llvm-6502/lib/AsmParser/llvmAsmParser.y
Chris Lattner 70cc3397f8 Implement global variable support
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@530 91177308-0d34-0410-b5e6-96231b3b80d8
2001-09-10 07:58:01 +00:00

1326 lines
43 KiB
Plaintext

//===-- llvmAsmParser.y - Parser for llvm assembly files ---------*- C++ -*--=//
//
// This file implements the bison parser for LLVM assembly languages files.
//
//===------------------------------------------------------------------------=//
//
// TODO: Parse comments and add them to an internal node... so that they may
// be saved in the bytecode format as well as everything else. Very important
// for a general IR format.
//
%{
#include "ParserInternals.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/SymbolTable.h"
#include "llvm/Module.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Method.h"
#include "llvm/BasicBlock.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/CFG.h" // TODO: Change this when we have a DF.h
#include "llvm/Support/STLExtras.h"
#include <list>
#include <utility> // Get definition of pair class
#include <algorithm>
#include <stdio.h> // This embarasment is due to our flex lexer...
int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
int yylex(); // declaration" of xxx warnings.
int yyparse();
static Module *ParserResult;
string CurFilename;
// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
// relating to upreferences in the input stream.
//
//#define DEBUG_UPREFS 1
#ifdef DEBUG_UPREFS
#define UR_OUT(X) cerr << X
#else
#define UR_OUT(X)
#endif
// This contains info used when building the body of a method. It is destroyed
// when the method is completed.
//
typedef vector<Value *> ValueList; // Numbered defs
static void ResolveDefinitions(vector<ValueList> &LateResolvers);
static void ResolveTypes (vector<PATypeHolder<Type> > &LateResolveTypes);
static struct PerModuleInfo {
Module *CurrentModule;
vector<ValueList> Values; // Module level numbered definitions
vector<ValueList> LateResolveValues;
vector<PATypeHolder<Type> > Types, LateResolveTypes;
void ModuleDone() {
// If we could not resolve some methods at method compilation time (calls to
// methods before they are defined), resolve them now... Types are resolved
// when the constant pool has been completely parsed.
//
ResolveDefinitions(LateResolveValues);
Values.clear(); // Clear out method local definitions
Types.clear();
CurrentModule = 0;
}
} CurModule;
static struct PerMethodInfo {
Method *CurrentMethod; // Pointer to current method being created
vector<ValueList> Values; // Keep track of numbered definitions
vector<ValueList> LateResolveValues;
vector<PATypeHolder<Type> > Types, LateResolveTypes;
bool isDeclare; // Is this method a forward declararation?
inline PerMethodInfo() {
CurrentMethod = 0;
isDeclare = false;
}
inline ~PerMethodInfo() {}
inline void MethodStart(Method *M) {
CurrentMethod = M;
}
void MethodDone() {
// If we could not resolve some blocks at parsing time (forward branches)
// resolve the branches now...
ResolveDefinitions(LateResolveValues);
Values.clear(); // Clear out method local definitions
Types.clear();
CurrentMethod = 0;
isDeclare = false;
}
} CurMeth; // Info for the current method...
//===----------------------------------------------------------------------===//
// Code to handle definitions of all the types
//===----------------------------------------------------------------------===//
static void InsertValue(Value *D, vector<ValueList> &ValueTab = CurMeth.Values){
if (!D->hasName()) { // Is this a numbered definition?
unsigned type = D->getType()->getUniqueID();
if (ValueTab.size() <= type)
ValueTab.resize(type+1, ValueList());
//printf("Values[%d][%d] = %d\n", type, ValueTab[type].size(), D);
ValueTab[type].push_back(D);
}
}
// TODO: FIXME when Type are not const
static void InsertType(const Type *Ty, vector<PATypeHolder<Type> > &Types) {
Types.push_back(Ty);
}
static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
switch (D.Type) {
case 0: { // Is it a numbered definition?
unsigned Num = (unsigned)D.Num;
// Module constants occupy the lowest numbered slots...
if (Num < CurModule.Types.size())
return CurModule.Types[Num];
Num -= CurModule.Types.size();
// Check that the number is within bounds...
if (Num <= CurMeth.Types.size())
return CurMeth.Types[Num];
}
case 1: { // Is it a named definition?
string Name(D.Name);
SymbolTable *SymTab = 0;
if (CurMeth.CurrentMethod)
SymTab = CurMeth.CurrentMethod->getSymbolTable();
Value *N = SymTab ? SymTab->lookup(Type::TypeTy, Name) : 0;
if (N == 0) {
// Symbol table doesn't automatically chain yet... because the method
// hasn't been added to the module...
//
SymTab = CurModule.CurrentModule->getSymbolTable();
if (SymTab)
N = SymTab->lookup(Type::TypeTy, Name);
if (N == 0) break;
}
D.destroy(); // Free old strdup'd memory...
return N->castTypeAsserting();
}
default:
ThrowException("Invalid symbol type reference!");
}
// If we reached here, we referenced either a symbol that we don't know about
// or an id number that hasn't been read yet. We may be referencing something
// forward, so just create an entry to be resolved later and get to it...
//
if (DoNotImprovise) return 0; // Do we just want a null to be returned?
vector<PATypeHolder<Type> > *LateResolver = CurMeth.CurrentMethod ?
