mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179901 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1566 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1566 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines a pattern matching instruction selector for PowerPC,
 | 
						|
// converting from a legalized dag to a PPC dag.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "ppc-codegen"
 | 
						|
#include "PPC.h"
 | 
						|
#include "MCTargetDesc/PPCPredicates.h"
 | 
						|
#include "PPCTargetMachine.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalAlias.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  void initializePPCDAGToDAGISelPass(PassRegistry&);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
 | 
						|
  /// instructions for SelectionDAG operations.
 | 
						|
  ///
 | 
						|
  class PPCDAGToDAGISel : public SelectionDAGISel {
 | 
						|
    const PPCTargetMachine &TM;
 | 
						|
    const PPCTargetLowering &PPCLowering;
 | 
						|
    const PPCSubtarget &PPCSubTarget;
 | 
						|
    unsigned GlobalBaseReg;
 | 
						|
  public:
 | 
						|
    explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
 | 
						|
      : SelectionDAGISel(tm), TM(tm),
 | 
						|
        PPCLowering(*TM.getTargetLowering()),
 | 
						|
        PPCSubTarget(*TM.getSubtargetImpl()) {
 | 
						|
      initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool runOnMachineFunction(MachineFunction &MF) {
 | 
						|
      // Make sure we re-emit a set of the global base reg if necessary
 | 
						|
      GlobalBaseReg = 0;
 | 
						|
      SelectionDAGISel::runOnMachineFunction(MF);
 | 
						|
 | 
						|
      if (!PPCSubTarget.isSVR4ABI())
 | 
						|
        InsertVRSaveCode(MF);
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void PostprocessISelDAG();
 | 
						|
 | 
						|
    /// getI32Imm - Return a target constant with the specified value, of type
 | 
						|
    /// i32.
 | 
						|
    inline SDValue getI32Imm(unsigned Imm) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, MVT::i32);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getI64Imm - Return a target constant with the specified value, of type
 | 
						|
    /// i64.
 | 
						|
    inline SDValue getI64Imm(uint64_t Imm) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, MVT::i64);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getSmallIPtrImm - Return a target constant of pointer type.
 | 
						|
    inline SDValue getSmallIPtrImm(unsigned Imm) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
 | 
						|
    }
 | 
						|
 | 
						|
    /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
 | 
						|
    /// with any number of 0s on either side.  The 1s are allowed to wrap from
 | 
						|
    /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
 | 
						|
    /// 0x0F0F0000 is not, since all 1s are not contiguous.
 | 
						|
    static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
 | 
						|
 | 
						|
 | 
						|
    /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
 | 
						|
    /// rotate and mask opcode and mask operation.
 | 
						|
    static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
 | 
						|
                                unsigned &SH, unsigned &MB, unsigned &ME);
 | 
						|
 | 
						|
    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
 | 
						|
    /// base register.  Return the virtual register that holds this value.
 | 
						|
    SDNode *getGlobalBaseReg();
 | 
						|
 | 
						|
    // Select - Convert the specified operand from a target-independent to a
 | 
						|
    // target-specific node if it hasn't already been changed.
 | 
						|
    SDNode *Select(SDNode *N);
 | 
						|
 | 
						|
    SDNode *SelectBitfieldInsert(SDNode *N);
 | 
						|
 | 
						|
    /// SelectCC - Select a comparison of the specified values with the
 | 
						|
    /// specified condition code, returning the CR# of the expression.
 | 
						|
    SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl);
 | 
						|
 | 
						|
    /// SelectAddrImm - Returns true if the address N can be represented by
 | 
						|
    /// a base register plus a signed 16-bit displacement [r+imm].
 | 
						|
    bool SelectAddrImm(SDValue N, SDValue &Disp,
 | 
						|
                       SDValue &Base) {
 | 
						|
      return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
 | 
						|
    }
 | 
						|
 | 
						|
    /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
 | 
						|
    /// immediate field.  Note that the operand at this point is already the
 | 
						|
    /// result of a prior SelectAddressRegImm call.
 | 
						|
    bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
 | 
						|
      if (N.getOpcode() == ISD::TargetConstant ||
 | 
						|
          N.getOpcode() == ISD::TargetGlobalAddress) {
 | 
						|
        Out = N;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
 | 
						|
    /// represented as an indexed [r+r] operation.  Returns false if it can
 | 
						|
    /// be represented by [r+imm], which are preferred.
 | 
						|
    bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
 | 
						|
      return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
 | 
						|
    }
 | 
						|
 | 
						|
    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
 | 
						|
    /// represented as an indexed [r+r] operation.
 | 
						|
    bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
 | 
						|
      return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
 | 
						|
    }
 | 
						|
 | 
						|
    /// SelectAddrImmShift - Returns true if the address N can be represented by
 | 
						|
    /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
 | 
						|
    /// for use by STD and friends.
 | 
						|
    bool SelectAddrImmShift(SDValue N, SDValue &Disp, SDValue &Base) {
 | 
						|
      return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
 | 
						|
    }
 | 
						|
 | 
						|
    // Select an address into a single register.
 | 
						|
    bool SelectAddr(SDValue N, SDValue &Base) {
 | 
						|
      Base = N;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | 
						|
    /// inline asm expressions.  It is always correct to compute the value into
 | 
						|
    /// a register.  The case of adding a (possibly relocatable) constant to a
 | 
						|
    /// register can be improved, but it is wrong to substitute Reg+Reg for
 | 
						|
    /// Reg in an asm, because the load or store opcode would have to change.
 | 
						|
   virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
 | 
						|
                                              char ConstraintCode,
 | 
						|
                                              std::vector<SDValue> &OutOps) {
 | 
						|
      OutOps.push_back(Op);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    void InsertVRSaveCode(MachineFunction &MF);
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "PowerPC DAG->DAG Pattern Instruction Selection";
 | 
						|
    }
 | 
						|
 | 
						|
// Include the pieces autogenerated from the target description.
 | 
						|
#include "PPCGenDAGISel.inc"
 | 
						|
 | 
						|
private:
 | 
						|
    SDNode *SelectSETCC(SDNode *N);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// InsertVRSaveCode - Once the entire function has been instruction selected,
 | 
						|
/// all virtual registers are created and all machine instructions are built,
 | 
						|
/// check to see if we need to save/restore VRSAVE.  If so, do it.
 | 
						|
void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
 | 
						|
  // Check to see if this function uses vector registers, which means we have to
 | 
						|
  // save and restore the VRSAVE register and update it with the regs we use.
 | 
						|
  //
 | 
						|
  // In this case, there will be virtual registers of vector type created
 | 
						|
  // by the scheduler.  Detect them now.
 | 
						|
  bool HasVectorVReg = false;
 | 
						|
  for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
 | 
						|
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | 
						|
    if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
 | 
						|
      HasVectorVReg = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!HasVectorVReg) return;  // nothing to do.
 | 
						|
 | 
						|
  // If we have a vector register, we want to emit code into the entry and exit
 | 
						|
  // blocks to save and restore the VRSAVE register.  We do this here (instead
 | 
						|
  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
 | 
						|
  //
 | 
						|
  // 1. This (trivially) reduces the load on the register allocator, by not
 | 
						|
  //    having to represent the live range of the VRSAVE register.
 | 
						|
  // 2. This (more significantly) allows us to create a temporary virtual
 | 
						|
  //    register to hold the saved VRSAVE value, allowing this temporary to be
 | 
						|
  //    register allocated, instead of forcing it to be spilled to the stack.
 | 
						|
 | 
						|
  // Create two vregs - one to hold the VRSAVE register that is live-in to the
 | 
						|
  // function and one for the value after having bits or'd into it.
 | 
						|
  unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
  unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
 | 
						|
  const TargetInstrInfo &TII = *TM.getInstrInfo();
 | 
						|
  MachineBasicBlock &EntryBB = *Fn.begin();
 | 
						|
  DebugLoc dl;
 | 
						|
  // Emit the following code into the entry block:
 | 
						|
  // InVRSAVE = MFVRSAVE
 | 
						|
  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
 | 
						|
  // MTVRSAVE UpdatedVRSAVE
 | 
						|
  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
 | 
						|
  BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
 | 
						|
  BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
 | 
						|
          UpdatedVRSAVE).addReg(InVRSAVE);
 | 
						|
  BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
 | 
						|
 | 
						|
  // Find all return blocks, outputting a restore in each epilog.
