mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This patch was generated by a clang tidy checker that is being open sourced. The documentation of that checker is the following: /// The emptiness of a container should be checked using the empty method /// instead of the size method. It is not guaranteed that size is a /// constant-time function, and it is generally more efficient and also shows /// clearer intent to use empty. Furthermore some containers may implement the /// empty method but not implement the size method. Using empty whenever /// possible makes it easier to switch to another container in the future. Patch by Gábor Horváth! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226161 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			508 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			508 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This class parses the Schedule.td file and produces an API that can be used
 | 
						|
// to reason about whether an instruction can be added to a packet on a VLIW
 | 
						|
// architecture. The class internally generates a deterministic finite
 | 
						|
// automaton (DFA) that models all possible mappings of machine instructions
 | 
						|
// to functional units as instructions are added to a packet.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CodeGenTarget.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/TableGen/Record.h"
 | 
						|
#include "llvm/TableGen/TableGenBackend.h"
 | 
						|
#include <list>
 | 
						|
#include <map>
 | 
						|
#include <string>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//
 | 
						|
// class DFAPacketizerEmitter: class that generates and prints out the DFA
 | 
						|
// for resource tracking.
 | 
						|
//
 | 
						|
namespace {
 | 
						|
class DFAPacketizerEmitter {
 | 
						|
private:
 | 
						|
  std::string TargetName;
 | 
						|
  //
 | 
						|
  // allInsnClasses is the set of all possible resources consumed by an
 | 
						|
  // InstrStage.
 | 
						|
  //
 | 
						|
  DenseSet<unsigned> allInsnClasses;
 | 
						|
  RecordKeeper &Records;
 | 
						|
 | 
						|
public:
 | 
						|
  DFAPacketizerEmitter(RecordKeeper &R);
 | 
						|
 | 
						|
  //
 | 
						|
  // collectAllInsnClasses: Populate allInsnClasses which is a set of units
 | 
						|
  // used in each stage.
 | 
						|
  //
 | 
						|
  void collectAllInsnClasses(const std::string &Name,
 | 
						|
                             Record *ItinData,
 | 
						|
                             unsigned &NStages,
 | 
						|
                             raw_ostream &OS);
 | 
						|
 | 
						|
  void run(raw_ostream &OS);
 | 
						|
};
 | 
						|
} // End anonymous namespace.
 | 
						|
 | 
						|
//
 | 
						|
//
 | 
						|
// State represents the usage of machine resources if the packet contains
 | 
						|
// a set of instruction classes.
 | 
						|
//
 | 
						|
// Specifically, currentState is a set of bit-masks.
 | 
						|
// The nth bit in a bit-mask indicates whether the nth resource is being used
 | 
						|
// by this state. The set of bit-masks in a state represent the different
 | 
						|
// possible outcomes of transitioning to this state.
 | 
						|
// For example: consider a two resource architecture: resource L and resource M
 | 
						|
// with three instruction classes: L, M, and L_or_M.
 | 
						|
// From the initial state (currentState = 0x00), if we add instruction class
 | 
						|
// L_or_M we will transition to a state with currentState = [0x01, 0x10]. This
 | 
						|
// represents the possible resource states that can result from adding a L_or_M
 | 
						|
// instruction
 | 
						|
//
 | 
						|
// Another way of thinking about this transition is we are mapping a NDFA with
 | 
						|
// two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10].
 | 
						|
//
 | 
						|
// A State instance also contains a collection of transitions from that state:
 | 
						|
// a map from inputs to new states.
 | 
						|
//
 | 
						|
namespace {
 | 
						|
class State {
 | 
						|
 public:
 | 
						|
  static int currentStateNum;
 | 
						|
  // stateNum is the only member used for equality/ordering, all other members
 | 
						|
  // can be mutated even in const State objects.
 | 
						|
  const int stateNum;
 | 
						|
  mutable bool isInitial;
 | 
						|
  mutable std::set<unsigned> stateInfo;
 | 
						|
  typedef std::map<unsigned, const State *> TransitionMap;
 | 
						|
  mutable TransitionMap Transitions;
 | 
						|
 | 
						|
  State();
 | 
						|
 | 
						|
  bool operator<(const State &s) const {
 | 
						|
    return stateNum < s.stateNum;
 | 
						|
  }
 | 
						|
 | 
						|
  //
 | 
						|
  // canAddInsnClass - Returns true if an instruction of type InsnClass is a
 | 
						|
  // valid transition from this state, i.e., can an instruction of type InsnClass
 | 
						|
  // be added to the packet represented by this state.