&CurMeth.LateResolveTypes : &CurModule.LateResolveTypes;
Type *Typ = new TypePlaceHolder(Type::TypeTy, D);
InsertType(Typ, *LateResolver);
return Typ;
}
static Value *getVal(const Type *Ty, const ValID &D,
bool DoNotImprovise = false) {
assert(Ty != Type::TypeTy && "Should use getTypeVal for types!");
switch (D.Type) {
case 0: { // Is it a numbered definition?
unsigned type = Ty->getUniqueID();
unsigned Num = (unsigned)D.Num;
// Module constants occupy the lowest numbered slots...
if (type < CurModule.Values.size()) {
if (Num < CurModule.Values[type].size())
return CurModule.Values[type][Num];
Num -= CurModule.Values[type].size();
}
// Make sure that our type is within bounds
if (CurMeth.Values.size() <= type)
break;
// Check that the number is within bounds...
if (CurMeth.Values[type].size() <= Num)
break;
return CurMeth.Values[type][Num];
}
case 1: { // Is it a named definition?
string Name(D.Name);
SymbolTable *SymTab = 0;
if (CurMeth.CurrentMethod)
SymTab = CurMeth.CurrentMethod->getSymbolTable();
Value *N = SymTab ? SymTab->lookup(Ty, Name) : 0;
if (N == 0) {
// Symbol table doesn't automatically chain yet... because the method
// hasn't been added to the module...
//
SymTab = CurModule.CurrentModule->getSymbolTable();
if (SymTab)
N = SymTab->lookup(Ty, Name);
if (N == 0) break;
}
D.destroy(); // Free old strdup'd memory...
return N;
}
case 2: // Is it a constant pool reference??
case 3: // Is it an unsigned const pool reference?
case 4: // Is it a string const pool reference?
case 5:{ // Is it a floating point const pool reference?
ConstPoolVal *CPV = 0;
// Check to make sure that "Ty" is an integral type, and that our
// value will fit into the specified type...
switch (D.Type) {
case 2:
if (Ty == Type::BoolTy) { // Special handling for boolean data
CPV = ConstPoolBool::get(D.ConstPool64 != 0);
} else {
if (!ConstPoolSInt::isValueValidForType(Ty, D.ConstPool64))
ThrowException("Symbolic constant pool value '" +
itostr(D.ConstPool64) + "' is invalid for type '" +
Ty->getName() + "'!");
CPV = ConstPoolSInt::get(Ty, D.ConstPool64);
}
break;
case 3:
if (!ConstPoolUInt::isValueValidForType(Ty, D.UConstPool64)) {
if (!ConstPoolSInt::isValueValidForType(Ty, D.ConstPool64)) {
ThrowException("Integral constant pool reference is invalid!");
} else { // This is really a signed reference. Transmogrify.
CPV = ConstPoolSInt::get(Ty, D.ConstPool64);
}
} else {
CPV = ConstPoolUInt::get(Ty, D.UConstPool64);
}
break;
case 4:
cerr << "FIXME: TODO: String constants [sbyte] not implemented yet!\n";
abort();
break;
case 5:
if (!ConstPoolFP::isValueValidForType(Ty, D.ConstPoolFP))
ThrowException("FP constant invalid for type!!");
else
CPV = ConstPoolFP::get(Ty, D.ConstPoolFP);
break;
}
assert(CPV && "How did we escape creating a constant??");
return CPV;
} // End of case 2,3,4
default:
assert(0 && "Unhandled case!");
} // End of switch
// If we reached here, we referenced either a symbol that we don't know about
// or an id number that hasn't been read yet. We may be referencing something
// forward, so just create an entry to be resolved later and get to it...
//
if (DoNotImprovise) return 0; // Do we just want a null to be returned?
Value *d = 0;
vector<ValueList> *LateResolver = (CurMeth.CurrentMethod) ?
&CurMeth.LateResolveValues : &CurModule.LateResolveValues;
switch (Ty->getPrimitiveID()) {
case Type::LabelTyID: d = new BBPlaceHolder(Ty, D); break;
case Type::MethodTyID: d = new MethPlaceHolder(Ty, D);
LateResolver = &CurModule.LateResolveValues; break;
default: d = new ValuePlaceHolder(Ty, D); break;
}
assert(d != 0 && "How did we not make something?");
InsertValue(d, *LateResolver);
return d;
}
//===----------------------------------------------------------------------===//
// Code to handle forward references in instructions
//===----------------------------------------------------------------------===//
//
// This code handles the late binding needed with statements that reference
// values not defined yet... for example, a forward branch, or the PHI node for
// a loop body.
//
// This keeps a table (CurMeth.LateResolveValues) of all such forward references
// and back patchs after we are done.
//
// ResolveDefinitions - If we could not resolve some defs at parsing
// time (forward branches, phi functions for loops, etc...) resolve the
// defs now...
//
static void ResolveDefinitions(vector<ValueList> &LateResolvers) {
// Loop over LateResolveDefs fixing up stuff that couldn't be resolved
for (unsigned ty = 0; ty < LateResolvers.size(); ty++) {
while (!LateResolvers[ty].empty()) {
Value *V = LateResolvers[ty].back();
LateResolvers[ty].pop_back();
ValID &DID = getValIDFromPlaceHolder(V);
Value *TheRealValue = getVal(Type::getUniqueIDType(ty), DID, true);
if (TheRealValue == 0) {
if (DID.Type == 1)
ThrowException("Reference to an invalid definition: '" +DID.getName()+
"' of type '" + V->getType()->getDescription() + "'",
getLineNumFromPlaceHolder(V));
else
ThrowException("Reference to an invalid definition: #" +
itostr(DID.Num) + " of type '" +
V->getType()->getDescription() + "'",
getLineNumFromPlaceHolder(V));
}
assert(!V->isType() && "Types should be in LateResolveTypes!");
V->replaceAllUsesWith(TheRealValue);
delete V;
}
}
LateResolvers.clear();
}
// ResolveTypes - This goes through the forward referenced type table and makes
// sure that all type references are complete. This code is executed after the
// constant pool of a method or module is completely parsed.