 | 
						|
  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | 
						|
    if (!BB->empty() && BB->back().isReturn()) {
 | 
						|
      IP = BB->end(); --IP;
 | 
						|
 | 
						|
      // Skip over all terminator instructions, which are part of the return
 | 
						|
      // sequence.
 | 
						|
      MachineBasicBlock::iterator I2 = IP;
 | 
						|
      while (I2 != BB->begin() && (--I2)->isTerminator())
 | 
						|
        IP = I2;
 | 
						|
 | 
						|
      // Emit: MTVRSAVE InVRSave
 | 
						|
      BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getGlobalBaseReg - Output the instructions required to put the
 | 
						|
/// base address to use for accessing globals into a register.
 | 
						|
///
 | 
						|
SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
 | 
						|
  if (!GlobalBaseReg) {
 | 
						|
    const TargetInstrInfo &TII = *TM.getInstrInfo();
 | 
						|
    // Insert the set of GlobalBaseReg into the first MBB of the function
 | 
						|
    MachineBasicBlock &FirstMBB = MF->front();
 | 
						|
    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | 
						|
    DebugLoc dl;
 | 
						|
 | 
						|
    if (PPCLowering.getPointerTy() == MVT::i32) {
 | 
						|
      GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
 | 
						|
      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
 | 
						|
    } else {
 | 
						|
      GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RCRegClass);
 | 
						|
      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
 | 
						|
      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return CurDAG->getRegister(GlobalBaseReg,
 | 
						|
                             PPCLowering.getPointerTy()).getNode();
 | 
						|
}
 | 
						|
 | 
						|
/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
 | 
						|
/// or 64-bit immediate, and if the value can be accurately represented as a
 | 
						|
/// sign extension from a 16-bit value.  If so, this returns true and the
 | 
						|
/// immediate.
 | 
						|
static bool isIntS16Immediate(SDNode *N, short &Imm) {
 | 
						|
  if (N->getOpcode() != ISD::Constant)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
  if (N->getValueType(0) == MVT::i32)
 | 
						|
    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
  else
 | 
						|
    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
}
 | 
						|
 | 
						|
static bool isIntS16Immediate(SDValue Op, short &Imm) {
 | 
						|
  return isIntS16Immediate(Op.getNode(), Imm);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
 | 
						|
/// operand. If so Imm will receive the 32-bit value.
 | 
						|
static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
 | 
						|
  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
 | 
						|
    Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
 | 
						|
/// operand.  If so Imm will receive the 64-bit value.
 | 
						|
static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
 | 
						|
  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
 | 
						|
    Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// isInt32Immediate - This method tests to see if a constant operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isInt32Immediate(SDValue N, unsigned &Imm) {
 | 
						|
  return isInt32Immediate(N.getNode(), Imm);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// isOpcWithIntImmediate - This method tests to see if the node is a specific
 | 
						|
// opcode and that it has a immediate integer right operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
 | 
						|
  return N->getOpcode() == Opc
 | 
						|
         && isInt32Immediate(N->getOperand(1).getNode(), Imm);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
 | 
						|
  if (isShiftedMask_32(Val)) {
 | 
						|
    // look for the first non-zero bit
 | 
						|
    MB = CountLeadingZeros_32(Val);
 | 
						|
    // look for the first zero bit after the run of ones
 | 
						|
    ME = CountLeadingZeros_32((Val - 1) ^ Val);
 | 
						|
    return true;
 | 
						|
  } else {
 | 
						|
    Val = ~Val; // invert mask
 | 
						|
    if (isShiftedMask_32(Val)) {
 | 
						|
      // effectively look for the first zero bit
 | 
						|
      ME = CountLeadingZeros_32(Val) - 1;
 | 
						|
      // effectively look for the first one bit after the run of zeros
 | 
						|
      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // no run present
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
 | 
						|
                                      bool isShiftMask, unsigned &SH,
 | 
						|
                                      unsigned &MB, unsigned &ME) {
 | 
						|
  // Don't even go down this path for i64, since different logic will be
 | 
						|
  // necessary for rldicl/rldicr/rldimi.
 | 
						|
  if (N->getValueType(0) != MVT::i32)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Shift  = 32;
 | 
						|
  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
 | 
						|
  unsigned Opcode = N->getOpcode();
 | 
						|
  if (N->getNumOperands() != 2 ||
 | 
						|
      !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Opcode == ISD::SHL) {
 | 
						|
    // apply shift left to mask if it comes first
 | 
						|
    if (isShiftMask) Mask = Mask << Shift;
 | 
						|
    // determine which bits are made indeterminant by shift
 | 
						|
    Indeterminant = ~(0xFFFFFFFFu << Shift);
 | 
						|
  } else if (Opcode == ISD::SRL) {
 | 
						|
    // apply shift right to mask if it comes first
 | 
						|
    if (isShiftMask) Mask = Mask >> Shift;
 | 
						|
    // determine which bits are made indeterminant by shift
 | 
						|
    Indeterminant = ~(0xFFFFFFFFu >> Shift);
 | 
						|
    // adjust for the left rotate
 | 
						|
    Shift = 32 - Shift;
 | 
						|
  } else if (Opcode == ISD::ROTL) {
 | 
						|
    Indeterminant = 0;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // if the mask doesn't intersect any Indeterminant bits
 | 
						|
  if (Mask && !(Mask & Indeterminant)) {
 | 
						|
    SH = Shift & 31;
 | 
						|
    // make sure the mask is still a mask (wrap arounds may not be)
 | 
						|
    return isRunOfOnes(Mask, MB, ME);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectBitfieldInsert - turn an or of two masked values into
 | 
						|
/// the rotate left word immediate then mask insert (rlwimi) instruction.
 | 
						|
SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
 | 
						|
  SDValue Op0 = N->getOperand(0);
 | 
						|
  SDValue Op1 = N->getOperand(1);
 | 
						|
  DebugLoc dl = N->getDebugLoc();
 | 
						|
 | 
						|
  APInt LKZ, LKO, RKZ, RKO;
 | 
						|
  CurDAG->ComputeMaskedBits(Op0, LKZ, LKO);
 | 
						|
  CurDAG->ComputeMaskedBits(Op1, RKZ, RKO);
 | 
						|
 | 
						|
  unsigned TargetMask = LKZ.getZExtValue();
 | 
						|
  unsigned InsertMask = RKZ.getZExtValue();
 | 
						|
 | 
						|
  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
 | 
						|
    unsigned Op0Opc = Op0.getOpcode();
 | 
						|
    unsigned Op1Opc = Op1.getOpcode();
 | 
						|
    unsigned Value, SH = 0;
 | 
						|
    TargetMask = ~TargetMask;
 | 
						|
    InsertMask = ~InsertMask;
 | 
						|
 | 
						|
    // If the LHS has a foldable shift and the RHS does not, then swap it to the
 | 
						|
    // RHS so that we can fold the shift into the insert.
