mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73075 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1283 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1283 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the X86 implementation of the TargetRegisterInfo class.
 | 
						|
// This file is responsible for the frame pointer elimination optimization
 | 
						|
// on X86.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86.h"
 | 
						|
#include "X86RegisterInfo.h"
 | 
						|
#include "X86InstrBuilder.h"
 | 
						|
#include "X86MachineFunctionInfo.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "X86TargetMachine.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/CodeGen/ValueTypes.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineLocation.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetAsmInfo.h"
 | 
						|
#include "llvm/Target/TargetFrameInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
 | 
						|
                                 const TargetInstrInfo &tii)
 | 
						|
  : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ?
 | 
						|
                         X86::ADJCALLSTACKDOWN64 :
 | 
						|
                         X86::ADJCALLSTACKDOWN32,
 | 
						|
                       tm.getSubtarget<X86Subtarget>().is64Bit() ?
 | 
						|
                         X86::ADJCALLSTACKUP64 :
 | 
						|
                         X86::ADJCALLSTACKUP32),
 | 
						|
    TM(tm), TII(tii) {
 | 
						|
  // Cache some information.
 | 
						|
  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
 | 
						|
  Is64Bit = Subtarget->is64Bit();
 | 
						|
  IsWin64 = Subtarget->isTargetWin64();
 | 
						|
  StackAlign = TM.getFrameInfo()->getStackAlignment();
 | 
						|
  if (Is64Bit) {
 | 
						|
    SlotSize = 8;
 | 
						|
    StackPtr = X86::RSP;
 | 
						|
    FramePtr = X86::RBP;
 | 
						|
  } else {
 | 
						|
    SlotSize = 4;
 | 
						|
    StackPtr = X86::ESP;
 | 
						|
    FramePtr = X86::EBP;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// getDwarfRegNum - This function maps LLVM register identifiers to the
 | 
						|
// Dwarf specific numbering, used in debug info and exception tables.
 | 
						|
 | 
						|
int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
 | 
						|
  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
 | 
						|
  unsigned Flavour = DWARFFlavour::X86_64;
 | 
						|
  if (!Subtarget->is64Bit()) {
 | 
						|
    if (Subtarget->isTargetDarwin()) {
 | 
						|
      if (isEH)
 | 
						|
        Flavour = DWARFFlavour::X86_32_DarwinEH;
 | 
						|
      else
 | 
						|
        Flavour = DWARFFlavour::X86_32_Generic;
 | 
						|
    } else if (Subtarget->isTargetCygMing()) {
 | 
						|
      // Unsupported by now, just quick fallback
 | 
						|
      Flavour = DWARFFlavour::X86_32_Generic;
 | 
						|
    } else {
 | 
						|
      Flavour = DWARFFlavour::X86_32_Generic;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
 | 
						|
}
 | 
						|
 | 
						|
// getX86RegNum - This function maps LLVM register identifiers to their X86
 | 
						|
// specific numbering, which is used in various places encoding instructions.
 | 
						|
//
 | 
						|
unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
 | 
						|
  switch(RegNo) {
 | 
						|
  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
 | 
						|
  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
 | 
						|
  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
 | 
						|
  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
 | 
						|
  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
 | 
						|
    return N86::ESP;
 | 
						|
  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
 | 
						|
    return N86::EBP;
 | 
						|
  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
 | 
						|
    return N86::ESI;
 | 
						|
  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
 | 
						|
    return N86::EDI;
 | 
						|
 | 
						|
  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
 | 
						|
    return N86::EAX;
 | 
						|
  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
 | 
						|
    return N86::ECX;
 | 
						|
  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
 | 
						|
    return N86::EDX;
 | 
						|
  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
 | 
						|
    return N86::EBX;
 | 
						|
  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
 | 
						|
    return N86::ESP;
 | 
						|
  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
 | 
						|
    return N86::EBP;
 | 
						|
  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
 | 
						|
    return N86::ESI;
 | 
						|
  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
 | 
						|
    return N86::EDI;
 | 
						|
 | 
						|
  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
 | 
						|
  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
 | 
						|
    return RegNo-X86::ST0;
 | 
						|
 | 
						|
  case X86::XMM0: case X86::XMM8: case X86::MM0:
 | 
						|
    return 0;
 | 
						|
  case X86::XMM1: case X86::XMM9: case X86::MM1:
 | 
						|
    return 1;
 | 
						|
  case X86::XMM2: case X86::XMM10: case X86::MM2:
 | 
						|
    return 2;
 | 
						|
  case X86::XMM3: case X86::XMM11: case X86::MM3:
 | 
						|
    return 3;
 | 
						|
  case X86::XMM4: case X86::XMM12: case X86::MM4:
 | 
						|
    return 4;
 | 
						|
  case X86::XMM5: case X86::XMM13: case X86::MM5:
 | 
						|
    return 5;
 | 
						|
  case X86::XMM6: case X86::XMM14: case X86::MM6:
 | 
						|
    return 6;
 | 
						|
  case X86::XMM7: case X86::XMM15: case X86::MM7:
 | 
						|
    return 7;
 | 
						|
 | 
						|
  default:
 | 
						|
    assert(isVirtualRegister(RegNo) && "Unknown physical register!");
 | 
						|
    assert(0 && "Register allocator hasn't allocated reg correctly yet!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const TargetRegisterClass *X86RegisterInfo::getPointerRegClass() const {
 | 
						|
  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
 | 
						|
  if (Subtarget->is64Bit())
 | 
						|
    return &X86::GR64RegClass;
 | 
						|
  else
 | 
						|
    return &X86::GR32RegClass;
 | 
						|
}
 | 
						|
 | 
						|
const TargetRegisterClass *
 | 
						|
X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
 | 
						|
  if (RC == &X86::CCRRegClass) {
 | 
						|
    if (Is64Bit)
 | 
						|
      return &X86::GR64RegClass;
 | 
						|
    else
 | 
						|
