits, index - 1)) {
 | |
|     case BIT_TRUE:
 | |
|       o << "1";
 | |
|       break;
 | |
|     case BIT_FALSE:
 | |
|       o << "0";
 | |
|       break;
 | |
|     case BIT_UNSET:
 | |
|       o << "_";
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("unexpected return value from bitFromBits");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static BitsInit &getBitsField(const Record &def, const char *str) {
 | |
|   BitsInit *bits = def.getValueAsBitsInit(str);
 | |
|   return *bits;
 | |
| }
 | |
| 
 | |
| // Forward declaration.
 | |
| namespace {
 | |
| class FilterChooser;
 | |
| } // End anonymous namespace
 | |
| 
 | |
| // Representation of the instruction to work on.
 | |
| typedef std::vector<bit_value_t> insn_t;
 | |
| 
 | |
| /// Filter - Filter works with FilterChooser to produce the decoding tree for
 | |
| /// the ISA.
 | |
| ///
 | |
| /// It is useful to think of a Filter as governing the switch stmts of the
 | |
| /// decoding tree in a certain level.  Each case stmt delegates to an inferior
 | |
| /// FilterChooser to decide what further decoding logic to employ, or in another
 | |
| /// words, what other remaining bits to look at.  The FilterChooser eventually
 | |
| /// chooses a best Filter to do its job.
 | |
| ///
 | |
| /// This recursive scheme ends when the number of Opcodes assigned to the
 | |
| /// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
 | |
| /// the Filter/FilterChooser combo does not know how to distinguish among the
 | |
| /// Opcodes assigned.
 | |
| ///
 | |
| /// An example of a conflict is
 | |
| ///
 | |
| /// Conflict:
 | |
| ///                     111101000.00........00010000....
 | |
| ///                     111101000.00........0001........
 | |
| ///                     1111010...00........0001........
 | |
| ///                     1111010...00....................
 | |
| ///                     1111010.........................
 | |
| ///                     1111............................
 | |
| ///                     ................................
 | |
| ///     VST4q8a         111101000_00________00010000____
 | |
| ///     VST4q8b         111101000_00________00010000____
 | |
| ///
 | |
| /// The Debug output shows the path that the decoding tree follows to reach the
 | |
| /// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
 | |
| /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
 | |
| ///
 | |
| /// The encoding info in the .td files does not specify this meta information,
 | |
| /// which could have been used by the decoder to resolve the conflict.  The
 | |
| /// decoder could try to decode the even/odd register numbering and assign to
 | |
| /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
 | |
| /// version and return the Opcode since the two have the same Asm format string.
 | |
| namespace {
 | |
| class Filter {
 | |
| protected:
 | |
|   const FilterChooser *Owner;// points to the FilterChooser who owns this filter
 | |
|   unsigned StartBit; // the starting bit position
 | |
|   unsigned NumBits; // number of bits to filter
 | |
|   bool Mixed; // a mixed region contains both set and unset bits
 | |
| 
 | |
|   // Map of well-known segment value to the set of uid's with that value.
 | |
|   std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
 | |
| 
 | |
|   // Set of uid's with non-constant segment values.
 | |
|   std::vector<unsigned> VariableInstructions;
 | |
| 
 | |
|   // Map of well-known segment value to its delegate.
 | |
|   std::map<unsigned, std::unique_ptr<const FilterChooser>> FilterChooserMap;
 | |
| 
 | |
|   // Number of instructions which fall under FilteredInstructions category.
 | |
|   unsigned NumFiltered;
 | |
| 
 | |
|   // Keeps track of the last opcode in the filtered bucket.
 | |
|   unsigned LastOpcFiltered;
 | |
| 
 | |
| public:
 | |
|   unsigned getNumFiltered() const { return NumFiltered; }
 | |
|   unsigned getSingletonOpc() const {
 | |
|     assert(NumFiltered == 1);
 | |
|     return LastOpcFiltered;
 | |
|   }
 | |
|   // Return the filter chooser for the group of instructions without constant
 | |
|   // segment values.
 | |
|   const FilterChooser &getVariableFC() const {
 | |
|     assert(NumFiltered == 1);
 | |
|     assert(FilterChooserMap.size() == 1);
 | |
|     return *(FilterChooserMap.find((unsigned)-1)->second);
 | |
|   }
 | |
| 
 | |
|   Filter(Filter &&f);
 | |
|   Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
 | |
| 
 | |
|   ~Filter();
 | |
| 
 | |
|   // Divides the decoding task into sub tasks and delegates them to the
 | |
|   // inferior FilterChooser's.
 | |
|   //
 | |
|   // A special case arises when there's only one entry in the filtered
 | |
|   // instructions.  In order to unambiguously decode the singleton, we need to
 | |
|   // match the remaining undecoded encoding bits against the singleton.
 | |
|   void recurse();
 | |
| 
 | |
|   // Emit table entries to decode instructions given a segment or segments of
 | |
|   // bits.
 | |
|   void emitTableEntry(DecoderTableInfo &TableInfo) const;
 | |
| 
 | |
|   // Returns the number of fanout produced by the filter.  More fanout implies
 | |
|   // the filter distinguishes more categories of instructions.
 | |
|   unsigned usefulness() const;
 | |
| }; // End of class Filter
 | |
| } // End anonymous namespace
 | |
| 
 | |
| // These are states of our finite state machines used in FilterChooser's
 | |
| // filterProcessor() which produces the filter candidates to use.
 | |
| typedef enum {
 | |
|   ATTR_NONE,
 | |
|   ATTR_FILTERED,
 | |
|   ATTR_ALL_SET,
 | |
|   ATTR_ALL_UNSET,
 | |
|   ATTR_MIXED
 | |
| } bitAttr_t;
 | |
| 
 | |
| /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
 | |
| /// in order to perform the decoding of instructions at the current level.
 | |
| ///
 | |
| /// Decoding proceeds from the top down.  Based on the well-known encoding bits
 | |
| /// of instructions available, FilterChooser builds up the possible Filters that
 | |
| /// can further the task of decoding by distinguishing among the remaining
 | |
| /// candidate instructions.
 | |
| ///
 | |
| /// Once a filter has been chosen, it is called upon to divide the decoding task
 | |
| /// into sub-tasks and delegates them to its inferior FilterChoosers for further
 | |
| /// processings.
 | |
| ///
 | |
| /// It is useful to think of a Filter as governing the switch stmts of the
 | |
| /// decoding tree.  And each case is delegated to an inferior FilterChooser to
 | |
| /// decide what further remaining bits to look at.
 | |
| namespace {
 | |
| class FilterChooser {
 | |
| protected:
 | |
|   friend class Filter;
 | |
| 
 | |
|   // Vector of codegen instructions to choose our filter.
 | |
|   const std::vector<const CodeGenInstruction*> &AllInstructions;
 | |
| 
 | |
|   // Vector of uid's for this filter chooser to work on.
 | |
|   const std::vector<unsigned> &Opcodes;
 | |
| 
 | |
|   // Lookup table for the operand decoding of instructions.
 | |
|   const std::map<unsigned, std::vector<OperandInfo> > &Operands;
 | |
| 
 | |
|   // Vector of candidate filters.
 | |
|   std::vector<Filter> Filters;
 | |
| 
 | |
|   // Array of bit values passed down from our parent.
 | |
|   // Set to all BIT_UNFILTERED's for Parent == NULL.
 | |
|   std::vector<bit_value_t> FilterBitValues;
 | |
| 
 | |
|   // Links to the FilterChooser above us in the decoding tree.
 | |
|   const FilterChooser *Parent;
 | |
| 
 | |
|   // Index of the best filter from Filters.
 | |
|   int BestIndex;
 | |
| 
 | |
|   // Width of instructions
 | |
|   unsigned BitWidth;
 | |
| 
 | |
|   // Parent emitter
 | |
|   const FixedLenDecoderEmitter *Emitter;
 | |
| 
 | |
|   FilterChooser(const FilterChooser &) = delete;
 | |
|   void operator=(const FilterChooser &) = delete;
 | |
| public:
 | |
| 
 | |
|   FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
 | |
|                 const std::vector<unsigned> &IDs,
 | |
|                 const std::map<unsigned, std::vector<OperandInfo> > &Ops,
 | |
|                 unsigned BW,
 | |
|                 const FixedLenDecoderEmitter *E)
 | |
|     : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
 | |
|       FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1),
 | |
|       BitWidth(BW), Emitter(E) {
 | |
|     doFilter();
 | |
|   }
 | |
| 
 | |
|   FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
 | |
|                 const std::vector<unsigned> &IDs,
 | |
|                 const std::map<unsigned, std::vector<OperandInfo> > &Ops,
 | |
|                 const std::vector<bit_value_t> &ParentFilterBitValues,
 | |
|                 const FilterChooser &parent)
 | |
|     : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
 | |
|       Filters(), FilterBitValues(ParentFilterBitValues),
 | |
|       Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
 | |
|       Emitter(parent.Emitter) {
 | |
|     doFilter();
 | |
|   }
 | |
| 
 | |
|   unsigned getBitWidth() const { return BitWidth; }
 | |
| 
 | |
| protected:
 | |
|   // Populates the insn given the uid.
 | |
|   void insnWithID(insn_t &Insn, unsigned Opcode) const {
 | |
|     BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
 | |
| 
 | |
|     // We may have a SoftFail bitmask, which specifies a mask where an encoding
 | |
|     // may differ from the value in "Inst" and yet still be valid, but the
 | |
|     // disassembler should return SoftFail instead of Success.
 | |
|     //
 | |
|     // This is used for marking UNPREDICTABLE instructions in the ARM world.
 | |
|     BitsInit *SFBits =
 | |
|       AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail");
 | |
| 
 | |
|     for (unsigned i = 0; i < BitWidth; ++i) {
 | |
|       if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
 | |
|         Insn.push_back(BIT_UNSET);
 | |
|       else
 | |
|         Insn.push_back(bitFromBits(Bits, i));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Returns the record name.
 | |
|   const std::string &nameWithID(unsigned Opcode) const {
 | |
|     return AllInstructions[Opcode]->TheDef->getName();
 | |
|   }
 | |
| 
 | |
|   // Populates the field of the insn given the start position and the number of
 | |
|   // consecutive bits to scan for.
 | |
|   //
 | |
|   // Returns false if there exists any uninitialized bit value in the range.
 | |
|   // Returns true, otherwise.
 | |
|   bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
 | |
|                      unsigned NumBits) const;
 | |
| 
 | |
|   /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
 | |
|   /// filter array as a series of chars.
 | |
|   void dumpFilterArray(raw_ostream &o,
 | |
|                        const std::vector<bit_value_t> & filter) const;
 | |
| 
 | |
|   /// dumpStack - dumpStack traverses the filter chooser chain and calls
 | |
|   /// dumpFilterArray on each filter chooser up to the top level one.
 | |
|   void dumpStack(raw_ostream &o, const char *prefix) const;
 | |
| 
 | |
|   Filter &bestFilter() {
 | |
|     assert(BestIndex != -1 && "BestIndex not set");
 | |
|     return Filters[BestIndex];
 | |
|   }
 | |
| 
 | |
|   // Called from Filter::recurse() when singleton exists.  For debug purpose.