 | 
						|
    if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
 | 
						|
      if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
 | 
						|
          Op0.getOperand(0).getOpcode() == ISD::SRL) {
 | 
						|
        if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
 | 
						|
            Op1.getOperand(0).getOpcode() != ISD::SRL) {
 | 
						|
          std::swap(Op0, Op1);
 | 
						|
          std::swap(Op0Opc, Op1Opc);
 | 
						|
          std::swap(TargetMask, InsertMask);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
 | 
						|
      if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
 | 
						|
          Op1.getOperand(0).getOpcode() != ISD::SRL) {
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
        std::swap(Op0Opc, Op1Opc);
 | 
						|
        std::swap(TargetMask, InsertMask);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned MB, ME;
 | 
						|
    if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
 | 
						|
      SDValue Tmp1, Tmp2;
 | 
						|
 | 
						|
      if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
 | 
						|
          isInt32Immediate(Op1.getOperand(1), Value)) {
 | 
						|
        Op1 = Op1.getOperand(0);
 | 
						|
        SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
 | 
						|
      }
 | 
						|
      if (Op1Opc == ISD::AND) {
 | 
						|
        unsigned SHOpc = Op1.getOperand(0).getOpcode();
 | 
						|
        if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
 | 
						|
            isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
 | 
						|
          Op1 = Op1.getOperand(0).getOperand(0);
 | 
						|
          SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
 | 
						|
        } else {
 | 
						|
          Op1 = Op1.getOperand(0);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      SH &= 31;
 | 
						|
      SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
 | 
						|
                          getI32Imm(ME) };
 | 
						|
      return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectCC - Select a comparison of the specified values with the specified
 | 
						|
/// condition code, returning the CR# of the expression.
 | 
						|
SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
 | 
						|
                                    ISD::CondCode CC, DebugLoc dl) {
 | 
						|
  // Always select the LHS.
 | 
						|
  unsigned Opc;
 | 
						|
 | 
						|
  if (LHS.getValueType() == MVT::i32) {
 | 
						|
    unsigned Imm;
 | 
						|
    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | 
						|
      if (isInt32Immediate(RHS, Imm)) {
 | 
						|
        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
 | 
						|
        if (isUInt<16>(Imm))
 | 
						|
          return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
 | 
						|
                                                getI32Imm(Imm & 0xFFFF)), 0);
 | 
						|
        // If this is a 16-bit signed immediate, fold it.
 | 
						|
        if (isInt<16>((int)Imm))
 | 
						|
          return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
 | 
						|
                                                getI32Imm(Imm & 0xFFFF)), 0);
 | 
						|
 | 
						|
        // For non-equality comparisons, the default code would materialize the
 | 
						|
        // constant, then compare against it, like this:
 | 
						|
        //   lis r2, 4660
 | 
						|
        //   ori r2, r2, 22136
 | 
						|
        //   cmpw cr0, r3, r2
 | 
						|
        // Since we are just comparing for equality, we can emit this instead:
 | 
						|
        //   xoris r0,r3,0x1234
 | 
						|
        //   cmplwi cr0,r0,0x5678
 | 
						|
        //   beq cr0,L6
 | 
						|
        SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
 | 
						|
                                           getI32Imm(Imm >> 16)), 0);
 | 
						|
        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
 | 
						|
                                              getI32Imm(Imm & 0xFFFF)), 0);
 | 
						|
      }
 | 
						|
      Opc = PPC::CMPLW;
 | 
						|
    } else if (ISD::isUnsignedIntSetCC(CC)) {
 | 
						|
      if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
 | 
						|
        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
 | 
						|
                                              getI32Imm(Imm & 0xFFFF)), 0);
 | 
						|
      Opc = PPC::CMPLW;
 | 
						|
    } else {
 | 
						|
      short SImm;
 | 
						|
      if (isIntS16Immediate(RHS, SImm))
 | 
						|
        return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
 | 
						|
                                              getI32Imm((int)SImm & 0xFFFF)),
 | 
						|
                         0);
 | 
						|
      Opc = PPC::CMPW;
 | 
						|
    }
 | 
						|
  } else if (LHS.getValueType() == MVT::i64) {
 | 
						|
    uint64_t Imm;
 | 
						|
    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | 
						|
      if (isInt64Immediate(RHS.getNode(), Imm)) {
 | 
						|
        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
 | 
						|
        if (isUInt<16>(Imm))
 | 
						|
          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
 | 
						|
                                                getI32Imm(Imm & 0xFFFF)), 0);
 | 
						|
        // If this is a 16-bit signed immediate, fold it.
 | 
						|
        if (isInt<16>(Imm))
 | 
						|
          return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
 | 
						|
                                                getI32Imm(Imm & 0xFFFF)), 0);
 | 
						|
 | 
						|
        // For non-equality comparisons, the default code would materialize the
 | 
						|
        // constant, then compare against it, like this:
 | 
						|
        //   lis r2, 4660
 | 
						|
        //   ori r2, r2, 22136
 | 
						|
        //   cmpd cr0, r3, r2
 | 
						|
        // Since we are just comparing for equality, we can emit this instead:
 | 
						|
        //   xoris r0,r3,0x1234
 | 
						|
        //   cmpldi cr0,r0,0x5678
 | 
						|
        //   beq cr0,L6
 | 
						|
        if (isUInt<32>(Imm)) {
 | 
						|
          SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
 | 
						|
                                             getI64Imm(Imm >> 16)), 0);
 | 
						|
          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
 | 
						|
                                                getI64Imm(Imm & 0xFFFF)), 0);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Opc = PPC::CMPLD;
 | 
						|
    } else if (ISD::isUnsignedIntSetCC(CC)) {
 | 
						|
      if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
 | 
						|
        return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
 | 
						|
                                              getI64Imm(Imm & 0xFFFF)), 0);
 | 
						|
      Opc = PPC::CMPLD;
 | 
						|
    } else {
 | 
						|
      short SImm;
 | 
						|
      if (isIntS16Immediate(RHS, SImm))
 | 
						|
        return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
 | 
						|
                                              getI64Imm(SImm & 0xFFFF)),
 | 
						|
                         0);
 | 
						|
      Opc = PPC::CMPD;
 | 
						|
    }
 | 
						|
  } else if (LHS.getValueType() == MVT::f32) {
 | 
						|
    Opc = PPC::FCMPUS;
 | 
						|
  } else {
 | 
						|
    assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
 | 
						|
    Opc = PPC::FCMPUD;
 | 
						|
  }
 | 
						|
  return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
 | 
						|
}
 | 
						|
 | 
						|
static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
 | 
						|
  switch (CC) {
 | 
						|
  case ISD::SETUEQ:
 | 
						|
  case ISD::SETONE:
 | 
						|
  case ISD::SETOLE:
 | 
						|
  case ISD::SETOGE:
 | 
						|
    llvm_unreachable("Should be lowered by legalize!");
 | 
						|
  default: llvm_unreachable("Unknown condition!");
 | 
						|
  case ISD::SETOEQ:
 | 
						|
  case ISD::SETEQ:  return PPC::PRED_EQ;
 | 
						|
  case ISD::SETUNE:
 | 
						|
  case ISD::SETNE:  return PPC::PRED_NE;
 | 
						|
  case ISD::SETOLT:
 | 
						|
  case ISD::SETLT:  return PPC::PRED_LT;
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETLE:  return PPC::PRED_LE;
 | 
						|
  case ISD::SETOGT:
 | 
						|
  case ISD::SETGT:  return PPC::PRED_GT;
 | 
						|
  case ISD::SETUGE:
 | 
						|
  case ISD::SETGE:  return PPC::PRED_GE;
 | 
						|
  case ISD::SETO:   return PPC::PRED_NU;
 | 
						|
  case ISD::SETUO:  return PPC::PRED_UN;
 | 
						|
    // These two are invalid for floating point.  Assume we have int.
 | 
						|
  case ISD::SETULT: return PPC::PRED_LT;
 | 
						|
  case ISD::SETUGT: return PPC::PRED_GT;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getCRIdxForSetCC - Return the index of the condition register field
 | 
						|
/// associated with the SetCC condition, and whether or not the field is
 | 
						|
/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
 | 
						|
///
 | 
						|
/// If this returns with Other != -1, then the returned comparison is an or of
 | 
						|
/// two simpler comparisons.  In this case, Invert is guaranteed to be false.
 | 
						|
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) {
 | 
						|
  Invert = false;
 | 
						|
  Other = -1;
 | 
						|
  switch (CC) {
 | 
						|
  default: llvm_unreachable("Unknown condition!");
 | 
						|
  case ISD::SETOLT:
 | 
						|
  case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
 | 
						|
  case ISD::SETOGT:
 | 
						|
  case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
 | 
						|
  case ISD::SETOEQ:
 | 
						|
  case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
 | 
						|
  case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
 | 
						|
  case ISD::SETUGE:
 | 
						|
  case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
 | 
						|
  case ISD::SETUNE:
 | 
						|
  case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
 | 
						|
  case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
 | 
						|
  case ISD::SETUEQ:
 | 
						|
  case ISD::SETOGE:
 | 
						|
  case ISD::SETOLE:
 | 
						|
  case ISD::SETONE:
 | 
						|
    llvm_unreachable("Invalid branch code: should be expanded by legalize");
 | 
						|
  // These are invalid for floating point.  Assume integer.