      return &X86::GR32RegClass;
 | 
						|
  }
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
const unsigned *
 | 
						|
X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
 | 
						|
  bool callsEHReturn = false;
 | 
						|
 | 
						|
  if (MF) {
 | 
						|
    const MachineFrameInfo *MFI = MF->getFrameInfo();
 | 
						|
    const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
 | 
						|
    callsEHReturn = (MMI ? MMI->callsEHReturn() : false);
 | 
						|
  }
 | 
						|
 | 
						|
  static const unsigned CalleeSavedRegs32Bit[] = {
 | 
						|
    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
 | 
						|
  };
 | 
						|
 | 
						|
  static const unsigned CalleeSavedRegs32EHRet[] = {
 | 
						|
    X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
 | 
						|
  };
 | 
						|
 | 
						|
  static const unsigned CalleeSavedRegs64Bit[] = {
 | 
						|
    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
 | 
						|
  };
 | 
						|
 | 
						|
  static const unsigned CalleeSavedRegs64EHRet[] = {
 | 
						|
    X86::RAX, X86::RDX, X86::RBX, X86::R12,
 | 
						|
    X86::R13, X86::R14, X86::R15, X86::RBP, 0
 | 
						|
  };
 | 
						|
 | 
						|
  static const unsigned CalleeSavedRegsWin64[] = {
 | 
						|
    X86::RBX,   X86::RBP,   X86::RDI,   X86::RSI,
 | 
						|
    X86::R12,   X86::R13,   X86::R14,   X86::R15,
 | 
						|
    X86::XMM6,  X86::XMM7,  X86::XMM8,  X86::XMM9,
 | 
						|
    X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13,
 | 
						|
    X86::XMM14, X86::XMM15, 0
 | 
						|
  };
 | 
						|
 | 
						|
  if (Is64Bit) {
 | 
						|
    if (IsWin64)
 | 
						|
      return CalleeSavedRegsWin64;
 | 
						|
    else
 | 
						|
      return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit);
 | 
						|
  } else {
 | 
						|
    return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const TargetRegisterClass* const*
 | 
						|
X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
 | 
						|
  bool callsEHReturn = false;
 | 
						|
 | 
						|
  if (MF) {
 | 
						|
    const MachineFrameInfo *MFI = MF->getFrameInfo();
 | 
						|
    const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
 | 
						|
    callsEHReturn = (MMI ? MMI->callsEHReturn() : false);
 | 
						|
  }
 | 
						|
 | 
						|
  static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = {
 | 
						|
    &X86::GR32RegClass, &X86::GR32RegClass,
 | 
						|
    &X86::GR32RegClass, &X86::GR32RegClass,  0
 | 
						|
  };
 | 
						|
  static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = {
 | 
						|
    &X86::GR32RegClass, &X86::GR32RegClass,
 | 
						|
    &X86::GR32RegClass, &X86::GR32RegClass,
 | 
						|
    &X86::GR32RegClass, &X86::GR32RegClass,  0
 | 
						|
  };
 | 
						|
  static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = {
 | 
						|
    &X86::GR64RegClass, &X86::GR64RegClass,
 | 
						|
    &X86::GR64RegClass, &X86::GR64RegClass,
 | 
						|
    &X86::GR64RegClass, &X86::GR64RegClass, 0
 | 
						|
  };
 | 
						|
  static const TargetRegisterClass * const CalleeSavedRegClasses64EHRet[] = {
 | 
						|
    &X86::GR64RegClass, &X86::GR64RegClass,
 | 
						|
    &X86::GR64RegClass, &X86::GR64RegClass,
 | 
						|
    &X86::GR64RegClass, &X86::GR64RegClass,
 | 
						|
    &X86::GR64RegClass, &X86::GR64RegClass, 0
 | 
						|
  };
 | 
						|
  static const TargetRegisterClass * const CalleeSavedRegClassesWin64[] = {
 | 
						|
    &X86::GR64RegClass,  &X86::GR64RegClass,
 | 
						|
    &X86::GR64RegClass,  &X86::GR64RegClass,
 | 
						|
    &X86::GR64RegClass,  &X86::GR64RegClass,
 | 
						|
    &X86::GR64RegClass,  &X86::GR64RegClass,
 | 
						|
    &X86::VR128RegClass, &X86::VR128RegClass,
 | 
						|
    &X86::VR128RegClass, &X86::VR128RegClass,
 | 
						|
    &X86::VR128RegClass, &X86::VR128RegClass,
 | 
						|
    &X86::VR128RegClass, &X86::VR128RegClass,
 | 
						|
    &X86::VR128RegClass, &X86::VR128RegClass, 0
 | 
						|
  };
 | 
						|
 | 
						|
  if (Is64Bit) {
 | 
						|
    if (IsWin64)
 | 
						|
      return CalleeSavedRegClassesWin64;
 | 
						|
    else
 | 
						|
      return (callsEHReturn ?
 | 
						|
              CalleeSavedRegClasses64EHRet : CalleeSavedRegClasses64Bit);
 | 
						|
  } else {
 | 
						|
    return (callsEHReturn ?
 | 
						|
            CalleeSavedRegClasses32EHRet : CalleeSavedRegClasses32Bit);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
 | 
						|
  BitVector Reserved(getNumRegs());
 | 
						|
  // Set the stack-pointer register and its aliases as reserved.
 | 
						|
  Reserved.set(X86::RSP);
 | 
						|
  Reserved.set(X86::ESP);
 | 
						|
  Reserved.set(X86::SP);
 | 
						|
  Reserved.set(X86::SPL);
 | 
						|
  // Set the frame-pointer register and its aliases as reserved if needed.
 | 
						|
  if (hasFP(MF)) {
 | 
						|
    Reserved.set(X86::RBP);
 | 
						|
    Reserved.set(X86::EBP);
 | 
						|
    Reserved.set(X86::BP);
 | 
						|
    Reserved.set(X86::BPL);
 | 
						|
  }
 | 
						|
  // Mark the x87 stack registers as reserved, since they don't
 | 
						|
  // behave normally with respect to liveness. We don't fully
 | 
						|
  // model the effects of x87 stack pushes and pops after
 | 
						|
  // stackification.
 | 
						|
  Reserved.set(X86::ST0);
 | 
						|
  Reserved.set(X86::ST1);
 | 
						|
  Reserved.set(X86::ST2);
 | 
						|
  Reserved.set(X86::ST3);
 | 
						|
  Reserved.set(X86::ST4);
 | 
						|
  Reserved.set(X86::ST5);
 | 
						|
  Reserved.set(X86::ST6);
 | 
						|
  Reserved.set(X86::ST7);
 | 
						|
  return Reserved;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Stack Frame Processing methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static unsigned calculateMaxStackAlignment(const MachineFrameInfo *FFI) {
 | 
						|
  unsigned MaxAlign = 0;
 | 
						|
  for (int i = FFI->getObjectIndexBegin(),
 | 
						|
         e = FFI->getObjectIndexEnd(); i != e; ++i) {
 | 
						|
    if (FFI->isDeadObjectIndex(i))
 | 
						|
      continue;
 | 
						|
    unsigned Align = FFI->getObjectAlignment(i);
 | 
						|
    MaxAlign = std::max(MaxAlign, Align);
 | 
						|
  }
 | 
						|
 | 
						|
  return MaxAlign;
 | 
						|
}
 | 
						|
 | 
						|
// hasFP - Return true if the specified function should have a dedicated frame
 | 
						|
// pointer register.  This is true if the function has variable sized allocas or
 | 
						|
// if frame pointer elimination is disabled.