//
static void ResolveTypes(vector<PATypeHolder<Type> > &LateResolveTypes) {
while (!LateResolveTypes.empty()) {
const Type *Ty = LateResolveTypes.back();
ValID &DID = getValIDFromPlaceHolder(Ty);
const Type *TheRealType = getTypeVal(DID, true);
if (TheRealType == 0) {
if (DID.Type == 1)
ThrowException("Reference to an invalid type: '" +DID.getName(),
getLineNumFromPlaceHolder(Ty));
else
ThrowException("Reference to an invalid type: #" + itostr(DID.Num),
getLineNumFromPlaceHolder(Ty));
}
// FIXME: When types are not const
DerivedType *DTy = const_cast<DerivedType*>(Ty->castDerivedTypeAsserting());
// Refine the opaque type we had to the new type we are getting.
DTy->refineAbstractTypeTo(TheRealType);
// No need to delete type, refine does that for us.
LateResolveTypes.pop_back();
}
}
static void setValueName(Value *V, const string &Name) {
SymbolTable *ST = CurMeth.CurrentMethod ?
CurMeth.CurrentMethod->getSymbolTableSure() :
CurModule.CurrentModule->getSymbolTableSure();
Value *Existing = ST->lookup(V->getType(), Name);
if (Existing) { // Inserting a name that is already defined???
// There is only one case where this is allowed: when we are refining an
// opaque type. In this case, Existing will be an opaque type.
if (const Type *Ty = Existing->castType())
if (Ty->isOpaqueType()) {
// We ARE replacing an opaque type!
// TODO: FIXME when types are not const!
const_cast<DerivedType*>(Ty->castDerivedTypeAsserting())->refineAbstractTypeTo(V->castTypeAsserting());
return;
}
// Otherwise, we are a simple redefinition of a value, baaad
ThrowException("Redefinition of value name '" + Name + "' in the '" +
V->getType()->getDescription() + "' type plane!");
}
V->setName(Name, ST);
}
//===----------------------------------------------------------------------===//
// Code for handling upreferences in type names...
//
// TypeContains - Returns true if Ty contains E in it.
//
static bool TypeContains(const Type *Ty, const Type *E) {
return find(cfg::tdf_begin(Ty), cfg::tdf_end(Ty), E) != cfg::tdf_end(Ty);
}
static vector<pair<unsigned, OpaqueType *> > UpRefs;
static PATypeHolder<Type> HandleUpRefs(const Type *ty) {
PATypeHolder<Type> Ty(ty);
UR_OUT(UpRefs.size() << " upreferences active!\n");
for (unsigned i = 0; i < UpRefs.size(); ) {
UR_OUT("TypeContains(" << Ty->getDescription() << ", "
<< UpRefs[i].second->getDescription() << ") = "
<< TypeContains(Ty, UpRefs[i].second) << endl);
if (TypeContains(Ty, UpRefs[i].second)) {
unsigned Level = --UpRefs[i].first; // Decrement level of upreference
UR_OUT("Uplevel Ref Level = " << Level << endl);
if (Level == 0) { // Upreference should be resolved!
UR_OUT("About to resolve upreference!\n";
string OldName = UpRefs[i].second->getDescription());
UpRefs[i].second->refineAbstractTypeTo(Ty);
UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
UR_OUT("Type '" << OldName << "' refined upreference to: "
<< (const void*)Ty << ", " << Ty->getDescription() << endl);
continue;
}
}
++i; // Otherwise, no resolve, move on...
}
// FIXME: TODO: this should return the updated type
return Ty;
}
template <class TypeTy>
inline static void TypeDone(PATypeHolder<TypeTy> *Ty) {
if (UpRefs.size())
ThrowException("Invalid upreference in type: " + (*Ty)->getDescription());
}
// newTH - Allocate a new type holder for the specified type
template <class TypeTy>
inline static PATypeHolder<TypeTy> *newTH(const TypeTy *Ty) {
return new PATypeHolder<TypeTy>(Ty);
}
template <class TypeTy>
inline static PATypeHolder<TypeTy> *newTH(const PATypeHolder<TypeTy> &TH) {
return new PATypeHolder<TypeTy>(TH);
}
// newTHC - Allocate a new type holder for the specified type that can be
// casted to a new Type type.
template <class TypeTy, class OldTy>
inline static PATypeHolder<TypeTy> *newTHC(const PATypeHolder<OldTy> &Old) {
return new PATypeHolder<TypeTy>((const TypeTy*)Old.get());
}
//===----------------------------------------------------------------------===//
// RunVMAsmParser - Define an interface to this parser
//===----------------------------------------------------------------------===//
//
Module *RunVMAsmParser(const string &Filename, FILE *F) {
llvmAsmin = F;
CurFilename = Filename;
llvmAsmlineno = 1; // Reset the current line number...
CurModule.CurrentModule = new Module(); // Allocate a new module to read
yyparse(); // Parse the file.
Module *Result = ParserResult;
llvmAsmin = stdin; // F is about to go away, don't use it anymore...