 | 
						|
  case ISD::SETULT: return 0;
 | 
						|
  case ISD::SETUGT: return 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// getVCmpInst: return the vector compare instruction for the specified
 | 
						|
// vector type and condition code. Since this is for altivec specific code,
 | 
						|
// only support the altivec types (v16i8, v8i16, v4i32, and v4f32).
 | 
						|
static unsigned int getVCmpInst(MVT::SimpleValueType VecVT, ISD::CondCode CC) {
 | 
						|
  switch (CC) {
 | 
						|
    case ISD::SETEQ:
 | 
						|
    case ISD::SETUEQ:
 | 
						|
    case ISD::SETNE:
 | 
						|
    case ISD::SETUNE:
 | 
						|
      if (VecVT == MVT::v16i8)
 | 
						|
        return PPC::VCMPEQUB;
 | 
						|
      else if (VecVT == MVT::v8i16)
 | 
						|
        return PPC::VCMPEQUH;
 | 
						|
      else if (VecVT == MVT::v4i32)
 | 
						|
        return PPC::VCMPEQUW;
 | 
						|
      // v4f32 != v4f32 could be translate to unordered not equal
 | 
						|
      else if (VecVT == MVT::v4f32)
 | 
						|
        return PPC::VCMPEQFP;
 | 
						|
      break;
 | 
						|
    case ISD::SETLT:
 | 
						|
    case ISD::SETGT:
 | 
						|
    case ISD::SETLE:
 | 
						|
    case ISD::SETGE:
 | 
						|
      if (VecVT == MVT::v16i8)
 | 
						|
        return PPC::VCMPGTSB;
 | 
						|
      else if (VecVT == MVT::v8i16)
 | 
						|
        return PPC::VCMPGTSH;
 | 
						|
      else if (VecVT == MVT::v4i32)
 | 
						|
        return PPC::VCMPGTSW;
 | 
						|
      else if (VecVT == MVT::v4f32)
 | 
						|
        return PPC::VCMPGTFP;
 | 
						|
      break;
 | 
						|
    case ISD::SETULT:
 | 
						|
    case ISD::SETUGT:
 | 
						|
    case ISD::SETUGE:
 | 
						|
    case ISD::SETULE:
 | 
						|
      if (VecVT == MVT::v16i8)
 | 
						|
        return PPC::VCMPGTUB;
 | 
						|
      else if (VecVT == MVT::v8i16)
 | 
						|
        return PPC::VCMPGTUH;
 | 
						|
      else if (VecVT == MVT::v4i32)
 | 
						|
        return PPC::VCMPGTUW;
 | 
						|
      break;
 | 
						|
    case ISD::SETOEQ:
 | 
						|
      if (VecVT == MVT::v4f32)
 | 
						|
        return PPC::VCMPEQFP;
 | 
						|
      break;
 | 
						|
    case ISD::SETOLT:
 | 
						|
    case ISD::SETOGT:
 | 
						|
    case ISD::SETOLE:
 | 
						|
      if (VecVT == MVT::v4f32)
 | 
						|
        return PPC::VCMPGTFP;
 | 
						|
      break;
 | 
						|
    case ISD::SETOGE:
 | 
						|
      if (VecVT == MVT::v4f32)
 | 
						|
        return PPC::VCMPGEFP;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid integer vector compare condition");
 | 
						|
}
 | 
						|
 | 
						|
// getVCmpEQInst: return the equal compare instruction for the specified vector
 | 
						|
// type. Since this is for altivec specific code, only support the altivec
 | 
						|
// types (v16i8, v8i16, v4i32, and v4f32).
 | 
						|
static unsigned int getVCmpEQInst(MVT::SimpleValueType VecVT) {
 | 
						|
  switch (VecVT) {
 | 
						|
    case MVT::v16i8:
 | 
						|
      return PPC::VCMPEQUB;
 | 
						|
    case MVT::v8i16:
 | 
						|
      return PPC::VCMPEQUH;
 | 
						|
    case MVT::v4i32:
 | 
						|
      return PPC::VCMPEQUW;
 | 
						|
    case MVT::v4f32:
 | 
						|
      return PPC::VCMPEQFP;
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Invalid integer vector compare condition");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
 | 
						|
  DebugLoc dl = N->getDebugLoc();
 | 
						|
  unsigned Imm;
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | 
						|
  EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
 | 
						|
  bool isPPC64 = (PtrVT == MVT::i64);
 | 
						|
 | 
						|
  if (isInt32Immediate(N->getOperand(1), Imm)) {
 | 
						|
    // We can codegen setcc op, imm very efficiently compared to a brcond.
 | 
						|
    // Check for those cases here.
 | 
						|
    // setcc op, 0
 | 
						|
    if (Imm == 0) {
 | 
						|
      SDValue Op = N->getOperand(0);
 | 
						|
      switch (CC) {
 | 
						|
      default: break;
 | 
						|
      case ISD::SETEQ: {
 | 
						|
        Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
 | 
						|
        SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
      }
 | 
						|
      case ISD::SETNE: {
 | 
						|
        if (isPPC64) break;
 | 
						|
        SDValue AD =
 | 
						|
          SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | 
						|
                                         Op, getI32Imm(~0U)), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
 | 
						|
                                    AD.getValue(1));
 | 
						|
      }
 | 
						|
      case ISD::SETLT: {
 | 
						|
        SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
      }
 | 
						|
      case ISD::SETGT: {
 | 
						|
        SDValue T =
 | 
						|
          SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
 | 
						|
        T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
 | 
						|
        SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
      }
 | 
						|
      }
 | 
						|
    } else if (Imm == ~0U) {        // setcc op, -1
 | 
						|
      SDValue Op = N->getOperand(0);
 | 
						|
      switch (CC) {
 | 
						|
      default: break;
 | 
						|
      case ISD::SETEQ:
 | 
						|
        if (isPPC64) break;
 | 
						|
        Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | 
						|
                                            Op, getI32Imm(1)), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
 | 
						|
                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
 | 
						|
                                                             MVT::i32,
 | 
						|
                                                             getI32Imm(0)), 0),
 | 
						|
                                      Op.getValue(1));
 | 
						|
      case ISD::SETNE: {
 | 
						|
        if (isPPC64) break;
 | 
						|
        Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
 | 
						|
        SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | 
						|
                                            Op, getI32Imm(~0U));
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
 | 
						|
                                    Op, SDValue(AD, 1));
 | 
						|
      }
 | 
						|
      case ISD::SETLT: {
 | 
						|
        SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
 | 
						|
                                                    getI32Imm(1)), 0);
 | 
						|
        SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
 | 
						|
                                                    Op), 0);
 | 
						|
        SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
      }
 | 
						|
      case ISD::SETGT: {
 | 
						|
        SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | 
						|
        Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
 | 
						|
                     0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
 | 
						|
                                    getI32Imm(1));
 | 
						|
      }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue LHS = N->getOperand(0);
 | 
						|
  SDValue RHS = N->getOperand(1);
 | 
						|
 | 
						|
  // Altivec Vector compare instructions do not set any CR register by default and
 | 
						|
  // vector compare operations return the same type as the operands.