 | 
						|
//
 | 
						|
bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
 | 
						|
  const MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
 | 
						|
 | 
						|
  return (NoFramePointerElim ||
 | 
						|
          needsStackRealignment(MF) ||
 | 
						|
          MFI->hasVarSizedObjects() ||
 | 
						|
          MFI->isFrameAddressTaken() ||
 | 
						|
          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
 | 
						|
          (MMI && MMI->callsUnwindInit()));
 | 
						|
}
 | 
						|
 | 
						|
bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
 | 
						|
  const MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
 | 
						|
  // FIXME: Currently we don't support stack realignment for functions with
 | 
						|
  // variable-sized allocas
 | 
						|
  return (RealignStack &&
 | 
						|
          (MFI->getMaxAlignment() > StackAlign &&
 | 
						|
           !MFI->hasVarSizedObjects()));
 | 
						|
}
 | 
						|
 | 
						|
bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
 | 
						|
  return !MF.getFrameInfo()->hasVarSizedObjects();
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
X86RegisterInfo::getFrameIndexOffset(MachineFunction &MF, int FI) const {
 | 
						|
  int Offset = MF.getFrameInfo()->getObjectOffset(FI) + SlotSize;
 | 
						|
  uint64_t StackSize = MF.getFrameInfo()->getStackSize();
 | 
						|
 | 
						|
  if (needsStackRealignment(MF)) {
 | 
						|
    if (FI < 0)
 | 
						|
      // Skip the saved EBP
 | 
						|
      Offset += SlotSize;
 | 
						|
    else {
 | 
						|
      unsigned Align = MF.getFrameInfo()->getObjectAlignment(FI);
 | 
						|
      assert( (-(Offset + StackSize)) % Align == 0);
 | 
						|
      Align = 0;
 | 
						|
      return Offset + StackSize;
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: Support tail calls
 | 
						|
  } else {
 | 
						|
    if (!hasFP(MF))
 | 
						|
      return Offset + StackSize;
 | 
						|
 | 
						|
    // Skip the saved EBP
 | 
						|
    Offset += SlotSize;
 | 
						|
 | 
						|
    // Skip the RETADDR move area
 | 
						|
    X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
 | 
						|
    if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta;
 | 
						|
  }
 | 
						|
 | 
						|
  return Offset;
 | 
						|
}
 | 
						|
 | 
						|
void X86RegisterInfo::
 | 
						|
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
 | 
						|
                              MachineBasicBlock::iterator I) const {
 | 
						|
  if (!hasReservedCallFrame(MF)) {
 | 
						|
    // If the stack pointer can be changed after prologue, turn the
 | 
						|
    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
 | 
						|
    // adjcallstackdown instruction into 'add ESP, <amt>'
 | 
						|
    // TODO: consider using push / pop instead of sub + store / add
 | 
						|
    MachineInstr *Old = I;
 | 
						|
    uint64_t Amount = Old->getOperand(0).getImm();
 | 
						|
    if (Amount != 0) {
 | 
						|
      // We need to keep the stack aligned properly.  To do this, we round the
 | 
						|
      // amount of space needed for the outgoing arguments up to the next
 | 
						|
      // alignment boundary.
 | 
						|
      Amount = (Amount+StackAlign-1)/StackAlign*StackAlign;
 | 
						|
 | 
						|
      MachineInstr *New = 0;
 | 
						|
      if (Old->getOpcode() == getCallFrameSetupOpcode()) {
 | 
						|
        New = BuildMI(MF, Old->getDebugLoc(),
 | 
						|
                      TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri),
 | 
						|
                      StackPtr).addReg(StackPtr).addImm(Amount);
 | 
						|
      } else {
 | 
						|
        assert(Old->getOpcode() == getCallFrameDestroyOpcode());
 | 
						|
        // factor out the amount the callee already popped.
 | 
						|
        uint64_t CalleeAmt = Old->getOperand(1).getImm();
 | 
						|
        Amount -= CalleeAmt;
 | 
						|
        if (Amount) {
 | 
						|
          unsigned Opc = (Amount < 128) ?
 | 
						|
            (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
 | 
						|
            (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri);
 | 
						|
          New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr)
 | 
						|
            .addReg(StackPtr).addImm(Amount);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (New) {
 | 
						|
        // The EFLAGS implicit def is dead.
 | 
						|
        New->getOperand(3).setIsDead();
 | 
						|
 | 
						|
        // Replace the pseudo instruction with a new instruction...
 | 
						|
        MBB.insert(I, New);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (I->getOpcode() == getCallFrameDestroyOpcode()) {
 | 
						|
    // If we are performing frame pointer elimination and if the callee pops
 | 
						|
    // something off the stack pointer, add it back.  We do this until we have
 | 
						|
    // more advanced stack pointer tracking ability.
 | 
						|
    if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
 | 
						|
      unsigned Opc = (CalleeAmt < 128) ?
 | 
						|
        (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
 | 
						|
        (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri);
 | 
						|
      MachineInstr *Old = I;
 | 
						|
      MachineInstr *New =
 | 
						|
        BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), 
 | 
						|
                StackPtr).addReg(StackPtr).addImm(CalleeAmt);
 | 
						|
      // The EFLAGS implicit def is dead.
 | 
						|
      New->getOperand(3).setIsDead();
 | 
						|
 | 
						|
      MBB.insert(I, New);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MBB.erase(I);
 | 
						|
}
 | 
						|
 | 
						|
void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
 | 
						|
                                          int SPAdj, RegScavenger *RS) const{
 | 
						|
  assert(SPAdj == 0 && "Unexpected");
 | 
						|
 | 
						|
  unsigned i = 0;
 | 
						|
  MachineInstr &MI = *II;
 | 
						|
  MachineFunction &MF = *MI.getParent()->getParent();
 | 
						|
  while (!MI.getOperand(i).isFI()) {
 | 
						|
    ++i;
 | 
						|
    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
 | 
						|
  }
 | 
						|
 | 
						|
  int FrameIndex = MI.getOperand(i).getIndex();
 | 
						|
 | 
						|
  unsigned BasePtr;
 | 
						|
  if (needsStackRealignment(MF))
 | 
						|
    BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
 | 
						|
  else
 | 
						|
    BasePtr = (hasFP(MF) ? FramePtr : StackPtr);
 | 
						|
 | 
						|
  // This must be part of a four operand memory reference.  Replace the
 | 
						|
  // FrameIndex with base register with EBP.  Add an offset to the offset.
 | 
						|
  MI.getOperand(i).ChangeToRegister(BasePtr, false);
 | 
						|
 | 
						|
  // Now add the frame object offset to the offset from EBP.
 | 
						|
  if (MI.getOperand(i+3).isImm()) {
 | 
						|
    // Offset is a 32-bit integer.
 | 
						|
    int Offset = getFrameIndexOffset(MF, FrameIndex) +
 | 
						|
      (int)(MI.getOperand(i+3).getImm());
 | 
						|
  
 | 
						|
     MI.getOperand(i+3).ChangeToImmediate(Offset);
 | 
						|
  } else {
 | 
						|
    // Offset is symbolic. This is extremely rare.