 | 
						|
  //
 | 
						|
  // PossibleStates is the set of valid resource states that ensue from valid
 | 
						|
  // transitions.
 | 
						|
  //
 | 
						|
  bool canAddInsnClass(unsigned InsnClass) const;
 | 
						|
  //
 | 
						|
  // AddInsnClass - Return all combinations of resource reservation
 | 
						|
  // which are possible from this state (PossibleStates).
 | 
						|
  //
 | 
						|
  void AddInsnClass(unsigned InsnClass, std::set<unsigned> &PossibleStates) const;
 | 
						|
  // 
 | 
						|
  // addTransition - Add a transition from this state given the input InsnClass
 | 
						|
  //
 | 
						|
  void addTransition(unsigned InsnClass, const State *To) const;
 | 
						|
  //
 | 
						|
  // hasTransition - Returns true if there is a transition from this state
 | 
						|
  // given the input InsnClass
 | 
						|
  //
 | 
						|
  bool hasTransition(unsigned InsnClass) const;
 | 
						|
};
 | 
						|
} // End anonymous namespace.
 | 
						|
 | 
						|
//
 | 
						|
// class DFA: deterministic finite automaton for processor resource tracking.
 | 
						|
//
 | 
						|
namespace {
 | 
						|
class DFA {
 | 
						|
public:
 | 
						|
  DFA();
 | 
						|
 | 
						|
  // Set of states. Need to keep this sorted to emit the transition table.
 | 
						|
  typedef std::set<State> StateSet;
 | 
						|
  StateSet states;
 | 
						|
 | 
						|
  State *currentState;
 | 
						|
 | 
						|
  //
 | 
						|
  // Modify the DFA.
 | 
						|
  //
 | 
						|
  const State &newState();
 | 
						|
 | 
						|
  //
 | 
						|
  // writeTable: Print out a table representing the DFA.
 | 
						|
  //
 | 
						|
  void writeTableAndAPI(raw_ostream &OS, const std::string &ClassName);
 | 
						|
};
 | 
						|
} // End anonymous namespace.
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// Constructors and destructors for State and DFA
 | 
						|
//
 | 
						|
State::State() :
 | 
						|
  stateNum(currentStateNum++), isInitial(false) {}
 | 
						|
 | 
						|
DFA::DFA(): currentState(nullptr) {}
 | 
						|
 | 
						|
// 
 | 
						|
// addTransition - Add a transition from this state given the input InsnClass
 | 
						|
//
 | 
						|
void State::addTransition(unsigned InsnClass, const State *To) const {
 | 
						|
  assert(!Transitions.count(InsnClass) &&
 | 
						|
      "Cannot have multiple transitions for the same input");
 | 
						|
  Transitions[InsnClass] = To;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// hasTransition - Returns true if there is a transition from this state
 | 
						|
// given the input InsnClass
 | 
						|
//
 | 
						|
bool State::hasTransition(unsigned InsnClass) const {
 | 
						|
  return Transitions.count(InsnClass) > 0;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// AddInsnClass - Return all combinations of resource reservation
 | 
						|
// which are possible from this state (PossibleStates).
 | 
						|
//
 | 
						|
void State::AddInsnClass(unsigned InsnClass,
 | 
						|
                            std::set<unsigned> &PossibleStates) const {
 | 
						|
  //
 | 
						|
  // Iterate over all resource states in currentState.
 | 
						|
  //
 | 
						|
 | 
						|
  for (std::set<unsigned>::iterator SI = stateInfo.begin();
 | 
						|
       SI != stateInfo.end(); ++SI) {
 | 
						|
    unsigned thisState = *SI;
 | 
						|
 | 
						|
    //
 | 
						|
    // Iterate over all possible resources used in InsnClass.
 | 
						|
    // For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}.
 | 
						|
    //
 | 
						|
 | 
						|
    DenseSet<unsigned> VisitedResourceStates;
 | 
						|
    for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) {
 | 
						|
      if ((0x1 << j) & InsnClass) {
 | 
						|
        //
 | 
						|
        // For each possible resource used in InsnClass, generate the
 | 
						|
        // resource state if that resource was used.
 | 
						|
        //
 | 
						|
        unsigned ResultingResourceState = thisState | (0x1 << j);
 | 
						|
        //
 | 
						|
        // Check if the resulting resource state can be accommodated in this
 | 
						|
        // packet.