 | 
						|
  if (LHS.getValueType().isVector()) {
 | 
						|
    EVT VecVT = LHS.getValueType();
 | 
						|
    MVT::SimpleValueType VT = VecVT.getSimpleVT().SimpleTy;
 | 
						|
    unsigned int VCmpInst = getVCmpInst(VT, CC);
 | 
						|
 | 
						|
    switch (CC) {
 | 
						|
      case ISD::SETEQ:
 | 
						|
      case ISD::SETOEQ:
 | 
						|
      case ISD::SETUEQ:
 | 
						|
        return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
 | 
						|
      case ISD::SETNE:
 | 
						|
      case ISD::SETONE:
 | 
						|
      case ISD::SETUNE: {
 | 
						|
        SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::VNOR, VecVT, VCmp, VCmp);
 | 
						|
      } 
 | 
						|
      case ISD::SETLT:
 | 
						|
      case ISD::SETOLT:
 | 
						|
      case ISD::SETULT:
 | 
						|
        return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, RHS, LHS);
 | 
						|
      case ISD::SETGT:
 | 
						|
      case ISD::SETOGT:
 | 
						|
      case ISD::SETUGT:
 | 
						|
        return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
 | 
						|
      case ISD::SETGE:
 | 
						|
      case ISD::SETOGE:
 | 
						|
      case ISD::SETUGE: {
 | 
						|
        // Small optimization: Altivec provides a 'Vector Compare Greater Than
 | 
						|
        // or Equal To' instruction (vcmpgefp), so in this case there is no
 | 
						|
        // need for extra logic for the equal compare.
 | 
						|
        if (VecVT.getSimpleVT().isFloatingPoint()) {
 | 
						|
          return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
 | 
						|
        } else {
 | 
						|
          SDValue VCmpGT(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
 | 
						|
          unsigned int VCmpEQInst = getVCmpEQInst(VT);
 | 
						|
          SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0);
 | 
						|
          return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpGT, VCmpEQ);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      case ISD::SETLE:
 | 
						|
      case ISD::SETOLE:
 | 
						|
      case ISD::SETULE: {
 | 
						|
        SDValue VCmpLE(CurDAG->getMachineNode(VCmpInst, dl, VecVT, RHS, LHS), 0);
 | 
						|
        unsigned int VCmpEQInst = getVCmpEQInst(VT);
 | 
						|
        SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpLE, VCmpEQ);
 | 
						|
      }
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Invalid vector compare type: should be expanded by legalize");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool Inv;
 | 
						|
  int OtherCondIdx;
 | 
						|
  unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx);
 | 
						|
  SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
 | 
						|
  SDValue IntCR;
 | 
						|
 | 
						|
  // Force the ccreg into CR7.
 | 
						|
  SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
 | 
						|
 | 
						|
  SDValue InFlag(0, 0);  // Null incoming flag value.
 | 
						|
  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
 | 
						|
                               InFlag).getValue(1);
 | 
						|
 | 
						|
  if (PPCSubTarget.hasMFOCRF() && OtherCondIdx == -1)
 | 
						|
    IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
 | 
						|
                                           CCReg), 0);
 | 
						|
  else
 | 
						|
    IntCR = SDValue(CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
 | 
						|
                                           CR7Reg, CCReg), 0);
 | 
						|
 | 
						|
  SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
 | 
						|
                      getI32Imm(31), getI32Imm(31) };
 | 
						|
  if (OtherCondIdx == -1 && !Inv)
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
 | 
						|
  // Get the specified bit.
 | 
						|
  SDValue Tmp =
 | 
						|
    SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
 | 
						|
  if (Inv) {
 | 
						|
    assert(OtherCondIdx == -1 && "Can't have split plus negation");
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT.
 | 
						|
  // We already got the bit for the first part of the comparison (e.g. SETULE).
 | 
						|
 | 
						|
  // Get the other bit of the comparison.
 | 
						|
  Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31);
 | 
						|
  SDValue OtherCond =
 | 
						|
    SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
 | 
						|
 | 
						|
  return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Select - Convert the specified operand from a target-independent to a
 | 
						|
// target-specific node if it hasn't already been changed.
 | 
						|
SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
 | 
						|
  DebugLoc dl = N->getDebugLoc();
 | 
						|
  if (N->isMachineOpcode())
 | 
						|
    return NULL;   // Already selected.
 | 
						|
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
 | 
						|
  case ISD::Constant: {
 | 
						|
    if (N->getValueType(0) == MVT::i64) {
 | 
						|
      // Get 64 bit value.
 | 
						|
      int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
      // Assume no remaining bits.
 | 
						|
      unsigned Remainder = 0;
 | 
						|
      // Assume no shift required.
 | 
						|
      unsigned Shift = 0;
 | 
						|
 | 
						|
      // If it can't be represented as a 32 bit value.
 | 
						|
      if (!isInt<32>(Imm)) {
 | 
						|
        Shift = CountTrailingZeros_64(Imm);
 | 
						|
        int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
 | 
						|
 | 
						|
        // If the shifted value fits 32 bits.
 | 
						|
        if (isInt<32>(ImmSh)) {
 | 
						|
          // Go with the shifted value.
 | 
						|
          Imm = ImmSh;
 | 
						|
        } else {
 | 
						|
          // Still stuck with a 64 bit value.
 | 
						|
          Remainder = Imm;
 | 
						|
          Shift = 32;
 | 
						|
          Imm >>= 32;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Intermediate operand.
 | 
						|
      SDNode *Result;
 | 
						|
 | 
						|
      // Handle first 32 bits.
 | 
						|
      unsigned Lo = Imm & 0xFFFF;
 | 
						|
      unsigned Hi = (Imm >> 16) & 0xFFFF;
 | 
						|
 | 
						|
      // Simple value.
 | 
						|
      if (isInt<16>(Imm)) {
 | 
						|
       // Just the Lo bits.
 | 
						|
        Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
 | 
						|
      } else if (Lo) {
 | 
						|
        // Handle the Hi bits.
 | 
						|
        unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
 | 
						|
        Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
 | 
						|
        // And Lo bits.
 | 
						|
        Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
 | 
						|
                                        SDValue(Result, 0), getI32Imm(Lo));
 | 
						|
      } else {
 | 
						|
       // Just the Hi bits.
 | 
						|
        Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
 | 
						|
      }
 | 
						|
 | 
						|
      // If no shift, we're done.
 | 
						|
      if (!Shift) return Result;
 | 
						|
 | 
						|
      // Shift for next step if the upper 32-bits were not zero.
 | 
						|
      if (Imm) {
 | 
						|
        Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
 | 
						|
                                        SDValue(Result, 0),
 | 
						|
                                        getI32Imm(Shift),
 | 
						|
                                        getI32Imm(63 - Shift));
 | 
						|
      }
 | 
						|
 | 
						|
      // Add in the last bits as required.
 | 
						|
      if ((Hi = (Remainder >> 16) & 0xFFFF)) {
 | 
						|
        Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
 | 
						|
                                        SDValue(Result, 0), getI32Imm(Hi));
 | 
						|
      }
 | 
						|
      if ((Lo = Remainder & 0xFFFF)) {
 | 
						|
        Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
 | 
						|
                                        SDValue(Result, 0), getI32Imm(Lo));
 | 
						|
      }
 | 
						|
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::SETCC:
 | 
						|
    return SelectSETCC(N);
 | 
						|
  case PPCISD::GlobalBaseReg:
 | 
						|
    return getGlobalBaseReg();
 | 
						|
 | 
						|
  case ISD::FrameIndex: {
 | 
						|
    int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
    SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
 | 
						|
    unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
 | 
						|
    if (N->hasOneUse())
 | 
						|
      return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI,
 | 
						|
                                  getSmallIPtrImm(0));
 | 
						|
    return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
 | 
						|
                                  getSmallIPtrImm(0));
 | 
						|
  }
 | 
						|
 | 
						|
  case PPCISD::MFCR: {
 | 
						|
    SDValue InFlag = N->getOperand(1);
 | 
						|
    // Use MFOCRF if supported.
 | 
						|
    if (PPCSubTarget.hasMFOCRF())
 | 
						|
      return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
 | 
						|
                                    N->getOperand(0), InFlag);
 | 
						|
    else
 | 
						|
      return CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
 | 
						|
                                    N->getOperand(0), InFlag);
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::SDIV: {
 | 
						|
    // FIXME: since this depends on the setting of the carry flag from the srawi
 | 
						|
    //        we should really be making notes about that for the scheduler.