 | 
						|
    uint64_t Offset = getFrameIndexOffset(MF, FrameIndex) +
 | 
						|
                      (uint64_t)MI.getOperand(i+3).getOffset();
 | 
						|
    MI.getOperand(i+3).setOffset(Offset);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
 | 
						|
                                                      RegScavenger *RS) const {
 | 
						|
  MachineFrameInfo *FFI = MF.getFrameInfo();
 | 
						|
 | 
						|
  // Calculate and set max stack object alignment early, so we can decide
 | 
						|
  // whether we will need stack realignment (and thus FP).
 | 
						|
  unsigned MaxAlign = std::max(FFI->getMaxAlignment(),
 | 
						|
                               calculateMaxStackAlignment(FFI));
 | 
						|
 | 
						|
  FFI->setMaxAlignment(MaxAlign);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{
 | 
						|
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
  int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
 | 
						|
  if (TailCallReturnAddrDelta < 0) {
 | 
						|
    // create RETURNADDR area
 | 
						|
    //   arg
 | 
						|
    //   arg
 | 
						|
    //   RETADDR
 | 
						|
    //   { ...
 | 
						|
    //     RETADDR area
 | 
						|
    //     ...
 | 
						|
    //   }
 | 
						|
    //   [EBP]
 | 
						|
    MF.getFrameInfo()->
 | 
						|
      CreateFixedObject(-TailCallReturnAddrDelta,
 | 
						|
                        (-1*SlotSize)+TailCallReturnAddrDelta);
 | 
						|
  }
 | 
						|
  if (hasFP(MF)) {
 | 
						|
    assert((TailCallReturnAddrDelta <= 0) &&
 | 
						|
           "The Delta should always be zero or negative");
 | 
						|
    // Create a frame entry for the EBP register that must be saved.
 | 
						|
    int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize,
 | 
						|
                                                        (int)SlotSize * -2+
 | 
						|
                                                       TailCallReturnAddrDelta);
 | 
						|
    assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
 | 
						|
           "Slot for EBP register must be last in order to be found!");
 | 
						|
    FrameIdx = 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// emitSPUpdate - Emit a series of instructions to increment / decrement the
 | 
						|
/// stack pointer by a constant value.
 | 
						|
static
 | 
						|
void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
 | 
						|
                  unsigned StackPtr, int64_t NumBytes, bool Is64Bit,
 | 
						|
                  const TargetInstrInfo &TII) {
 | 
						|
  bool isSub = NumBytes < 0;
 | 
						|
  uint64_t Offset = isSub ? -NumBytes : NumBytes;
 | 
						|
  unsigned Opc = isSub
 | 
						|
    ? ((Offset < 128) ?
 | 
						|
       (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
 | 
						|
       (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri))
 | 
						|
    : ((Offset < 128) ?
 | 
						|
       (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
 | 
						|
       (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri));
 | 
						|
  uint64_t Chunk = (1LL << 31) - 1;
 | 
						|
  DebugLoc DL = (MBBI != MBB.end() ? MBBI->getDebugLoc() :
 | 
						|
                 DebugLoc::getUnknownLoc());
 | 
						|
 | 
						|
  while (Offset) {
 | 
						|
    uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
 | 
						|
    MachineInstr *MI =
 | 
						|
      BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
 | 
						|
         .addReg(StackPtr).addImm(ThisVal);
 | 
						|
    // The EFLAGS implicit def is dead.
 | 
						|
    MI->getOperand(3).setIsDead();
 | 
						|
    Offset -= ThisVal;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
 | 
						|
static
 | 
						|
void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
 | 
						|
                      unsigned StackPtr, uint64_t *NumBytes = NULL) {
 | 
						|
  if (MBBI == MBB.begin()) return;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator PI = prior(MBBI);
 | 
						|
  unsigned Opc = PI->getOpcode();
 | 
						|
  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
 | 
						|
       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
 | 
						|
      PI->getOperand(0).getReg() == StackPtr) {
 | 
						|
    if (NumBytes)
 | 
						|
      *NumBytes += PI->getOperand(2).getImm();
 | 
						|
    MBB.erase(PI);
 | 
						|
  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
 | 
						|
              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
 | 
						|
             PI->getOperand(0).getReg() == StackPtr) {
 | 
						|
    if (NumBytes)
 | 
						|
      *NumBytes -= PI->getOperand(2).getImm();
 | 
						|
    MBB.erase(PI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
 | 
						|
static
 | 
						|
void mergeSPUpdatesDown(MachineBasicBlock &MBB,
 | 
						|
                        MachineBasicBlock::iterator &MBBI,
 | 
						|
                        unsigned StackPtr, uint64_t *NumBytes = NULL) {
 | 
						|
  return;
 | 
						|
 | 
						|
  if (MBBI == MBB.end()) return;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator NI = next(MBBI);
 | 
						|
  if (NI == MBB.end()) return;
 | 
						|
 | 
						|
  unsigned Opc = NI->getOpcode();
 | 
						|
  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
 | 
						|
       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
 | 
						|
      NI->getOperand(0).getReg() == StackPtr) {
 | 
						|
    if (NumBytes)
 | 
						|
      *NumBytes -= NI->getOperand(2).getImm();
 | 
						|
    MBB.erase(NI);
 | 
						|
    MBBI = NI;
 | 
						|
  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
 | 
						|
              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
 | 
						|
             NI->getOperand(0).getReg() == StackPtr) {
 | 
						|
    if (NumBytes)
 | 
						|
      *NumBytes += NI->getOperand(2).getImm();
 | 
						|
    MBB.erase(NI);
 | 
						|
    MBBI = NI;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// mergeSPUpdates - Checks the instruction before/after the passed
 | 
						|
/// instruction. If it is an ADD/SUB instruction it is deleted
 | 
						|
/// argument and the stack adjustment is returned as a positive value for ADD
 | 
						|
/// and a negative for SUB.
 | 
						|
static int mergeSPUpdates(MachineBasicBlock &MBB,
 | 
						|
                           MachineBasicBlock::iterator &MBBI,
 | 
						|
                           unsigned StackPtr,
 | 
						|
                           bool doMergeWithPrevious) {
 | 
						|
 | 
						|
  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
 | 
						|
      (!doMergeWithPrevious && MBBI == MBB.end()))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  int Offset = 0;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
 | 
						|
  MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI);
 | 
						|
  unsigned Opc = PI->getOpcode();
 | 
						|
  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
 | 
						|
       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
 | 
						|
      PI->getOperand(0).getReg() == StackPtr){
 | 
						|
    Offset += PI->getOperand(2).getImm();
 | 
						|
    MBB.erase(PI);
 | 
						|
    if (!doMergeWithPrevious) MBBI = NI;
 | 
						|
  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
 | 
						|
              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
 | 
						|
             PI->getOperand(0).getReg() == StackPtr) {
 | 
						|
    Offset -= PI->getOperand(2).getImm();
 | 
						|
    MBB.erase(PI);
 | 
						|
    if (!doMergeWithPrevious) MBBI = NI;
 | 
						|
  }
 | 
						|
 | 
						|
  return Offset;
 | 
						|
}
 | 
						|
 | 
						|
void X86RegisterInfo::emitFrameMoves(MachineFunction &MF,
 | 
						|
                                     unsigned FrameLabelId,
 | 
						|
                                     unsigned ReadyLabelId) const {
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
 | 
						|
  if (!MMI)
 | 
						|
    return;
 | 
						|
 | 
						|
  uint64_t StackSize = MFI->getStackSize();
 | 
						|
  std::vector<MachineMove> &Moves = MMI->getFrameMoves();
 | 
						|
  const TargetData *TD = MF.getTarget().getTargetData();
 | 
						|
 | 
						|
  // Calculate amount of bytes used for return address storing
 | 
						|
  int stackGrowth =
 | 
						|
    (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
 | 
						|
     TargetFrameInfo::StackGrowsUp ?