 | |
|   void SingletonExists(unsigned Opc) const;
 | |
| 
 | |
|   bool PositionFiltered(unsigned i) const {
 | |
|     return ValueSet(FilterBitValues[i]);
 | |
|   }
 | |
| 
 | |
|   // Calculates the island(s) needed to decode the instruction.
 | |
|   // This returns a lit of undecoded bits of an instructions, for example,
 | |
|   // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
 | |
|   // decoded bits in order to verify that the instruction matches the Opcode.
 | |
|   unsigned getIslands(std::vector<unsigned> &StartBits,
 | |
|                       std::vector<unsigned> &EndBits,
 | |
|                       std::vector<uint64_t> &FieldVals,
 | |
|                       const insn_t &Insn) const;
 | |
| 
 | |
|   // Emits code to check the Predicates member of an instruction are true.
 | |
|   // Returns true if predicate matches were emitted, false otherwise.
 | |
|   bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
 | |
|                           unsigned Opc) const;
 | |
| 
 | |
|   bool doesOpcodeNeedPredicate(unsigned Opc) const;
 | |
|   unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
 | |
|   void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
 | |
|                                unsigned Opc) const;
 | |
| 
 | |
|   void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
 | |
|                               unsigned Opc) const;
 | |
| 
 | |
|   // Emits table entries to decode the singleton.
 | |
|   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
 | |
|                                unsigned Opc) const;
 | |
| 
 | |
|   // Emits code to decode the singleton, and then to decode the rest.
 | |
|   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
 | |
|                                const Filter &Best) const;
 | |
| 
 | |
|   void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
 | |
|                         const OperandInfo &OpInfo) const;
 | |
| 
 | |
|   void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc) const;
 | |
|   unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc) const;
 | |
| 
 | |
|   // Assign a single filter and run with it.
 | |
|   void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
 | |
| 
 | |
|   // reportRegion is a helper function for filterProcessor to mark a region as
 | |
|   // eligible for use as a filter region.
 | |
|   void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
 | |
|                     bool AllowMixed);
 | |
| 
 | |
|   // FilterProcessor scans the well-known encoding bits of the instructions and
 | |
|   // builds up a list of candidate filters.  It chooses the best filter and
 | |
|   // recursively descends down the decoding tree.
 | |
|   bool filterProcessor(bool AllowMixed, bool Greedy = true);
 | |
| 
 | |
|   // Decides on the best configuration of filter(s) to use in order to decode
 | |
|   // the instructions.  A conflict of instructions may occur, in which case we
 | |
|   // dump the conflict set to the standard error.
 | |
|   void doFilter();
 | |
| 
 | |
| public:
 | |
|   // emitTableEntries - Emit state machine entries to decode our share of
 | |
|   // instructions.
 | |
|   void emitTableEntries(DecoderTableInfo &TableInfo) const;
 | |
| };
 | |
| } // End anonymous namespace
 | |
| 
 | |
| ///////////////////////////
 | |
| //                       //
 | |
| // Filter Implementation //
 | |
| //                       //
 | |
| ///////////////////////////
 | |
| 
 | |
| Filter::Filter(Filter &&f)
 | |
|   : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
 | |
|     FilteredInstructions(std::move(f.FilteredInstructions)),
 | |
|     VariableInstructions(std::move(f.VariableInstructions)),
 | |
|     FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered),
 | |
|     LastOpcFiltered(f.LastOpcFiltered) {
 | |
| }
 | |
| 
 | |
| Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
 | |
|                bool mixed)
 | |
|   : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
 | |
|   assert(StartBit + NumBits - 1 < Owner->BitWidth);
 | |
| 
 | |
|   NumFiltered = 0;
 | |
|   LastOpcFiltered = 0;
 | |
| 
 | |
|   for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
 | |
|     insn_t Insn;
 | |
| 
 | |
|     // Populates the insn given the uid.
 | |
|     Owner->insnWithID(Insn, Owner->Opcodes[i]);
 | |
| 
 | |
|     uint64_t Field;
 | |
|     // Scans the segment for possibly well-specified encoding bits.
 | |
|     bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
 | |
| 
 | |
|     if (ok) {
 | |
|       // The encoding bits are well-known.  Lets add the uid of the
 | |
|       // instruction into the bucket keyed off the constant field value.
 | |
|       LastOpcFiltered = Owner->Opcodes[i];
 | |
|       FilteredInstructions[Field].push_back(LastOpcFiltered);
 | |
|       ++NumFiltered;
 | |
|     } else {
 | |
|       // Some of the encoding bit(s) are unspecified.  This contributes to
 | |
|       // one additional member of "Variable" instructions.
 | |
|       VariableInstructions.push_back(Owner->Opcodes[i]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
 | |
|          && "Filter returns no instruction categories");
 | |
| }
 | |
| 
 | |
| Filter::~Filter() {
 | |
| }
 | |
| 
 | |
| // Divides the decoding task into sub tasks and delegates them to the
 | |
| // inferior FilterChooser's.
 | |
| //
 | |
| // A special case arises when there's only one entry in the filtered
 | |
| // instructions.  In order to unambiguously decode the singleton, we need to
 | |
| // match the remaining undecoded encoding bits against the singleton.
 | |
| void Filter::recurse() {
 | |
|   // Starts by inheriting our parent filter chooser's filter bit values.
 | |
|   std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
 | |
| 
 | |
|   if (!VariableInstructions.empty()) {
 | |
|     // Conservatively marks each segment position as BIT_UNSET.
 | |
|     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
 | |
|       BitValueArray[StartBit + bitIndex] = BIT_UNSET;
 | |
| 
 | |
|     // Delegates to an inferior filter chooser for further processing on this
 | |
|     // group of instructions whose segment values are variable.
 | |
|     FilterChooserMap.insert(
 | |
|         std::make_pair(-1U, llvm::make_unique<FilterChooser>(
 | |
|                                 Owner->AllInstructions, VariableInstructions,
 | |
|                                 Owner->Operands, BitValueArray, *Owner)));
 | |
|   }
 | |
| 
 | |
|   // No need to recurse for a singleton filtered instruction.
 | |
|   // See also Filter::emit*().
 | |
|   if (getNumFiltered() == 1) {
 | |
|     //Owner->SingletonExists(LastOpcFiltered);
 | |
|     assert(FilterChooserMap.size() == 1);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, create sub choosers.
 | |
|   for (const auto &Inst : FilteredInstructions) {
 | |
| 
 | |
|     // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
 | |
|     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
 | |
|       if (Inst.first & (1ULL << bitIndex))
 | |
|         BitValueArray[StartBit + bitIndex] = BIT_TRUE;
 | |
|       else
 | |
|         BitValueArray[StartBit + bitIndex] = BIT_FALSE;
 | |
|     }
 | |
| 
 | |
|     // Delegates to an inferior filter chooser for further processing on this
 | |
|     // category of instructions.
 | |
|     FilterChooserMap.insert(std::make_pair(
 | |
|         Inst.first, llvm::make_unique<FilterChooser>(
 | |
|                                 Owner->AllInstructions, Inst.second,
 | |
|                                 Owner->Operands, BitValueArray, *Owner)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
 | |
|                                uint32_t DestIdx) {
 | |
|   // Any NumToSkip fixups in the current scope can resolve to the
 | |
|   // current location.
 | |
|   for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
 | |
|                                          E = Fixups.rend();
 | |
|        I != E; ++I) {
 | |
|     // Calculate the distance from the byte following the fixup entry byte
 | |
|     // to the destination. The Target is calculated from after the 16-bit
 | |
|     // NumToSkip entry itself, so subtract two  from the displacement here
 | |
|     // to account for that.
 | |
|     uint32_t FixupIdx = *I;
 | |
|     uint32_t Delta = DestIdx - FixupIdx - 2;
 | |
|     // Our NumToSkip entries are 16-bits. Make sure our table isn't too
 | |
|     // big.
 | |
|     assert(Delta < 65536U && "disassembler decoding table too large!");
 | |
|     Table[FixupIdx] = (uint8_t)Delta;
 | |
|     Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Emit table entries to decode instructions given a segment or segments
 | |
| // of bits.
 | |
| void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
 | |
|   TableInfo.Table.push_back(MCD::OPC_ExtractField);
 | |
|   TableInfo.Table.push_back(StartBit);
 | |
|   TableInfo.Table.push_back(NumBits);
 | |
| 
 | |
|   // A new filter entry begins a new scope for fixup resolution.
 | |
|   TableInfo.FixupStack.push_back(FixupList());
 | |
| 
 | |
|   DecoderTable &Table = TableInfo.Table;
 | |
| 
 | |
|   size_t PrevFilter = 0;
 | |
|   bool HasFallthrough = false;
 | |
|   for (auto &Filter : FilterChooserMap) {
 | |
|     // Field value -1 implies a non-empty set of variable instructions.
 | |
|     // See also recurse().
 | |
|     if (Filter.first == (unsigned)-1) {
 | |
|       HasFallthrough = true;
 | |
| 
 | |
|       // Each scope should always have at least one filter value to check
 | |
|       // for.
 | |
|       assert(PrevFilter != 0 && "empty filter set!");
 | |
|       FixupList &CurScope = TableInfo.FixupStack.back();
 | |
|       // Resolve any NumToSkip fixups in the current scope.
 | |
|       resolveTableFixups(Table, CurScope, Table.size());
 | |
|       CurScope.clear();
 | |
|       PrevFilter = 0;  // Don't re-process the filter's fallthrough.
 | |
|     } else {
 | |
|       Table.push_back(MCD::OPC_FilterValue);
 | |
|       // Encode and emit the value to filter against.
 | |
|       uint8_t Buffer[8];
 | |
|       unsigned Len = encodeULEB128(Filter.first, Buffer);
 | |
|       Table.insert(Table.end(), Buffer, Buffer + Len);
 | |
|       // Reserve space for the NumToSkip entry. We'll backpatch the value
 | |
|       // later.
 | |
|       PrevFilter = Table.size();
 | |
|       Table.push_back(0);
 | |
|       Table.push_back(0);
 | |
|     }
 | |
| 
 | |
|     // We arrive at a category of instructions with the same segment value.
 | |
|     // Now delegate to the sub filter chooser for further decodings.
 | |
|     // The case may fallthrough, which happens if the remaining well-known
 | |
|     // encoding bits do not match exactly.
 | |
|     Filter.second->emitTableEntries(TableInfo);
 | |
| 
 | |
|     // Now that we've emitted the body of the handler, update the NumToSkip
 | |
|     // of the filter itself to be able to skip forward when false. Subtract
 | |
|     // two as to account for the width of the NumToSkip field itself.
 | |
|     if (PrevFilter) {
 | |
|       uint32_t NumToSkip = Table.size() - PrevFilter - 2;
 | |
|       assert(NumToSkip < 65536U && "disassembler decoding table too large!");
 | |
|       Table[PrevFilter] = (uint8_t)NumToSkip;
 | |
|       Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Any remaining unresolved fixups bubble up to the parent fixup scope.