 | 
						|
    // FIXME: It sure would be nice if we could cheaply recognize the
 | 
						|
    //        srl/add/sra pattern the dag combiner will generate for this as
 | 
						|
    //        sra/addze rather than having to handle sdiv ourselves.  oh well.
 | 
						|
    unsigned Imm;
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Imm)) {
 | 
						|
      SDValue N0 = N->getOperand(0);
 | 
						|
      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
 | 
						|
        SDNode *Op =
 | 
						|
          CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
 | 
						|
                                 N0, getI32Imm(Log2_32(Imm)));
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
 | 
						|
                                    SDValue(Op, 0), SDValue(Op, 1));
 | 
						|
      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
 | 
						|
        SDNode *Op =
 | 
						|
          CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
 | 
						|
                                 N0, getI32Imm(Log2_32(-Imm)));
 | 
						|
        SDValue PT =
 | 
						|
          SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32,
 | 
						|
                                         SDValue(Op, 0), SDValue(Op, 1)),
 | 
						|
                    0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::LOAD: {
 | 
						|
    // Handle preincrement loads.
 | 
						|
    LoadSDNode *LD = cast<LoadSDNode>(N);
 | 
						|
    EVT LoadedVT = LD->getMemoryVT();
 | 
						|
 | 
						|
    // Normal loads are handled by code generated from the .td file.
 | 
						|
    if (LD->getAddressingMode() != ISD::PRE_INC)
 | 
						|
      break;
 | 
						|
 | 
						|
    SDValue Offset = LD->getOffset();
 | 
						|
    if (Offset.getOpcode() == ISD::TargetConstant ||
 | 
						|
        Offset.getOpcode() == ISD::TargetGlobalAddress) {
 | 
						|
 | 
						|
      unsigned Opcode;
 | 
						|
      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
 | 
						|
      if (LD->getValueType(0) != MVT::i64) {
 | 
						|
        // Handle PPC32 integer and normal FP loads.
 | 
						|
        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
 | 
						|
        switch (LoadedVT.getSimpleVT().SimpleTy) {
 | 
						|
          default: llvm_unreachable("Invalid PPC load type!");
 | 
						|
          case MVT::f64: Opcode = PPC::LFDU; break;
 | 
						|
          case MVT::f32: Opcode = PPC::LFSU; break;
 | 
						|
          case MVT::i32: Opcode = PPC::LWZU; break;
 | 
						|
          case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
 | 
						|
          case MVT::i1:
 | 
						|
          case MVT::i8:  Opcode = PPC::LBZU; break;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
 | 
						|
        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
 | 
						|
        switch (LoadedVT.getSimpleVT().SimpleTy) {
 | 
						|
          default: llvm_unreachable("Invalid PPC load type!");
 | 
						|
          case MVT::i64: Opcode = PPC::LDU; break;
 | 
						|
          case MVT::i32: Opcode = PPC::LWZU8; break;
 | 
						|
          case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
 | 
						|
          case MVT::i1:
 | 
						|
          case MVT::i8:  Opcode = PPC::LBZU8; break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue Chain = LD->getChain();
 | 
						|
      SDValue Base = LD->getBasePtr();
 | 
						|
      SDValue Ops[] = { Offset, Base, Chain };
 | 
						|
      return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
 | 
						|
                                    PPCLowering.getPointerTy(),
 | 
						|
                                    MVT::Other, Ops);
 | 
						|
    } else {
 | 
						|
      unsigned Opcode;
 | 
						|
      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
 | 
						|
      if (LD->getValueType(0) != MVT::i64) {
 | 
						|
        // Handle PPC32 integer and normal FP loads.
 | 
						|
        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
 | 
						|
        switch (LoadedVT.getSimpleVT().SimpleTy) {
 | 
						|
          default: llvm_unreachable("Invalid PPC load type!");
 | 
						|
          case MVT::f64: Opcode = PPC::LFDUX; break;
 | 
						|
          case MVT::f32: Opcode = PPC::LFSUX; break;
 | 
						|
          case MVT::i32: Opcode = PPC::LWZUX; break;
 | 
						|
          case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
 | 
						|
          case MVT::i1:
 | 
						|
          case MVT::i8:  Opcode = PPC::LBZUX; break;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
 | 
						|
        assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
 | 
						|
               "Invalid sext update load");
 | 
						|
        switch (LoadedVT.getSimpleVT().SimpleTy) {
 | 
						|
          default: llvm_unreachable("Invalid PPC load type!");
 | 
						|
          case MVT::i64: Opcode = PPC::LDUX; break;
 | 
						|
          case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
 | 
						|
          case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
 | 
						|
          case MVT::i1:
 | 
						|
          case MVT::i8:  Opcode = PPC::LBZUX8; break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue Chain = LD->getChain();
 | 
						|
      SDValue Base = LD->getBasePtr();
 | 
						|
      SDValue Ops[] = { Base, Offset, Chain };
 | 
						|
      return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
 | 
						|
                                    PPCLowering.getPointerTy(),
 | 
						|
                                    MVT::Other, Ops);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::AND: {
 | 
						|
    unsigned Imm, Imm2, SH, MB, ME;
 | 
						|
    uint64_t Imm64;
 | 
						|
 | 
						|
    // If this is an and of a value rotated between 0 and 31 bits and then and'd
 | 
						|
    // with a mask, emit rlwinm
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Imm) &&
 | 
						|
        isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
 | 
						|
      SDValue Val = N->getOperand(0).getOperand(0);
 | 
						|
      SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
    }
 | 
						|
    // If this is just a masked value where the input is not handled above, and
 | 
						|
    // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Imm) &&
 | 
						|
        isRunOfOnes(Imm, MB, ME) &&
 | 
						|
        N->getOperand(0).getOpcode() != ISD::ROTL) {
 | 
						|
      SDValue Val = N->getOperand(0);
 | 
						|
      SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
    }
 | 
						|
    // If this is a 64-bit zero-extension mask, emit rldicl.
 | 
						|
    if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
 | 
						|
        isMask_64(Imm64)) {
 | 
						|
      SDValue Val = N->getOperand(0);
 | 
						|
      MB = 64 - CountTrailingOnes_64(Imm64);
 | 
						|
      SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB) };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops, 3);
 | 
						|
    }
 | 
						|
    // AND X, 0 -> 0, not "rlwinm 32".
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
 | 
						|
      ReplaceUses(SDValue(N, 0), N->getOperand(1));
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
    // ISD::OR doesn't get all the bitfield insertion fun.
 | 
						|
    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Imm) &&
 | 
						|
        N->getOperand(0).getOpcode() == ISD::OR &&
 | 
						|
        isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
 | 
						|
      unsigned MB, ME;
 | 
						|
      Imm = ~(Imm^Imm2);
 | 
						|
      if (isRunOfOnes(Imm, MB, ME)) {
 | 
						|
        SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                            N->getOperand(0).getOperand(1),
 | 
						|
                            getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
 | 
						|
        return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::OR:
 | 
						|
    if (N->getValueType(0) == MVT::i32)
 | 
						|
      if (SDNode *I = SelectBitfieldInsert(N))
 | 
						|
        return I;
 | 
						|
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  case ISD::SHL: {
 | 
						|
    unsigned Imm, SH, MB, ME;
 | 
						|
    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
 | 
						|
        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
 | 
						|
      SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
    }
 | 
						|
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::SRL: {
 | 
						|
    unsigned Imm, SH, MB, ME;
 | 
						|
    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
 | 
						|
        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
 | 
						|
      SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
    }
 | 
						|
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::SELECT_CC: {
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
 | 
						|
    EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
 | 
						|
    bool isPPC64 = (PtrVT == MVT::i64);
 | 
						|
 | 
						|
    // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
 | 
						|
    if (!isPPC64)
 | 
						|
      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
 | 
						|
        if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
 | 
						|
          if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
 | 
						|
            if (N1C->isNullValue() && N3C->isNullValue() &&
 | 
						|
                N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
 | 
						|
                // FIXME: Implement this optzn for PPC64.