 | 
						|
     TD->getPointerSize() : -TD->getPointerSize());
 | 
						|
 | 
						|
  if (StackSize) {
 | 
						|
    // Show update of SP.
 | 
						|
    if (hasFP(MF)) {
 | 
						|
      // Adjust SP
 | 
						|
      MachineLocation SPDst(MachineLocation::VirtualFP);
 | 
						|
      MachineLocation SPSrc(MachineLocation::VirtualFP, 2*stackGrowth);
 | 
						|
      Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
 | 
						|
    } else {
 | 
						|
      MachineLocation SPDst(MachineLocation::VirtualFP);
 | 
						|
      MachineLocation SPSrc(MachineLocation::VirtualFP,
 | 
						|
                            -StackSize+stackGrowth);
 | 
						|
      Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    //FIXME: Verify & implement for FP
 | 
						|
    MachineLocation SPDst(StackPtr);
 | 
						|
    MachineLocation SPSrc(StackPtr, stackGrowth);
 | 
						|
    Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
 | 
						|
  }
 | 
						|
 | 
						|
  // Add callee saved registers to move list.
 | 
						|
  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
 | 
						|
 | 
						|
  // FIXME: This is dirty hack. The code itself is pretty mess right now.
 | 
						|
  // It should be rewritten from scratch and generalized sometimes.
 | 
						|
 | 
						|
  // Determine maximum offset (minumum due to stack growth)
 | 
						|
  int64_t MaxOffset = 0;
 | 
						|
  for (unsigned I = 0, E = CSI.size(); I!=E; ++I)
 | 
						|
    MaxOffset = std::min(MaxOffset,
 | 
						|
                         MFI->getObjectOffset(CSI[I].getFrameIdx()));
 | 
						|
 | 
						|
  // Calculate offsets
 | 
						|
  int64_t saveAreaOffset = (hasFP(MF) ? 3 : 2)*stackGrowth;
 | 
						|
  for (unsigned I = 0, E = CSI.size(); I!=E; ++I) {
 | 
						|
    int64_t Offset = MFI->getObjectOffset(CSI[I].getFrameIdx());
 | 
						|
    unsigned Reg = CSI[I].getReg();
 | 
						|
    Offset = (MaxOffset-Offset+saveAreaOffset);
 | 
						|
    MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
 | 
						|
    MachineLocation CSSrc(Reg);
 | 
						|
    Moves.push_back(MachineMove(FrameLabelId, CSDst, CSSrc));
 | 
						|
  }
 | 
						|
 | 
						|
  if (hasFP(MF)) {
 | 
						|
    // Save FP
 | 
						|
    MachineLocation FPDst(MachineLocation::VirtualFP, 2*stackGrowth);
 | 
						|
    MachineLocation FPSrc(FramePtr);
 | 
						|
    Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
 | 
						|
  }
 | 
						|
 | 
						|
  MachineLocation FPDst(hasFP(MF) ? FramePtr : StackPtr);
 | 
						|
  MachineLocation FPSrc(MachineLocation::VirtualFP);
 | 
						|
  Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
 | 
						|
  MachineBasicBlock &MBB = MF.front();   // Prolog goes in entry BB
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  const Function* Fn = MF.getFunction();
 | 
						|
  const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
 | 
						|
  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
 | 
						|
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
  MachineBasicBlock::iterator MBBI = MBB.begin();
 | 
						|
  bool needsFrameMoves = (MMI && MMI->hasDebugInfo()) ||
 | 
						|
                          !Fn->doesNotThrow() ||
 | 
						|
                          UnwindTablesMandatory;
 | 
						|
  DebugLoc DL = (MBBI != MBB.end() ? MBBI->getDebugLoc() :
 | 
						|
                 DebugLoc::getUnknownLoc());
 | 
						|
 | 
						|
  // Prepare for frame info.
 | 
						|
  unsigned FrameLabelId = 0;
 | 
						|
 | 
						|
  // Get the number of bytes to allocate from the FrameInfo.
 | 
						|
  uint64_t StackSize = MFI->getStackSize();
 | 
						|
 | 
						|
  // Get desired stack alignment
 | 
						|
  uint64_t MaxAlign  = MFI->getMaxAlignment();
 | 
						|
 | 
						|
  // Add RETADDR move area to callee saved frame size.
 | 
						|
  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
 | 
						|
  if (TailCallReturnAddrDelta < 0)
 | 
						|
    X86FI->setCalleeSavedFrameSize(
 | 
						|
          X86FI->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta));
 | 
						|
 | 
						|
  // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
 | 
						|
  // function, and use up to 128 bytes of stack space, don't have a frame
 | 
						|
  // pointer, calls, or dynamic alloca then we do not need to adjust the
 | 
						|
  // stack pointer (we fit in the Red Zone).
 | 
						|
  bool DisableRedZone = Fn->hasFnAttr(Attribute::NoRedZone);
 | 
						|
  if (Is64Bit && !DisableRedZone &&
 | 
						|
      !needsStackRealignment(MF) &&
 | 
						|
      !MFI->hasVarSizedObjects() &&                // No dynamic alloca.
 | 
						|
      !MFI->hasCalls() &&                          // No calls.
 | 
						|
      !Subtarget->isTargetWin64()) {               // Win64 has no Red Zone
 | 
						|
    uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
 | 
						|
    if (hasFP(MF)) MinSize += SlotSize;
 | 
						|
    StackSize = std::max(MinSize,
 | 
						|
                         StackSize > 128 ? StackSize - 128 : 0);
 | 
						|
    MFI->setStackSize(StackSize);
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert stack pointer adjustment for later moving of return addr.  Only
 | 
						|
  // applies to tail call optimized functions where the callee argument stack
 | 
						|
  // size is bigger than the callers.
 | 
						|
  if (TailCallReturnAddrDelta < 0) {
 | 
						|
    MachineInstr *MI =
 | 
						|
      BuildMI(MBB, MBBI, DL, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri),
 | 
						|
              StackPtr).addReg(StackPtr).addImm(-TailCallReturnAddrDelta);
 | 
						|
    // The EFLAGS implicit def is dead.