 | |
|   assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
 | |
|   FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
 | |
|   FixupScopeList::iterator Dest = Source - 1;
 | |
|   Dest->insert(Dest->end(), Source->begin(), Source->end());
 | |
|   TableInfo.FixupStack.pop_back();
 | |
| 
 | |
|   // If there is no fallthrough, then the final filter should get fixed
 | |
|   // up according to the enclosing scope rather than the current position.
 | |
|   if (!HasFallthrough)
 | |
|     TableInfo.FixupStack.back().push_back(PrevFilter);
 | |
| }
 | |
| 
 | |
| // Returns the number of fanout produced by the filter.  More fanout implies
 | |
| // the filter distinguishes more categories of instructions.
 | |
| unsigned Filter::usefulness() const {
 | |
|   if (!VariableInstructions.empty())
 | |
|     return FilteredInstructions.size();
 | |
|   else
 | |
|     return FilteredInstructions.size() + 1;
 | |
| }
 | |
| 
 | |
| //////////////////////////////////
 | |
| //                              //
 | |
| // Filterchooser Implementation //
 | |
| //                              //
 | |
| //////////////////////////////////
 | |
| 
 | |
| // Emit the decoder state machine table.
 | |
| void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS,
 | |
|                                        DecoderTable &Table,
 | |
|                                        unsigned Indentation,
 | |
|                                        unsigned BitWidth,
 | |
|                                        StringRef Namespace) const {
 | |
|   OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
 | |
|     << BitWidth << "[] = {\n";
 | |
| 
 | |
|   Indentation += 2;
 | |
| 
 | |
|   // FIXME: We may be able to use the NumToSkip values to recover
 | |
|   // appropriate indentation levels.
 | |
|   DecoderTable::const_iterator I = Table.begin();
 | |
|   DecoderTable::const_iterator E = Table.end();
 | |
|   while (I != E) {
 | |
|     assert (I < E && "incomplete decode table entry!");
 | |
| 
 | |
|     uint64_t Pos = I - Table.begin();
 | |
|     OS << "/* " << Pos << " */";
 | |
|     OS.PadToColumn(12);
 | |
| 
 | |
|     switch (*I) {
 | |
|     default:
 | |
|       PrintFatalError("invalid decode table opcode");
 | |
|     case MCD::OPC_ExtractField: {
 | |
|       ++I;
 | |
|       unsigned Start = *I++;
 | |
|       unsigned Len = *I++;
 | |
|       OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
 | |
|         << Len << ",  // Inst{";
 | |
|       if (Len > 1)
 | |
|         OS << (Start + Len - 1) << "-";
 | |
|       OS << Start << "} ...\n";
 | |
|       break;
 | |
|     }
 | |
|     case MCD::OPC_FilterValue: {
 | |
|       ++I;
 | |
|       OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
 | |
|       // The filter value is ULEB128 encoded.
 | |
|       while (*I >= 128)
 | |
|         OS << utostr(*I++) << ", ";
 | |
|       OS << utostr(*I++) << ", ";
 | |
| 
 | |
|       // 16-bit numtoskip value.
 | |
|       uint8_t Byte = *I++;
 | |
|       uint32_t NumToSkip = Byte;
 | |
|       OS << utostr(Byte) << ", ";
 | |
|       Byte = *I++;
 | |
|       OS << utostr(Byte) << ", ";
 | |
|       NumToSkip |= Byte << 8;
 | |
|       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
 | |
|       break;
 | |
|     }
 | |
|     case MCD::OPC_CheckField: {
 | |
|       ++I;
 | |
|       unsigned Start = *I++;
 | |
|       unsigned Len = *I++;
 | |
|       OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
 | |
|         << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
 | |
|       // ULEB128 encoded field value.
 | |
|       for (; *I >= 128; ++I)
 | |
|         OS << utostr(*I) << ", ";
 | |
|       OS << utostr(*I++) << ", ";
 | |
|       // 16-bit numtoskip value.
 | |
|       uint8_t Byte = *I++;
 | |
|       uint32_t NumToSkip = Byte;
 | |
|       OS << utostr(Byte) << ", ";
 | |
|       Byte = *I++;
 | |
|       OS << utostr(Byte) << ", ";
 | |
|       NumToSkip |= Byte << 8;
 | |
|       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
 | |
|       break;
 | |
|     }
 | |
|     case MCD::OPC_CheckPredicate: {
 | |
|       ++I;
 | |
|       OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
 | |
|       for (; *I >= 128; ++I)
 | |
|         OS << utostr(*I) << ", ";
 | |
|       OS << utostr(*I++) << ", ";
 | |
| 
 | |
|       // 16-bit numtoskip value.
 | |
|       uint8_t Byte = *I++;
 | |
|       uint32_t NumToSkip = Byte;
 | |
|       OS << utostr(Byte) << ", ";
 | |
|       Byte = *I++;
 | |
|       OS << utostr(Byte) << ", ";
 | |
|       NumToSkip |= Byte << 8;
 | |
|       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
 | |
|       break;
 | |
|     }
 | |
|     case MCD::OPC_Decode: {
 | |
|       ++I;
 | |
|       // Extract the ULEB128 encoded Opcode to a buffer.
 | |
|       uint8_t Buffer[8], *p = Buffer;
 | |
|       while ((*p++ = *I++) >= 128)
 | |
|         assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
 | |
|                && "ULEB128 value too large!");
 | |
|       // Decode the Opcode value.
 | |
|       unsigned Opc = decodeULEB128(Buffer);
 | |
|       OS.indent(Indentation) << "MCD::OPC_Decode, ";
 | |
|       for (p = Buffer; *p >= 128; ++p)
 | |
|         OS << utostr(*p) << ", ";
 | |
|       OS << utostr(*p) << ", ";
 | |
| 
 | |
|       // Decoder index.
 | |
|       for (; *I >= 128; ++I)
 | |
|         OS << utostr(*I) << ", ";
 | |
|       OS << utostr(*I++) << ", ";
 | |
| 
 | |
|       OS << "// Opcode: "
 | |
|          << NumberedInstructions->at(Opc)->TheDef->getName() << "\n";
 | |
|       break;
 | |
|     }
 | |
|     case MCD::OPC_SoftFail: {
 | |
|       ++I;
 | |
|       OS.indent(Indentation) << "MCD::OPC_SoftFail";
 | |
|       // Positive mask
 | |
|       uint64_t Value = 0;
 | |
|       unsigned Shift = 0;
 | |
|       do {
 | |
|         OS << ", " << utostr(*I);
 | |
|         Value += (*I & 0x7f) << Shift;
 | |
|         Shift += 7;
 | |
|       } while (*I++ >= 128);
 | |
|       if (Value > 127)
 | |
|         OS << " /* 0x" << utohexstr(Value) << " */";
 | |
|       // Negative mask
 | |
|       Value = 0;
 | |
|       Shift = 0;
 | |
|       do {
 | |
|         OS << ", " << utostr(*I);
 | |
|         Value += (*I & 0x7f) << Shift;
 | |
|         Shift += 7;
 | |
|       } while (*I++ >= 128);
 | |
|       if (Value > 127)
 | |
|         OS << " /* 0x" << utohexstr(Value) << " */";
 | |
|       OS << ",\n";
 | |
|       break;
 | |
|     }
 | |
|     case MCD::OPC_Fail: {
 | |
|       ++I;
 | |
|       OS.indent(Indentation) << "MCD::OPC_Fail,\n";
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
|   OS.indent(Indentation) << "0\n";
 | |
| 
 | |
|   Indentation -= 2;
 | |
| 
 | |
|   OS.indent(Indentation) << "};\n\n";
 | |
| }
 | |
| 
 | |
| void FixedLenDecoderEmitter::
 | |
| emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates,
 | |
|                       unsigned Indentation) const {
 | |
|   // The predicate function is just a big switch statement based on the
 | |
|   // input predicate index.
 | |
|   OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
 | |
|     << "uint64_t Bits) {\n";
 | |
|   Indentation += 2;
 | |
|   if (!Predicates.empty()) {
 | |
|     OS.indent(Indentation) << "switch (Idx) {\n";
 | |
|     OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
 | |
|     unsigned Index = 0;
 | |
|     for (const auto &Predicate : Predicates) {
 | |
|       OS.indent(Indentation) << "case " << Index++ << ":\n";
 | |
|       OS.indent(Indentation+2) << "return (" << Predicate << ");\n";
 | |
|     }
 | |
|     OS.indent(Indentation) << "}\n";
 | |
|   } else {
 | |
|     // No case statement to emit
 | |
|     OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
 | |
|   }
 | |
|   Indentation -= 2;
 | |
|   OS.indent(Indentation) << "}\n\n";
 | |
| }
 | |
| 
 | |
| void FixedLenDecoderEmitter::
 | |
| emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders,
 | |
|                     unsigned Indentation) const {
 | |
|   // The decoder function is just a big switch statement based on the
 | |
|   // input decoder index.
 | |
|   OS.indent(Indentation) << "template<typename InsnType>\n";
 | |
|   OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
 | |
|     << " unsigned Idx, InsnType insn, MCInst &MI,\n";
 | |
|   OS.indent(Indentation) << "                                   uint64_t "
 | |
|     << "Address, const void *Decoder) {\n";
 | |
|   Indentation += 2;
 | |
|   OS.indent(Indentation) << "InsnType tmp;\n";
 | |
|   OS.indent(Indentation) << "switch (Idx) {\n";
 | |
|   OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
 | |
|   unsigned Index = 0;
 | |
|   for (const auto &Decoder : Decoders) {
 | |
|     OS.indent(Indentation) << "case " << Index++ << ":\n";
 | |
|     OS << Decoder;
 | |
|     OS.indent(Indentation+2) << "return S;\n";
 | |
|   }
 | |
|   OS.indent(Indentation) << "}\n";
 | |
|   Indentation -= 2;
 | |
|   OS.indent(Indentation) << "}\n\n";
 | |
| }
 | |
| 
 | |
| // Populates the field of the insn given the start position and the number of
 | |
| // consecutive bits to scan for.
 | |
| //
 | |
| // Returns false if and on the first uninitialized bit value encountered.
 | |
| // Returns true, otherwise.
 | |
| bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
 | |
|                                   unsigned StartBit, unsigned NumBits) const {
 | |
|   Field = 0;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumBits; ++i) {
 | |
|     if (Insn[StartBit + i] == BIT_UNSET)
 | |
|       return false;
 | |
| 
 | |
|     if (Insn[StartBit + i] == BIT_TRUE)
 | |
|       Field = Field | (1ULL << i);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
 | |
| /// filter array as a series of chars.
 | |
| void FilterChooser::dumpFilterArray(raw_ostream &o,
 | |
|                                  const std::vector<bit_value_t> &filter) const {
 | |
|   for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
 | |
|     switch (filter[bitIndex - 1]) {
 | |
|     case BIT_UNFILTERED:
 | |
|       o << ".";
 | |
|       break;
 | |
|     case BIT_UNSET:
 | |
|       o << "_";
 | |
|       break;
 | |
|     case BIT_TRUE:
 | |
|       o << "1";
 | |
|       break;
 | |
|     case BIT_FALSE:
 | |
|       o << "0";
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// dumpStack - dumpStack traverses the filter chooser chain and calls
 | |
| /// dumpFilterArray on each filter chooser up to the top level one.