ParserResult = 0;
return Result;
}
%}
%union {
Module *ModuleVal;
Method *MethodVal;
MethodArgument *MethArgVal;
BasicBlock *BasicBlockVal;
TerminatorInst *TermInstVal;
Instruction *InstVal;
ConstPoolVal *ConstVal;
const Type *PrimType;
PATypeHolder<Type> *TypeVal;
PATypeHolder<ArrayType> *ArrayTypeTy;
PATypeHolder<StructType> *StructTypeTy;
Value *ValueVal;
list<MethodArgument*> *MethodArgList;
list<Value*> *ValueList;
list<PATypeHolder<Type> > *TypeList;
list<pair<Value*, BasicBlock*> > *PHIList; // Represent the RHS of PHI node
list<pair<ConstPoolVal*, BasicBlock*> > *JumpTable;
vector<ConstPoolVal*> *ConstVector;
int64_t SInt64Val;
uint64_t UInt64Val;
int SIntVal;
unsigned UIntVal;
double FPVal;
char *StrVal; // This memory is strdup'd!
ValID ValIDVal; // strdup'd memory maybe!
Instruction::UnaryOps UnaryOpVal;
Instruction::BinaryOps BinaryOpVal;
Instruction::TermOps TermOpVal;
Instruction::MemoryOps MemOpVal;
Instruction::OtherOps OtherOpVal;
}
%type <ModuleVal> Module MethodList
%type <MethodVal> Method MethodProto MethodHeader BasicBlockList
%type <BasicBlockVal> BasicBlock InstructionList
%type <TermInstVal> BBTerminatorInst
%type <InstVal> Inst InstVal MemoryInst
%type <ConstVal> ConstVal ExtendedConstVal
%type <ConstVector> ConstVector UByteList
%type <MethodArgList> ArgList ArgListH
%type <MethArgVal> ArgVal
%type <PHIList> PHIList
%type <ValueList> ValueRefList ValueRefListE // For call param lists
%type <TypeList> TypeListI ArgTypeListI
%type <JumpTable> JumpTable
%type <ValIDVal> ValueRef ConstValueRef // Reference to a definition or BB
%type <ValueVal> ResolvedVal // <type> <valref> pair
// Tokens and types for handling constant integer values
//
// ESINT64VAL - A negative number within long long range
%token <SInt64Val> ESINT64VAL
// EUINT64VAL - A positive number within uns. long long range
%token <UInt64Val> EUINT64VAL
%type <SInt64Val> EINT64VAL
%token <SIntVal> SINTVAL // Signed 32 bit ints...
%token <UIntVal> UINTVAL // Unsigned 32 bit ints...
%type <SIntVal> INTVAL
%token <FPVal> FPVAL // Float or Double constant
// Built in types...
%type <TypeVal> Types TypesV UpRTypes UpRTypesV
%type <PrimType> SIntType UIntType IntType FPType PrimType // Classifications
%token <TypeVal> OPAQUE
%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
%token <PrimType> FLOAT DOUBLE TYPE LABEL
%type <ArrayTypeTy> ArrayType ArrayTypeI
%type <StructTypeTy> StructType StructTypeI
%token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
%type <StrVal> OptVAR_ID OptAssign
%token IMPLEMENTATION TRUE FALSE BEGINTOK END DECLARE GLOBAL TO DOTDOTDOT STRING
// Basic Block Terminating Operators
%token <TermOpVal> RET BR SWITCH
// Unary Operators
%type <UnaryOpVal> UnaryOps // all the unary operators
%token <UnaryOpVal> NOT
// Binary Operators
%type <BinaryOpVal> BinaryOps // all the binary operators
%token <BinaryOpVal> ADD SUB MUL DIV REM
%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comarators
// Memory Instructions
%token <MemoryOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
// Other Operators
%type <OtherOpVal> ShiftOps
%token <OtherOpVal> PHI CALL CAST SHL SHR
%start Module
%%
// Handle constant integer size restriction and conversion...
//
INTVAL : SINTVAL
INTVAL : UINTVAL {
if ($1 > (uint32_t)INT32_MAX) // Outside of my range!
ThrowException("Value too large for type!");
$$ = (int32_t)$1;
}
EINT64VAL : ESINT64VAL // These have same type and can't cause problems...
EINT64VAL : EUINT64VAL {
if ($1 > (uint64_t)INT64_MAX) // Outside of my range!
ThrowException("Value too large for type!");
$$ = (int64_t)$1;
}
// Operations that are notably excluded from this list include:
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
//
UnaryOps : NOT
BinaryOps : ADD | SUB | MUL | DIV | REM
BinaryOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE
ShiftOps : SHL | SHR
// These are some types that allow classification if we only want a particular
// thing... for example, only a signed, unsigned, or integral type.
SIntType : LONG | INT | SHORT | SBYTE
UIntType : ULONG | UINT | USHORT | UBYTE
IntType : SIntType | UIntType
FPType : FLOAT | DOUBLE
// OptAssign - Value producing statements have an optional assignment component
OptAssign : VAR_ID '=' {
$$ = $1;
}
| /*empty*/ {
$$ = 0;
}
//===----------------------------------------------------------------------===//
// Types includes all predefined types... except void, because it can only be
// used in specific contexts (method returning void for example). To have
// access to it, a user must explicitly use TypesV.
//
// TypesV includes all of 'Types', but it also includes the void type.
TypesV : Types | VOID { $$ = newTH($1); }
UpRTypesV : UpRTypes | VOID { $$ = newTH($1); }
Types : UpRTypes {
TypeDone($$ = $1);
}
// Derived types are added later...