 | 
						|
    MI->getOperand(3).setIsDead();
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t NumBytes = 0;
 | 
						|
  if (hasFP(MF)) {
 | 
						|
    // Calculate required stack adjustment
 | 
						|
    uint64_t FrameSize = StackSize - SlotSize;
 | 
						|
    if (needsStackRealignment(MF))
 | 
						|
      FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
 | 
						|
 | 
						|
    NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
 | 
						|
 | 
						|
    // Get the offset of the stack slot for the EBP register... which is
 | 
						|
    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
 | 
						|
    // Update the frame offset adjustment.
 | 
						|
    MFI->setOffsetAdjustment(-NumBytes);
 | 
						|
 | 
						|
    // Save EBP into the appropriate stack slot...
 | 
						|
    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
 | 
						|
      .addReg(FramePtr, RegState::Kill);
 | 
						|
 | 
						|
    if (needsFrameMoves) {
 | 
						|
      // Mark effective beginning of when frame pointer becomes valid.
 | 
						|
      FrameLabelId = MMI->NextLabelID();
 | 
						|
      BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
 | 
						|
    }
 | 
						|
 | 
						|
    // Update EBP with the new base value...
 | 
						|
    BuildMI(MBB, MBBI, DL,
 | 
						|
            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
 | 
						|
        .addReg(StackPtr);
 | 
						|
 | 
						|
    // Mark the FramePtr as live-in in every block except the entry.
 | 
						|
    for (MachineFunction::iterator I = next(MF.begin()), E = MF.end();
 | 
						|
         I != E; ++I)
 | 
						|
      I->addLiveIn(FramePtr);
 | 
						|
 | 
						|
    // Realign stack
 | 
						|
    if (needsStackRealignment(MF)) {
 | 
						|
      MachineInstr *MI =
 | 
						|
        BuildMI(MBB, MBBI, DL,
 | 
						|
                TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri),
 | 
						|
                StackPtr).addReg(StackPtr).addImm(-MaxAlign);
 | 
						|
      // The EFLAGS implicit def is dead.
 | 
						|
      MI->getOperand(3).setIsDead();
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned ReadyLabelId = 0;
 | 
						|
  if (needsFrameMoves) {
 | 
						|
    // Mark effective beginning of when frame pointer is ready.
 | 
						|
    ReadyLabelId = MMI->NextLabelID();
 | 
						|
    BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(ReadyLabelId);
 | 
						|
  }
 | 
						|
 | 
						|
  // Skip the callee-saved push instructions.
 | 
						|
  while (MBBI != MBB.end() &&
 | 
						|
         (MBBI->getOpcode() == X86::PUSH32r ||
 | 
						|
          MBBI->getOpcode() == X86::PUSH64r))
 | 
						|
    ++MBBI;
 | 
						|
 | 
						|
  if (MBBI != MBB.end())
 | 
						|
    DL = MBBI->getDebugLoc();
 | 
						|
 | 
						|
  if (NumBytes) {   // adjust stack pointer: ESP -= numbytes
 | 
						|
    if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
 | 
						|
      // Check, whether EAX is livein for this function
 | 
						|
      bool isEAXAlive = false;
 | 
						|
      for (MachineRegisterInfo::livein_iterator
 | 
						|
           II = MF.getRegInfo().livein_begin(),
 | 
						|
           EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) {
 | 
						|
        unsigned Reg = II->first;
 | 
						|
        isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
 | 
						|
                      Reg == X86::AH || Reg == X86::AL);
 | 
						|
      }
 | 
						|
 | 
						|
      // Function prologue calls _alloca to probe the stack when allocating
 | 
						|
      // more than 4k bytes in one go. Touching the stack at 4K increments is
 | 
						|
      // necessary to ensure that the guard pages used by the OS virtual memory
 | 
						|
      // manager are allocated in correct sequence.
 | 
						|
      if (!isEAXAlive) {
 | 
						|
        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
 | 
						|
          .addImm(NumBytes);
 | 
						|
        BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
 | 
						|
          .addExternalSymbol("_alloca");
 | 
						|
      } else {
 | 
						|
        // Save EAX
 | 
						|
        BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
 | 
						|
          .addReg(X86::EAX, RegState::Kill);
 | 
						|
        // Allocate NumBytes-4 bytes on stack. We'll also use 4 already
 | 
						|
        // allocated bytes for EAX.
 | 
						|
        BuildMI(MBB, MBBI, DL, 
 | 
						|
                TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes-4);
 | 
						|
        BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
 | 
						|
          .addExternalSymbol("_alloca");
 | 
						|
        // Restore EAX
 | 
						|
        MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
 | 
						|
                                                X86::EAX),
 | 
						|
                                        StackPtr, false, NumBytes-4);
 | 
						|
        MBB.insert(MBBI, MI);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // If there is an SUB32ri of ESP immediately before this instruction,
 | 
						|
      // merge the two. This can be the case when tail call elimination is
 | 
						|
      // enabled and the callee has more arguments then the caller.
 | 
						|
      NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
 | 
						|
      // If there is an ADD32ri or SUB32ri of ESP immediately after this
 | 
						|
      // instruction, merge the two instructions.
 | 
						|
      mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
 | 
						|
 | 
						|
      if (NumBytes)
 | 
						|
        emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (needsFrameMoves)
 | 
						|
    emitFrameMoves(MF, FrameLabelId, ReadyLabelId);
 | 
						|
}
 | 
						|
 | 
						|
void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
 | 
						|
                                   MachineBasicBlock &MBB) const {
 | 
						|
  const MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
  MachineBasicBlock::iterator MBBI = prior(MBB.end());
 | 
						|
  unsigned RetOpcode = MBBI->getOpcode();
 | 
						|
  DebugLoc DL = MBBI->getDebugLoc();
 | 
						|
 | 
						|
  switch (RetOpcode) {
 | 
						|
  case X86::RET:
 | 
						|
  case X86::RETI:
 | 
						|
  case X86::TCRETURNdi:
 | 
						|
  case X86::TCRETURNri:
 | 
						|
  case X86::TCRETURNri64:
 | 
						|
  case X86::TCRETURNdi64:
 | 
						|
  case X86::EH_RETURN:
 | 
						|
  case X86::EH_RETURN64:
 | 
						|
  case X86::TAILJMPd:
 | 
						|
  case X86::TAILJMPr:
 | 
						|
  case X86::TAILJMPm: break;  // These are ok
 | 
						|
  default:
 | 
						|
    assert(0 && "Can only insert epilog into returning blocks");
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the number of bytes to allocate from the FrameInfo
 | 
						|
  uint64_t StackSize = MFI->getStackSize();
 | 
						|
  uint64_t MaxAlign  = MFI->getMaxAlignment();
 | 
						|
  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
 | 
						|
  uint64_t NumBytes = 0;
 | 
						|
 | 
						|
  if (hasFP(MF)) {
 | 
						|
    // Calculate required stack adjustment
 | 
						|
    uint64_t FrameSize = StackSize - SlotSize;
 | 
						|
    if (needsStackRealignment(MF))
 | 
						|
      FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
 | 
						|
 | 
						|
    NumBytes = FrameSize - CSSize;
 | 
						|
 | 
						|
    // pop EBP.