 | |
| void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
 | |
|   const FilterChooser *current = this;
 | |
| 
 | |
|   while (current) {
 | |
|     o << prefix;
 | |
|     dumpFilterArray(o, current->FilterBitValues);
 | |
|     o << '\n';
 | |
|     current = current->Parent;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Called from Filter::recurse() when singleton exists.  For debug purpose.
 | |
| void FilterChooser::SingletonExists(unsigned Opc) const {
 | |
|   insn_t Insn0;
 | |
|   insnWithID(Insn0, Opc);
 | |
| 
 | |
|   errs() << "Singleton exists: " << nameWithID(Opc)
 | |
|          << " with its decoding dominating ";
 | |
|   for (unsigned i = 0; i < Opcodes.size(); ++i) {
 | |
|     if (Opcodes[i] == Opc) continue;
 | |
|     errs() << nameWithID(Opcodes[i]) << ' ';
 | |
|   }
 | |
|   errs() << '\n';
 | |
| 
 | |
|   dumpStack(errs(), "\t\t");
 | |
|   for (unsigned i = 0; i < Opcodes.size(); ++i) {
 | |
|     const std::string &Name = nameWithID(Opcodes[i]);
 | |
| 
 | |
|     errs() << '\t' << Name << " ";
 | |
|     dumpBits(errs(),
 | |
|              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
 | |
|     errs() << '\n';
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Calculates the island(s) needed to decode the instruction.
 | |
| // This returns a list of undecoded bits of an instructions, for example,
 | |
| // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
 | |
| // decoded bits in order to verify that the instruction matches the Opcode.
 | |
| unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
 | |
|                                    std::vector<unsigned> &EndBits,
 | |
|                                    std::vector<uint64_t> &FieldVals,
 | |
|                                    const insn_t &Insn) const {
 | |
|   unsigned Num, BitNo;
 | |
|   Num = BitNo = 0;
 | |
| 
 | |
|   uint64_t FieldVal = 0;
 | |
| 
 | |
|   // 0: Init
 | |
|   // 1: Water (the bit value does not affect decoding)
 | |
|   // 2: Island (well-known bit value needed for decoding)
 | |
|   int State = 0;
 | |
|   int Val = -1;
 | |
| 
 | |
|   for (unsigned i = 0; i < BitWidth; ++i) {
 | |
|     Val = Value(Insn[i]);
 | |
|     bool Filtered = PositionFiltered(i);
 | |
|     switch (State) {
 | |
|     default: llvm_unreachable("Unreachable code!");
 | |
|     case 0:
 | |
|     case 1:
 | |
|       if (Filtered || Val == -1)
 | |
|         State = 1; // Still in Water
 | |
|       else {
 | |
|         State = 2; // Into the Island
 | |
|         BitNo = 0;
 | |
|         StartBits.push_back(i);
 | |
|         FieldVal = Val;
 | |
|       }
 | |
|       break;
 | |
|     case 2:
 | |
|       if (Filtered || Val == -1) {
 | |
|         State = 1; // Into the Water
 | |
|         EndBits.push_back(i - 1);
 | |
|         FieldVals.push_back(FieldVal);
 | |
|         ++Num;
 | |
|       } else {
 | |
|         State = 2; // Still in Island
 | |
|         ++BitNo;
 | |
|         FieldVal = FieldVal | Val << BitNo;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   // If we are still in Island after the loop, do some housekeeping.
 | |
|   if (State == 2) {
 | |
|     EndBits.push_back(BitWidth - 1);
 | |
|     FieldVals.push_back(FieldVal);
 | |
|     ++Num;
 | |
|   }
 | |
| 
 | |
|   assert(StartBits.size() == Num && EndBits.size() == Num &&
 | |
|          FieldVals.size() == Num);
 | |
|   return Num;
 | |
| }
 | |
| 
 | |
| void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
 | |
|                                      const OperandInfo &OpInfo) const {
 | |
|   const std::string &Decoder = OpInfo.Decoder;
 | |
| 
 | |
|   if (OpInfo.numFields() != 1)
 | |
|     o.indent(Indentation) << "tmp = 0;\n";
 | |
| 
 | |
|   for (const EncodingField &EF : OpInfo) {
 | |
|     o.indent(Indentation) << "tmp ";
 | |
|     if (OpInfo.numFields() != 1) o << '|';
 | |
|     o << "= fieldFromInstruction"
 | |
|       << "(insn, " << EF.Base << ", " << EF.Width << ')';
 | |
|     if (OpInfo.numFields() != 1 || EF.Offset != 0)
 | |
|       o << " << " << EF.Offset;
 | |
|     o << ";\n";
 | |
|   }
 | |
| 
 | |
|   if (Decoder != "")
 | |
|     o.indent(Indentation) << Emitter->GuardPrefix << Decoder
 | |
|                           << "(MI, tmp, Address, Decoder)"
 | |
|                           << Emitter->GuardPostfix << "\n";
 | |
|   else
 | |
|     o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n";
 | |
| 
 | |
| }
 | |
| 
 | |
| void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
 | |
|                                 unsigned Opc) const {
 | |
|   for (const auto &Op : Operands.find(Opc)->second) {
 | |
|     // If a custom instruction decoder was specified, use that.
 | |
|     if (Op.numFields() == 0 && Op.Decoder.size()) {
 | |
|       OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder
 | |
|         << "(MI, insn, Address, Decoder)"
 | |
|         << Emitter->GuardPostfix << "\n";
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     emitBinaryParser(OS, Indentation, Op);
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
 | |
|                                         unsigned Opc) const {
 | |
|   // Build up the predicate string.
 | |
|   SmallString<256> Decoder;
 | |
|   // FIXME: emitDecoder() function can take a buffer directly rather than
 | |
|   // a stream.
 | |
|   raw_svector_ostream S(Decoder);
 | |
|   unsigned I = 4;
 | |
|   emitDecoder(S, I, Opc);
 | |
|   S.flush();
 | |
| 
 | |
|   // Using the full decoder string as the key value here is a bit
 | |
|   // heavyweight, but is effective. If the string comparisons become a
 | |
|   // performance concern, we can implement a mangling of the predicate
 | |
|   // data easilly enough with a map back to the actual string. That's
 | |
|   // overkill for now, though.
 | |
| 
 | |
|   // Make sure the predicate is in the table.
 | |
|   Decoders.insert(StringRef(Decoder));
 | |
|   // Now figure out the index for when we write out the table.
 | |
|   DecoderSet::const_iterator P = std::find(Decoders.begin(),
 | |
|                                            Decoders.end(),
 | |
|                                            Decoder.str());
 | |
|   return (unsigned)(P - Decoders.begin());
 | |
| }
 | |
| 
 | |
| static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
 | |
|                                      const std::string &PredicateNamespace) {
 | |
|   if (str[0] == '!')
 | |
|     o << "!(Bits & " << PredicateNamespace << "::"
 | |
|       << str.slice(1,str.size()) << ")";
 | |
|   else
 | |
|     o << "(Bits & " << PredicateNamespace << "::" << str << ")";
 | |
| }
 | |
| 
 | |
| bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
 | |
|                                        unsigned Opc) const {
 | |
|   ListInit *Predicates =
 | |
|     AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
 | |
|   bool IsFirstEmission = true;
 | |
|   for (unsigned i = 0; i < Predicates->getSize(); ++i) {
 | |
|     Record *Pred = Predicates->getElementAsRecord(i);
 | |
|     if (!Pred->getValue("AssemblerMatcherPredicate"))
 | |
|       continue;
 | |
| 
 | |
|     std::string P = Pred->getValueAsString("AssemblerCondString");
 | |
| 
 | |
|     if (!P.length())
 | |
|       continue;
 | |
| 
 | |
|     if (!IsFirstEmission)
 | |
|       o << " && ";
 | |
| 
 | |
|     StringRef SR(P);
 | |
|     std::pair<StringRef, StringRef> pairs = SR.split(',');
 | |
|     while (pairs.second.size()) {
 | |
|       emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
 | |
|       o << " && ";
 | |
|       pairs = pairs.second.split(',');
 | |
|     }
 | |
|     emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
 | |
|     IsFirstEmission = false;
 | |
|   }
 | |
|   return Predicates->getSize() > 0;
 | |
| }
 | |
| 
 | |
| bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
 | |
|   ListInit *Predicates =
 | |
|     AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
 | |
|   for (unsigned i = 0; i < Predicates->getSize(); ++i) {
 | |
|     Record *Pred = Predicates->getElementAsRecord(i);
 | |
|     if (!Pred->getValue("AssemblerMatcherPredicate"))
 | |
|       continue;
 | |
| 
 | |
|     std::string P = Pred->getValueAsString("AssemblerCondString");
 | |
| 
 | |
|     if (!P.length())
 | |
|       continue;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
 | |
|                                           StringRef Predicate) const {
 | |
|   // Using the full predicate string as the key value here is a bit
 | |
|   // heavyweight, but is effective. If the string comparisons become a
 | |
|   // performance concern, we can implement a mangling of the predicate
 | |
|   // data easilly enough with a map back to the actual string. That's
 | |
|   // overkill for now, though.
 | |
| 
 | |
|   // Make sure the predicate is in the table.
 | |
|   TableInfo.Predicates.insert(Predicate.str());
 | |
|   // Now figure out the index for when we write out the table.
 | |
|   PredicateSet::const_iterator P = std::find(TableInfo.Predicates.begin(),
 | |
|                                              TableInfo.Predicates.end(),
 | |
|                                              Predicate.str());
 | |
|   return (unsigned)(P - TableInfo.Predicates.begin());
 | |
| }
 | |
| 
 | |
| void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
 | |
|                                             unsigned Opc) const {
 | |
|   if (!doesOpcodeNeedPredicate(Opc))
 | |
|     return;
 | |
| 
 | |
|   // Build up the predicate string.
 | |
|   SmallString<256> Predicate;
 | |
|   // FIXME: emitPredicateMatch() functions can take a buffer directly rather
 | |
|   // than a stream.
 | |
|   raw_svector_ostream PS(Predicate);
 | |
|   unsigned I = 0;
 | |
|   emitPredicateMatch(PS, I, Opc);
 | |
| 
 | |
|   // Figure out the index into the predicate table for the predicate just
 | |
|   // computed.
 | |
|   unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
 | |
|   SmallString<16> PBytes;
 | |
|   raw_svector_ostream S(PBytes);
 | |
|   encodeULEB128(PIdx, S);
 | |
|   S.flush();
 | |
| 
 | |
|   TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
 | |
|   // Predicate index
 | |
|   for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
 | |
|     TableInfo.Table.push_back(PBytes[i]);
 | |
|   // Push location for NumToSkip backpatching.