 | 
						|
        // We compute ResultingResourceState OR thisState.
 | 
						|
        // If the result of the OR is different than thisState, it implies
 | 
						|
        // that there is at least one resource that can be used to schedule
 | 
						|
        // InsnClass in the current packet.
 | 
						|
        // Insert ResultingResourceState into PossibleStates only if we haven't
 | 
						|
        // processed ResultingResourceState before.
 | 
						|
        //
 | 
						|
        if ((ResultingResourceState != thisState) &&
 | 
						|
            (VisitedResourceStates.count(ResultingResourceState) == 0)) {
 | 
						|
          VisitedResourceStates.insert(ResultingResourceState);
 | 
						|
          PossibleStates.insert(ResultingResourceState);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// canAddInsnClass - Quickly verifies if an instruction of type InsnClass is a
 | 
						|
// valid transition from this state i.e., can an instruction of type InsnClass
 | 
						|
// be added to the packet represented by this state.
 | 
						|
//
 | 
						|
bool State::canAddInsnClass(unsigned InsnClass) const {
 | 
						|
  for (std::set<unsigned>::const_iterator SI = stateInfo.begin();
 | 
						|
       SI != stateInfo.end(); ++SI) {
 | 
						|
    if (~*SI & InsnClass)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
const State &DFA::newState() {
 | 
						|
  auto IterPair = states.insert(State());
 | 
						|
  assert(IterPair.second && "State already exists");
 | 
						|
  return *IterPair.first;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int State::currentStateNum = 0;
 | 
						|
 | 
						|
DFAPacketizerEmitter::DFAPacketizerEmitter(RecordKeeper &R):
 | 
						|
  TargetName(CodeGenTarget(R).getName()),
 | 
						|
  allInsnClasses(), Records(R) {}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// writeTableAndAPI - Print out a table representing the DFA and the
 | 
						|
// associated API to create a DFA packetizer.
 | 
						|
//
 | 
						|
// Format:
 | 
						|
// DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
 | 
						|
//                           transitions.
 | 
						|
// DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for
 | 
						|
//                         the ith state.
 | 
						|
//
 | 
						|
//
 | 
						|
void DFA::writeTableAndAPI(raw_ostream &OS, const std::string &TargetName) {
 | 
						|
  static const std::string SentinelEntry = "{-1, -1}";
 | 
						|
  DFA::StateSet::iterator SI = states.begin();
 | 
						|
  // This table provides a map to the beginning of the transitions for State s
 | 
						|
  // in DFAStateInputTable.
 | 
						|
  std::vector<int> StateEntry(states.size());
 | 
						|
 | 
						|
  OS << "namespace llvm {\n\n";
 | 
						|
  OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n";
 | 
						|
 | 
						|
  // Tracks the total valid transitions encountered so far. It is used
 | 
						|
  // to construct the StateEntry table.
 | 
						|
  int ValidTransitions = 0;
 | 
						|
  for (unsigned i = 0; i < states.size(); ++i, ++SI) {
 | 
						|
    assert ((SI->stateNum == (int) i) && "Mismatch in state numbers");
 | 
						|
    StateEntry[i] = ValidTransitions;
 | 
						|
    for (State::TransitionMap::iterator
 | 
						|
        II = SI->Transitions.begin(), IE = SI->Transitions.end();
 | 
						|
        II != IE; ++II) {
 | 
						|
      OS << "{" << II->first << ", "
 | 
						|
         << II->second->stateNum
 | 
						|
         << "},    ";
 | 
						|
    }
 | 
						|
    ValidTransitions += SI->Transitions.size();
 | 
						|
 | 
						|
    // If there are no valid transitions from this stage, we need a sentinel
 | 
						|
    // transition.
 | 
						|
    if (ValidTransitions == StateEntry[i]) {
 | 
						|
      OS << SentinelEntry << ",";
 | 
						|
      ++ValidTransitions;
 | 
						|
    }
 | 
						|
 | 
						|
    OS << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // Print out a sentinel entry at the end of the StateInputTable. This is
 | 
						|
  // needed to iterate over StateInputTable in DFAPacketizer::ReadTable()
 | 
						|
  OS << SentinelEntry << "\n";
 | 
						|
  
 | 
						|
  OS << "};\n\n";
 | 
						|
  OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n";
 | 
						|
 | 
						|
  // Multiply i by 2 since each entry in DFAStateInputTable is a set of
 | 
						|
  // two numbers.