 | 
						|
    BuildMI(MBB, MBBI, DL,
 | 
						|
            TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
 | 
						|
  } else {
 | 
						|
    NumBytes = StackSize - CSSize;
 | 
						|
  }
 | 
						|
 | 
						|
  // Skip the callee-saved pop instructions.
 | 
						|
  MachineBasicBlock::iterator LastCSPop = MBBI;
 | 
						|
  while (MBBI != MBB.begin()) {
 | 
						|
    MachineBasicBlock::iterator PI = prior(MBBI);
 | 
						|
    unsigned Opc = PI->getOpcode();
 | 
						|
    if (Opc != X86::POP32r && Opc != X86::POP64r &&
 | 
						|
        !PI->getDesc().isTerminator())
 | 
						|
      break;
 | 
						|
    --MBBI;
 | 
						|
  }
 | 
						|
 | 
						|
  DL = MBBI->getDebugLoc();
 | 
						|
 | 
						|
  // If there is an ADD32ri or SUB32ri of ESP immediately before this
 | 
						|
  // instruction, merge the two instructions.
 | 
						|
  if (NumBytes || MFI->hasVarSizedObjects())
 | 
						|
    mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
 | 
						|
 | 
						|
  // If dynamic alloca is used, then reset esp to point to the last callee-saved
 | 
						|
  // slot before popping them off! Same applies for the case, when stack was
 | 
						|
  // realigned
 | 
						|
  if (needsStackRealignment(MF)) {
 | 
						|
    // We cannot use LEA here, because stack pointer was realigned. We need to
 | 
						|
    // deallocate local frame back
 | 
						|
    if (CSSize) {
 | 
						|
      emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
 | 
						|
      MBBI = prior(LastCSPop);
 | 
						|
    }
 | 
						|
 | 
						|
    BuildMI(MBB, MBBI, DL,
 | 
						|
            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
 | 
						|
            StackPtr).addReg(FramePtr);
 | 
						|
  } else if (MFI->hasVarSizedObjects()) {
 | 
						|
    if (CSSize) {
 | 
						|
      unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
 | 
						|
      MachineInstr *MI = addLeaRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr),
 | 
						|
                                         FramePtr, false, -CSSize);
 | 
						|
      MBB.insert(MBBI, MI);
 | 
						|
    } else
 | 
						|
      BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
 | 
						|
              StackPtr).addReg(FramePtr);
 | 
						|
 | 
						|
  } else {
 | 
						|
    // adjust stack pointer back: ESP += numbytes
 | 
						|
    if (NumBytes)
 | 
						|
      emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
 | 
						|
  }
 | 
						|
 | 
						|
  // We're returning from function via eh_return.
 | 
						|
  if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
 | 
						|
    MBBI = prior(MBB.end());
 | 
						|
    MachineOperand &DestAddr  = MBBI->getOperand(0);
 | 
						|
    assert(DestAddr.isReg() && "Offset should be in register!");
 | 
						|
    BuildMI(MBB, MBBI, DL,
 | 
						|
            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
 | 
						|
            StackPtr).addReg(DestAddr.getReg());
 | 
						|
  // Tail call return: adjust the stack pointer and jump to callee
 | 
						|
  } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
 | 
						|
             RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) {
 | 
						|
    MBBI = prior(MBB.end());
 | 
						|
    MachineOperand &JumpTarget = MBBI->getOperand(0);
 | 
						|
    MachineOperand &StackAdjust = MBBI->getOperand(1);
 | 
						|
    assert(StackAdjust.isImm() && "Expecting immediate value.");
 | 
						|
 | 
						|
    // Adjust stack pointer.
 | 
						|
    int StackAdj = StackAdjust.getImm();
 | 
						|
    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
 | 
						|
    int Offset = 0;
 | 
						|
    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
 | 
						|
    // Incoporate the retaddr area.
 | 
						|
    Offset = StackAdj-MaxTCDelta;
 | 
						|
    assert(Offset >= 0 && "Offset should never be negative");
 | 
						|
 | 
						|
    if (Offset) {
 | 
						|
      // Check for possible merge with preceeding ADD instruction.
 | 
						|
      Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
 | 
						|
      emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII);
 | 
						|
    }
 | 
						|
 | 
						|
    // Jump to label or value in register.
 | 
						|
    if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64)
 | 
						|
      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPd)).
 | 
						|
        addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
 | 
						|
    else if (RetOpcode== X86::TCRETURNri64)
 | 
						|
      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64), JumpTarget.getReg());
 | 
						|
    else
 | 
						|
       BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr), JumpTarget.getReg());
 | 
						|
 | 
						|
    // Delete the pseudo instruction TCRETURN.
 | 
						|
    MBB.erase(MBBI);
 | 
						|
  } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
 | 
						|
             (X86FI->getTCReturnAddrDelta() < 0)) {
 | 
						|
    // Add the return addr area delta back since we are not tail calling.
 | 
						|
    int delta = -1*X86FI->getTCReturnAddrDelta();
 | 
						|
    MBBI = prior(MBB.end());
 | 
						|
    // Check for possible merge with preceeding ADD instruction.
 | 
						|
    delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
 | 
						|
    emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86RegisterInfo::getRARegister() const {
 | 
						|
  if (Is64Bit)
 | 
						|
    return X86::RIP;  // Should have dwarf #16
 | 
						|
  else
 | 
						|
    return X86::EIP;  // Should have dwarf #8
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
 | 
						|
  return hasFP(MF) ? FramePtr : StackPtr;
 | 
						|
}
 | 
						|
 | 
						|
void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves)
 | 
						|
                                                                         const {
 | 
						|
  // Calculate amount of bytes used for return address storing
 | 
						|
  int stackGrowth = (Is64Bit ? -8 : -4);
 | 
						|
 | 
						|
  // Initial state of the frame pointer is esp+4.