 | |
|   TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
 | |
|   TableInfo.Table.push_back(0);
 | |
|   TableInfo.Table.push_back(0);
 | |
| }
 | |
| 
 | |
| void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
 | |
|                                            unsigned Opc) const {
 | |
|   BitsInit *SFBits =
 | |
|     AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail");
 | |
|   if (!SFBits) return;
 | |
|   BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst");
 | |
| 
 | |
|   APInt PositiveMask(BitWidth, 0ULL);
 | |
|   APInt NegativeMask(BitWidth, 0ULL);
 | |
|   for (unsigned i = 0; i < BitWidth; ++i) {
 | |
|     bit_value_t B = bitFromBits(*SFBits, i);
 | |
|     bit_value_t IB = bitFromBits(*InstBits, i);
 | |
| 
 | |
|     if (B != BIT_TRUE) continue;
 | |
| 
 | |
|     switch (IB) {
 | |
|     case BIT_FALSE:
 | |
|       // The bit is meant to be false, so emit a check to see if it is true.
 | |
|       PositiveMask.setBit(i);
 | |
|       break;
 | |
|     case BIT_TRUE:
 | |
|       // The bit is meant to be true, so emit a check to see if it is false.
 | |
|       NegativeMask.setBit(i);
 | |
|       break;
 | |
|     default:
 | |
|       // The bit is not set; this must be an error!
 | |
|       StringRef Name = AllInstructions[Opc]->TheDef->getName();
 | |
|       errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << Name
 | |
|              << " is set but Inst{" << i << "} is unset!\n"
 | |
|              << "  - You can only mark a bit as SoftFail if it is fully defined"
 | |
|              << " (1/0 - not '?') in Inst\n";
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool NeedPositiveMask = PositiveMask.getBoolValue();
 | |
|   bool NeedNegativeMask = NegativeMask.getBoolValue();
 | |
| 
 | |
|   if (!NeedPositiveMask && !NeedNegativeMask)
 | |
|     return;
 | |
| 
 | |
|   TableInfo.Table.push_back(MCD::OPC_SoftFail);
 | |
| 
 | |
|   SmallString<16> MaskBytes;
 | |
|   raw_svector_ostream S(MaskBytes);
 | |
|   if (NeedPositiveMask) {
 | |
|     encodeULEB128(PositiveMask.getZExtValue(), S);
 | |
|     S.flush();
 | |
|     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
 | |
|       TableInfo.Table.push_back(MaskBytes[i]);
 | |
|   } else
 | |
|     TableInfo.Table.push_back(0);
 | |
|   if (NeedNegativeMask) {
 | |
|     MaskBytes.clear();
 | |
|     S.resync();
 | |
|     encodeULEB128(NegativeMask.getZExtValue(), S);
 | |
|     S.flush();
 | |
|     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
 | |
|       TableInfo.Table.push_back(MaskBytes[i]);
 | |
|   } else
 | |
|     TableInfo.Table.push_back(0);
 | |
| }
 | |
| 
 | |
| // Emits table entries to decode the singleton.
 | |
| void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
 | |
|                                             unsigned Opc) const {
 | |
|   std::vector<unsigned> StartBits;
 | |
|   std::vector<unsigned> EndBits;
 | |
|   std::vector<uint64_t> FieldVals;
 | |
|   insn_t Insn;
 | |
|   insnWithID(Insn, Opc);
 | |
| 
 | |
|   // Look for islands of undecoded bits of the singleton.
 | |
|   getIslands(StartBits, EndBits, FieldVals, Insn);
 | |
| 
 | |
|   unsigned Size = StartBits.size();
 | |
| 
 | |
|   // Emit the predicate table entry if one is needed.
 | |
|   emitPredicateTableEntry(TableInfo, Opc);
 | |
| 
 | |
|   // Check any additional encoding fields needed.
 | |
|   for (unsigned I = Size; I != 0; --I) {
 | |
|     unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
 | |
|     TableInfo.Table.push_back(MCD::OPC_CheckField);
 | |
|     TableInfo.Table.push_back(StartBits[I-1]);
 | |
|     TableInfo.Table.push_back(NumBits);
 | |
|     uint8_t Buffer[8], *p;
 | |
|     encodeULEB128(FieldVals[I-1], Buffer);
 | |
|     for (p = Buffer; *p >= 128 ; ++p)
 | |
|       TableInfo.Table.push_back(*p);
 | |
|     TableInfo.Table.push_back(*p);
 | |
|     // Push location for NumToSkip backpatching.
 | |
|     TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
 | |
|     // The fixup is always 16-bits, so go ahead and allocate the space
 | |
|     // in the table so all our relative position calculations work OK even
 | |
|     // before we fully resolve the real value here.
 | |
|     TableInfo.Table.push_back(0);
 | |
|     TableInfo.Table.push_back(0);
 | |
|   }
 | |
| 
 | |
|   // Check for soft failure of the match.
 | |
|   emitSoftFailTableEntry(TableInfo, Opc);
 | |
| 
 | |
|   TableInfo.Table.push_back(MCD::OPC_Decode);
 | |
|   uint8_t Buffer[8], *p;
 | |
|   encodeULEB128(Opc, Buffer);
 | |
|   for (p = Buffer; *p >= 128 ; ++p)
 | |
|     TableInfo.Table.push_back(*p);
 | |
|   TableInfo.Table.push_back(*p);
 | |
| 
 | |
|   unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc);
 | |
|   SmallString<16> Bytes;
 | |
|   raw_svector_ostream S(Bytes);
 | |
|   encodeULEB128(DIdx, S);
 | |
|   S.flush();
 | |
| 
 | |
|   // Decoder index
 | |
|   for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
 | |
|     TableInfo.Table.push_back(Bytes[i]);
 | |
| }
 | |
| 
 | |
| // Emits table entries to decode the singleton, and then to decode the rest.
 | |
| void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
 | |
|                                             const Filter &Best) const {
 | |
|   unsigned Opc = Best.getSingletonOpc();
 | |
| 
 | |
|   // complex singletons need predicate checks from the first singleton
 | |
|   // to refer forward to the variable filterchooser that follows.
 | |
|   TableInfo.FixupStack.push_back(FixupList());
 | |
| 
 | |
|   emitSingletonTableEntry(TableInfo, Opc);
 | |
| 
 | |
|   resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
 | |
|                      TableInfo.Table.size());
 | |
|   TableInfo.FixupStack.pop_back();
 | |
| 
 | |
|   Best.getVariableFC().emitTableEntries(TableInfo);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Assign a single filter and run with it.  Top level API client can initialize
 | |
| // with a single filter to start the filtering process.
 | |
| void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
 | |
|                                     bool mixed) {
 | |
|   Filters.clear();
 | |
|   Filters.push_back(Filter(*this, startBit, numBit, true));
 | |
|   BestIndex = 0; // Sole Filter instance to choose from.
 | |
|   bestFilter().recurse();
 | |
| }
 | |
| 
 | |
| // reportRegion is a helper function for filterProcessor to mark a region as
 | |
| // eligible for use as a filter region.
 | |
| void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
 | |
|                                  unsigned BitIndex, bool AllowMixed) {
 | |
|   if (RA == ATTR_MIXED && AllowMixed)
 | |
|     Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
 | |
|   else if (RA == ATTR_ALL_SET && !AllowMixed)
 | |
|     Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
 | |
| }
 | |
| 
 | |
| // FilterProcessor scans the well-known encoding bits of the instructions and
 | |
| // builds up a list of candidate filters.  It chooses the best filter and
 | |
| // recursively descends down the decoding tree.
 | |
| bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
 | |
|   Filters.clear();
 | |
|   BestIndex = -1;
 | |
|   unsigned numInstructions = Opcodes.size();
 | |
| 
 | |
|   assert(numInstructions && "Filter created with no instructions");
 | |
| 
 | |
|   // No further filtering is necessary.
 | |
|   if (numInstructions == 1)
 | |
|     return true;
 | |
| 
 | |
|   // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
 | |
|   // instructions is 3.
 | |
|   if (AllowMixed && !Greedy) {
 | |
|     assert(numInstructions == 3);
 | |
| 
 | |
|     for (unsigned i = 0; i < Opcodes.size(); ++i) {
 | |
|       std::vector<unsigned> StartBits;
 | |
|       std::vector<unsigned> EndBits;
 | |
|       std::vector<uint64_t> FieldVals;
 | |
|       insn_t Insn;
 | |
| 
 | |
|       insnWithID(Insn, Opcodes[i]);
 | |
| 
 | |
|       // Look for islands of undecoded bits of any instruction.
 | |
|       if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
 | |
|         // Found an instruction with island(s).  Now just assign a filter.
 | |
|         runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned BitIndex;
 | |
| 
 | |
|   // We maintain BIT_WIDTH copies of the bitAttrs automaton.
 | |
|   // The automaton consumes the corresponding bit from each
 | |
|   // instruction.
 | |
|   //
 | |
|   //   Input symbols: 0, 1, and _ (unset).
 | |
|   //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
 | |
|   //   Initial state: NONE.
 | |
|   //
 | |
|   // (NONE) ------- [01] -> (ALL_SET)
 | |
|   // (NONE) ------- _ ----> (ALL_UNSET)
 | |
|   // (ALL_SET) ---- [01] -> (ALL_SET)
 | |
|   // (ALL_SET) ---- _ ----> (MIXED)
 | |
|   // (ALL_UNSET) -- [01] -> (MIXED)
 | |
|   // (ALL_UNSET) -- _ ----> (ALL_UNSET)
 | |
|   // (MIXED) ------ . ----> (MIXED)
 | |
|   // (FILTERED)---- . ----> (FILTERED)
 | |
| 
 | |
|   std::vector<bitAttr_t> bitAttrs;
 | |
| 
 | |
|   // FILTERED bit positions provide no entropy and are not worthy of pursuing.
 | |
|   // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
 | |
|   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
 | |
|     if (FilterBitValues[BitIndex] == BIT_TRUE ||
 | |
|         FilterBitValues[BitIndex] == BIT_FALSE)
 | |
|       bitAttrs.push_back(ATTR_FILTERED);
 | |
|     else
 | |
|       bitAttrs.push_back(ATTR_NONE);
 | |
| 
 | |
|   for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
 | |
|     insn_t insn;
 | |
| 
 | |
|     insnWithID(insn, Opcodes[InsnIndex]);
 | |
| 
 | |
|     for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
 | |
|       switch (bitAttrs[BitIndex]) {
 | |
|       case ATTR_NONE:
 | |
|         if (insn[BitIndex] == BIT_UNSET)
 | |
|           bitAttrs[BitIndex] = ATTR_ALL_UNSET;
 | |
|         else
 | |
|           bitAttrs[BitIndex] = ATTR_ALL_SET;
 | |
|         break;
 | |
|       case ATTR_ALL_SET:
 | |
|         if (insn[BitIndex] == BIT_UNSET)
 | |
|           bitAttrs[BitIndex] = ATTR_MIXED;
 | |
|         break;
 | |
|       case ATTR_ALL_UNSET:
 | |
|         if (insn[BitIndex] != BIT_UNSET)
 | |
|           bitAttrs[BitIndex] = ATTR_MIXED;
 | |
|         break;
 | |
|       case ATTR_MIXED:
 | |
|       case ATTR_FILTERED:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The regionAttr automaton consumes the bitAttrs automatons' state,
 | |
|   // lowest-to-highest.