 | 
						|
                N->getValueType(0) == MVT::i32) {
 | 
						|
              SDNode *Tmp =
 | 
						|
                CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | 
						|
                                       N->getOperand(0), getI32Imm(~0U));
 | 
						|
              return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
 | 
						|
                                          SDValue(Tmp, 0), N->getOperand(0),
 | 
						|
                                          SDValue(Tmp, 1));
 | 
						|
            }
 | 
						|
 | 
						|
    SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
 | 
						|
    unsigned BROpc = getPredicateForSetCC(CC);
 | 
						|
 | 
						|
    unsigned SelectCCOp;
 | 
						|
    if (N->getValueType(0) == MVT::i32)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_I4;
 | 
						|
    else if (N->getValueType(0) == MVT::i64)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_I8;
 | 
						|
    else if (N->getValueType(0) == MVT::f32)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_F4;
 | 
						|
    else if (N->getValueType(0) == MVT::f64)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_F8;
 | 
						|
    else
 | 
						|
      SelectCCOp = PPC::SELECT_CC_VRRC;
 | 
						|
 | 
						|
    SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
 | 
						|
                        getI32Imm(BROpc) };
 | 
						|
    return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
 | 
						|
  }
 | 
						|
  case PPCISD::COND_BRANCH: {
 | 
						|
    // Op #0 is the Chain.
 | 
						|
    // Op #1 is the PPC::PRED_* number.
 | 
						|
    // Op #2 is the CR#
 | 
						|
    // Op #3 is the Dest MBB
 | 
						|
    // Op #4 is the Flag.
 | 
						|
    // Prevent PPC::PRED_* from being selected into LI.
 | 
						|
    SDValue Pred =
 | 
						|
      getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
 | 
						|
    SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
 | 
						|
      N->getOperand(0), N->getOperand(4) };
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
 | 
						|
  }
 | 
						|
  case ISD::BR_CC: {
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | 
						|
    SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
 | 
						|
    SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode,
 | 
						|
                        N->getOperand(4), N->getOperand(0) };
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
 | 
						|
  }
 | 
						|
  case ISD::BRIND: {
 | 
						|
    // FIXME: Should custom lower this.
 | 
						|
    SDValue Chain = N->getOperand(0);
 | 
						|
    SDValue Target = N->getOperand(1);
 | 
						|
    unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
 | 
						|
    unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
 | 
						|
    Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
 | 
						|
                                           Chain), 0);
 | 
						|
    return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
 | 
						|
  }
 | 
						|
  case PPCISD::TOC_ENTRY: {
 | 
						|
    assert (PPCSubTarget.isPPC64() && "Only supported for 64-bit ABI");
 | 
						|
 | 
						|
    // For medium and large code model, we generate two instructions as
 | 
						|
    // described below.  Otherwise we allow SelectCodeCommon to handle this,
 | 
						|
    // selecting one of LDtoc, LDtocJTI, and LDtocCPT.
 | 
						|
    CodeModel::Model CModel = TM.getCodeModel();
 | 
						|
    if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
 | 
						|
      break;
 | 
						|
 | 
						|
    // The first source operand is a TargetGlobalAddress or a
 | 
						|
    // TargetJumpTable.  If it is an externally defined symbol, a symbol
 | 
						|
    // with common linkage, a function address, or a jump table address,
 | 
						|
    // or if we are generating code for large code model, we generate:
 | 
						|
    //   LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
 | 
						|
    // Otherwise we generate:
 | 
						|
    //   ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
 | 
						|
    SDValue GA = N->getOperand(0);
 | 
						|
    SDValue TOCbase = N->getOperand(1);
 | 
						|
    SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
 | 
						|
                                        TOCbase, GA);
 | 
						|
 | 
						|
    if (isa<JumpTableSDNode>(GA) || CModel == CodeModel::Large)
 | 
						|
      return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
 | 
						|
                                    SDValue(Tmp, 0));
 | 
						|
 | 
						|
    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
 | 
						|
      const GlobalValue *GValue = G->getGlobal();
 | 
						|
      const GlobalAlias *GAlias = dyn_cast<GlobalAlias>(GValue);
 | 
						|
      const GlobalValue *RealGValue = GAlias ?
 | 
						|
        GAlias->resolveAliasedGlobal(false) : GValue;
 | 
						|
      const GlobalVariable *GVar = dyn_cast<GlobalVariable>(RealGValue);
 | 
						|
      assert((GVar || isa<Function>(RealGValue)) &&
 | 
						|
             "Unexpected global value subclass!");
 | 
						|
 | 
						|
      // An external variable is one without an initializer.  For these,
 | 
						|
      // for variables with common linkage, and for Functions, generate
 | 
						|
      // the LDtocL form.
 | 
						|
      if (!GVar || !GVar->hasInitializer() || RealGValue->hasCommonLinkage() ||
 | 
						|
          RealGValue->hasAvailableExternallyLinkage())
 | 
						|
        return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
 | 
						|
                                      SDValue(Tmp, 0));
 | 
						|
    }
 | 
						|
 | 
						|
    return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
 | 
						|
                                  SDValue(Tmp, 0), GA);
 | 
						|
  }
 | 
						|
  case PPCISD::VADD_SPLAT: {
 | 
						|
    // This expands into one of three sequences, depending on whether
 | 
						|
    // the first operand is odd or even, positive or negative.
 | 
						|
    assert(isa<ConstantSDNode>(N->getOperand(0)) &&
 | 
						|
           isa<ConstantSDNode>(N->getOperand(1)) &&
 | 
						|
           "Invalid operand on VADD_SPLAT!");
 | 
						|
 | 
						|
    int Elt     = N->getConstantOperandVal(0);
 | 
						|
    int EltSize = N->getConstantOperandVal(1);
 | 
						|
    unsigned Opc1, Opc2, Opc3;
 | 
						|
    EVT VT;
 | 
						|
 | 
						|
    if (EltSize == 1) {
 | 
						|
      Opc1 = PPC::VSPLTISB;
 | 
						|
      Opc2 = PPC::VADDUBM;
 | 
						|
      Opc3 = PPC::VSUBUBM;
 | 
						|
      VT = MVT::v16i8;
 | 
						|
    } else if (EltSize == 2) {
 | 
						|
      Opc1 = PPC::VSPLTISH;
 | 
						|
      Opc2 = PPC::VADDUHM;
 | 
						|
      Opc3 = PPC::VSUBUHM;
 | 
						|
      VT = MVT::v8i16;
 | 
						|
    } else {
 | 
						|
      assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
 | 
						|
      Opc1 = PPC::VSPLTISW;
 | 
						|
      Opc2 = PPC::VADDUWM;
 | 
						|
      Opc3 = PPC::VSUBUWM;
 | 
						|
      VT = MVT::v4i32;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((Elt & 1) == 0) {
 | 
						|
      // Elt is even, in the range [-32,-18] + [16,30].
 | 
						|
      //
 | 
						|
      // Convert: VADD_SPLAT elt, size
 | 
						|
      // Into:    tmp = VSPLTIS[BHW] elt
 | 
						|
      //          VADDU[BHW]M tmp, tmp
 | 
						|
      // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
 | 
						|
      SDValue EltVal = getI32Imm(Elt >> 1);
 | 
						|
      SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | 
						|
      SDValue TmpVal = SDValue(Tmp, 0);
 | 
						|
      return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
 | 
						|
 | 
						|
    } else if (Elt > 0) {
 | 
						|
      // Elt is odd and positive, in the range [17,31].
 | 
						|
      //
 | 
						|
      // Convert: VADD_SPLAT elt, size
 | 
						|
      // Into:    tmp1 = VSPLTIS[BHW] elt-16
 | 
						|
      //          tmp2 = VSPLTIS[BHW] -16
 | 
						|
      //          VSUBU[BHW]M tmp1, tmp2
 | 
						|
      SDValue EltVal = getI32Imm(Elt - 16);
 | 
						|
      SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | 
						|
      EltVal = getI32Imm(-16);
 | 
						|
      SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | 
						|
      return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
 | 
						|
                                    SDValue(Tmp2, 0));
 | 
						|
 | 
						|
    } else {
 | 
						|
      // Elt is odd and negative, in the range [-31,-17].