//
PrimType : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT
PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE | LABEL
UpRTypes : OPAQUE | PrimType { $$ = newTH($1); }
UpRTypes : ValueRef { // Named types are also simple types...
$$ = newTH(getTypeVal($1));
}
// ArrayTypeI - Internal version of ArrayType that can have incomplete uprefs
//
ArrayTypeI : '[' UpRTypesV ']' { // Unsized array type?
$$ = newTHC<ArrayType>(HandleUpRefs(ArrayType::get(*$2)));
delete $2;
}
| '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type?
$$ = newTHC<ArrayType>(HandleUpRefs(ArrayType::get(*$4, (int)$2)));
delete $4;
}
StructTypeI : '{' TypeListI '}' { // Structure type?
vector<const Type*> Elements;
mapto($2->begin(), $2->end(), back_inserter(Elements),
mem_fun_ref(&PATypeHandle<Type>::get));
$$ = newTHC<StructType>(HandleUpRefs(StructType::get(Elements)));
delete $2;
}
| '{' '}' { // Empty structure type?
$$ = newTH(StructType::get(vector<const Type*>()));
}
// Include derived types in the Types production.
//
UpRTypes : '\\' EUINT64VAL { // Type UpReference
if ($2 > (uint64_t)INT64_MAX) ThrowException("Value out of range!");
OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
UpRefs.push_back(make_pair((unsigned)$2, OT)); // Add to vector...
$$ = newTH<Type>(OT);
UR_OUT("New Upreference!\n");
}
| UpRTypesV '(' ArgTypeListI ')' { // Method derived type?
vector<const Type*> Params;
mapto($3->begin(), $3->end(), back_inserter(Params),
mem_fun_ref(&PATypeHandle<Type>::get));
$$ = newTH(HandleUpRefs(MethodType::get(*$1, Params)));
delete $3; // Delete the argument list
delete $1; // Delete the old type handle
}
| ArrayTypeI { // [Un]sized array type?
$$ = newTHC<Type>(*$1); delete $1;
}
| StructTypeI { // Structure type?
$$ = newTHC<Type>(*$1); delete $1;
}
| UpRTypes '*' { // Pointer type?
$$ = newTH(HandleUpRefs(PointerType::get(*$1)));
delete $1; // Delete the type handle
}
// Define some helpful top level types that do not allow UpReferences to escape
//
ArrayType : ArrayTypeI { TypeDone($$ = $1); }
StructType : StructTypeI { TypeDone($$ = $1); }
// TypeList - Used for struct declarations and as a basis for method type
// declaration type lists
//
TypeListI : UpRTypes {
$$ = new list<PATypeHolder<Type> >();
$$->push_back(*$1); delete $1;
}
| TypeListI ',' UpRTypes {
($$=$1)->push_back(*$3); delete $3;
}
// ArgTypeList - List of types for a method type declaration...
ArgTypeListI : TypeListI
| TypeListI ',' DOTDOTDOT {
($$=$1)->push_back(Type::VoidTy);
}
| DOTDOTDOT {
($$ = new list<PATypeHolder<Type> >())->push_back(Type::VoidTy);
}
| /*empty*/ {
$$ = new list<PATypeHolder<Type> >();
}
// ConstVal - The various declarations that go into the constant pool. This
// includes all forward declarations of types, constants, and functions.
//
// This is broken into two sections: ExtendedConstVal and ConstVal
//
ExtendedConstVal: ArrayType '[' ConstVector ']' { // Nonempty unsized arr
const ArrayType *ATy = *$1;
const Type *ETy = ATy->getElementType();
int NumElements = ATy->getNumElements();
// Verify that we have the correct size...
if (NumElements != -1 && NumElements != (int)$3->size())
ThrowException("Type mismatch: constant sized array initialized with " +
utostr($3->size()) + " arguments, but has size of " +
itostr(NumElements) + "!");
// Verify all elements are correct type!
for (unsigned i = 0; i < $3->size(); i++) {
if (ETy != (*$3)[i]->getType())
ThrowException("Element #" + utostr(i) + " is not of type '" +
ETy->getName() + "' as required!\nIt is of type '" +
(*$3)[i]->getType()->getName() + "'.");
}
$$ = ConstPoolArray::get(ATy, *$3);
delete $1; delete $3;
}
| ArrayType '[' ']' {
int NumElements = (*$1)->getNumElements();
if (NumElements != -1 && NumElements != 0)
ThrowException("Type mismatch: constant sized array initialized with 0"
" arguments, but has size of " + itostr(NumElements) +"!");
$$ = ConstPoolArray::get((*$1), vector<ConstPoolVal*>());
delete $1;
}
| ArrayType 'c' STRINGCONSTANT {
const ArrayType *ATy = *$1;
int NumElements = ATy->getNumElements();
const Type *ETy = ATy->getElementType();
char *EndStr = UnEscapeLexed($3, true);
if (NumElements != -1 && NumElements != (EndStr-$3))
ThrowException("Can't build string constant of size " +
itostr((int)(EndStr-$3)) +
" when array has size " + itostr(NumElements) + "!");
vector<ConstPoolVal*> Vals;
if (ETy == Type::SByteTy) {
for (char *C = $3; C != EndStr; ++C)
Vals.push_back(ConstPoolSInt::get(ETy, *C));
} else if (ETy == Type::UByteTy) {
for (char *C = $3; C != EndStr; ++C)
Vals.push_back(ConstPoolUInt::get(ETy, *C));
} else {
free($3);
ThrowException("Cannot build string arrays of non byte sized elements!");
}
free($3);
$$ = ConstPoolArray::get(ATy, Vals);
delete $1;
}
| StructType '{' ConstVector '}' {
// FIXME: TODO: Check to see that the constants are compatible with the type
// initializer!