 | 
						|
  for (unsigned i = 0; i < states.size(); ++i)
 | 
						|
    OS << StateEntry[i] << ", ";
 | 
						|
 | 
						|
  // Print out the index to the sentinel entry in StateInputTable
 | 
						|
  OS << ValidTransitions << ", ";
 | 
						|
 | 
						|
  OS << "\n};\n";
 | 
						|
  OS << "} // namespace\n";
 | 
						|
 | 
						|
 | 
						|
  //
 | 
						|
  // Emit DFA Packetizer tables if the target is a VLIW machine.
 | 
						|
  //
 | 
						|
  std::string SubTargetClassName = TargetName + "GenSubtargetInfo";
 | 
						|
  OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n";
 | 
						|
  OS << "namespace llvm {\n";
 | 
						|
  OS << "DFAPacketizer *" << SubTargetClassName << "::"
 | 
						|
     << "createDFAPacketizer(const InstrItineraryData *IID) const {\n"
 | 
						|
     << "   return new DFAPacketizer(IID, " << TargetName
 | 
						|
     << "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n";
 | 
						|
  OS << "} // End llvm namespace \n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// collectAllInsnClasses - Populate allInsnClasses which is a set of units
 | 
						|
// used in each stage.
 | 
						|
//
 | 
						|
void DFAPacketizerEmitter::collectAllInsnClasses(const std::string &Name,
 | 
						|
                                  Record *ItinData,
 | 
						|
                                  unsigned &NStages,
 | 
						|
                                  raw_ostream &OS) {
 | 
						|
  // Collect processor itineraries.
 | 
						|
  std::vector<Record*> ProcItinList =
 | 
						|
    Records.getAllDerivedDefinitions("ProcessorItineraries");
 | 
						|
 | 
						|
  // If just no itinerary then don't bother.
 | 
						|
  if (ProcItinList.size() < 2)
 | 
						|
    return;
 | 
						|
  std::map<std::string, unsigned> NameToBitsMap;
 | 
						|
 | 
						|
  // Parse functional units for all the itineraries.
 | 
						|
  for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) {
 | 
						|
    Record *Proc = ProcItinList[i];
 | 
						|
    std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU");
 | 
						|
 | 
						|
    // Convert macros to bits for each stage.
 | 
						|
    for (unsigned i = 0, N = FUs.size(); i < N; ++i)
 | 
						|
      NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i);
 | 
						|
  }
 | 
						|
 | 
						|
  const std::vector<Record*> &StageList =
 | 
						|
    ItinData->getValueAsListOfDefs("Stages");
 | 
						|
 | 
						|
  // The number of stages.
 | 
						|
  NStages = StageList.size();
 | 
						|
 | 
						|
  // For each unit.
 | 
						|
  unsigned UnitBitValue = 0;
 | 
						|
 | 
						|
  // Compute the bitwise or of each unit used in this stage.
 | 
						|
  for (unsigned i = 0; i < NStages; ++i) {
 | 
						|
    const Record *Stage = StageList[i];
 | 
						|
 | 
						|
    // Get unit list.
 | 
						|
    const std::vector<Record*> &UnitList =
 | 
						|
      Stage->getValueAsListOfDefs("Units");
 | 
						|
 | 
						|
    for (unsigned j = 0, M = UnitList.size(); j < M; ++j) {
 | 
						|
      // Conduct bitwise or.
 | 
						|
      std::string UnitName = UnitList[j]->getName();
 | 
						|
      assert(NameToBitsMap.count(UnitName));
 | 
						|
      UnitBitValue |= NameToBitsMap[UnitName];
 | 
						|
    }
 | 
						|
 | 
						|
    if (UnitBitValue != 0)
 | 
						|
      allInsnClasses.insert(UnitBitValue);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// Run the worklist algorithm to generate the DFA.
 | 
						|
//
 | 
						|
void DFAPacketizerEmitter::run(raw_ostream &OS) {
 | 
						|
 | 
						|
  // Collect processor iteraries.
 | 
						|
  std::vector<Record*> ProcItinList =
 | 
						|
    Records.getAllDerivedDefinitions("ProcessorItineraries");
 | 
						|
 | 
						|
  //
 | 
						|
  // Collect the instruction classes.