 | 
						|
      //
 | 
						|
      // Convert: VADD_SPLAT elt, size
 | 
						|
      // Into:    tmp1 = VSPLTIS[BHW] elt+16
 | 
						|
      //          tmp2 = VSPLTIS[BHW] -16
 | 
						|
      //          VADDU[BHW]M tmp1, tmp2
 | 
						|
      SDValue EltVal = getI32Imm(Elt + 16);
 | 
						|
      SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | 
						|
      EltVal = getI32Imm(-16);
 | 
						|
      SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | 
						|
      return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
 | 
						|
                                    SDValue(Tmp2, 0));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  return SelectCode(N);
 | 
						|
}
 | 
						|
 | 
						|
/// PostProcessISelDAG - Perform some late peephole optimizations
 | 
						|
/// on the DAG representation.
 | 
						|
void PPCDAGToDAGISel::PostprocessISelDAG() {
 | 
						|
 | 
						|
  // Skip peepholes at -O0.
 | 
						|
  if (TM.getOptLevel() == CodeGenOpt::None)
 | 
						|
    return;
 | 
						|
 | 
						|
  // These optimizations are currently supported only for 64-bit SVR4.
 | 
						|
  if (PPCSubTarget.isDarwin() || !PPCSubTarget.isPPC64())
 | 
						|
    return;
 | 
						|
 | 
						|
  SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
 | 
						|
  ++Position;
 | 
						|
 | 
						|
  while (Position != CurDAG->allnodes_begin()) {
 | 
						|
    SDNode *N = --Position;
 | 
						|
    // Skip dead nodes and any non-machine opcodes.
 | 
						|
    if (N->use_empty() || !N->isMachineOpcode())
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned FirstOp;
 | 
						|
    unsigned StorageOpcode = N->getMachineOpcode();
 | 
						|
 | 
						|
    switch (StorageOpcode) {
 | 
						|
    default: continue;
 | 
						|
 | 
						|
    case PPC::LBZ:
 | 
						|
    case PPC::LBZ8:
 | 
						|
    case PPC::LD:
 | 
						|
    case PPC::LFD:
 | 
						|
    case PPC::LFS:
 | 
						|
    case PPC::LHA:
 | 
						|
    case PPC::LHA8:
 | 
						|
    case PPC::LHZ:
 | 
						|
    case PPC::LHZ8:
 | 
						|
    case PPC::LWA:
 | 
						|
    case PPC::LWZ:
 | 
						|
    case PPC::LWZ8:
 | 
						|
      FirstOp = 0;
 | 
						|
      break;
 | 
						|
 | 
						|
    case PPC::STB:
 | 
						|
    case PPC::STB8:
 | 
						|
    case PPC::STD:
 | 
						|
    case PPC::STFD:
 | 
						|
    case PPC::STFS:
 | 
						|
    case PPC::STH:
 | 
						|
    case PPC::STH8:
 | 
						|
    case PPC::STW:
 | 
						|
    case PPC::STW8:
 | 
						|
      FirstOp = 1;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a load or store with a zero offset, we may be able to
 | 
						|
    // fold an add-immediate into the memory operation.
 | 
						|
    if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) ||
 | 
						|
        N->getConstantOperandVal(FirstOp) != 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SDValue Base = N->getOperand(FirstOp + 1);
 | 
						|
    if (!Base.isMachineOpcode())
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned Flags = 0;
 | 
						|
    bool ReplaceFlags = true;
 | 
						|
 | 
						|
    // When the feeding operation is an add-immediate of some sort,
 | 
						|
    // determine whether we need to add relocation information to the
 | 
						|
    // target flags on the immediate operand when we fold it into the
 | 
						|
    // load instruction.
 | 
						|
    //
 | 
						|
    // For something like ADDItocL, the relocation information is
 | 
						|
    // inferred from the opcode; when we process it in the AsmPrinter,
 | 
						|
    // we add the necessary relocation there.  A load, though, can receive
 | 
						|
    // relocation from various flavors of ADDIxxx, so we need to carry
 | 
						|
    // the relocation information in the target flags.
 | 
						|
    switch (Base.getMachineOpcode()) {
 | 
						|
    default: continue;
 | 
						|
 | 
						|
    case PPC::ADDI8:
 | 
						|
    case PPC::ADDI:
 | 
						|
      // In some cases (such as TLS) the relocation information
 | 
						|
      // is already in place on the operand, so copying the operand
 | 
						|
      // is sufficient.
 | 
						|
      ReplaceFlags = false;
 | 
						|
      // For these cases, the immediate may not be divisible by 4, in
 | 
						|
      // which case the fold is illegal for DS-form instructions.  (The
 | 
						|
      // other cases provide aligned addresses and are always safe.)
 | 
						|
      if ((StorageOpcode == PPC::LWA ||
 | 
						|
           StorageOpcode == PPC::LD  ||
 | 
						|
           StorageOpcode == PPC::STD) &&
 | 
						|
          (!isa<ConstantSDNode>(Base.getOperand(1)) ||
 | 
						|
           Base.getConstantOperandVal(1) % 4 != 0))
 | 
						|
        continue;
 | 
						|
      break;
 | 
						|
    case PPC::ADDIdtprelL:
 | 
						|
      Flags = PPCII::MO_DTPREL16_LO;
 | 
						|
      break;
 | 
						|
    case PPC::ADDItlsldL:
 | 
						|
      Flags = PPCII::MO_TLSLD16_LO;
 | 
						|
      break;
 | 
						|
    case PPC::ADDItocL:
 | 
						|
      Flags = PPCII::MO_TOC16_LO;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // We found an opportunity.  Reverse the operands from the add
 | 
						|
    // immediate and substitute them into the load or store.  If
 | 
						|
    // needed, update the target flags for the immediate operand to
 | 
						|
    // reflect the necessary relocation information.
 | 
						|
    DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
 | 
						|
    DEBUG(Base->dump(CurDAG));
 | 
						|
    DEBUG(dbgs() << "\nN: ");
 | 
						|
    DEBUG(N->dump(CurDAG));
 | 
						|
    DEBUG(dbgs() << "\n");
 | 
						|
 | 
						|
    SDValue ImmOpnd = Base.getOperand(1);
 | 
						|
 | 
						|
    // If the relocation information isn't already present on the
 | 
						|
    // immediate operand, add it now.
 | 
						|
    if (ReplaceFlags) {
 | 
						|
      if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
 | 
						|
        DebugLoc dl = GA->getDebugLoc();
 | 
						|
        const GlobalValue *GV = GA->getGlobal();
 | 
						|
        ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
 | 
						|
      } else if (ConstantPoolSDNode *CP =
 | 
						|
                 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
 | 
						|
        const Constant *C = CP->getConstVal();
 | 
						|
        ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
 | 
						|
                                                CP->getAlignment(),
 | 
						|
                                                0, Flags);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (FirstOp == 1) // Store
 | 
						|
      (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
 | 
						|
                                       Base.getOperand(0), N->getOperand(3));
 | 
						|
    else // Load
 | 
						|
      (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
 | 
						|
                                       N->getOperand(2));
 | 
						|
 | 
						|
    // The add-immediate may now be dead, in which case remove it.
 | 
						|
    if (Base.getNode()->use_empty())
 | 
						|
      CurDAG->RemoveDeadNode(Base.getNode());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// createPPCISelDag - This pass converts a legalized DAG into a
 | 
						|
/// PowerPC-specific DAG, ready for instruction scheduling.
 | 
						|
///
 | 
						|
FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
 | 
						|
  return new PPCDAGToDAGISel(TM);
 | 
						|
}
 | 
						|
 | 
						|
static void initializePassOnce(PassRegistry &Registry) {
 | 
						|
  const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
 | 
						|
  PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID, 0,
 | 
						|
                              false, false);
 | 
						|
  Registry.registerPass(*PI, true);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
 | 
						|
  CALL_ONCE_INITIALIZATION(initializePassOnce);
 | 
						|
}
 | 
						|
 |