 | |
|   //
 | |
|   //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
 | |
|   //   States:        NONE, ALL_SET, MIXED
 | |
|   //   Initial state: NONE
 | |
|   //
 | |
|   // (NONE) ----- F --> (NONE)
 | |
|   // (NONE) ----- S --> (ALL_SET)     ; and set region start
 | |
|   // (NONE) ----- U --> (NONE)
 | |
|   // (NONE) ----- M --> (MIXED)       ; and set region start
 | |
|   // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
 | |
|   // (ALL_SET) -- S --> (ALL_SET)
 | |
|   // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
 | |
|   // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
 | |
|   // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
 | |
|   // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
 | |
|   // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
 | |
|   // (MIXED) ---- M --> (MIXED)
 | |
| 
 | |
|   bitAttr_t RA = ATTR_NONE;
 | |
|   unsigned StartBit = 0;
 | |
| 
 | |
|   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
 | |
|     bitAttr_t bitAttr = bitAttrs[BitIndex];
 | |
| 
 | |
|     assert(bitAttr != ATTR_NONE && "Bit without attributes");
 | |
| 
 | |
|     switch (RA) {
 | |
|     case ATTR_NONE:
 | |
|       switch (bitAttr) {
 | |
|       case ATTR_FILTERED:
 | |
|         break;
 | |
|       case ATTR_ALL_SET:
 | |
|         StartBit = BitIndex;
 | |
|         RA = ATTR_ALL_SET;
 | |
|         break;
 | |
|       case ATTR_ALL_UNSET:
 | |
|         break;
 | |
|       case ATTR_MIXED:
 | |
|         StartBit = BitIndex;
 | |
|         RA = ATTR_MIXED;
 | |
|         break;
 | |
|       default:
 | |
|         llvm_unreachable("Unexpected bitAttr!");
 | |
|       }
 | |
|       break;
 | |
|     case ATTR_ALL_SET:
 | |
|       switch (bitAttr) {
 | |
|       case ATTR_FILTERED:
 | |
|         reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | |
|         RA = ATTR_NONE;
 | |
|         break;
 | |
|       case ATTR_ALL_SET:
 | |
|         break;
 | |
|       case ATTR_ALL_UNSET:
 | |
|         reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | |
|         RA = ATTR_NONE;
 | |
|         break;
 | |
|       case ATTR_MIXED:
 | |
|         reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | |
|         StartBit = BitIndex;
 | |
|         RA = ATTR_MIXED;
 | |
|         break;
 | |
|       default:
 | |
|         llvm_unreachable("Unexpected bitAttr!");
 | |
|       }
 | |
|       break;
 | |
|     case ATTR_MIXED:
 | |
|       switch (bitAttr) {
 | |
|       case ATTR_FILTERED:
 | |
|         reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | |
|         StartBit = BitIndex;
 | |
|         RA = ATTR_NONE;
 | |
|         break;
 | |
|       case ATTR_ALL_SET:
 | |
|         reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | |
|         StartBit = BitIndex;
 | |
|         RA = ATTR_ALL_SET;
 | |
|         break;
 | |
|       case ATTR_ALL_UNSET:
 | |
|         reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | |
|         RA = ATTR_NONE;
 | |
|         break;
 | |
|       case ATTR_MIXED:
 | |
|         break;
 | |
|       default:
 | |
|         llvm_unreachable("Unexpected bitAttr!");
 | |
|       }
 | |
|       break;
 | |
|     case ATTR_ALL_UNSET:
 | |
|       llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
 | |
|     case ATTR_FILTERED:
 | |
|       llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // At the end, if we're still in ALL_SET or MIXED states, report a region
 | |
|   switch (RA) {
 | |
|   case ATTR_NONE:
 | |
|     break;
 | |
|   case ATTR_FILTERED:
 | |
|     break;
 | |
|   case ATTR_ALL_SET:
 | |
|     reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | |
|     break;
 | |
|   case ATTR_ALL_UNSET:
 | |
|     break;
 | |
|   case ATTR_MIXED:
 | |
|     reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // We have finished with the filter processings.  Now it's time to choose
 | |
|   // the best performing filter.
 | |
|   BestIndex = 0;
 | |
|   bool AllUseless = true;
 | |
|   unsigned BestScore = 0;
 | |
| 
 | |
|   for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
 | |
|     unsigned Usefulness = Filters[i].usefulness();
 | |
| 
 | |
|     if (Usefulness)
 | |
|       AllUseless = false;
 | |
| 
 | |
|     if (Usefulness > BestScore) {
 | |
|       BestIndex = i;
 | |
|       BestScore = Usefulness;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!AllUseless)
 | |
|     bestFilter().recurse();
 | |
| 
 | |
|   return !AllUseless;
 | |
| } // end of FilterChooser::filterProcessor(bool)
 | |
| 
 | |
| // Decides on the best configuration of filter(s) to use in order to decode
 | |
| // the instructions.  A conflict of instructions may occur, in which case we
 | |
| // dump the conflict set to the standard error.
 | |
| void FilterChooser::doFilter() {
 | |
|   unsigned Num = Opcodes.size();
 | |
|   assert(Num && "FilterChooser created with no instructions");
 | |
| 
 | |
|   // Try regions of consecutive known bit values first.
 | |
|   if (filterProcessor(false))
 | |
|     return;
 | |
| 
 | |
|   // Then regions of mixed bits (both known and unitialized bit values allowed).
 | |
|   if (filterProcessor(true))
 | |
|     return;
 | |
| 
 | |
|   // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
 | |
|   // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
 | |
|   // well-known encoding pattern.  In such case, we backtrack and scan for the
 | |
|   // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
 | |
|   if (Num == 3 && filterProcessor(true, false))
 | |
|     return;
 | |
| 
 | |
|   // If we come to here, the instruction decoding has failed.
 | |
|   // Set the BestIndex to -1 to indicate so.
 | |
|   BestIndex = -1;
 | |
| }
 | |
| 
 | |
| // emitTableEntries - Emit state machine entries to decode our share of
 | |
| // instructions.
 | |
| void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
 | |
|   if (Opcodes.size() == 1) {
 | |
|     // There is only one instruction in the set, which is great!
 | |
|     // Call emitSingletonDecoder() to see whether there are any remaining
 | |
|     // encodings bits.
 | |
|     emitSingletonTableEntry(TableInfo, Opcodes[0]);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Choose the best filter to do the decodings!
 | |
|   if (BestIndex != -1) {
 | |
|     const Filter &Best = Filters[BestIndex];
 | |
|     if (Best.getNumFiltered() == 1)
 | |
|       emitSingletonTableEntry(TableInfo, Best);
 | |
|     else
 | |
|       Best.emitTableEntry(TableInfo);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We don't know how to decode these instructions!  Dump the
 | |
|   // conflict set and bail.
 | |
| 
 | |
|   // Print out useful conflict information for postmortem analysis.
 | |
|   errs() << "Decoding Conflict:\n";
 | |
| 
 | |
|   dumpStack(errs(), "\t\t");
 | |
| 
 | |
|   for (unsigned i = 0; i < Opcodes.size(); ++i) {
 | |
|     const std::string &Name = nameWithID(Opcodes[i]);
 | |
| 
 | |
|     errs() << '\t' << Name << " ";
 | |
|     dumpBits(errs(),
 | |
|              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
 | |
|     errs() << '\n';
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool populateInstruction(CodeGenTarget &Target,
 | |
|                        const CodeGenInstruction &CGI, unsigned Opc,
 | |
|                        std::map<unsigned, std::vector<OperandInfo> > &Operands){
 | |
|   const Record &Def = *CGI.TheDef;
 | |
|   // If all the bit positions are not specified; do not decode this instruction.
 | |
|   // We are bound to fail!  For proper disassembly, the well-known encoding bits
 | |
|   // of the instruction must be fully specified.
 | |
| 
 | |
|   BitsInit &Bits = getBitsField(Def, "Inst");
 | |
|   if (Bits.allInComplete()) return false;
 | |
| 
 | |
|   std::vector<OperandInfo> InsnOperands;
 | |
| 
 | |
|   // If the instruction has specified a custom decoding hook, use that instead
 | |
|   // of trying to auto-generate the decoder.
 | |
|   std::string InstDecoder = Def.getValueAsString("DecoderMethod");
 | |
|   if (InstDecoder != "") {
 | |
|     InsnOperands.push_back(OperandInfo(InstDecoder));
 | |
|     Operands[Opc] = InsnOperands;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Generate a description of the operand of the instruction that we know
 | |
|   // how to decode automatically.
 | |
|   // FIXME: We'll need to have a way to manually override this as needed.
 | |
| 
 | |
|   // Gather the outputs/inputs of the instruction, so we can find their
 | |
|   // positions in the encoding.  This assumes for now that they appear in the
 | |
|   // MCInst in the order that they're listed.
 | |
|   std::vector<std::pair<Init*, std::string> > InOutOperands;
 | |
|   DagInit *Out  = Def.getValueAsDag("OutOperandList");
 | |
|   DagInit *In  = Def.getValueAsDag("InOperandList");
 | |
|   for (unsigned i = 0; i < Out->getNumArgs(); ++i)
 | |
|     InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
 | |
|   for (unsigned i = 0; i < In->getNumArgs(); ++i)
 | |
|     InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
 | |
| 
 | |
|   // Search for tied operands, so that we can correctly instantiate
 | |
|   // operands that are not explicitly represented in the encoding.
 | |
|   std::map<std::string, std::string> TiedNames;
 | |
|   for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
 | |
|     int tiedTo = CGI.Operands[i].getTiedRegister();
 | |
|     if (tiedTo != -1) {
 | |
|       std::pair<unsigned, unsigned> SO =
 | |
|         CGI.Operands.getSubOperandNumber(tiedTo);
 | |
|       TiedNames[InOutOperands[i].second] = InOutOperands[SO.first].second;
 | |
|       TiedNames[InOutOperands[SO.first].second] = InOutOperands[i].second;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   std::map<std::string, std::vector<OperandInfo> > NumberedInsnOperands;
 | |
|   std::set<std::string> NumberedInsnOperandsNoTie;
 | |
|   if (Target.getInstructionSet()->
 | |
|         getValueAsBit("decodePositionallyEncodedOperands")) {
 | |
|     const std::vector<RecordVal> &Vals = Def.getValues();
 | |
|     unsigned NumberedOp = 0;
 | |
| 
 | |
|     std::set<unsigned> NamedOpIndices;
 | |
|     if (Target.getInstructionSet()->
 | |
|          getValueAsBit("noNamedPositionallyEncodedOperands"))
 | |
|       // Collect the set of operand indices that might correspond to named
 | |
|       // operand, and skip these when assigning operands based on position.
 | |
|       for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
 | |
|         unsigned OpIdx;
 | |
|         if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
 | |
|           continue;
 | |
| 
 | |
|         NamedOpIndices.insert(OpIdx);
 | |
|       }
 | |
| 
 | |
|     for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
 | |
|       // Ignore fixed fields in the record, we're looking for values like:
 | |
|       //    bits<5> RST = { ?, ?, ?, ?, ? };
 | |
|       if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete())
 | |
|         continue;
 | |
| 
 | |
|       // Determine if Vals[i] actually contributes to the Inst encoding.