 | 
						|
  //
 | 
						|
  for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) {
 | 
						|
    Record *Proc = ProcItinList[i];
 | 
						|
 | 
						|
    // Get processor itinerary name.
 | 
						|
    const std::string &Name = Proc->getName();
 | 
						|
 | 
						|
    // Skip default.
 | 
						|
    if (Name == "NoItineraries")
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Sanity check for at least one instruction itinerary class.
 | 
						|
    unsigned NItinClasses =
 | 
						|
      Records.getAllDerivedDefinitions("InstrItinClass").size();
 | 
						|
    if (NItinClasses == 0)
 | 
						|
      return;
 | 
						|
 | 
						|
    // Get itinerary data list.
 | 
						|
    std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID");
 | 
						|
 | 
						|
    // Collect instruction classes for all itinerary data.
 | 
						|
    for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) {
 | 
						|
      Record *ItinData = ItinDataList[j];
 | 
						|
      unsigned NStages;
 | 
						|
      collectAllInsnClasses(Name, ItinData, NStages, OS);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  //
 | 
						|
  // Run a worklist algorithm to generate the DFA.
 | 
						|
  //
 | 
						|
  DFA D;
 | 
						|
  const State *Initial = &D.newState();
 | 
						|
  Initial->isInitial = true;
 | 
						|
  Initial->stateInfo.insert(0x0);
 | 
						|
  SmallVector<const State*, 32> WorkList;
 | 
						|
  std::map<std::set<unsigned>, const State*> Visited;
 | 
						|
 | 
						|
  WorkList.push_back(Initial);
 | 
						|
 | 
						|
  //
 | 
						|
  // Worklist algorithm to create a DFA for processor resource tracking.
 | 
						|
  // C = {set of InsnClasses}
 | 
						|
  // Begin with initial node in worklist. Initial node does not have
 | 
						|
  // any consumed resources,
 | 
						|
  //     ResourceState = 0x0
 | 
						|
  // Visited = {}
 | 
						|
  // While worklist != empty
 | 
						|
  //    S = first element of worklist
 | 
						|
  //    For every instruction class C
 | 
						|
  //      if we can accommodate C in S:
 | 
						|
  //          S' = state with resource states = {S Union C}
 | 
						|
  //          Add a new transition: S x C -> S'
 | 
						|
  //          If S' is not in Visited:
 | 
						|
  //             Add S' to worklist
 | 
						|
  //             Add S' to Visited
 | 
						|
  //
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    const State *current = WorkList.pop_back_val();
 | 
						|
    for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(),
 | 
						|
           CE = allInsnClasses.end(); CI != CE; ++CI) {
 | 
						|
      unsigned InsnClass = *CI;
 | 
						|
 | 
						|
      std::set<unsigned> NewStateResources;
 | 
						|
      //
 | 
						|
      // If we haven't already created a transition for this input
 | 
						|
      // and the state can accommodate this InsnClass, create a transition.
 | 
						|
      //
 | 
						|
      if (!current->hasTransition(InsnClass) &&
 | 
						|
          current->canAddInsnClass(InsnClass)) {
 | 
						|
        const State *NewState;
 | 
						|
        current->AddInsnClass(InsnClass, NewStateResources);
 | 
						|
        assert(!NewStateResources.empty() && "New states must be generated");
 | 
						|
 | 
						|
        //
 | 
						|
        // If we have seen this state before, then do not create a new state.
 | 
						|
        //
 | 
						|
        //
 | 
						|
        auto VI = Visited.find(NewStateResources);
 | 
						|
        if (VI != Visited.end())
 | 
						|
          NewState = VI->second;
 | 
						|
        else {
 | 
						|
          NewState = &D.newState();
 | 
						|
          NewState->stateInfo = NewStateResources;
 | 
						|
          Visited[NewStateResources] = NewState;
 | 
						|
          WorkList.push_back(NewState);
 | 
						|
        }
 | 
						|
        
 | 
						|
        current->addTransition(InsnClass, NewState);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Print out the table.
 | 
						|
  D.writeTableAndAPI(OS, TargetName);
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
void EmitDFAPacketizer(RecordKeeper &RK, raw_ostream &OS) {
 | 
						|
  emitSourceFileHeader("Target DFA Packetizer Tables", OS);
 | 
						|
  DFAPacketizerEmitter(RK).run(OS);
 | 
						|
}
 | 
						|
 | 
						|
} // End llvm namespace
 |