 | 
						|
  MachineLocation Dst(MachineLocation::VirtualFP);
 | 
						|
  MachineLocation Src(StackPtr, stackGrowth);
 | 
						|
  Moves.push_back(MachineMove(0, Dst, Src));
 | 
						|
 | 
						|
  // Add return address to move list
 | 
						|
  MachineLocation CSDst(StackPtr, stackGrowth);
 | 
						|
  MachineLocation CSSrc(getRARegister());
 | 
						|
  Moves.push_back(MachineMove(0, CSDst, CSSrc));
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86RegisterInfo::getEHExceptionRegister() const {
 | 
						|
  assert(0 && "What is the exception register");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86RegisterInfo::getEHHandlerRegister() const {
 | 
						|
  assert(0 && "What is the exception handler register");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
unsigned getX86SubSuperRegister(unsigned Reg, MVT VT, bool High) {
 | 
						|
  switch (VT.getSimpleVT()) {
 | 
						|
  default: return Reg;
 | 
						|
  case MVT::i8:
 | 
						|
    if (High) {
 | 
						|
      switch (Reg) {
 | 
						|
      default: return 0;
 | 
						|
      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
 | 
						|
        return X86::AH;
 | 
						|
      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
 | 
						|
        return X86::DH;
 | 
						|
      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
 | 
						|
        return X86::CH;
 | 
						|
      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
 | 
						|
        return X86::BH;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      switch (Reg) {
 | 
						|
      default: return 0;
 | 
						|
      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
 | 
						|
        return X86::AL;
 | 
						|
      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
 | 
						|
        return X86::DL;
 | 
						|
      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
 | 
						|
        return X86::CL;
 | 
						|
      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
 | 
						|
        return X86::BL;
 | 
						|
      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
 | 
						|
        return X86::SIL;
 | 
						|
      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
 | 
						|
        return X86::DIL;
 | 
						|
      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
 | 
						|
        return X86::BPL;
 | 
						|
      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
 | 
						|
        return X86::SPL;
 | 
						|
      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
 | 
						|
        return X86::R8B;
 | 
						|
      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
 | 
						|
        return X86::R9B;
 | 
						|
      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
 | 
						|
        return X86::R10B;
 | 
						|
      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
 | 
						|
        return X86::R11B;
 | 
						|
      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
 | 
						|
        return X86::R12B;
 | 
						|
      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
 | 
						|
        return X86::R13B;
 | 
						|
      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
 | 
						|
        return X86::R14B;
 | 
						|
      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
 | 
						|
        return X86::R15B;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  case MVT::i16:
 | 
						|
    switch (Reg) {
 | 
						|
    default: return Reg;
 | 
						|
    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
 | 
						|
      return X86::AX;
 | 
						|
    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
 | 
						|
      return X86::DX;
 | 
						|
    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
 | 
						|
      return X86::CX;
 | 
						|
    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
 | 
						|
      return X86::BX;
 | 
						|
    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
 | 
						|
      return X86::SI;
 | 
						|
    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
 | 
						|
      return X86::DI;
 | 
						|
    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
 | 
						|
      return X86::BP;
 | 
						|
    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
 | 
						|
      return X86::SP;
 | 
						|
    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
 | 
						|
      return X86::R8W;
 | 
						|
    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
 | 
						|
      return X86::R9W;
 | 
						|
    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
 | 
						|
      return X86::R10W;
 | 
						|
    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
 | 
						|
      return X86::R11W;
 | 
						|
    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
 | 
						|
      return X86::R12W;
 | 
						|
    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
 | 
						|
      return X86::R13W;
 | 
						|
    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
 | 
						|
      return X86::R14W;
 | 
						|
    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
 | 
						|
      return X86::R15W;
 | 
						|
    }
 | 
						|
  case MVT::i32:
 | 
						|
    switch (Reg) {
 | 
						|
    default: return Reg;
 | 
						|
    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
 | 
						|
      return X86::EAX;
 | 
						|
    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
 | 
						|
      return X86::EDX;
 | 
						|
    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
 | 
						|
      return X86::ECX;
 | 
						|
    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
 | 
						|
      return X86::EBX;
 | 
						|
    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
 | 
						|
      return X86::ESI;
 | 
						|
    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
 | 
						|
      return X86::EDI;
 | 
						|
    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
 | 
						|
      return X86::EBP;
 | 
						|
    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
 | 
						|
      return X86::ESP;
 | 
						|
    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
 | 
						|
      return X86::R8D;
 | 
						|
    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
 | 
						|
      return X86::R9D;
 | 
						|
    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
 | 
						|
      return X86::R10D;
 | 
						|
    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
 | 
						|
      return X86::R11D;
 | 
						|
    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
 | 
						|
      return X86::R12D;
 | 
						|
    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
 | 
						|
      return X86::R13D;
 | 
						|
    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
 | 
						|
      return X86::R14D;
 | 
						|
    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
 | 
						|
      return X86::R15D;
 | 
						|
    }
 | 
						|
  case MVT::i64:
 | 
						|
    switch (Reg) {
 | 
						|
    default: return Reg;
 | 
						|
    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
 | 
						|
      return X86::RAX;
 | 
						|
    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
 | 
						|
      return X86::RDX;
 | 
						|
    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
 | 
						|
      return X86::RCX;
 | 
						|
    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
 | 
						|
      return X86::RBX;
 | 
						|
    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
 | 
						|
      return X86::RSI;
 | 
						|
    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
 | 
						|
      return X86::RDI;
 | 
						|
    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
 | 
						|
      return X86::RBP;
 | 
						|
    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
 | 
						|
      return X86::RSP;
 | 
						|
    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
 | 
						|
      return X86::R8;
 | 
						|
    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
 | 
						|
      return X86::R9;
 | 
						|
    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
 | 
						|
      return X86::R10;
 | 
						|
    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
 | 
						|
      return X86::R11;
 | 
						|
    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
 | 
						|
      return X86::R12;
 | 
						|
    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
 | 
						|
      return X86::R13;
 | 
						|
    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
 | 
						|
      return X86::R14;
 | 
						|
    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
 | 
						|
      return X86::R15;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Reg;
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
#include "X86GenRegisterInfo.inc"
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct VISIBILITY_HIDDEN MSAC : public MachineFunctionPass {
 | 
						|
    static char ID;
 | 
						|
    MSAC() : MachineFunctionPass(&ID) {}
 | 
						|
 | 
						|
    virtual bool runOnMachineFunction(MachineFunction &MF) {
 | 
						|
      MachineFrameInfo *FFI = MF.getFrameInfo();
 | 
						|
      MachineRegisterInfo &RI = MF.getRegInfo();
 | 
						|
 | 
						|
      // Calculate max stack alignment of all already allocated stack objects.
 | 
						|
      unsigned MaxAlign = calculateMaxStackAlignment(FFI);
 | 
						|
 | 
						|
      // Be over-conservative: scan over all vreg defs and find, whether vector
 | 
						|
      // registers are used. If yes - there is probability, that vector register
 | 
						|
      // will be spilled and thus stack needs to be aligned properly.
 | 
						|
      for (unsigned RegNum = TargetRegisterInfo::FirstVirtualRegister;
 | 
						|
           RegNum < RI.getLastVirtReg(); ++RegNum)
 | 
						|
        MaxAlign = std::max(MaxAlign, RI.getRegClass(RegNum)->getAlignment());
 | 
						|
 | 
						|
      FFI->setMaxAlignment(MaxAlign);
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "X86 Maximal Stack Alignment Calculator";
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  char MSAC::ID = 0;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass*
 | 
						|
llvm::createX86MaxStackAlignmentCalculatorPass() { return new MSAC(); }
 |