 | |
|       unsigned bi = 0;
 | |
|       for (; bi < Bits.getNumBits(); ++bi) {
 | |
|         VarInit *Var = nullptr;
 | |
|         VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
 | |
|         if (BI)
 | |
|           Var = dyn_cast<VarInit>(BI->getBitVar());
 | |
|         else
 | |
|           Var = dyn_cast<VarInit>(Bits.getBit(bi));
 | |
| 
 | |
|         if (Var && Var->getName() == Vals[i].getName())
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       if (bi == Bits.getNumBits())
 | |
|         continue;
 | |
| 
 | |
|       // Skip variables that correspond to explicitly-named operands.
 | |
|       unsigned OpIdx;
 | |
|       if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
 | |
|         continue;
 | |
| 
 | |
|       // Get the bit range for this operand:
 | |
|       unsigned bitStart = bi++, bitWidth = 1;
 | |
|       for (; bi < Bits.getNumBits(); ++bi) {
 | |
|         VarInit *Var = nullptr;
 | |
|         VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
 | |
|         if (BI)
 | |
|           Var = dyn_cast<VarInit>(BI->getBitVar());
 | |
|         else
 | |
|           Var = dyn_cast<VarInit>(Bits.getBit(bi));
 | |
| 
 | |
|         if (!Var)
 | |
|           break;
 | |
| 
 | |
|         if (Var->getName() != Vals[i].getName())
 | |
|           break;
 | |
| 
 | |
|         ++bitWidth;
 | |
|       }
 | |
| 
 | |
|       unsigned NumberOps = CGI.Operands.size();
 | |
|       while (NumberedOp < NumberOps &&
 | |
|              (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
 | |
|               (!NamedOpIndices.empty() && NamedOpIndices.count(
 | |
|                 CGI.Operands.getSubOperandNumber(NumberedOp).first))))
 | |
|         ++NumberedOp;
 | |
| 
 | |
|       OpIdx = NumberedOp++;
 | |
| 
 | |
|       // OpIdx now holds the ordered operand number of Vals[i].
 | |
|       std::pair<unsigned, unsigned> SO =
 | |
|         CGI.Operands.getSubOperandNumber(OpIdx);
 | |
|       const std::string &Name = CGI.Operands[SO.first].Name;
 | |
| 
 | |
|       DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName() << ": " <<
 | |
|                       Name << "(" << SO.first << ", " << SO.second << ") => " <<
 | |
|                       Vals[i].getName() << "\n");
 | |
| 
 | |
|       std::string Decoder = "";
 | |
|       Record *TypeRecord = CGI.Operands[SO.first].Rec;
 | |
| 
 | |
|       RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
 | |
|       StringInit *String = DecoderString ?
 | |
|         dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
 | |
|       if (String && String->getValue() != "")
 | |
|         Decoder = String->getValue();
 | |
| 
 | |
|       if (Decoder == "" &&
 | |
|           CGI.Operands[SO.first].MIOperandInfo &&
 | |
|           CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
 | |
|         Init *Arg = CGI.Operands[SO.first].MIOperandInfo->
 | |
|                       getArg(SO.second);
 | |
|         if (TypedInit *TI = cast<TypedInit>(Arg)) {
 | |
|           RecordRecTy *Type = cast<RecordRecTy>(TI->getType());
 | |
|           TypeRecord = Type->getRecord();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       bool isReg = false;
 | |
|       if (TypeRecord->isSubClassOf("RegisterOperand"))
 | |
|         TypeRecord = TypeRecord->getValueAsDef("RegClass");
 | |
|       if (TypeRecord->isSubClassOf("RegisterClass")) {
 | |
|         Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
 | |
|         isReg = true;
 | |
|       } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
 | |
|         Decoder = "DecodePointerLikeRegClass" +
 | |
|                   utostr(TypeRecord->getValueAsInt("RegClassKind"));
 | |
|         isReg = true;
 | |
|       }
 | |
| 
 | |
|       DecoderString = TypeRecord->getValue("DecoderMethod");
 | |
|       String = DecoderString ?
 | |
|         dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
 | |
|       if (!isReg && String && String->getValue() != "")
 | |
|         Decoder = String->getValue();
 | |
| 
 | |
|       OperandInfo OpInfo(Decoder);
 | |
|       OpInfo.addField(bitStart, bitWidth, 0);
 | |
| 
 | |
|       NumberedInsnOperands[Name].push_back(OpInfo);
 | |
| 
 | |
|       // FIXME: For complex operands with custom decoders we can't handle tied
 | |
|       // sub-operands automatically. Skip those here and assume that this is
 | |
|       // fixed up elsewhere.
 | |
|       if (CGI.Operands[SO.first].MIOperandInfo &&
 | |
|           CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 &&
 | |
|           String && String->getValue() != "")
 | |
|         NumberedInsnOperandsNoTie.insert(Name);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For each operand, see if we can figure out where it is encoded.
 | |
|   for (const auto &Op : InOutOperands) {
 | |
|     if (!NumberedInsnOperands[Op.second].empty()) {
 | |
|       InsnOperands.insert(InsnOperands.end(),
 | |
|                           NumberedInsnOperands[Op.second].begin(),
 | |
|                           NumberedInsnOperands[Op.second].end());
 | |
|       continue;
 | |
|     }
 | |
|     if (!NumberedInsnOperands[TiedNames[Op.second]].empty()) {
 | |
|       if (!NumberedInsnOperandsNoTie.count(TiedNames[Op.second])) {
 | |
|         // Figure out to which (sub)operand we're tied.
 | |
|         unsigned i = CGI.Operands.getOperandNamed(TiedNames[Op.second]);
 | |
|         int tiedTo = CGI.Operands[i].getTiedRegister();
 | |
|         if (tiedTo == -1) {
 | |
|           i = CGI.Operands.getOperandNamed(Op.second);
 | |
|           tiedTo = CGI.Operands[i].getTiedRegister();
 | |
|         }
 | |
| 
 | |
|         if (tiedTo != -1) {
 | |
|           std::pair<unsigned, unsigned> SO =
 | |
|             CGI.Operands.getSubOperandNumber(tiedTo);
 | |
| 
 | |
|           InsnOperands.push_back(NumberedInsnOperands[TiedNames[Op.second]]
 | |
|                                    [SO.second]);
 | |
|         }
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     std::string Decoder = "";
 | |
| 
 | |
|     // At this point, we can locate the field, but we need to know how to
 | |
|     // interpret it.  As a first step, require the target to provide callbacks
 | |
|     // for decoding register classes.
 | |
|     // FIXME: This need to be extended to handle instructions with custom
 | |
|     // decoder methods, and operands with (simple) MIOperandInfo's.
 | |
|     TypedInit *TI = cast<TypedInit>(Op.first);
 | |
|     RecordRecTy *Type = cast<RecordRecTy>(TI->getType());
 | |
|     Record *TypeRecord = Type->getRecord();
 | |
|     bool isReg = false;
 | |
|     if (TypeRecord->isSubClassOf("RegisterOperand"))
 | |
|       TypeRecord = TypeRecord->getValueAsDef("RegClass");
 | |
|     if (TypeRecord->isSubClassOf("RegisterClass")) {
 | |
|       Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
 | |
|       isReg = true;
 | |
|     } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
 | |
|       Decoder = "DecodePointerLikeRegClass" +
 | |
|                 utostr(TypeRecord->getValueAsInt("RegClassKind"));
 | |
|       isReg = true;
 | |
|     }
 | |
| 
 | |
|     RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
 | |
|     StringInit *String = DecoderString ?
 | |
|       dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
 | |
|     if (!isReg && String && String->getValue() != "")
 | |
|       Decoder = String->getValue();
 | |
| 
 | |
|     OperandInfo OpInfo(Decoder);
 | |
|     unsigned Base = ~0U;
 | |
|     unsigned Width = 0;
 | |
|     unsigned Offset = 0;
 | |
| 
 | |
|     for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
 | |
|       VarInit *Var = nullptr;
 | |
|       VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
 | |
|       if (BI)
 | |
|         Var = dyn_cast<VarInit>(BI->getBitVar());
 | |
|       else
 | |
|         Var = dyn_cast<VarInit>(Bits.getBit(bi));
 | |
| 
 | |
|       if (!Var) {
 | |
|         if (Base != ~0U) {
 | |
|           OpInfo.addField(Base, Width, Offset);
 | |
|           Base = ~0U;
 | |
|           Width = 0;
 | |
|           Offset = 0;
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (Var->getName() != Op.second &&
 | |
|           Var->getName() != TiedNames[Op.second]) {
 | |
|         if (Base != ~0U) {
 | |
|           OpInfo.addField(Base, Width, Offset);
 | |
|           Base = ~0U;
 | |
|           Width = 0;
 | |
|           Offset = 0;
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (Base == ~0U) {
 | |
|         Base = bi;
 | |
|         Width = 1;
 | |
|         Offset = BI ? BI->getBitNum() : 0;
 | |
|       } else if (BI && BI->getBitNum() != Offset + Width) {
 | |
|         OpInfo.addField(Base, Width, Offset);
 | |
|         Base = bi;
 | |
|         Width = 1;
 | |
|         Offset = BI->getBitNum();
 | |
|       } else {
 | |
|         ++Width;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Base != ~0U)
 | |
|       OpInfo.addField(Base, Width, Offset);
 | |
| 
 | |
|     if (OpInfo.numFields() > 0)
 | |
|       InsnOperands.push_back(OpInfo);
 | |
|   }
 | |
| 
 | |
|   Operands[Opc] = InsnOperands;
 | |
| 
 | |
| 
 | |
| #if 0
 | |
|   DEBUG({
 | |
|       // Dumps the instruction encoding bits.
 | |
|       dumpBits(errs(), Bits);
 | |
| 
 | |
|       errs() << '\n';
 | |
| 
 | |
|       // Dumps the list of operand info.
 | |
|       for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
 | |
|         const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
 | |
|         const std::string &OperandName = Info.Name;
 | |
|         const Record &OperandDef = *Info.Rec;
 | |
| 
 | |
|         errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
 | |
|       }
 | |
|     });
 | |
| #endif
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // emitFieldFromInstruction - Emit the templated helper function
 | |
| // fieldFromInstruction().
 | |
| static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
 | |
|   OS << "// Helper function for extracting fields from encoded instructions.\n"
 | |
|      << "template<typename InsnType>\n"
 | |
|    << "static InsnType fieldFromInstruction(InsnType insn, unsigned startBit,\n"
 | |
|      << "                                     unsigned numBits) {\n"
 | |
|      << "    assert(startBit + numBits <= (sizeof(InsnType)*8) &&\n"
 | |
|      << "           \"Instruction field out of bounds!\");\n"
 | |
|      << "    InsnType fieldMask;\n"
 | |
|      << "    if (numBits == sizeof(InsnType)*8)\n"
 | |
|      << "      fieldMask = (InsnType)(-1LL);\n"
 | |
|      << "    else\n"
 | |
|      << "      fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
 | |
|      << "    return (insn & fieldMask) >> startBit;\n"
 | |
|      << "}\n\n";
 | |
| }
 | |
| 
 | |
| // emitDecodeInstruction - Emit the templated helper function
 | |
| // decodeInstruction().