$$ = ConstPoolStruct::get(*$1, *$3);
delete $1; delete $3;
}
/*
| Types '*' ConstVal {
assert(0);
$$ = 0;
}
*/
ConstVal : ExtendedConstVal {
$$ = $1;
}
| SIntType EINT64VAL { // integral constants
if (!ConstPoolSInt::isValueValidForType($1, $2))
ThrowException("Constant value doesn't fit in type!");
$$ = ConstPoolSInt::get($1, $2);
}
| UIntType EUINT64VAL { // integral constants
if (!ConstPoolUInt::isValueValidForType($1, $2))
ThrowException("Constant value doesn't fit in type!");
$$ = ConstPoolUInt::get($1, $2);
}
| BOOL TRUE { // Boolean constants
$$ = ConstPoolBool::True;
}
| BOOL FALSE { // Boolean constants
$$ = ConstPoolBool::False;
}
| FPType FPVAL { // Float & Double constants
$$ = ConstPoolFP::get($1, $2);
}
// ConstVector - A list of comma seperated constants.
ConstVector : ConstVector ',' ConstVal {
($$ = $1)->push_back($3);
}
| ConstVal {
$$ = new vector<ConstPoolVal*>();
$$->push_back($1);
}
//ExternMethodDecl : EXTERNAL TypesV '(' TypeList ')' {
// }
//ExternVarDecl :
// ConstPool - Constants with optional names assigned to them.
ConstPool : ConstPool OptAssign ConstVal {
if ($2) {
setValueName($3, $2);
free($2);
}
InsertValue($3);
}
| ConstPool OptAssign TYPE TypesV { // Types can be defined in the const pool
if ($2) {
// TODO: FIXME when Type are not const
setValueName(const_cast<Type*>($4->get()), $2);
free($2);
} else {
InsertType($4->get(),
CurMeth.CurrentMethod ? CurMeth.Types : CurModule.Types);
}
delete $4;
}
| ConstPool MethodProto { // Method prototypes can be in const pool
}
| ConstPool GLOBAL OptAssign Types { // Global declarations appear in CP
if (!$4->get()->isPointerType() ||
(((PointerType*)$4->get())->isArrayType() &&
((PointerType*)$4->get())->isArrayType()->isUnsized())) {
ThrowException("Type '" + $4->get()->getDescription() +
"' is not a pointer to a sized type!");
}
GlobalVariable *GV = new GlobalVariable(*$4);
delete $4;
if ($3) {
setValueName(GV, $3);
free($3);
}
CurModule.CurrentModule->getGlobalList().push_back(GV);
InsertValue(GV, CurModule.Values);
}
| /* empty: end of list */ {
}
//===----------------------------------------------------------------------===//
// Rules to match Modules
//===----------------------------------------------------------------------===//
// Module rule: Capture the result of parsing the whole file into a result
// variable...
//
Module : MethodList {
$$ = ParserResult = $1;
CurModule.ModuleDone();
}
// MethodList - A list of methods, preceeded by a constant pool.
//
MethodList : MethodList Method {
$$ = $1;
if (!$2->getParent())
$1->getMethodList().push_back($2);
CurMeth.MethodDone();
}
| MethodList MethodProto {
$$ = $1;
}
| ConstPool IMPLEMENTATION {
$$ = CurModule.CurrentModule;
// Resolve circular types before we parse the body of the module
ResolveTypes(CurModule.LateResolveTypes);
}
//===----------------------------------------------------------------------===//
// Rules to match Method Headers
//===----------------------------------------------------------------------===//
OptVAR_ID : VAR_ID | /*empty*/ { $$ = 0; }
ArgVal : Types OptVAR_ID {
$$ = new MethodArgument(*$1); delete $1;
if ($2) { // Was the argument named?
setValueName($$, $2);
free($2); // The string was strdup'd, so free it now.
}
}
ArgListH : ArgVal ',' ArgListH {
$$ = $3;
$3->push_front($1);
}
| ArgVal {
$$ = new list<MethodArgument*>();
$$->push_front($1);
}
| DOTDOTDOT {
$$ = new list<MethodArgument*>();
$$->push_back(new MethodArgument(Type::VoidTy));
}
ArgList : ArgListH {
$$ = $1;
}
| /* empty */ {
$$ = 0;
}
MethodHeaderH : TypesV STRINGCONSTANT '(' ArgList ')' {
UnEscapeLexed($2);
vector<const Type*> ParamTypeList;
if ($4)
for (list<MethodArgument*>::iterator I = $4->begin(); I != $4->end(); ++I)
ParamTypeList.push_back((*I)->getType());
const MethodType *MT = MethodType::get(*$1, ParamTypeList);
delete $1;
Method *M = 0;
if (SymbolTable *ST = CurModule.CurrentModule->getSymbolTable()) {
if (Value *V = ST->lookup(MT, $2)) { // Method already in symtab?
M = V->castMethodAsserting();
// Yes it is. If this is the case, either we need to be a forward decl,
// or it needs to be.
if (!CurMeth.isDeclare && !M->isExternal())
ThrowException("Redefinition of method '" + string($2) + "'!");
}
}
if (M == 0) { // Not already defined?
M = new Method(MT, $2);
InsertValue(M, CurModule.Values);
}
free($2); // Free strdup'd memory!