 | |
| static void emitDecodeInstruction(formatted_raw_ostream &OS) {
 | |
|   OS << "template<typename InsnType>\n"
 | |
|      << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI,\n"
 | |
|      << "                                      InsnType insn, uint64_t Address,\n"
 | |
|      << "                                      const void *DisAsm,\n"
 | |
|      << "                                      const MCSubtargetInfo &STI) {\n"
 | |
|      << "  uint64_t Bits = STI.getFeatureBits();\n"
 | |
|      << "\n"
 | |
|      << "  const uint8_t *Ptr = DecodeTable;\n"
 | |
|      << "  uint32_t CurFieldValue = 0;\n"
 | |
|      << "  DecodeStatus S = MCDisassembler::Success;\n"
 | |
|      << "  for (;;) {\n"
 | |
|      << "    ptrdiff_t Loc = Ptr - DecodeTable;\n"
 | |
|      << "    switch (*Ptr) {\n"
 | |
|      << "    default:\n"
 | |
|      << "      errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
 | |
|      << "      return MCDisassembler::Fail;\n"
 | |
|      << "    case MCD::OPC_ExtractField: {\n"
 | |
|      << "      unsigned Start = *++Ptr;\n"
 | |
|      << "      unsigned Len = *++Ptr;\n"
 | |
|      << "      ++Ptr;\n"
 | |
|      << "      CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
 | |
|      << "      DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << \", \"\n"
 | |
|      << "                   << Len << \"): \" << CurFieldValue << \"\\n\");\n"
 | |
|      << "      break;\n"
 | |
|      << "    }\n"
 | |
|      << "    case MCD::OPC_FilterValue: {\n"
 | |
|      << "      // Decode the field value.\n"
 | |
|      << "      unsigned Len;\n"
 | |
|      << "      InsnType Val = decodeULEB128(++Ptr, &Len);\n"
 | |
|      << "      Ptr += Len;\n"
 | |
|      << "      // NumToSkip is a plain 16-bit integer.\n"
 | |
|      << "      unsigned NumToSkip = *Ptr++;\n"
 | |
|      << "      NumToSkip |= (*Ptr++) << 8;\n"
 | |
|      << "\n"
 | |
|      << "      // Perform the filter operation.\n"
 | |
|      << "      if (Val != CurFieldValue)\n"
 | |
|      << "        Ptr += NumToSkip;\n"
 | |
|      << "      DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << \", \" << NumToSkip\n"
 | |
|      << "                   << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" : \"PASS:\")\n"
 | |
|      << "                   << \" continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n"
 | |
|      << "\n"
 | |
|      << "      break;\n"
 | |
|      << "    }\n"
 | |
|      << "    case MCD::OPC_CheckField: {\n"
 | |
|      << "      unsigned Start = *++Ptr;\n"
 | |
|      << "      unsigned Len = *++Ptr;\n"
 | |
|      << "      InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
 | |
|      << "      // Decode the field value.\n"
 | |
|      << "      uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
 | |
|      << "      Ptr += Len;\n"
 | |
|      << "      // NumToSkip is a plain 16-bit integer.\n"
 | |
|      << "      unsigned NumToSkip = *Ptr++;\n"
 | |
|      << "      NumToSkip |= (*Ptr++) << 8;\n"
 | |
|      << "\n"
 | |
|      << "      // If the actual and expected values don't match, skip.\n"
 | |
|      << "      if (ExpectedValue != FieldValue)\n"
 | |
|      << "        Ptr += NumToSkip;\n"
 | |
|      << "      DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << \", \"\n"
 | |
|      << "                   << Len << \", \" << ExpectedValue << \", \" << NumToSkip\n"
 | |
|      << "                   << \"): FieldValue = \" << FieldValue << \", ExpectedValue = \"\n"
 | |
|      << "                   << ExpectedValue << \": \"\n"
 | |
|      << "                   << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : \"FAIL\\n\"));\n"
 | |
|      << "      break;\n"
 | |
|      << "    }\n"
 | |
|      << "    case MCD::OPC_CheckPredicate: {\n"
 | |
|      << "      unsigned Len;\n"
 | |
|      << "      // Decode the Predicate Index value.\n"
 | |
|      << "      unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
 | |
|      << "      Ptr += Len;\n"
 | |
|      << "      // NumToSkip is a plain 16-bit integer.\n"
 | |
|      << "      unsigned NumToSkip = *Ptr++;\n"
 | |
|      << "      NumToSkip |= (*Ptr++) << 8;\n"
 | |
|      << "      // Check the predicate.\n"
 | |
|      << "      bool Pred;\n"
 | |
|      << "      if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
 | |
|      << "        Ptr += NumToSkip;\n"
 | |
|      << "      (void)Pred;\n"
 | |
|      << "      DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx << \"): \"\n"
 | |
|      << "            << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
 | |
|      << "\n"
 | |
|      << "      break;\n"
 | |
|      << "    }\n"
 | |
|      << "    case MCD::OPC_Decode: {\n"
 | |
|      << "      unsigned Len;\n"
 | |
|      << "      // Decode the Opcode value.\n"
 | |
|      << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
 | |
|      << "      Ptr += Len;\n"
 | |
|      << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
 | |
|      << "      Ptr += Len;\n"
 | |
|      << "      DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
 | |
|      << "                   << \", using decoder \" << DecodeIdx << \"\\n\" );\n"
 | |
|      << "      DEBUG(dbgs() << \"----- DECODE SUCCESSFUL -----\\n\");\n"
 | |
|      << "\n"
 | |
|      << "      MI.setOpcode(Opc);\n"
 | |
|      << "      return decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm);\n"
 | |
|      << "    }\n"
 | |
|      << "    case MCD::OPC_SoftFail: {\n"
 | |
|      << "      // Decode the mask values.\n"
 | |
|      << "      unsigned Len;\n"
 | |
|      << "      InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
 | |
|      << "      Ptr += Len;\n"
 | |
|      << "      InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
 | |
|      << "      Ptr += Len;\n"
 | |
|      << "      bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
 | |
|      << "      if (Fail)\n"
 | |
|      << "        S = MCDisassembler::SoftFail;\n"
 | |
|      << "      DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? \"FAIL\\n\":\"PASS\\n\"));\n"
 | |
|      << "      break;\n"
 | |
|      << "    }\n"
 | |
|      << "    case MCD::OPC_Fail: {\n"
 | |
|      << "      DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
 | |
|      << "      return MCDisassembler::Fail;\n"
 | |
|      << "    }\n"
 | |
|      << "    }\n"
 | |
|      << "  }\n"
 | |
|      << "  llvm_unreachable(\"bogosity detected in disassembler state machine!\");\n"
 | |
|      << "}\n\n";
 | |
| }
 | |
| 
 | |
| // Emits disassembler code for instruction decoding.
 | |
| void FixedLenDecoderEmitter::run(raw_ostream &o) {
 | |
|   formatted_raw_ostream OS(o);
 | |
|   OS << "#include \"llvm/MC/MCInst.h\"\n";
 | |
|   OS << "#include \"llvm/Support/Debug.h\"\n";
 | |
|   OS << "#include \"llvm/Support/DataTypes.h\"\n";
 | |
|   OS << "#include \"llvm/Support/LEB128.h\"\n";
 | |
|   OS << "#include \"llvm/Support/raw_ostream.h\"\n";
 | |
|   OS << "#include <assert.h>\n";
 | |
|   OS << '\n';
 | |
|   OS << "namespace llvm {\n\n";
 | |
| 
 | |
|   emitFieldFromInstruction(OS);
 | |
| 
 | |
|   Target.reverseBitsForLittleEndianEncoding();
 | |
| 
 | |
|   // Parameterize the decoders based on namespace and instruction width.
 | |
|   NumberedInstructions = &Target.getInstructionsByEnumValue();
 | |
|   std::map<std::pair<std::string, unsigned>,
 | |
|            std::vector<unsigned> > OpcMap;
 | |
|   std::map<unsigned, std::vector<OperandInfo> > Operands;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumberedInstructions->size(); ++i) {
 | |
|     const CodeGenInstruction *Inst = NumberedInstructions->at(i);
 | |
|     const Record *Def = Inst->TheDef;
 | |
|     unsigned Size = Def->getValueAsInt("Size");
 | |
|     if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
 | |
|         Def->getValueAsBit("isPseudo") ||
 | |
|         Def->getValueAsBit("isAsmParserOnly") ||
 | |
|         Def->getValueAsBit("isCodeGenOnly"))
 | |
|       continue;
 | |
| 
 | |
|     std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
 | |
| 
 | |
|     if (Size) {
 | |
|       if (populateInstruction(Target, *Inst, i, Operands)) {
 | |
|         OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DecoderTableInfo TableInfo;
 | |
|   for (const auto &Opc : OpcMap) {
 | |
|     // Emit the decoder for this namespace+width combination.
 | |
|     FilterChooser FC(*NumberedInstructions, Opc.second, Operands,
 | |
|                      8*Opc.first.second, this);
 | |
| 
 | |
|     // The decode table is cleared for each top level decoder function. The
 | |
|     // predicates and decoders themselves, however, are shared across all
 | |
|     // decoders to give more opportunities for uniqueing.
 | |
|     TableInfo.Table.clear();
 | |
|     TableInfo.FixupStack.clear();
 | |
|     TableInfo.Table.reserve(16384);
 | |
|     TableInfo.FixupStack.push_back(FixupList());
 | |
|     FC.emitTableEntries(TableInfo);
 | |
|     // Any NumToSkip fixups in the top level scope can resolve to the
 | |
|     // OPC_Fail at the end of the table.
 | |
|     assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
 | |
|     // Resolve any NumToSkip fixups in the current scope.
 | |
|     resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
 | |
|                        TableInfo.Table.size());
 | |
|     TableInfo.FixupStack.clear();
 | |
| 
 | |
|     TableInfo.Table.push_back(MCD::OPC_Fail);
 | |
| 
 | |
|     // Print the table to the output stream.
 | |
|     emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first);
 | |
|     OS.flush();
 | |
|   }
 | |
| 
 | |
|   // Emit the predicate function.
 | |
|   emitPredicateFunction(OS, TableInfo.Predicates, 0);
 | |
| 
 | |
|   // Emit the decoder function.
 | |
|   emitDecoderFunction(OS, TableInfo.Decoders, 0);
 | |
| 
 | |
|   // Emit the main entry point for the decoder, decodeInstruction().
 | |
|   emitDecodeInstruction(OS);
 | |
| 
 | |
|   OS << "\n} // End llvm namespace\n";
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
 | |
|                          std::string PredicateNamespace,
 | |
|                          std::string GPrefix,
 | |
|                          std::string GPostfix,
 | |
|                          std::string ROK,
 | |
|                          std::string RFail,
 | |
|                          std::string L) {
 | |
|   FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix,
 | |
|                          ROK, RFail, L).run(OS);
 | |
| }
 | |
| 
 | |
| } // End llvm namespace
 |