CurMeth.MethodStart(M);
// Add all of the arguments we parsed to the method...
if ($4 && !CurMeth.isDeclare) { // Is null if empty...
Method::ArgumentListType &ArgList = M->getArgumentList();
for (list<MethodArgument*>::iterator I = $4->begin(); I != $4->end(); ++I) {
InsertValue(*I);
ArgList.push_back(*I);
}
delete $4; // We're now done with the argument list
}
}
MethodHeader : MethodHeaderH ConstPool BEGINTOK {
$$ = CurMeth.CurrentMethod;
// Resolve circular types before we parse the body of the method.
ResolveTypes(CurMeth.LateResolveTypes);
}
Method : BasicBlockList END {
$$ = $1;
}
MethodProto : DECLARE { CurMeth.isDeclare = true; } MethodHeaderH {
$$ = CurMeth.CurrentMethod;
if (!$$->getParent())
CurModule.CurrentModule->getMethodList().push_back($$);
CurMeth.MethodDone();
}
//===----------------------------------------------------------------------===//
// Rules to match Basic Blocks
//===----------------------------------------------------------------------===//
ConstValueRef : ESINT64VAL { // A reference to a direct constant
$$ = ValID::create($1);
}
| EUINT64VAL {
$$ = ValID::create($1);
}
| FPVAL { // Perhaps it's an FP constant?
$$ = ValID::create($1);
}
| TRUE {
$$ = ValID::create((int64_t)1);
}
| FALSE {
$$ = ValID::create((int64_t)0);
}
/*
| STRINGCONSTANT { // Quoted strings work too... especially for methods
$$ = ValID::create_conststr($1);
}
*/
// ValueRef - A reference to a definition...
ValueRef : INTVAL { // Is it an integer reference...?
$$ = ValID::create($1);
}
| VAR_ID { // Is it a named reference...?
$$ = ValID::create($1);
}
| ConstValueRef {
$$ = $1;
}
// ResolvedVal - a <type> <value> pair. This is used only in cases where the
// type immediately preceeds the value reference, and allows complex constant
// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
ResolvedVal : ExtendedConstVal {
$$ = $1;
}
| Types ValueRef {
$$ = getVal(*$1, $2); delete $1;
}
BasicBlockList : BasicBlockList BasicBlock {
$1->getBasicBlocks().push_back($2);
$$ = $1;
}
| MethodHeader BasicBlock { // Do not allow methods with 0 basic blocks
$$ = $1; // in them...
$1->getBasicBlocks().push_back($2);
}
// Basic blocks are terminated by branching instructions:
// br, br/cc, switch, ret
//
BasicBlock : InstructionList BBTerminatorInst {
$1->getInstList().push_back($2);
InsertValue($1);
$$ = $1;
}
| LABELSTR InstructionList BBTerminatorInst {
$2->getInstList().push_back($3);
setValueName($2, $1);
free($1); // Free the strdup'd memory...
InsertValue($2);
$$ = $2;
}
InstructionList : InstructionList Inst {
$1->getInstList().push_back($2);
$$ = $1;
}
| /* empty */ {
$$ = new BasicBlock();
}
BBTerminatorInst : RET ResolvedVal { // Return with a result...
$$ = new ReturnInst($2);
}
| RET VOID { // Return with no result...
$$ = new ReturnInst();
}
| BR LABEL ValueRef { // Unconditional Branch...
$$ = new BranchInst(getVal(Type::LabelTy, $3)->castBasicBlockAsserting());
} // Conditional Branch...
| BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
$$ = new BranchInst(getVal(Type::LabelTy, $6)->castBasicBlockAsserting(),
getVal(Type::LabelTy, $9)->castBasicBlockAsserting(),
getVal(Type::BoolTy, $3));
}
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
SwitchInst *S = new SwitchInst(getVal($2, $3),
getVal(Type::LabelTy, $6)->castBasicBlockAsserting());
$$ = S;
list<pair<ConstPoolVal*, BasicBlock*> >::iterator I = $8->begin(),
end = $8->end();
for (; I != end; ++I)
S->dest_push_back(I->first, I->second);
}
JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
$$ = $1;
ConstPoolVal *V = getVal($2, $3, true)->castConstantAsserting();
if (V == 0)
ThrowException("May only switch on a constant pool value!");
$$->push_back(make_pair(V, getVal($5, $6)->castBasicBlockAsserting()));
}
| IntType ConstValueRef ',' LABEL ValueRef {
$$ = new list<pair<ConstPoolVal*, BasicBlock*> >();
ConstPoolVal *V = getVal($1, $2, true)->castConstantAsserting();
if (V == 0)
ThrowException("May only switch on a constant pool value!");
$$->push_back(make_pair(V, getVal($4, $5)->castBasicBlockAsserting()));
}
Inst : OptAssign InstVal {
if ($1) // Is this definition named??
setValueName($2, $1); // if so, assign the name...
InsertValue($2);
$$ = $2;
}
PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
$$ = new list<pair<Value*, BasicBlock*> >();
$$->push_back(make_pair(getVal(*$1, $3),
getVal(Type::LabelTy, $5)->castBasicBlockAsserting()));
delete $1;
}
| PHIList ',' '[' ValueRef ',' ValueRef ']' {
$$ = $1;
$1->push_back(make_pair(getVal($1->front().first->getType(), $4),
getVal(Type::LabelTy, $6)->castBasicBlockAsserting()));
}
ValueRefList : ResolvedVal { // Used for call statements, and memory insts...
$$ = new list<Value*>();
$$->push_back($1);
}
| ValueRefList ',' ResolvedVal {
$$ = $1;
$1->push_back($3);
}
// ValueRefListE - Just like ValueRefList, except that it may also be empty!
ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; }
InstVal : BinaryOps Types ValueRef ',' ValueRef {
$$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
if ($$ == 0)
ThrowException("binary operator returned null!");
delete $2;
}
| UnaryOps ResolvedVal {
$$ = UnaryOperator::create($1, $2);
if ($$ == 0)
ThrowException("unary operator returned null!");
}
| ShiftOps ResolvedVal ',' ResolvedVal {
if ($4->getType() != Type::UByteTy)
ThrowException("Shift amount must be ubyte!");
$$ = new ShiftInst($1, $2, $4);
}
| CAST ResolvedVal TO Types {
$$ = new CastInst($2, *$4);
delete $4;
}
| PHI PHIList {
const Type *Ty = $2->front().first->getType();
$$ = new PHINode(Ty);
while ($2->begin() != $2->end()) {
if ($2->front().first->getType() != Ty)
ThrowException("All elements of a PHI node must be of the same type!");
((PHINode*)$$)->addIncoming($2->front().first, $2->front().second);
$2->pop_front();
}
delete $2; // Free the list...
}
| CALL TypesV ValueRef '(' ValueRefListE ')' {
const MethodType *Ty;
if (!(Ty = (*$2)->isMethodType())) {
// Pull out the types of all of the arguments...
vector<const Type*> ParamTypes;
for (list<Value*>::iterator I = $5->begin(), E = $5->end(); I != E; ++I)
ParamTypes.push_back((*I)->getType());
Ty = MethodType::get(*$2, ParamTypes);
}
delete $2;
Value *V = getVal(Ty, $3); // Get the method we're calling...
// Create the call node...
if (!$5) { // Has no arguments?
$$ = new CallInst(V->castMethodAsserting(), vector<Value*>());
} else { // Has arguments?
// Loop through MethodType's arguments and ensure they are specified
// correctly!
//
MethodType::ParamTypes::const_iterator I = Ty->getParamTypes().begin();
MethodType::ParamTypes::const_iterator E = Ty->getParamTypes().end();
list<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();
for (; ArgI != ArgE && I != E; ++ArgI, ++I)
if ((*ArgI)->getType() != *I)
ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
(*I)->getName() + "'!");
if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
ThrowException("Invalid number of parameters detected!");
$$ = new CallInst(V->castMethodAsserting(),
vector<Value*>($5->begin(), $5->end()));
}
delete $5;
}
| MemoryInst {
$$ = $1;
}
// UByteList - List of ubyte values for load and store instructions
UByteList : ',' ConstVector {
$$ = $2;
} | /* empty */ {
$$ = new vector<ConstPoolVal*>();
}
MemoryInst : MALLOC Types {
$$ = new MallocInst(PointerType::get(*$2));
delete $2;
}
| MALLOC Types ',' UINT ValueRef {
if (!(*$2)->isArrayType() || ((const ArrayType*)$2->get())->isSized())
ThrowException("Trying to allocate " + (*$2)->getName() +
" as unsized array!");
const Type *Ty = PointerType::get(*$2);
$$ = new MallocInst(Ty, getVal($4, $5));
delete $2;
}
| ALLOCA Types {
$$ = new AllocaInst(PointerType::get(*$2));
delete $2;
}
| ALLOCA Types ',' UINT ValueRef {
if (!(*$2)->isArrayType() || ((const ArrayType*)$2->get())->isSized())
ThrowException("Trying to allocate " + (*$2)->getName() +
" as unsized array!");
const Type *Ty = PointerType::get(*$2);
Value *ArrSize = getVal($4, $5);
$$ = new AllocaInst(Ty, ArrSize);
delete $2;
}
| FREE ResolvedVal {
if (!$2->getType()->isPointerType())
ThrowException("Trying to free nonpointer type " +
$2->getType()->getName() + "!");
$$ = new FreeInst($2);
}
| LOAD Types ValueRef UByteList {
if (!(*$2)->isPointerType())
ThrowException("Can't load from nonpointer type: " + (*$2)->getName());
if (LoadInst::getIndexedType(*$2, *$4) == 0)
ThrowException("Invalid indices for load instruction!");
$$ = new LoadInst(getVal(*$2, $3), *$4);
delete $4; // Free the vector...
delete $2;
}
| STORE ResolvedVal ',' Types ValueRef UByteList {
if (!(*$4)->isPointerType())
ThrowException("Can't store to a nonpointer type: " + (*$4)->getName());
const Type *ElTy = StoreInst::getIndexedType(*$4, *$6);
if (ElTy == 0)
ThrowException("Can't store into that field list!");
if (ElTy != $2->getType())
ThrowException("Can't store '" + $2->getType()->getName() +
"' into space of type '" + ElTy->getName() + "'!");
$$ = new StoreInst($2, getVal(*$4, $5), *$6);
delete $4; delete $6;
}
| GETELEMENTPTR Types ValueRef UByteList {
if (!(*$2)->isPointerType())
ThrowException("getelementptr insn requires pointer operand!");
if (!GetElementPtrInst::getIndexedType(*$2, *$4, true))
ThrowException("Can't get element ptr '" + (*$2)->getName() + "'!");
$$ = new GetElementPtrInst(getVal(*$2, $3), *$4);
delete $2; delete $4;
}
%%
int yyerror(const char *ErrorMsg) {
ThrowException(string("Parse error: ") + ErrorMsg);
return 0;
}